
DARTS Lab Documentation (Developer)

DARTS Lab

October 06 2023, 06:14:01

Jet Propulsion laboratory, California Institute of Technology

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

Table of Contents

DARTS/Dshell Framework

1. Dshell++

1.1. Background

1.1.1. Reference & Source material

1.2. Design

1.2.1. Dshell Model Design (aka Models Style Guide Draft)

1.2.2. Dshell Simulation object

1.2.3. Dshell Assemblies

1.2.4. Dshell Models

1.2.5. Linearization

1.3. Usage

1.4. Software

1.5. Raw documentation

1.5.1. DshellCommon: Split Assembly into BaseAssembly and Assembly

1.5.2. Proposal: New state propagation design

1.5.3. Working with FSMs

1.5.4. Notes from issue on the new time stepping scheme.

1.6. Sphinx documentation

1.6.1. Dshell Simulation

1.6.2. Dshell Models

1.6.3. Dshell Signals

1.6.4. Dshell Assemblies

1.6.5. Dshell Parameter Classes

1.6.6. Dshell++ Events

1.6.7. MultiRate EndIOStep Execution

1.7. Regression Tests

1.7.1. Dshell++ Regression Tests

2. DshellCommon

2.1. Background

2.1.1. Reference & Source material

2.2. Design

2.2.1. InputDict: replacement for anonymous dictionaries

2.2.2. DAssembly

2.3. Usage

2.3.1. Module Usage

2.4. Software

2.5. Raw documentation

2.5.1. DshellCommon: Add an optional reference frame path/uuid �eld to NodeParam class

2.5.2. DshellCommon: Create MarsAssembly etc assemblies speci�c to known planetary bodies

2.5.3. DshellCommon: New Object-Oriented way to handle Assemblies (design requirements)

2.5.4. DshellCommon: Replacing anonymous dictionaries with explicit classes

2.5.5. DshellCommon: Use of InputDict with Assembly classes notes

2.5.6. DshellCommon: Validation with InputDict

2.6. Sphinx documentation

2.6.1. Getting Started

2.6.2. Reference

3. DIntegrator

3.1. Background

3.1.1. Reference & Source material

3.2. Design

3.3. Usage

3.4. Software

3.5. Raw documents

3.6. Sphinx documentation

3.6.1. Reference

4. CVode

4.1. Background

4.1.1. Reference & Source material

4.2. Design

4.3. Usage

4.4. Software

4.5. Raw documents

4.5.1. Sphinx documentation

5. DshellEnv

5.1. Background

5.1.1. Reference & Source material

5.2. Design

5.2.1. Dclick option handling

5.3. Usage

5.3.1. Dclick Usage

5.3.2. Typing

5.4. Software

5.5. Raw documentation

5.5.1. Handling di�erent versions of typing and typing_extension Python modules

5.6. Sphinx documentation

5.6.1. Introduction

5.6.2. DshellEnv Classes

5.6.3. DshellEnv Reference

6. Ndarts

6.1. Background

6.1.1. The multibody dynamics problem

6.1.2. Reference & Source material

6.2. Design

6.2.1. Architecture overview

6.2.2. Ndarts Prescribing and Masking Joints

6.2.3. Multibody Modeling with Ndarts - Design

6.2.4. Algorithms available

6.2.5. Additional concepts

6.3. Usage

6.3.1. Creating a multibody model

6.3.2. Using the model

6.3.3. Changing model con�guration

6.3.4. Troubleshooting and FAQ

6.4. Software

6.4.1. DartsMbody

6.4.2. DartsBody

6.4.3. DartsHinge

6.4.4. DartsSubinge

6.4.5. DartsNode

6.4.6. DartsSubGraph

6.4.7. DartsTreeDynamicsSolver

6.4.8. CM frame

6.4.9. General Functions

6.5. Raw documentation

6.5.1. Ndarts: Switch DartsBody.setBodyParams() to use createPartGeometries() instead of load() for geometries

6.6. Sphinx documentation

6.6.1. DARTS Multibody Modelings Basics

6.6.2. Ndarts Hinges

6.6.3. Ndarts Prescribing and Masking Joints

6.6.4. Geometric Shapes for Bodies

6.6.5. Multibody Modeling with Ndarts - Design

6.6.6. Ndarts Primary Object Classes API Reference

7. DFrame

7.1. Background

7.1.1. Reference & Source material

7.2. Design

7.2.1. DartsFacadeScene

7.3. Usage

7.3.1. DartsFacadeScene

7.4. Software

7.5. Raw documentation

7.5.1. DFrame: Add method to look up frame from a partial frame names path

7.5.2. Dshell++: Support calling updateSceneFrameTransform() at the granularity required by individual models

7.6. Sphinx documentation

7.6.1. Darts/Dshell Frames

7.6.2. Regression tests

8. DVar

8.1. Background

8.1.1. Reference & Source material

8.2. Design

8.3. Usage

8.4. Software

8.5. Raw documents

8.6. Sphinx documentation

8.6.1. Darts/Dshell Data Inspection and Updating with Dvar

9. DataRecorder

9.1. Background

9.1.1. Reference & Source material

9.2. Design

9.2.1. PlotJugglerRecorder

9.3. Usage

9.3.1. PlotJugglerRecorder

9.4. Software

9.5. Raw Documents

9.6. Sphinx Documentation

9.6.1. DataRecorder Logging

9.6.2. DataRecorder Logging Example

9.6.3. DataRecorder Regression Tests

10. Dshell++Scripts

10.1. Background

10.1.1. Reference & Source material

10.2. Design

10.3. Usage

10.4. Software

10.5. Raw documents

10.6. Sphinx documentation

10.6.1. Logging with DebugLog

10.6.2. Regression tests

11. SOA

11.1. Background

11.1.1. Reference & Source material

11.2. Design

11.2.1. SOAVector vector class

11.2.2. SOAMatrix matrix class

11.2.3. SOAQuaternion unit quaternion class

11.2.4. SOAHomTran homogeneous transform class

11.2.5. SOASpatialInertia spatial inertia class

11.3. Usage

11.4. Software

11.4.1. SOARodriguesParam

11.5. Raw documentation

11.5.1. SOA: Implement default object value printouts using pydump()

11.6. Sphinx documentation

11.6.1. SOAVector vector class

11.6.2. SOAMatrix matrix class

11.6.3. SOAQuaternion unit quaternion class

11.6.4. SOAHomTran homogeneous transform class

11.6.5. SOASpatialInertia spatial inertia class

11.6.6. Rotational Conventions

11.6.7. Inertia Tensor

11.7. Inertia Tensor and Products of Inertia Integral Sense

11.7.1. Inertia Tensor

11.7.2. Products of Inertia - Negative Integral Sense

11.7.3. Products of Inertia - Positive Integral Sense

11.7.4. Simulations

11.7.5. SOASpatialInertia

11.7.6. Additional Information

11.7.7. Footnotes

12. Spice

12.1. Background

12.1.1. Bodies and Frames in NAIF

12.1.2. SpiceFrameContainer

12.1.3. SpiceFrame

12.1.4. SpiceFrame2Frame

12.1.5. Reference & Source material

12.2. Design

12.2.1. Spice Kernel Loading

12.3. Usage

12.3.1. Using SpiceFrames in your simulation

12.3.2. Spice Utils

12.3.3. spkcheck

12.4. Software

12.5. Raw documents

13. DMesh

13.1. Background

13.1.1. Reference & Source material

13.2. Design

13.2.1. Mesh class design

13.2.2. Mesh Utilities

13.2.3. DMeshObject

13.3. Usage

13.3.1. DMeshObject

13.4. Software

13.5. Raw documents

14. CORE

14.1. Background

14.1.1. Reference & Source material

14.2. Design

14.2.1. CORE objects

14.3. Usage

14.4. Software

14.5. Raw documents

15. SimScapeBasic

15.1. Background

15.1.1. Reference & Source material

15.2. Design

15.3. Usage

15.3.1. Importing GeoTi� �les

15.4. Software

15.5. Raw documents

16. DScene

16.1. Background

16.1.1. Reference & Source material

16.2. Design

16.2.1. SceneObject �ags

16.2.2. CallbackRegistry

16.3. Usage

16.3.1. CallbackRegisry

16.4. Software

16.5. Raw documentation

16.5.1. DScene: support of Hapke and Principled material through BodyDParam and general improvements

16.5.2. DScene: Add better support for client scenes that do not support scene graph constructs

17. FacadeScene

17.1. Background

17.1.1. Reference & Source material

17.2. Design

17.2.1. Registering client scenes

17.2.2. Various object types

17.3. Usage

17.4. Software

17.5. Raw documents

18. OptixScene

18.1. Background

18.1.1. Reference & Source material

18.2. Design

18.2.1. Key components and their relationships

18.2.2. Proposed restructuring of sensor/viewport classes

18.2.3. Renderables

18.2.4. Sensor Frames

18.3. Usage

18.3.1. Assigning materials to partGeometries

18.3.2. Assigning materials to partGeometries

18.3.3. Advanced topics

18.4. Software

18.4.1. Event queue implementation

18.4.2. Upgrading Optix and CUDA

18.5. Raw documentation

18.5.1. OptixScene: Stop using scene graph approach for updating transforms

18.5.2. Cleanup and Redeisgn of OptixScene 2023

19. DMeshScene

19.1. Background

19.1.1. Reference & Source material

19.2. Design

19.3. Usage

19.4. Software

19.5. Raw documentation

19.5.1. DMeshScene: DMesh collision detection capability using embree’s rtcCollide method

20. DBullet

20.1. Background

20.1.1. Reference & Source material

20.2. Design

20.2.1. MeshToBullet2

20.2.2. MeshToSDF

20.3. Usage

20.3.1. Collision geometry

20.3.2. MeshToBullet2

20.3.3. MeshToSDF

20.4. Software

20.5. Raw documents

21. NdartsConstraint

21.1. Background

21.1.1. Reference & Source material

21.2. Design

21.3. Usage

21.4. Software

21.4.1. General concepts

21.5. Raw documents

22. NdartsContact

22.1. Background

22.1.1. Reference & Source material

22.2. Design

22.2.1. Unilateral constraints

22.3. Background

22.4. Software

22.4.1. CollisionNdarts

22.5. Raw documents

23. NdartsFlex

23.1. Background

23.1.1. Reference & Source material

23.2. Design

23.2.1. Frame conventions

23.3. Usage

23.3.1. Flexible body constraints

23.4. Software

23.4.1. Flex ATBI recursion structure

23.5. Raw documents

24. FModal

24.1. Background

24.1.1. Reference & Source material

24.2. Design

24.2.1. NASTRAN-to-DARTS Pipeline

24.2.2. Modal Analysis

24.2.3. Geometric sti�ening due to inertial loads

24.3. Usage

24.3.1. NASTRAN-to-DARTS Pipeline

24.4. Software

24.5. Raw documents

25. Dtest

25.1. Background

25.1.1. Reference & Source material

25.2. Design

25.3. Usage

25.4. Software

25.5. Raw documents

25.6. Sphinx documentation

25.6.1. Introduction

25.6.2. JPL Darts/Dshell Testing Framework

25.6.3. Using the Dtest Utilities

25.6.4. DUnit Testing Framework

26. SiteDefs

26.1. Background

26.1.1. Reference & Source material

26.2. Design

26.3. Usage

26.4. Software

26.5. Raw documents

26.6. Sphinx documentation

26.6.1. Make�les

27. pyam

27.1. Background

27.1.1. Reference & Source material

27.2. Design

27.3. Usage

27.3.1. Using baseline package releases

27.3.2. Recipes for using git based pyam modules

27.4. Software

27.5. Raw documents

Model modules

28. DshellCommonModels Dshell model library

28.1. DshellCommonModels::Accelerometer Sensor Model

28.2. DshellCommonModels::BallEncoder Encoder Model

28.3. DshellCommonModels::BallMasking Actuator Model

28.4. DshellCommonModels::CmFrameStateSensor Sensor Model

28.5. DshellCommonModels::GimbalAngleEncoder Encoder Model

28.6. DshellCommonModels::NodePosVelAccelSensor Sensor Model

28.7. DshellCommonModels::NoisyIMU Sensor Model

28.8. DshellCommonModels::NoisyNodePosVelAccelSensor Sensor Model

28.9. DshellCommonModels::RateGyro Sensor Model

28.10. DshellCommonModels::ReactionWheel Motor Model

28.11. DshellCommonModels::SpiceFramePCIBodySync Actuator Model

28.12. DshellCommonModels::SpiceFramePCRBodySync Actuator Model

28.13. DshellCommonModels::UserClock Sensor Model

29. GeneralSGModels Dshell model library

29.1. GeneralSGModels::BallJointSpringDamper Motor Model

29.2. GeneralSGModels::BearingAngle Sensor Model

29.3. GeneralSGModels::DCMotorVin Motor Model

29.4. GeneralSGModels::DCMotorVin2 Motor Model

29.5. GeneralSGModels::ExternalSingleDofDisturbance Actuator Model

29.6. GeneralSGModels::GearedPinAccel Motor Model

29.7. GeneralSGModels::GearedPinAngle Motor Model

29.8. GeneralSGModels::GeneralAccelGimbal Motor Model

29.9. GeneralSGModels::GeneralAccelUjoint Motor Model

29.10. GeneralSGModels::GeneralForceFulldofs Motor Model

29.11. GeneralSGModels::GeneralForceGimbal Motor Model

29.12. GeneralSGModels::GeneralForceUjoint Motor Model

29.13. GeneralSGModels::GeneralizedSpringDamperMotor Motor Model

29.14. GeneralSGModels::GimbalEncoder Encoder Model

29.15. GeneralSGModels::JointForceTorqueSensor Sensor Model

29.16. GeneralSGModels::NodeFrame2FrameUuid Sensor Model

29.17. GeneralSGModels::NoisyAttitude Sensor Model

29.18. GeneralSGModels::PinRate Encoder Model

29.19. GeneralSGModels::PrescribedUjoint Motor Model

29.20. GeneralSGModels::SecondOrderResponse Sensor Model

29.21. GeneralSGModels::SignalMux Sensor Model

29.22. GeneralSGModels::SingleTrapezoidalPro�le Motor Model

29.23. GeneralSGModels::SoftJointStop Motor Model

29.24. GeneralSGModels::SpringDamper Actuator Model

29.25. GeneralSGModels::SpringDamperMotor Motor Model

29.26. GeneralSGModels::SpringDamperMotor6dof Motor Model

29.27. GeneralSGModels::TiltVector Sensor Model

29.28. GeneralSGModels::UjointSpringDamper Motor Model

30. GravitySGModels Dshell model library

30.1. GravitySGModels::SphericalHarmonicGravity Actuator Model

31. RoverNavModels Dshell model library

31.1. RoverNavModels::ArcTraj Flow Model

31.2. RoverNavModels::ControlStatus Flow Model

31.3. RoverNavModels::DriveTrain4x4 Sensor Model

31.4. RoverNavModels::DriveTrainAccel Sensor Model

31.5. RoverNavModels::DriveTrainSteering Flow Model

31.6. RoverNavModels::Locomotion Flow Model

31.7. RoverNavModels::NavOdometry Actuator Model

31.8. RoverNavModels::NavOdometry2W Actuator Model

31.9. RoverNavModels::RoverNavDyn Flow Model

31.10. RoverNavModels::RoverPosNavigation Flow Model

31.11. RoverNavModels::RoverPosNavigationFsm Flow Model

31.12. RoverNavModels::RoverTurningRadiusWayPointsNav Flow Model

31.13. RoverNavModels::RoverVelNavigation Flow Model

31.14. RoverNavModels::RoverVelNavigationFsm Flow Model

31.15. RoverNavModels::SimpleArcPlanner Flow Model

31.16. RoverNavModels::SimpleArcPlannerFsm Flow Model

31.17. RoverNavModels::Steering2W Actuator Model

31.18. RoverNavModels::Steering2WFlow Flow Model

31.19. RoverNavModels::Steering4W Actuator Model

31.20. RoverNavModels::Steering4WFlow Flow Model

31.21. RoverNavModels::Steering6W Actuator Model

31.22. RoverNavModels::Steering6WFlow Flow Model

31.23. RoverNavModels::SteeringStatus Flow Model

31.24. RoverNavModels::SwitchExample Flow Model

31.25. RoverNavModels::SwitchMSMExample Flow Model

31.26. RoverNavModels::SwitchMSMFunctorExample Flow Model

31.27. RoverNavModels::WheelDriveMotion Flow Model

31.28. RoverNavModels::WheelDriveVelocity Flow Model

31.29. RoverNavModels::WheelSteerDriveMotion Flow Model

31.30. RoverNavModels::WheelSteerDriveVelocity Flow Model

32. SurfaceContactModels Dshell model library

32.1. SurfaceContactModels::BekkerWheelSoilContact Actuator Model

32.2. SurfaceContactModels::BekkerWheelVariableSoilContact Actuator Model

32.3. SurfaceContactModels::CompliantContact Actuator Model

32.4. SurfaceContactModels::CompliantContact2 Actuator Model

32.5. SurfaceContactModels::CompliantTerzaghi Actuator Model

32.6. SurfaceContactModels::CompliantTerzaghiBaseAlt Actuator Model

32.7. SurfaceContactModels::CompliantTerzaghiBaseAltVariableSoil Actuator Model

32.8. SurfaceContactModels::CompliantTerzaghiCylindricalWheelAlt Actuator Model

32.9. SurfaceContactModels::CompliantTerzaghiCylindricalWheelAltVariableSoil Actuator Model

32.10. SurfaceContactModels::CompliantTerzaghiPad Actuator Model

32.11. SurfaceContactModels::CompliantTerzaghiPadAlt Actuator Model

32.12. SurfaceContactModels::CompliantTerzaghiRotatingPad Actuator Model

32.13. SurfaceContactModels::ComputePlanePenetration Sensor Model

32.14. SurfaceContactModels::FialaTire Actuator Model

32.15. SurfaceContactModels::MagicFormulaTireHMMWV Actuator Model

32.16. SurfaceContactModels::MagicFormulaTireMRZR Actuator Model

32.17. SurfaceContactModels::ScmDartsModel Actuator Model

32.18. SurfaceContactModels::TerrainPenAnalytic Sensor Model

32.19. SurfaceContactModels::TerrainPenAnalyticBaseAlt Sensor Model

32.20. SurfaceContactModels::TerrainPenAnalyticCylindricalWheelAlt Sensor Model

32.21. SurfaceContactModels::TerrainPenAnalyticPad Sensor Model

32.22. SurfaceContactModels::TerrainPenAnalyticPadAlt Sensor Model

32.23. SurfaceContactModels::TyreContact Actuator Model

33. VehicleModels Dshell model library

33.1. VehicleModels::FixedThruster Actuator Model

33.2. VehicleModels::FuelManifold Actuator Model

33.3. VehicleModels::FuelTank Actuator Model

33.4. VehicleModels::FuelTankDryMassWithTableLookup Actuator Model

33.5. VehicleModels::FuelTankWithTableLookup Actuator Model

33.6. VehicleModels::PulsedThruster Actuator Model

33.7. VehicleModels::PulsedThrusterBlowdown Actuator Model

33.8. VehicleModels::SimpleTurn Actuator Model

33.9. VehicleModels::ThrottledPro�leThruster Actuator Model

33.10. VehicleModels::ThrottledPro�leThrusterWithBackPressure Actuator Model

33.11. VehicleModels::ThrottledThruster Actuator Model

33.12. VehicleModels::ThrottledThrusterMinimal Actuator Model

33.13. VehicleModels::ThrottledThrusterWithBackPressure Actuator Model

33.14. VehicleModels::ThrusterBase Actuator Model

Index

image:./extras/darts_logo_100x100.png[]

DARTS/Dshell Framework

1. Dshell++

1.1. Background

1.1.1. Reference & Source material

Dshell++ Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

Model/assemblies style guide (https://dartslab.jpl.nasa.gov/technotes/Modeling/DshellModeling.pdf)

Release notes appendices

DSENDS manual (https://dartslab.jpl.nasa.gov/technotes/Modeling/2010-dsendsManual.pdf)

DSENDS paper (https://dartslab/References/pdf/2016-aiaa-dsends.pdf)

1.2. Design

1.2.1. Dshell Model Design (aka Models Style Guide Draft)

1.2.1.1. Dshell Model Design and Implementation (Draft)

1.2.1.1.1. Introduction

 TBD: Review/scrub use of ContinuousModel vs Model vs Modelthroughout to ensure proper uses.

 TBD: Review/scrub use of ’flow ins’ vs ’flowIns’, etc, throughout.

The Dshell simulation framework is for the development of physics and dynamics models of articulated, multi-degree of freedom vehicles including actuator/sensor devices and

interactions with the environment primary for control and autonomy applications such as shown in Figure Vehicle simulations. Figures DSENDS simulations, ROAMS simulations, and

Rotorcraft simulations] illustrate the key sub-systems involved in the simlation of such systems for aerospace and ground vehicle applications. An important goal of the Dshell architecture

is to:

provide support for key simulation physics models needed for realistic physics modeling

allow the reuse of component models from one simulation to another

manage the complexity and variety of simulation models

provide high-performance computational dynamics engines for high-fidelity dynamics.

build in range of simulation services (eg. data logging, introspection) that are typically needed for simulation use

…

Examples of vehicle dynamics simulations using Dshell.

 TBD: Add here discussion of why not Simulink, and need for DARTS.*

 TBD: Add brief discussion of why use DARTS instead of ADAMS.*

A key design difference from other simulation tools (eg. Simulink) is the empasis and focus on simulating vehicle multibody dynamics models within the architecture. Due to the complexity

of multibody dynamics goals, our goal is to build in a generic multibody dynamics engine within the architecture so that it can be used for variety of application projects and scenarios. The

more traditional route is to leave it to the user to create the multibody dynamics component block on their own and integrate it in as a block within the dataflow. While simplifying the

dataflow implementation, this approach has significant limitations:

it puts the burden of developing the complex multibody vehicle equations of motion solver entirely on the user (eg. rigid/flex, tree/closed-chain, collision/contact dynamics)

it is not possible to reuse dynamics model from one simulation to another

it makes it difficult to handle run-time structural changes (eg. body attach/detach) changes in the dynamics model.

Manually handle copious number of interfaces between the device models and the multibody dynamics model.

..

Example of lander system and its components simulated by Dshell.

Example of ground vehicle system and its components simulated by Dshell

Example rotorcraft system and its components simulated by Dshell

This document describes design details for the Dshell simulation framework that includes a description of the underlying mathematical problem and the important arcitectural elements

related to model development and integration. While this document does touch upon aspects of the software, it is not meant to serve as software documentation. We recommend that the

full document be read for readers unfamiliar with the Dshell framework. For readers who have been using the Dshell software, we recommend the Simulation time stepping section which

describes various topics pertinent to simulation time-stepping. The Dshell Simulation Models section is especially relevant to model developers. The Model implementation guidelines

section describes recommended guidelines for the overall simulation development as well as model implementation. The Dataflow model calling order and sorting section is devoted to the

specific topic of component model sorting and calling order and handling of loops within model dataflows.

1.2.1.1.1.1. Simulating dynamical systems
For a model of a dynamical system, the continuous states are governed by a differential equation, and their time evolution is carried out using numerical integrators. The general form of

the dynamical system equations is:

Y(t) = G(X(t), Ū(t), t) outputs

Xd(t + Δt) = H(X(t), Ū(t), t, Δt) discrete state update

Ẋc(t) = F(X(t), Ū(t), t) continuous state derivative

The following represents the output equation part within the overall system dynamics:

Y(t) = G(X(t), Ū(t), t) outputs

The following represents the discrete state dynamics equation part within the overall system dynamics:

Xd(t + Δt) = H(X(t), Ū(t), t, Δt) discrete state update

The following represents the continuous state dynamics equation part within the overall system dynamics:

Ẋc(t) = F(X(t), Ū(t), t) continuous state derivative

 TBD: Make a more rigorus list explaining what each term is? Should we explain what latexmath:[Δ_t] is?*

The overall states X(t) of the model are a combination of the continuous and discrete states of the system, i.e., X(t) = [Xc(t), Xd(t)]. Some points to note are:

A dynamical system is said to not have feed-thru if the Y(t) outputs are not directly affected by the Ū(t) inputs, i.e. if G(X(t), Ū(t), t) is in fact just G(X(t), t). Otherwise the system is said to

have feed-thru.

The Y(t) output is not shown as being a function of Ẋc(t), i.e. Ẋc(t) is not an argument of G(.). Such a dependency can be accommodated by redefining the G(.) function to include F(.) for the

state derivative portion, so that the new G(.) remains a function of just the state, the inputs and the current time. Note however that this might introduce feed-thru into the system.

 TBD: Add comment here that in most typical physical systems latexmath:[$\dot X_c(t)$] is not a function of latexmath:[$G(.)$]???

 TBD: Add a section (near) here to overview the model types, model the inheritance tree, etc, to give users a bit more background.

1.2.1.1.1.2. Simulation framework requirements
The Dshell simulation framework is meant to be general, and to support a wide range of use cases and models. This means that a simple timing system, where the simulation is updated

using a constant time step is often inadequate.

TBD: Do we really need to refer to constant step size? If so, then why is it inadequate?* Beyond state propagation, there are several additional capabilities that are

required in real-life simulations. These are described below.

1.2.1.1.1.2.1. Decomposition into component models
Instead of implementing monolithic blocks to implement the F(.) etc functions, simulations (including Dshell) often use a collection of inter-connected component dynamical system models

that individually manage slices of the overall state vector, and implement parts of the F(.), G(.) etc methods to implement the system dynamics in Eq 2. Such a decomposition is only possible

when there is loose dynamical coupling across components of the system, and can have the benefit of increasing the simulation modularity and the implementation into reusable

components. Use of such decompositions however requires care in the proper sequencing of the computations so that the dependencies and coupling between the components is handled

correctly for replicating the desired dynamics.

TBD: Should we add a sentence telling that the user never needs to construct the full state themselves. It is done automatically behind the scenes so that stock integrators

can be used.

 TBD: Add a figure to show the decomposition into a dataflow with component models.

1.2.1.1.1.2.2. Multi-rate simulations
We need to support models that require a specific timing: for instance if we model an IMU that runs at 100Hz, then this model must run at exactly 100Hz, regardless of the normal simulation

timestep. We support this case with multi-rate models (see the Multi-rate models section).

1.2.1.1.1.2.3. Timed event handling
The user might want to get control at a specific point in time to (for instance) log data or peek/poke the simulation. These time points may not align with our default simulation timestep. We

support this case with timed events (see the Events handling section).

1.2.1.1.1.2.4. Zero-crossing detection
The user might want to get control of the simulation when something happens in the simulated world (and we don’t beforehand know the exact time when this happens). Example: we have

a falling body and we want to deploy a parachute when we get to some predetermined height. This time-point is unlikely to end up exactly at a normal simulation step boundary. We

support this case with zero-crossing callbacks (see the {Dshellpp_sgstepvalidation_section_uri[Zero-crossing events] section).

1.2.1.1.1.2.5. Masking selected continuous coordinates

 TBD: Add description*

1.2.1.1.1.2.6. Handling structural changes to the model

 TBD: Add description - multibody changes, to the dataflow*

1.2.1.1.1.2.7. Support multiple numerical integration schemes

 TBD: Add description - support for different types of integrators, fixed/variable step, different schemas, implicit etc

1.2.1.1.1.3. Organization and goals
The purpose of this note to clearly define the rationale and guidelines for implementing and sequencing the DARTS and ContinuousModel methods so that the overall system dynamics is

modeled correctly in Dshell simulations. The specific drivers are:

To rigorously define ContinuousModel design principles in order to avoid incorrect implementation.

Scrub existing Models to bring them into compliance.

Tighten up the ContinuousModel method calling sequence to avoid one call delays for updating flow inputs when there are topological loops.

Get rid of the need for the step(0) calls.

 TBD: Should we explain `step(0)`?

Reduce the need for ContinuousModel breaks by requiring them only for algebraic loops, and not all topological loops.

The topics addressed here include:

 TBD: We may not have covered enough background for readers to understand these issues.

the notion of continuous and discrete dynamical states

the role and content of the individual Model methods

the decomposition of the overall dynamics into component dynamics models

the sequencing of the DARTS and Model calls

the concept of granularity for tailoring Model flow out computations

the notion of topological and algebraic loops and feed-thru for DARTS and Models models

the use of model breaks for handling algebraic loops

integrating in logic via an FSM

 TBD: FSM is used before it is explained. We should at least spell out the acronym.

style guide for implementing ContinuousModels

plan for bringing Model implementations into compliance

1.2.1.1.2. Simulation time stepping

1.2.1.1.2.1. Multi-rate models
In practice, most models do not have specific calling frequency requirements, and for convenience Dshell uses the simulation’s default model period for such a model’s I/O period (a.k.a, the

model’s step size). Within Dshell however each Model in principle is a multi-rate model, i.e. each model can specify its own individual I/O step size value based on its needs. Common

examples of Models with custom time-stepping needs are sensor hardware models (eg. cameras, IMUs) that operate at fixed rates, or models that encapsulate control software running at a

specific frame rate. Often the I/O step value corresponds to a fixed rate, but in general the I/O step boundary can vary arbitrarily from step to step for each model. A model takes charge of

specifying custom I/O step sizes by registering an I/O step callback method with the simulation to determine the step size value for the model. See the Registering Model multi-rate

callbacks section for implementation details on using multi-rate capability.

1.2.1.1.2.2. Simulation hops
As discussed above, each model defines its own I/O step-size. The simulation inserts the start and end I/O step events for every model on a common timeline. In addition, timed events can

be registered that are inserted along the same time common timeline. The model I/O steps and timed events act as barriers such that the simulation proceeds in time by propagating the

full system state from barrier to barrier and processing the pertinent functions on reaching a barrier. The time interval between successive barriers is referred to as a simulation hop. The

simulation takes a hop to advance the state to the next barrier, calls methods associated with the barrier, and then proceeds to the next hop and so on. Note that the hop time interval size is

determined by the spacing between the barriers on the simulation time-line and can vary from hop to hop. We emphasize that hops are defined simulation-wide and thus all models

see the same hop.

The following example illustrates the various timing intervals. In this example, the simulation contains a variety of multi-rate models; some use the sim’s default model period, another is

registered with a different fixed rate, and another uses a multi-rate callback to create a non-uniform IO period for the associated model.

The barriers inserted by di�erent timing event types.

TBD: This figure needs a caption and is hard to follow. We also need to get rid of the simulation-level I/O steps in this figure. The line widths and colors need to be

adjusted so that they are more readable.

After a simulation hop has been completed, the simulation calls the end I/O step actions for all the models whose I/O step ends at that simulation time instant. The registered I/O step

callback is evaluated for each of these models and their next I/O step time instants are added to the common timeline. Any events scheduled for this time instant are also processed. Once

this is done, the start I/O step method is called for this set of models, and the next simulation hop is initiated.

1.2.1.1.2.3. Simulation time propagation
To advance the simulation time, the simulation moves from hop to hop. It does this until it hits a special callback called a stop callback. When one of these stop callbacks returns true, then

the simulation stops advancing. There are many convenience methods on the simulation object such as advanceTimeBy , advanceTimeTo , and step that will register one of these callbacks

for the user based on the given arguments and then advance the simulation to the specified time.

1.2.1.1.2.4. Simulation integration step

The propagation of the continuous states in the system across a hop time interval is carried out by a numerical integrator. For convenience of use with fixed-step numerical integrators, the

Dshell simulation object provides the option of specifying the number of integration sub-steps that the integrator should take during the hop. Each integration sub-step is referred to as an

integration step. When the number of integration sub-steps is 1, the integration sub-step size is the same as the hop size. An integration step thus is the smallest time quantum in the

simulation. The only thing that happens within an integration step is state derivative evaluations carried out by the numerical integrator: for instance RK4 samples the state derivative at

the beginning, the middle and the end of an integration step. These are mostly an internal detail, as far as the models and users are concerned, since users can only intervene at the barrier

events, i.e. in between hops.

 TBD: Do something with the material below.

An IO-step is the smallest step in time a specific model cares about. This varies from model to model. A model’s IO step consists of some number of hops, the exact number and size of

hops being set by other parts of the simulation.

By default, a model inherits the sim’s default model period as its preferred IO-step. However, one can modify this and register a different preferred IO-step timing. We make no assumptions

about these. They can be periodic or sporadic; these can recur infinitely, or end at some point in time.

Registering a different preferred IO-step happens in two ways:

A fixed-rate model is a kind of multi-rate model that is triggered periodically at some arbitrary fixed rate, recurring forever.

A variable-rate model is another kind of multi-rate model. These are triggered sporadically, at arbitrary model-specified points in time.

1.2.1.1.2.5. Events handling

 TBD: Add description of timed events - logging, fsms, visualization updates, strip charts etc

1.2.1.1.2.6. Zero-crossing events
Unlike Dshell events described in the Events handling section that have explicitly defined trigger times, we do not look at events whose trigger times are implicitly defined.

 TBD: Review the last sentence.

The barriers in the above example time-line include additional non-model specific simulation events explicitly registered by the user, and one from a zero-crossing event. A zero-crossing

event is an event (or barrier) whose timing is not explicitly known, but instead implicitly defined when a specified condition on the the system state is satisfied. An example of a zero-

crossing event is that of a lander spacecraft coming into contact with the ground, i.e., when the altitude state value reaches zero. The exact time of the touchdown is not known a-priori. The

Dshell simulation allows the user to register multiple such zero-crossing condition callbacks that the simulation then uses to stop at the exact times when a zero-crossing condition is

satisfied. In practice, when a simulation hop over-steps a zero-crossing condition, the hop is repeated and shrunk in an iterative loop to terminate precisely at the time instant when the

zero-crossing condition is satisfied. In these situations, the duration of a hop can be smaller than the hops defined by the explicit events time-line.

One can register callbacks corresponding to zero-crossing conditions with the simulation. A zero-crossing callback has the behavior of a comparison function with return values indicating

where the the condition has not been met, has been met, or has been overstepped. While executing a simulation hop, the Dshell simulation monitors the status of all the registered zero-

crossing conditions. None of the conditions will be satisfied at the beginning of a hop. After propagating the simulation state across the hop, the simulation checks each of the conditions. If

none of the condition has yet been met, the new state is accepted and the hop is terminated.

 TBD: Explain why no condtions will be satisfied at beginning of a hop?

However, if the simulation has over-stepped one or more of the conditions, the simulation rejects the new step, and embarks on an iterative procedure to find the smallest hop interval

where at least one of the conditions has been met, and none have been overstepped. Once the hop interval is determined, the zero-crossing condition that has been satisfied is removed

from the list of zero-crossing conditions, the new simulation step is accepted and the hop is terminated at this time instant. Zero-crossing conditions and roll-back implementation section

contains more details on the specific software implementation of the zero-crossing capability. Example:

Trajectory from a Dshell simulation involving zero-crossing detection.

Let’s say we have a simple simulation with these signal connections:

Figure 1. A simple model data �ow

The simulation-step loop would then look like this:

Loop

1. Flow model 0 startHop()

2. State propagator flow model startHop() to invoke the integrator

3. Flow model 1 startHop()

4. Evaluate all the step-validation callbacks

5. if(none of the step-validation callback has overshot)

We’re done! Break out of the loop

6. else

restore all previous state: continuous and discrete

Adjust step size

Loop to retry the step

Note that the zero-crossing callbacks are completely generic, i.e. they aren’t directly associated with any particular model. As far as the simulation is concerned, it’s just calling a function;

the simulation does not know or care about what data this function looks at.

In summary, the simulation time barriers determining the hop intervals are defined via

 TBD: Complete/fix the previous sentence!

Model-specific (i.e. multi-rate) IO-step times

Registered timed events

Registered zero-crossing conditions

1.2.1.1.2.7. Overview of methods used to step the simulation
The following diagram gives a brief overview of the methods in the Simulation class that are used to move the simulation forward in time.

1.2.1.1.2.8. References
See this (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellpp/-/issues/23) GitLab issue for the most recent simulation time step refactor.

1.2.1.1.3. Dshell Simulation Models

Within Dshell, we decompose the vehicle dynamical model described by Eq 2 into a DARTS multibody dynamics model, and a dataflow of component Models that interact with the

multibody dynamics and each other through flow input/output connections.

1.2.1.1.3.1. DARTS multibody dynamics model
The state vector for the DARTS multibody model consists of the [Q(t), U(t)] configuration and the corresponding velocity coordinates. The DARTS model has no discrete states. As illustrated

in Figure DARTS components the DARTS model includes two computational sub-models:

Kinematics: This layer computes the pose and velocities of all frames including bodies, hinges and nodes in the mechanism based on the input state [Q(t), U(t)]. Since the state is

normally managed by the integrator and there are no other inputs, this component normally does not have feed-thru. The only time this component has feed-thru is when some of

elements of the [Q(t), U(t)] arrays are masked, i.e. when these values are set by a DartsModels instead of by the the integrator.

Dynamics: This layer solves the multibody dynamics equations of motion to compute accelerations, i.e. the Q̇(t), U̇(t) state derivatives. The dynamics inputs are normally the generalized

forces T(t) and external forces Fext(t). The equations of motion take the form:

Q̇(t) = GM(Q(t), U(t)) generalized coordinate derivatives

U̇(t) = FM(Q(t), U(t), T(t), Fext(t), t) accelerations computations

There are situations when part of the DARTS state derivative U̇(t) may be prescribed, i.e. be externally specified by the DARTS inputs ym(t). All that this means is that these elements of

the state derivative are directly defined by the inputs and this in of itself does not imply feed-thru for DARTS.

The kinematics and dynamics components of the DARTS multibody dynamics model.

/'
Define a macro that stores the PlantUML theme.

To use, in your asciidoc wiki page write:

include::_auto_global/plantUmlTheme.asciidoc[]

For example,

 ```plantuml 
include::_auto_global/plantUmlTheme.asciidoc[]

 @startuml 
...

 @enduml 
```

'/

!theme spacelab
skinparam ArrowFontColor #446e9b
@startuml
[*] --> _run

state _run {
 _advanceOverExplicitHopInterval : Calls timed events.
_advanceOverExplicitHopInterval : Calls appropriate model events.

 _advanceOverExplicitHopInterval : Calculates next explicit hop time.

 state _advanceOverExplicitHopInterval {
state _advanceHop {

 state _advanceState {
state _advanceContinuousStates {

 }
_advanceContinuousStates: Calls appropriate model events

 _advanceContinuousStates: Calls the integrator

 [*] --> [*] : No continuous states
[*] --> _advanceContinuousStates : Has continuous states

 _advanceContinuousStates --> [*]
}

 }
_advanceHop: Calls appropriate model events.

 _advanceHop: Handles step validation callbacks.

}

}
_run --> [*] : Stop callback triggered
_run --> _run : No stop callback triggered

@enduml

PLANTUML

There are no pre-defined outputs from DARTS. Models typically use the DARTS (or frames) API to obtain DARTS state dependent information and accelerations. Generally speaking, the

DARTS model does not have feed-thru except for the following special cases:

When there are Models whose inputs from DARTS (denoted below as um(t)) depend on the DARTS multibody accelerations U̇(t), such as for accelerometer and IMU sensor models, and for

friction models that depend on inter-body constraint forces. When such ContinuousModels exist in the simulation, the outputs of DARTS are directly dependent on the accelerations

which in turn are directly dependent on DARTS inputs, and thus the DARTS model has feed-thru. We emphasize that the acceleration dependency, and consequent feed-thru nature of

DARTS, is a use-case context dependent property, rather than an intrinsic property of DARTS. Inter-body constraint forces are also computed by DARTS, and if these are used by other

models then DARTS potentially has feed thru because such forces directly depend on the input prescribed generalized accelerations and forces.

There are situations when portions of the [Q(t),U(t)] multibody coordinates may be defined directly by inputs and not the dynamics (eg. for trim aerodynamics, or high speed engine

gimbal control) and thus be masked from the integrator. Since these masked coordinates directly affect the DARTS outputs, the use of such masked coordinates introduces feed-thru into

the DARTS model.

While coordinates change with the simulation, parameters defining the geometry, kinematics and mass properties of the DARTS model bodies in most cases remain constant during a

simulation. However there are situations where these parameters may change during a simulation, such as mass properties of a body may change due to fuel consumption, gas in/out

flow for balloons. Such updates DARTS model parameters also introduce feed thru into the DARTS model.

1.2.1.1.3.2. Dshell Models
As illustrated in Figure Inter-connected models, component Dshell models are connected to each other in the dataflow via Signals.

Figure 2. Data�ow with models connected via signals

These signals are memory-less (have no history), and their values depend only on the current values of the source model’s state and input signals. Furthermore, the memory for the inputs Ū

and outputs Y is shared, so the signal update must happen first in order to update the upstream signals before the downstream ones. Figure Dataflow

A typical data�ow from a full up vehicle simulation]

 TBD: This figure needs to be cropped and enlarged to make it more readable.

shows an example dataflow from a realistic vehicle modeling simulation where the number of component models and interconnecting signals can be in the several tens and even hundreds.

Figure Dataflow fragment shows a more detailed view of a fragment in the Figure Dataflow dataflow.

A detailed view of a fragment of the data�ow

 TBD: This figure needs to be cropped and enlarged to make it more readable.

We next take a more detailed look at the different types of models that can be used in such Dshell simulation dataflows.

A general component Dshell Model model (shown in Figure DartsModel) has continuous states, xc(t), discrete states xd(t), flow inputs uf(t), flow outputs yf(t), inputs from DARTS multibody

um(Q(t),U(t), U̇(t), t) and outputs that are inputs into DARTS ym(t). Its overall state x(t) is a combination of the discrete and continuous states x(t) = [xc(t), xd(t)], and the overall inputs u(t) are a

combination of the flow inputs and the inputs from DARTS, i.e. u(t) = [uf(t), um(t)]. The general representation of the dynamics of a ContinuousModel has the following form with f, g and h

representing mapping functions:

yf(t) = gf(x(t), u(t), t) update flowOut outputs

xd(t + Δt) = h(x(t), u(t), t, Δt) discrete state update

ym(t) = gm(x(t), u(t), t) inputs into DARTS multibody model via nodes/hinges

ẋc(t) = f(x(t), u(t), t) continuous state derivative

We break out the above equations into the update flowOut outputs update equation.

yf(t) = gf(x(t), u(t), t) update flowOut outputs

the discrete states update equation,

xd(t + Δt) = h(x(t), u(t), t, Δt) discrete state update

the inputs updates for the DARTS multibody model via nodes/hinges equation,

ym(t) = gm(x(t), u(t), t) inputs into DARTS multibody model via nodes/hinges

and the continuous state derivative equation

ẋc(t) = f(x(t), u(t), t) continuous state derivative

A general Model instance with its inputs and outputs.

Note that the um(Q(t),U(t), U̇(t), t) (or just um(t) for short) inputs from DARTS are in general functions of the DARTS state [Q(t), U(t)] and the U̇(t) DARTS state derivative (and dependent

quantities such as inter-body forces).

1.2.1.1.3.3. Model methods
Table Model methods describes the various model methods and their role in evaluating the equation in Eq 6 within simulations when advancing the system step across an I/O step interval.

Depending on the setting of nIntegrationSteps` value, this advancement may involve one or more numerical integration steps. Note that we can compute xd(t + Δt) in startHop when its value

does not depend on the values of xc(t), u(t) or t over the (t, t + Δt) time interval. Otherwise compute it in startIntegrationStep.

Table 1. Dshell Model methods and their purpose.

Method Computation Description

All Dshell Models

updateFlowOuts(t) Eq 7: yf(t) = gf(x(t), u(t), t) compute flow outputs; frequency depends on flowout

granularity for each model

startIoStep(t_i, t_{i+1}) called at the start of the (possibly multi-rate) I/O step for

the model. IO-step methods are called at model-specific

multi-rate intervals only so calls can vary across

models

startHop(t_i, t_{i+1}) Eq 8: xd(t + Δt) = h(x(t), u(t), t, Δt) propagate discrete states across hop interval. This is sim-

wide; called in unison for all models

endIoStep(t_i, t_{i+1}) called at the end of the (possibly multi-rate) I/O step for the

model. IO-step methods are called at model-specific

multi-rate intervals only so calls can vary across

models

ContinuousModels (These are called in unison sim-wide for all models)

startIntegrationStep(t_j, t_j+\Delta_t) Eq 8: xd(t + δt) = h(x(t), u(t), t, δt) propagate discrete states across integration sub-step (if not

done in startHop) //, see footnote #ftn:discretestate)

preDeriv(t_d) Eq 9: ym(t) = gm(x(t), u(t), t) compute inputs for DARTS multibody dynamics.

postDeriv((t_d) Eq 10: ẋc(t) = f(x(t), u(t), t) compute model’s continuous state derivatives; can also be

done in preDeriv(t) if no dependency on multibody U̇(t).

startIntegrationStep).

endIntegrationStep(t_j, t_j+\Delta_t) any actions to be taken at the end of an integration step

endHop(t_i, t_{i+1}) any actions to be taken at the end of a hop. This is sim-

wide; called in unison for all models

DartsModels

maskedCoordinates(t) compute Q /U masked coordinates DARTS kinematics inputs

Since not all Models are complex enough to require all of the equations in the general Eq 6, Dshell provides specialized Dshell Model classes for simpler versions of models and these are

described in the following sections. Among these classes, only the DartsModel class supports the full complement of the equations in Eq 6.

The actual calling sequence of the Model methods listed in Table Model methods for advancing the simulation over a time interval is described in the Dataflow Model method calling

sequence section.

setup(t_i, t_{i+1}) *startIoStep(t_i, t_{i+1}): should be used to update discrete states across the hop interval. For FlowModels, this method is the replacement for the tick() FlowModel

method. For Models, an option is to carry out the update discrete states within the startIntegrationStep method, since this method allows updates to be done at a finer granularity.

startHop(t_i, t_{i+1}): should be used to update discrete states across the hop interval. For FlowModels, this method is the replacement for the tick() FlowModel method. For Models,

an option is to carry out the update discrete states within the startIntegrationStep method, since this method allows updates to be done at a finer granularity.

endIoStep(t_i, t_{i+1}): should be used for any multi-rate steps that need to be taken at the end of an I/O step for the model.

updateFlowOuts(t): should compute and set flow out values. This is necessary because the flow outputs of one model are the flow inputs of another model, and this method’s role is to

publish the complete set of flow out values to ensure that all models have correct flow input values.

The updateFlowOuts method should be callable independently, so that all computations needed to set the flow out values should be done with this method. This is necessary since this

methods can be called at many different points (depending on the granularity value) and it should be able to fulfill its job of computing outputs on its own.

processParams(t)

 TBD: Add explanation for each of the methods

1.2.1.1.3.3.1. ContinuousModels
All Dshell Models that need to be part of the numerical integration process are referred to as ContinuousModels. The following are one or more conditions that will require a Model to be

part of the numerical integration process:

the Model does have continuous states xc(t) that would need to be numerically integrated

the Model generates ym(t) inputs into the DARTS multibody dynamics that affect the multibody dynamics equations of motion solution. Examples of this are actuators and gravitational

models that apply forces on the multibody system.

the Model generated yf(t) outputs which while not being direct inputs into DARTS, happen to be inputs into other ContinuousModels that do affect the continuous time dynamics and are

time-varying over an integration interval. An example of this is an analog PID controller whose output may feed into a motor model which in turn applies torques on hinges in the DARTS

multibody model.

If any of these conditions is true, then the Model needs to be implemented as a ContinuousModel. Thus ContinuousModels can have continuous states, or their outputs can affect the

continuous time dynamicis during an integration step. In the Dshell model classification, we refer to the sub-set of continuous models with direct inputs (i.e. ym(t)) or outputs (i.e. um(t)) into

DARTS as DartsModels(which are discussed in the DartsModels section below) and reserve the ContinuousModel terminology for the remaining continuous models such as shown in Figure

ContinuousModel.

A ContinuousModel instance with its continuous states and inputs and outputs.

The simpler version of Eq 6 governing a ContinuousModel thus is as follows (for continuous models):

yf(t) = gf(x(t), u(t), t) update flowOut outputs

xd(t + Δt) = h(x(t), u(t), t, Δt) discrete state update across hop

ẋc(t) = f(x(t), u(t), t) continuous state derivative

Note that a ContinuousModel can have discrete states. As shown in Table Model methods, ContinuousModels have the following methods for state propagation:

startIntegrationStep(t_i, t_{i+1}): For ContinuousModels, the number of integration sub-steps defines how many integration sub-steps the hop is split into. For ContinuousModels, the

startIntegrationStep can therefore be used instead of the startHop method for updating discrete states across the integration interval for finer granularity updates when the number of

integration sub-steps is greater than 1.

preDeriv(t_d): if a DARTS model computes any DARTS yf(t) inputs (eg. forces, gravity, accels) that are inputs to the multibody dynamics component, then these computations must be done

in preDeriv.

postDeriv(t_d): if the model’s continuous state derivatives depend on multibody derivatives or inter-body forces, then these computations should go into postDeriv. Otherwise, they can

be in either preDeriv or postDeriv. To be on the safe side, all continuous state derivatives computations should be done in postDeriv.

endIntegrationStep(t_i, t_{i+1}): endIntegrationStep should normally be empty (unless it is changing non-traditional multibody inputs such as body mass which can affect CM

calculations done downstream by some other model. Of course these computations should also be done in preDeriv etc methods.)

endHop(t_i, t_{i+1}) should normally be empty.

 TBD: Add explanation for each of the methods

1.2.1.1.3.3.2. DartsModels
The DARTS multibody dynamics model is responsible for the computation of state derivatives based on the body kinematics, mass properties, external gravity and applied forces. It is also

responsible for computing the CM location, inter-body forces, current inertia properties, the T generalized forces for prescribed subhinges. These computations depend on the Q /U state

coordinate values for the DARTS multibody model as well as the kinematic/mass paramters defining the DARTS multibody model.

Normally, the DARTS model’s kinematic/mass properties are constant during a simulation, while the multibodyQ /U state coordinate values are owned and propagated over time by the

numerical integrator. However the input external and gravitational forces can vary during run-time and computing them is one of the roles of DartsModels. Another role is the computation

of quantities dependent on the state and state derivatives of the Q /U coordinate values.

DartsModels are derived from the ContinuousModels class and represent the subset of continuous models that have direct input/output connections to the DARTS multibody dynamics

model as shown in Figure DartsModel. DartsModels can be used for actuator (eg. thruster) and sensor (eg. IMU) device model implementations. Specifically, these models have um(t) and/or

ym(t) inputs/outputs that interact with the DARTS model. DartsModels thus support the full suite of equations in Eq 6. To simplify the interface with the DARTS multibody model, DartsModel

instances are provided access to node/hinge objects from the DARTS multibody model object. Further specializations of a DartsModel are:

SensorModel: these DartsModel instances are associated with a DARTS body node where they can query the node’s pose, velocity and acceleration properties.

ActuatorModel: these DartsModel instances are also associated with a DARTS body node where they can apply spatial forces at the node (as well as sense the node’s pose, velocity and

accelerations).

EncoderModel: these DartsModel instances are associated with a DARTS body subhinge where they can query subhinge generalized coordinate, velocity and accelerations.

MotorModel: these DartsModel instances are also associated with a DARTS body subhinge where they can apply generalized forces or prescribed accelerations at the subhinge (as well as

query the subhinge like the EncoderModel).

In addition to the methods for ContinuousModels in Table Model methods, DartsModels have the following methods for state propagation:

maskedCoordinates(t): Some modeling situations deviate from the norm where some of the Q /U multibody coordinates are not managed by the numerical integrator (eg. trim states) and

are referred to as masked coordinates. Also there are times when the multibody model’s kinematic, mass properties are not constant during a simulation (eg. fuel consumpation). For

such off-nominal situatations, the maskedCoordinates(t) method should be used for computing these quantities and updating the multibody model.

1.2.1.1.3.3.3. FlowModels
All Models that are not continuous models are referred to as FlowModels. A FlowModel is derived from the Dshell Model class and its simpler structure is illustrated in Figure FlowModel.

A FlowModel instance with its discrete states and inputs and outputs.

A FlowModel does not have continuous states xc(t) nor does it have um inputs and ym outputs for DARTS, and its uf inputs and yf outputs do not change within an integration hop. The

narrower version of Eq 6 for FlowModels is

yf(t) = gf(x(t), u(t), t) update flowOut outputs

xd(t + Δt) = h(x(t), u(t), t, Δt) discrete state update across hop

Since FlowModels do not have continuous states and do not have outputs that change at the granularity of continuous dynamice, the numerical integrator is not involved in the execution of

the methods in FlowModels. This considerably simplifies their implementation. As seen in Table Model methods, the startHop method is the only method needed for state propagation for

FlowModels.

 TBD: Actually, startHop and endHop can no be used for state propagation now too.

1.2.1.1.3.3.4. Why is DARTS not a model?
Since the DARTS multibody model is a dynamical system (and with continuous states), a reasonable question is as to why it is not itself implemented as a ContinuousModel within Dshell

simulations. The key reasons for this are:

DARTS inputs/outputs are model dependent:

Most device and environment interaction models have fixed input/output interfaces and number of states. We take advantage of this and use an mdl model definition file to define the

structure of a model and auto-generate C++ boiler-plate interface code for the model. The user simply needs to populate stub methods with code that captures the physics of the model

(eg. thruster behavior, gravitational forces).

Compared with individual device models, the multibody dynamics models and solvers tend to be orders of magnitude more complex and usually developed by specialists. They need to

handle different multibody topologies, rigid/flexible bodies, constraints etc etc. Within Dshell, our solution is to include the DARTS multibody general purpose multibody dynamics solver

which can be used as middleware for a very broad class of multibody dynamics problems. In contrast with the component device models, with the multibody dynamics we have the

reverse situation where the multibody dynamics physics is already available via DARTS, but the structure and interfaces with it depends on the specific nature of the multibody model.

The benefits of the mdl file based fixed interface defintion are not useful for this situation.

The inputs and outputs from the multibody model are defined by the many calls that DartsModel methods make to the DARTS methods, and thus varies from simulation to simulation.

Thus there is no simple way to structurally pre-define the number and types of inputs for a DARTS model as is done via mdl files for Models. In recognition of the extensive interactions

between the family of DartsModels and the DARTS model, we instead treat the DARTS model as a common foundational middleware available to all the component DartsModels.

 TBD: Actually, startHop and endHop can no be used for state propagation now too.

DARTS inputs/outputs can change during run-time:

One of the important abilities of DARTS multibody models is that structural changes such as addition and deletion of bodies and nodes can be done on the fly. The connectivity of bodies

and hinge types can also be changed on the fly. Such structural changes can alter the number of continuous states as well as the inputs and outputs from the model.

1.2.1.1.3.3.5. State Propagator FlowModel
The overall dynamical system consists of the FlowModels with their discrete dynamics, and the continuous dynamics world containing the ContinuousModels, DartsModels and the DARTS

multibody dynamics model. While the Models are connected together into a single dataflow, the special numerical integration requirements for the continuous dynamics requires them to

be handled differently. For instance, suppose we have the dataflow in Figure DARTS and FlowModels.

Figure 3. A simple data�ow consisting of a mix of FlowModels and a DartsModel

We tie together the FlowModel and continuous dynamics worlds via a special FlowModel referred to as a state propagator (SP) model. The SP FlowModel’s startHop method calls the

integrator’s step method to propagates the continuous state across the full continuous dynamics world across a time interval.

Using this SP model, we can view the simulation data flow consisting of two differet model dataflows. The top-level dataflow consists of only FlowModels, with one of them being an SP

FlowModel. The FlowModels dataflow corresponding to Figure DARTS and FlowModels is shown in Figure StatePropagator and FlowModels.

Figure 4. The FlowModels data�ow corresponding to Figure DARTS and FlowModels using the SP FlowModel

For the more complex dataflow in Figure More complex dataflow,

Figure 5. A more complex data�ow consisting of a mix of FlowModels and multiple DartsModels

the corresponding FlowModels dataflow has the form shown in Figure Other StatePropagator and FlowModels.

Figure 6. The FlowModels data�ow corresponding to Figure~??? using the SP FlowModel

The Dshell simulation advances time by traversing this FlowModels dataflow. When the SP FlowModel in this dataflow is executed, it causes the numerical integration step to take place,

which causes the dataflow consisting of all the ContinuousModels and the DARTS multibody dynamics to be executed to propagate the continuous state.

1.2.1.1.3.4. Data�ow Model method calling sequence
This section describes the proper calling sequence for the Model methods to compute the equations in Eq 10 for a single I/O step. The calling sequence is based on the following rationale.

The methods such as startHop, preDeriv etc. that deal with state propagation, require correct and up to date inputs to work correctly. In the Models dataflow, the inputs of individual Models

are connected to the outputs of other Models. In order to ensure that all the Models have up to date values, the updateFlowOuts method for each of the Models needs to be called before any

of the state propagation methods are called. The calling sequence for the Model methods to advance the simulation across a single I/O step from time ti to ti+ 1 is as follows:

The calling sequence for model methods during an I/O step.

 TBD: Explain why updating continuous state derivatives should be done in postDeriv instead of preDeriv. Does it really matter?

The state propagation FlowModel is responsible for invoking the numerical integrator to advance the state of all the ` ContinousModel` models across a hop. The following describes the calls

that happen withing the startHop(t_i, t_{i+1}) call for the state propagation model:

The calling sequence for model methods during a simulation hop.

The purpose of the optional bonus derivative call at the end of an integration step is to recompute all the state derivatives (including those of DARTS) with the new integrated state value,

and to update all the inputs and outputs that depend on DARTS accelerations. This call is only needed when there are Model flow ins and outs that are multibody acceleration dependent.

 TBD: Is the bonus call in the right place?

 TBD: Don’t we also need the bonus deriv call if we want to log accelerations?

1.2.1.1.3.4.1. Accessing time in Model methods
The simulation time is well-defined between hops since the full system state has been propagated to the end of the hop. However simulation time is not well defined in the midst of a

simulation hop since model states are propagated individually, in the middle of a state update, some models will already have been updated (they will contain state at t1), while others will

not yet have been updated (they will contain state at t0). Thus the overall simulation is in an inconsistent state. To avoid such ambiguities, the pertinent time for the model methods is

explicitly passed in as arguments (see the Using time in the model methods section).

1.2.1.1.4. Model implementation guidelines

1.2.1.1.4.1. System model decomposition guidelines
The idea behind a good decomposition into component models is that the individual components respect encapsulation, so that the only interaction between models is through their public

flow inputs and outputs. Characteristics of a good decomposition are:

A model only uses its own state, state derivative, and flow ins and does not require direct access to the state or state derivative of any other model. The only access to the information

from another model is through flow inputs and output connections. It is perfectly reasonable for a model to publish its internal state x(t) into its yf(t) flow output, which can then be

connected to another model to use - and thus allowing models to communicate state information. However, since we do not allow a model’s flow output yf(t) to depend on the model’s state

derivative ẋc(t), there is no way to publish the state derivative information. As discussed in the Introduction section, the state derivative (or a function there of) can be made available as

an output at the cost of introducing feed-thru in the model. So when a model appears to need state derivative information from another model, it is possible that the decomposition is too fine

and incorrect, and that the pair of models should be combined into a single one.

Note that the above restriction only applies among models. In general models are allowed access to the state and state derivatives of DARTS via the DARTS entities they are associated

with (bodies, nodes, or hinges).

A model only calls its own methods, and does not require calling the methods of any other model. An example of violating this principle is the steering dynamics implementation, where

calls to the steering model methods were being made by the aerodynamics model. The correct solution there was to break up the aerodynamics model so that the steering model could

be placed between the two parts. Thus when there appears to be a need to call another model’s method, it is likely that the decomposition is too coarse and incorrect, and the model needs to be

split up.

A model should not deactivate itself. An example of violating this principle is a model that deactivates itself when a lander spacecraft has reached the surface, and it deactivates itself at

this point. The issue with a model deactivating itself is that it can interfere with the state rollback process that is used in zero-crossing detection. The rollback process is not equipped to

change the active/inactive state of models, and thus active/inactive state changes of models should only be done between hops - and at the simulation level.

All models have access to the Simulation simulation manager instance, and through it the DartsMbody multibody instance. However, models should avoid using this access to query or

change variables outside its local scope. Such out of scope interactions introduce couplings that violate the encapsulation goals of component based design.

 TBD: Find a home for the text below

The expectation is that each of the methods be fully responsible for doing its assigned computation on its own, and not be dependent on other methods having been called earlier (except via

data passed in via flow ins). This is an important point since currently there are a number of non-compliant model implementations that violate this expectation. In several such models, the

updateFlowOuts(t) assumes that the preDeriv(t) method does the necessary flow outputs computations and has already been called, and updateFlowOuts(t) thus only does the additional

step of publishing the flow output values. Such implementations are problematic since updateFlowOuts(t) will generate incorrect outputs were preDeriv(t) not to have been called earlier.

The endIoStep method for a model is called at the end of its multi-rate I/O step.

1.2.1.1.4.2. Guidelines for model methods
The following describes guidelines for implementing the model methods:

1. Design models for tomorrow: The initial implementation of a Model is often motivated by a near-term simulation need. However, The fact that we are choosing to implement it as a

Model comes with the implicit promise that this component Model may be reused by other simulations. Thus it is important, that the Model methods and design be not narrowly

focused on the near-term, but instead be written in a way that it can be used in future simulations with entirely different needs and goals.

Lets say for instance, we decide to add extra outputs to the model for perhaps future generality, or perhaps for easier data logging of the outputs - even though the current simulation

does not have any downstream models using the outputs. There is a temptation to put the computation of these outputs in methods such as preDeriv (for local use) or startHop (for data

logging) since it meets the needs of the current simulation. However, such an implementation can impact future simulation which do choose to use these outputs as input for

downstream models. Putting the computation of these outputs into incorrect methods may cause them to not be updated at the rate needed by downstream models.

The correct approach is that the output computations be implemented in updateFlowOuts. For, the original simulation, the output granularity can be set such that this method is called

to satisfy just the needs of the simulation (where no downstream models are using the output). However, for other simulations that do conect these outputs to other models, the output

granularity can be set to a higher value so that the output is updated more frequently as needed by the new simulation. With such an implementation, there would be no way to get the

right behavior for future simulatios. Thus for instance, if a model outputs the CM location for a group of bodies, it must do so in the updateFlowOuts method, even when the preDeriv

method is also a user of the information.

2. Setting model outputs: Only updateFlowOuts, and none of the other methods, should compute and set flow out values. This is necessary because the flow outputs of one model are the

flow inputs of another model, and this method’s role is to publish the complete set of flow out values to ensure that all models have correct flow input values.

The updateFlowOuts method should be callable independently, so that all computations needed to set the flow out values should be done with this method. This is necessary so that the

frequency of calling this method can be controlled by properly setting the output granularity level for the model.

3. Selecting output granularity level: //[itm:outgran] A model’s output granularity level controls how often the model’s updateFlowOuts method will get called. The correct setting of

this value is detemined by the following factors:

Intrinsic factors: Often a model’s methods (eg. preDeriv) require data computed for setting outputs. Since this computation is needed for setting outputs, its implementation should

be done in updateFlowOuts. However for the model’s other methods, it would be preferable to just use such computed data and avoid recomputation. This can be accomplished by

including in the level for each user method in the the output granularity for the model. This this is known at the time of the model implementation, the default value for the output

granularity for the model should be set to value defined as a combination of all the user method levels within the model. This default value should be compiled into the model’s setup

or constructor methods. This default value defines the the minimum granularity level for the model.

Extrinsic factors: Additional requirements may come from extrinsic factors such as how the model’s outputs are connected to the inputs of other models, or logged in a specific

simulation. A downstream model, or data logging needs, may require a certain frequency update rate that may or may not be the same as the default value defined by the model.

Meeting this requirement, can be met by simply registering these additional levels to the model’s granularity level. For example, if a model flow output is registered for data logging -

and data logging typically happens at a hop boundary - then this extrinsic need would require that the output granularity include the endHop level.

4. Updating masked coordinates: //[itm:maskcrd] When a DartsModel- instead of the numerical integrator - manages masked Q /U multibody coordinates, the computation and setting of

these masked coordinated values should be done by the maskedCoordinates method. These masked coordinates are inputs into the DARTS kinematics component and directly affect the

positions and velocities of frames in the system. The maskedCoordinates method should be callable independently, so that all computations needed to set the masked coordinate values

should be done within this method.

This method is called before the updateFlowOuts so that multibody parameter updates that can effect the multibody kinematic, static and dynamic computations (eg. CM location) have

arlready been applied.

Generally, the outputs of a DartsModel, depend on the coordinate values. So one would expect that the masking granularity to normally be as at least as fine as the output granularity

level. Indeed, coordinate value changes change properties of the DARTS model, and hence can impact the computation of other DartsModels. It is therefore not unusual to set the

masking granularity to the ALL level due to its global impact.

At times, when the cost of computing the masked coordinates is expensive (eg. trim computations), it is possible that the masked coordinates granularity may be set to a coarser value

while trading off fidelity for performance.

Just as for output granularity, the proper setting of masking granularity should be set based on intrinsic (the way the model methods are implemented) and extrinsic (how the model

interacts with the other data flow models) factors.

Besides their extrinsic effect from their effect on output computations, there is another potential extrinsic factor to be considered when seeting the masking granularity. This is

discussed next in Updating parameters item.

5. Updating DARTS model parameters: //[itm:maskparam] There are situations when the DARTS model’s kinematic and mass-property need to be updated during run-time due to fuel

consumption or other such situations. These computations and multibody updates should also be done in the maskedCoordinates method.

These mulibody parameter updates change the DARTS model and can thus impact of other models. Thus these updates are another type of extrinsic impact - beyond that on the outputs.

As argued in the Updating masked coordinates item, the masking granularity should be set to ALL in the absence of other factors.

6. Do unto others as thou shalt have done unto you:

While designing the contents of a model’s methods, there can be a tendency to focus on the state of the model and the variability of its inputs. However, models do not exist in isolation,

and their outputs are the inputs for downstream models in the data flow. Thus it is important that updating a model’s outputs be given as much importance as the attendition the

model’s inputs (which are created by other upstream models).

The key point is that a model’s proper functioning depends on its inputs being up to date and having correct values. The same requirement also applies to its outputs, since these ouputs

are the inputs for downstream models. This requiement is over and above its own internal use of the data associated with the output.

Thus for instance, if the model is computing the CM location of the multibody system as an output. The model has no idea how a downstream model will use this output value. So this

computation must be implemented within the updateFlowOuts method so that with the (externally) appropriate setting of output granularity for the model, the downstream models

can be assured that this output has the correct value whenever it is used. In the instance that the CM location is not an output of the model, but is used within the the model - say within

its preDeriv method, then its computation should be implemented within the preDeriv method. One advantage of the latter is that the preDeriv method gets called less often, and also

the updateFlowOuts method may not exist.

TBD: Use examples to communicte this idea. Use the aero case, where the forces need to computed at the CM location. This can be implemented as 2 models, one for computing the CM

location as an output, and a second for computing the forces. Or this could be a monolithic single model that does both. What goes into updateFlowOuts, preDeriv will be different for

the 2 cases. Now lets add the case, where the CM location is not changing just due to coordinates, but also due to fuel consumption. Use this to motivate that this update should be done

in maskedCoordinates - applies to both outputs and preDeriv.

7. Setting DARTS inputs: if a DARTS model computes any DARTS yf(t) inputs (eg. forces, gravity, prescribed accels) that are inputs to the multibody dynamics component, then these

computations must be done in preDeriv.

8. Dependence on multibody accelerations: if the model’s continuous state derivatives depend on multibody derivatives or inter-body forces, then these computations should go into

postDeriv. Otherwise, they can be in either preDeriv or postDeriv. To be on the safe side, all continuous state derivatives computations should be done in postDeriv.

TBD: Explain why

9. Discrete state updates: startHop should be used to update discrete states across the hop interval. For FlowModels, this method is the replacement for the tick() FlowModel method.

For Models, an option is to carry out the update discrete states within the startIntegrationStep method, since this method allows updates to be done at a finer granularity.

For ContinuousModels, the number of integration sub-steps defines how many integration sub-steps the hop is split into. For ContinuousModels, the startIntegrationStep can therefore

be used instead of the startHop method for updating discrete states across the integration interval for finer granularity updates when the number of integration sub-steps is greater

than 1.

10. Ending state propagation: endIntegrationStep should normally be empty (unless it is changing non-traditional multibody inputs such as body mass which can affect CM calculations

done downstream by some other model. Of course these computations should also be done in preDeriv etc methods.)

The endHop should normally be empty. The endIoStep should be used for any multi-rate steps that need to be taken at the end of an I/O step for the model.

11. Multi-rate models: The time propagation of the continuos and discrete states are carried out in a lock-step across all the Models in the data-flow. However individual models may have

actions that need to carried out at specific rates. Support for such multi-rate comes in two forms. Firstly, it is possible to set such a specific rate for any Model- with the default rate being

defined by the simulation’s step size. The simulation ensures that hop boundaries are set to honor multi-rate boundaries set across all the Models.

Secondly, each model’s startIoStep and endIoStep methods are called at the start and end respectively of the multi-rate step for each model. Thus any multi-rate actions that should be

carried at the start of a multi-rate step (eg. resetting counters and timers) should be implemented within the startIoStep method. Similarly, any multi-rate actions that should be carried

at the end of a multi-rate step (eg. camera/sensor output) should be implemented within the endIoStep method.

12. Object parameters: It is possible to pass in any object derived from the NdartsBaseObject class as a parameter to a model for its use. This approach is recommended over passing in

of uuid or id parameters to models followed by internal object look up.

13. Model initialization: _lockObject() should be used to initialize pointers etc that need to be initialized one time (as long as this initialization does not depend on flow input values).

14. Remove unneeded methods: methods that are not needed by a model should not be implemented at all rather than having empty stub implementations.

15. Hide model methods: Model methods should be protected - and not public - so that they cannot be called externally by other objects such as other models that may interfere with the

correct calling order set up by the simulation.

16. Use time arguments: All model methods are passed in the time arguments for when they are being called. These should be used instead of using the model or simulation level time()

method.

 TBD: Add description of freshenOutputTime and that it should only be called in UFO.

 TBD: Add description and use of coordMaskType and coordMaskData methods.

 TBD: Add description and use of processParams method.

TBD: hops on the other hand are the emergent way a simulation state advances. So when there are multirate models, the hops can be smaller size than the I/O step sizes

specified.

TBD: The integrationSteps are used to execute hops - and when there are multiple we need multiple ones.* *TBD: Thus for continuous models, we need I/O step methods

for external rate control, hop methods to do the actual state propagation, and integration step methods to support the integration stepping

TBD: For flow models, we also need start/end I/O step methods to allow users to control the multi-rate stepping, and hop methods to control the actual discrete state

propagation. The existing tick method will do the actual work of doing the hop and should be named hop() method. The Simulation stepping should call - UFO(start hop

time) if startHop granularity is set, hop()/tick(), UFO(end hop time) if endHop granularity is set.* *TBD: in ContinuousModels, can only use fsm in start/end IO or

integrationStep methods, since time can bounce around in the deriv calls

TBD: Make note in models style guide that updateFlowOuts should have no side effects and should not effect any internal states. This is so it can be called multiple times

with no effect - the idea is that we should be able to call the ’y’ output equation (which updateFlowOuts is responsible for) for the current state. Thus, during

initialization, once the state has been initialized across the system, we should be able to call updateFlowOuts to refresh all the signals. This would be the replacement for

step(0), but without any deriv etc calls - to answer the question about whether a model has feed thru, we need to answer the question of whether when we wiggle any

flowIn, does the flowOut value change. If so, then the model has fee thru. - sim.step(0) call should simply be a call to all updateFlowOuts - the idea is to initialize the state

first, and then call updateFlowOuts to update all the signals without effecting the states - the granularity setting is use to control whether updateFlowOuts is called

after the method specified by the granularity setting is called

 TBD: if no UFO, granularity should be undefined*

 TBD: if no flow in or flow out, feed thru should bek false

 TBD: if granularity of UFO or masking is unset, or feed thru is unset, generate a warning

 TBD: if no startIOStep, granularity for it should not be set

 TBD: if no endIOStep, granularity for it should be undefined

 TBD: if in compliance mode, granularity should be endHop and not tick

 TBD: if no tick() method, then granularity for it shoudl not be set

 TBD: Read up feed thru issue in Models style guide - especially for DARTS block

1.2.1.1.4.2.1. Model guidelines summary
Following the detailed guidelines discussion about Model methods, we summarize below the expectations for each model method:

1. Constructor method: (all Models) Should set the default output and masking granularity levels, model compliance level and feed thru attribute for the model.

2. setup() method: Called after flow inputs/outputs have been tied to signals. Should set the size of any variable size flow inputs/outputs. Should not do default initialization of paramters

or states (to allow detection of unitialized values).

3. _lockObject() method: (all Models) One time initialization of any members or objects needed by the model such as frame, body, helper class objects. Parameters would have been set

by the time this method is called. Do not use this method for initialization that depends on flow input values since these may not be up to date.

4. maskedCoordinates method: (DartsModels only) Only available for DartsModels. Should include computation of masked coordinates, and any other DARTS model parameter updates

(eg. kinematic, geometric, mass/inertial properties) as discussed in Updating masked coordinates and //#itm:maskparam. Updating parameters items.

5. masking granularity: (DartsModels only) Default value should be hard-coded in the Model’s constructor or setup() method based on the model’s intrinsic properties as discussed in

Selecting output granularity item. Should generally be set to ALL since this effects the DARTS models properties in the model’s setup() or constructor methods as discussed in the

Updating masked coordinates item.

A coarser setting for masking granularity may be used if the maskedCoordinates computations are expensive - but this may result in a reduction in simulation fidelity.

6. feed thru: (all Models) Value should be set in the constructor. The value should be NONE if the model does not have both flow inputs and outputs.

7. updateFlowOuts(t) method: (all Models) Should update all the flow outs for the Model. Call freshenOutputTime() as needed for each of the outputs being set.

8. output granularity: (all Models) Default value should be hard-coded in the Model’s constructor or setup() method based on the model’s intrinsic properties as discussed in the Selecting

output granularity item. The level should be NONE if the Model has no flow outputs. If the output of the model is being data logged, then the output granularity should include the

endHop level.

The Model’s output granularity can be increased by a simulation based on extrinsic factors such as the the use of the model’s outputs by other models or for data logging. The output

granularity may be lowered if the cost of the updateFlowOuts method is expensive - but this may result in a reduction in simulation fidelity.

9. startIoStep method: (all Models) Should include anything that needs to be done at the start of a multi-rate step for the model. Also, should be used for any one time initialization that

depends on flow inputs and thus cannot be done in the ` _lockObject()` method.

10. startHop method: (all Models) Use for discrete state updates across the upcoming hop for FlowModels. For ContinuousModels, you have the choice of doing such updates in the

startIntegrationStep method for finer granularity.

11. startIntegrationStep method: (ContinuousModels only) Any discrete state updates across the integration sub-step if not already done in the startHop method.

12. preDeriv(t) method: (ContinuousModels only) Any external forces, gravity, prescribed acceleration, generalized forces computations that may effect the DARTS computation of

accelerations.

13. postDeriv(t) method: (ContinuousModels only) Computation of any continuous state derivatives for the ContinuousModel. Also any computations that make use of the multibody

generalized acceleration values.

14. endIntegrationStep method: (ContinuousModels only) Generally empty, but can also do discrete state updates if not done in startIntegrationStep.

15. endHop method: (ContinuousModels only) Generally empty, but can also do discrete state updates if not done elsewhere.

16. endIoStep method: (all Models) Should include anything that needs to be done at the end of a multi-rate step for the model.

17. processParams(t) method: (all Models) Should process new parameter values set by the user.

 TBD: Where does the size of variable size parameters get set?

1.2.1.1.4.3. Guidelines for output granularity values

 TBD: Define legacy stepZero() - call UFOs. always done in the beginning after bindState(). All UFOs call at end of hop?????

The stages where the updateFlowOuts method is called is determined by the ContinuousModel’s output granularity value. For each of the Model methods described in Table Model

methods, there is a granularity level available and arbitrary combinations of these can be selected for a Model’s output granularity. For each of the assigned granularity levels,

updateFlowOuts method is called together with the Model method to ensure that all the flow inputs and outputs are refreshed. The ALL output granularity setting forces the

updateFlowOuts(t) method to be called before each methods sweep across all the Models to ensure that all the model inputs are up to date.

As discussed in the Dataflow Model method calling sequence section, it is important that all the inputs for the dataflow models be updated before any state propagation methods are called.

In principle this implies that a granularity of ALL should be the default for models so that the updateFlowOuts method gets called ahead of each state propgation method call.

While in the most general case, flow outs can depend on the inputs u(t), the state x(t) and the current time t, the dependency is often narrower for individual ContinuousModels. The user can

however change this setting by calling the models updateFlowOutsGranularity method with the desired value.

If the flowOuts do not not depend on the flow ins, they only need to be called when the multibody state, the ContinuousModel’s state or time changes.

This implies that they need to be called at most with ` STARTINTEGRATION` and PREDERIV granularity.

If the outputs depend only on the discrete states, then the granularity needs to be just STARTINTEGRATION depending on whether the discrete state updates happen.

In addition, if the flowOuts depend on the U̇(t) multibody accelerations, then the output granularity levels should include the POSTDERIV level.

In addition they may need to have the ENDINTEGRATION granularity to update the flowOuts with the integrated state and time values.

The calling sequence in the Guidelines for output granularity values section corresponds to a granularity setting of STARTIO + PREDERIV + POSTDERIV + ENDINTEGRATION .

 TBD: Check this last item

If the flowOuts depend on the flow in inputs, then they need to have ALL granularity since the inputs can change for any level of sweep call. This defensive posture however can result

in several calls to the method and unneeded flowOuts computations even when the input flow ins have not changed. A way to reduce such unnecessary computations is to check the

freshness of individual flow ins to detect whether they have changed in value. The updateFlowOuts(t) method can use this check to only update the flowOuts whose values are affected

by changes in time or input flow ins.

While the above describes the steps needed for ensuring that the inputs to the Models are up to date and correct, there are times when the computation of the flowOuts may be very

expensive and/or the flowOuts change very slowly. An example of this are the atmosphere GRAM based models where the GRAM calls can be quite expensive. In this case, the developer is

free to used coarser granularity settings such as simply STARTIO or ` STARTINTEGRATION` to trade off some fidelity for reductions in computational cost.

1.2.1.1.4.4. Guidelines for masking granularity values
Similarly the stages where the maskedCoordinates method is called is determined by the DartsModel’s masking granularity value. The user can change this setting by calling the models

updateMaskingGranularity() method with the desired value.

 TBD: Why do we need granularities for masking?

TBD: Add example from Havarad about time delay or Vicon model, that are multi-rate, have a random noise generator that need to be called just once per I/O step. Need

STARTIO/ENDIO output granularity for this.

 TBD: Some flow outs might be only be there to support data logging - may never connect to any other model.

1.2.1.1.5. Data�ow model calling order and sorting

Models are coupled to each other through their flow inputs and outputs, and to DARTS through their inputs and outputs into DARTS. This connectivity has implications on the calling order

of the models. The basic model ordering rule is that a Model with feed thru must be called prior to any Model that its outputs provide inputs to. Enforcing this rule when selecting a model

calling order will ensure that the inputs for each Model have the correct and up to date values for its methods to use. Using this model ordering rule, the correct calling order within a

dataflow is easy to determine when there are no loops in the connectivity of the models.

Having said this, we do need to take into account the hybrid nature of a dataflow containing body the discrete FlowModels and ContinuousModels. As discussed in the State Propagator

FlowModel section, the system actually can be viewed as two distinct dataflows. One dataflow includes a state propagator FlowModel and consists of just FlowModels. The second dataflow

contains the ContinuousModels and DartsModels that are encapsulated withing the state propagator FlowModel. The overall model sorting process sorts each of the dataflows separately.

While this is straightforward in the absence of loops, as we saw earlier, while the dataflow in Figure Other StatePropagator and FlowModels is free of loops, its corresponding FlowModels

dataflow in Figure Other StatePropagator and FlowModels does contain loops once the state propagator is introduced. The next section takes on the topic of sorting the models in the

presence of dataflow loops.

1.2.1.1.5.1. Topological and Algebraic data�ow loops
The simulation knows to sort the models, and to evaluate the update equations for upstream models prior to the downstream ones, but this will fail if we have loops such as in Figure Other

StatePropagator and FlowModels or Figure Simple dataflow with loop.

Figure 7. A simple two model data�ow with a loop

 TBD: Fix Figure ??? so the model 1 to model 0 feedback line goes around as in Figure ??? so the loop is more obvious.

In this section we look at determining the correct calling order when loops are in fact present. A sequence of Models forms a topological loop when their the output of each Model is

connected to an input of the next Model with the final ContinuousModel’s output connected to the inputs of the first ContinuousModel. The pair of engine and fuel tank models in Figure

Topological models loop form a topological loop.

Propulsion system model with topological, but no algebraic loops.

A topological loop is said to be an algebraic loop when every Model in the loop has feed-thru.

When a topological loop is not an algebraic loop, we can directly use the model sorting rule to determine a calling order for the Models that complies with the rule. Note that the model

sorting rule only determines a partial order, which means that there can be multiple model order solution sequences that are in compliance and legal (and which will generated the correct

output). From a graph sorting perspective, the only edges that are relevant are the ones connecting the outputs of a Model with feed-thru to to the inputs of other Models. Since a non-

algebraic loop has at least one Model that does not have feed thru, the edges in the graph do not form a loop, and no cuts are needed to determine a legal sorting order.

On the other hand, the graph for algebraic loops contains cycles that is a reflection of the implicit algebraic relationship between the input/output values for the sequence of Models in the

loop. No sequencing order is possible for such loops that complies with the model ordering rule. The only rigorous option is to solve the implicit conditions for the correct input/output

values. As an alternative to this expensive option, we require the user to specify a break in the graph’s cycle to allow a determination of a calling order for the models. This is an

approximation since one of the inputs will be one call behind. Instead of specifying a break, an alternative option is to allow disabling the feed-thru property of one of the Models in the

loops for sorting purposes so that it affectively becomes a topological loop and correct sorting can be carried out. We do not pursue this approach, since it is possible for models to belong to

multiple loops, and the breaks approach allows the user to more flexibly control the sorting for each of the loops using different strategies.

 TBD: May want to reword ``one call'' above; one ``hop'', ``step'', etc?

1.2.1.1.5.1.1. Propulsion system example
To illustrate the discussion of loops, let us examine the modeling of a propulsion system in more detail. The thrust generated by the engine is a function of the on/off input, and the

remaining fuel m(t). As the engine fires, it generates a force input for DARTS and consumes fuel. The fuel consumption information is passed on through an output to the fuel tank model

which updates the fuel remaining and provides an input to DARTS to update the fuel tank mass properties in the model. Figures Topological models loop and Algebraic models loop

illustrate two different implementations of such a propulsion system using a pair of connected DartsModels. The difference between them is whether the fuel mass is a continuous or a

discrete state.

Propulsion system model with topological, but with algebraic loops.

In Figure Topological models loop, the fuel mass is is a continuous state of the fuel tank DartsModel. The engine DartsModel’s updateFlowOuts method uses the m(t) remaining fuel input to

compute the ṁ(t) fuel mass consumption rate for its flow out, while its preDeriv computes the (m(t) dependent) engine thrust and sets it in the DARTS model. The fuel tank’s postDeriv

method uses its flow input to set its ṁ(t) state derivative value, and its updateFlowOuts method copies the current m(t) state value into its flow out, while its preDeriv method sets the fuel

tank mass property in the DARTS body. While the engine model has feed-thru, the fuel tank does not in this model. Thus while the two DartsModels form a topological loop, they do not form

an algebraic loop. As a consequence the calling order of the two models does not matter, and either of the two possible orders will generate the same result. The order does matter however

in the second implementation discussed below since it has algebraic loops.

In Figure Algebraic models loop, the fuel mass is a discrete state of the fuel tank DartsModel. The engine DartsModel’s updateFlowOuts method uses the m(t) remaining fuel input to

compute the (m(t) dependent) δm(t) fuel mass consumption amount (not rate) since the beginning of the time step for its flow out. Its preDeriv computes the (m(t) dependent) engine thrust

and sets it in the DARTS model. For the fuel tank the flow input is used to updated the remaining fuel m(t) value and the startIntegrationStep method updates the discrete state and the fuel

tank mass property in the DARTS body with new remaining fuel value. There are two options for the fuel tank model’s flow output:

1. The fuel tank’s updateFlowOuts method also computes the new remaining fuel value and uses it to set the remaining fuel flow output. In this case the input immediately affects the

output, and this model has feed-thru.

2. The other option is for the fuel tank’s updateFlowOuts method to use the current state value to set the flow output. Since the state value is updated later, this case, the flow output value

will affectively lag the state value by one update. However, for this case this model will not have feed-thru.

 TBD: May want to reword ``one call'' above; one ``hop'', ``step'', etc?

For option (1), both of the engine and fuel tank Models wll have feed thru, and thus the topological loop will in fact an algebraic loop. For this case, the user has to define a break to determine

which of the ModelupdateFlowOuts(t) method should be called first. This will introduce approximations since some of the date used in the calculations will lag one step.

1.2.1.1.5.2. Feed thru property

 TBD: Add feed thru settings available and setting.* *TBD: Add feed considerations - only when both inputs/outputs, DARTS feed thru

1.2.1.1.5.3. Sorting order of the DARTS multibody model
The DARTS multibody model does not have explicit flow ins or flow outs. Its input values are set directly using function calls by DartsModels, and likewise outputs from it are obtained by

DartsModels using function calls. The preDeriv method for all the ContinuousModels is called before DARTS’s dynamics solver is called, ensuring that all its inputs are correct.

The DARTS model by itself normally does not have feed thru since its implicit inputs only affect the dynamics component which does not have feed thru. However, the kinematic component

can have feed thru if some of the Q and U coordinate values are masked and managed by DartsModels instead of by the integrator. Feed thru is also possible if a Model directly uses the U̇

values or inter-body constraint forces computed by the dynamics block. We only have an algebraic loop condition if any of these implicit outputs from DARTS feeds thru into the output of

any of the DartsModels which in turn is connected to a DartsModel whose inputs into the DARTS models directly affectsd these outputs. It is left to the user to explicitly handle the model

ordering for such rare situations.

Note that when a ContinuousModel’s flow outs depend on multibody derivatives, its output granularity should include the POSTDERIV granularity setting.

TBD: Should the loops be evaluated for each granularity setting? This will be useful when sorting algebraic loops, since it is possible that the algebraic loop might not

exist for the individual granularity settings.

In such a case we must introduce a break. This ignores a broken signal connection for the purposes of ordering. A broken signal will be one cycle out-of-date when the update equations are

evaluated.

This is all self-consistent for flow models:

State updates look at signals and each model’s own state only

We’re making sure signals are updated in order

1.2.1.1.6. Discussion

1.2.1.1.6.1. Limitations of prior calling sequence
The prior calling sequence for models called the preDeriv and updateFlowOuts method in succession for a model before moving onto the next. This calling sequence is fine, except for the

case when there is a algebraic loop, i.e. a sequence of Models all of whom with feed thru that form a loop - and we explore this case in more detail here. Algebraic loops require the user to

specify a inter-model break for the purposes of determining a calling order for the Models in the loop. With the prior calling sequence, there is no good way to get all the inputs needed by

the first Model in the sequence (some of its inputs are connected to the outputs of the last Model in the loop) have a correct value so that it can do its computations correctly. The new calling

sequence fixes this problem because all the updateFlowOuts methods across all the Models in the loop are called first so that their outputs (and thus inputs) are correct, and only then are

the preDeriv etc methods called with correct inputs.

1.2.1.1.6.2. Proposed future changes
model autocoder changes for ContinuousModels

if there are no flowOuts, do not generate updateFlowOuts stub

if there is no gm(), i.e. no inputs to DARTS, then do not generate preDeriv stub

if there are no continuous states, do not generate postDeriv stub

if no params, do not generate processParams stub

if no discrete states, do not generate startIntegrationStep stub

Change the Model method calling sequence in the ` Simulation` class to the one described in the Guidelines for output granularity values section.

Remove preDeriv method from Sensor and Encoder models since these are not supposed to generate inputs for the DARTS model.

Rename the preDeriv method to the more appropriate ` updateDartsDynamicsInputs` (or preDartsDeriv) since the purpose of this method is compute and prepare all the inputs

needed for the DARTS dynamics computation.

Similarly rename postDeriv to something like ` updateStateDerivs`, because the purpose of this method is to compute the continuous state derivatives for the ContinuousModel.

Change the default output granularity to be ALL as per the calling sequence in the Guidelines for output granularity values section.

Add API for updateFlowOuts(t) to detect at what stage of the calling sequence it is being called. This will allow the postDeriv level calls to only update the flowOuts that depend on the

multibody accelerations.

Add support for handling masking granularity and the maskedCoordinates method.

Rename ContinuousModel methods to better reflect their function. preDeriv should become updateDartsInputs. etc.

Add a feed-thru attribute for ContinuousModel, with the default value chosen to be the most conservative option of T͡rue, unless the model does not have either flow ins or outs, in which

case the value would be False .

TBD: Should we allow updateFlowOuts to check the current calling level for the model so that they can change their computations depending on whether the model is at

preDeriv, endIntegrationStep etc levels.

TBD: If Q/U masking, then preDeriv should also be called in endIntegrationStep because the multibody state value would be changed. Is that so? Since have new

integrator state, the whole state value would be different. Since we call updateFlowOuts, should not we also call preDeriv in updateFlowOuts. FIX - the kinematics part

must be called at all granularities, not the dynamics parts. Make a distinction between kinematics and dynamics DARTS inputs.

1.2.1.1.6.3. Bringing existing Models into compliance
The existing Models need to be brought into compliance with these guidelines. The following phased approach is suggested:

1. Taking stock of the existing Models to assess their current implementation.

2. Scrub the Models to deactivate unneeded empty stub methods

3. Refactor the methods to bring them into compliance.

4. Change the calling sequence in the Simulation class to the new one.

5. Set the feed thru attribute explicitly to ContinuousModels.

6. Update the Simulation class’s sorting to use topological loops, but require breaks only when there are algebraic loops

1.2.1.1.6.4. Taking stock checklist for ContinuousModels
1. What are the Eq 10 thru Eq 8 math equations for the ContinuousModel?

2.]DONE] Does the model have continuous states, discrete states, flow inputs, flow outputs, inputs into DARTS, outputs from DARTS, params?

3. Are there methods with empty bodies? Can they be deactivated?

4. Is setup() really needed? Can we move granularity setting (that is typically there) into _init() and get rid of this method?.

5. If there are flowOuts, are all flowOuts being updated only by updateFlowOuts?

If not, which other method is doing so.

If yes, can updateFlowOuts be called standalone or is it dependent on computations from other methods.

6. If have updateFlowOuts, what is its output granularity and is it being set explicitly?

7. If the model computes masked Q /U coordinates, then are these computations being done in the maskedCoordinates method?

8. If have maskedCoordinates, what is its masking granularity and is it being set explicitly?

9. Is preDeriv only being used to update DARTS inputs?

10. If there are continuous states

a. where are the continuous state derivatives computations being done?

b. are any flow outputs dependent on the continuous state derivatives?

11. Does the model depend on DARTS accelerations? Are the accelerations being processed in the postDeriv(t) method or elsewhere?

12. Does the model look obsolete - does the on-line catalog show it being exercised by any script?

13. Is the model appropriately named?

14. Does the model have feed thru, i.e. do the flow outs depend directly on the flow inputs. Set the flow thru attribute for the model.

1.2.1.1.7. Examples

Example models include

Fixed time delay

Fixed rate sensor (Vicon)

Model with continuous states (second order response)

Expensive model with coarsened granularity (GRAM model)

Model with masked Q/U

Prescribed accel model

IMU model (continuous states and accel dependency)

Feed thru model

1.2.1.1.8. Registering Model multi-rate callbacks

Here we provide implementation details on the multi-rate capability discussed in the Multi-rate models section. Generally model do not have special multi-rate calling needs. By default

models inherit the simulation I/O step size as their default I/O step size. One has to register a multi-rate callback for models that have special multi-rate needs. For the special case of

models that need to be run at a specific fixed rate, a multi-rate callback method can be registered for a model using the following call:

sim.registerMultiRateModel(<model>, IO_step_rate_hz)

More generally, in C++ one can register an I/O step callback that will be called to determine the next I/O step for a model as follows:

sim.registerMultiRateModel(<model>, multirate_callback_cb)

Again for completeness, while hop boundaries are determined by the common line timeline as described above, a hop can end earlier than its boundary. This can happen when there is a

step-validation callback registered with the simulation. The simulation is always monitoring this callback, and will terminate a hop at a time when such a condition is satisfied. This is

described in more detail in the {Dshellpp_sgstepvalidation_section_uri[Zero-crossing events] section.

1.2.1.1.9. Using time in the model methods

A user often wants to query the simulation time in side a model method. This is a well-defined operation between hops: in startIoStep/endIoStep for instance. However this is not well-

defined for methods that are invoked mid-step (preDeriv(t)) for instance. Since model states are propagated individually, in the middle of a state update, some models will already have

been updated (they will contain state at t1), while others will not yet have been updated (they will contain state at t0). This is an inconsistent state, and asking the simulation about the

current time is non-sensical: both t0 and t1 are right.

To resolve this ambiguity, it is no longer necessary to make these time queries at all, and in fact it is quite discouraged. Instead, each method now takes arguments that tell the method what

time we’re transitioning to and from. Currently the full method declarations look like this:

 virtual void startIoStep(// now
const Time::TimeSpec &t_startIoStep,

// planned io-step-end-time. The step possibly

 // may not end here, if we have step-validation
// callbacks

 const Time::TimeSpec &t_endIoStep);

 virtual void startHop(const Time::TimeSpec &t_startHop,

 // planned hop-end-time. The hop possibly may not end
// here, if we have step-validation callbacks

 const Time::TimeSpec &t_endHop);

 virtual void startIntegrationStep(// now
const Time::TimeSpec &t_startIntegrationStep,

// planned integration-step-end-time.

 // The step possibly may not end here,
// if we have step-validation

 // callbacks
const Time::TimeSpec &t_endIntegrationStep);

virtual void preDeriv(const Time::TimeSpec &t);

virtual void postDeriv(const Time::TimeSpec &t);

virtual void endIntegrationStep(// When this step started

 const Time::TimeSpec &t_startIntegrationStep,

 // now
const Time::TimeSpec &t_endIntegrationStep);

virtual void endHop(const Time::TimeSpec &t_startHop,

// planned hop-end-time. The hop possibly may not end

 // here, if we have step-validation callbacks
const Time::TimeSpec &t_endHop);

virtual void endIoStep(// When this step started

 const Time::TimeSpec &t_startIoStep,

 // now
const Time::TimeSpec &t_endIoStep);

virtual void updateFlowOuts(const Time::TimeSpec &t);

virtual void maskedCoordinates(const Time::TimeSpec &t)

1.2.1.1.10. Zero-crossing conditions and roll-back implementation

Here we provide more details on the zero-crossing detection feature described in the {Dshellpp_sgstepvalidation_section_uri[Zero-crossing events] section. To use the zero-crossing

detection functionality, each zero-crossing condition callback returns the following enum:

// The state value resulting from a step-validation callback. This is a part
// of the full value returned by one of these callbacks:
CB_integration_result enum CB_integration_state
{
 // have never overshot. normal steps. t_retry invalid

NOT_SEARCHING,

// overshot before. this search step undershot. t_retry valid
 SEARCHING_NOT_OVERSHOT,

 // overshot before. this search step hit the target. t_retry invalid
SEARCH_COMPLETED,

// overshot before. this search step overshot. t_retry valid

 SEARCHING_OVERSHOT
};

We define a new zero-crossing condition by subclassing this:

class CallbackStepValidation
{
 ...

 // Check a hypothesis t. Did we overshoot the target?
virtual CB_integration_result execute(double t_min, double t) = 0;

// We just hit the target

 virtual void target_was_hit(void);

 // Reset the seeking logic
virtual void reset(void) = 0;

...

};

Subclassing can be done in C or in Python; C is strongly preferred, and the Python support exists mostly for testing. We provide a C++ subclass that implements the most common use case: a

bisection search of a given DVar hitting some target. The only user-facing function is the constructor:

CallbackFindTargetBisection(\

 const char* _name,

 // Observation DVar. Must have length 1
const DVar::DoubleVectorLeaf& _x_var,

// Target we're trying to hit

 double _x_target,

 // Approaching the target from below or from above?
bool _from_below,

// Target hit if 0 <= target-x <= eps (unidirectional)

 double eps = 1e-6
);

Using the zero-crossing detection from Python is trivial:

from Dshell.Dshell_Py
import CallbackFindTargetBisection cb = \

CallbackFindTargetBisection('find-target-height', height, 950, False)
sim.stepValidationCallbackAdd(cb)

1.2.1.1.11. Change history

2020-03-01:

Lots of updates on guidelines for model methods.

2020-02-25:

Added change history appendix.

Fixed model methods table to make startHop apply to all models, and endHop to just continuous ones.

Added index.

1.2.2. Dshell Simulation object

1.2.2.1. Model order sorting using feed-thru (Proposed)

 TBD: update and clean up this section

Had a discusson with Havard on <2017-02-27 Mon> regarding the sorting of dynamcis models and why it is necessary. In the absence of feed thrus, Havard says that the calling order

should not matter (incorrect, it does for the outputs computation). This is how Simulink does it.

The idea is that if we have \dot x_1 = A_1 x_1 + B_1 u_1, y_1 = C_1 x_1 + D_1 u_1 and a second system \dot x_2 = A_2 x_2 + B_2 u_2, y_2 = C_2 x_2 + D_2 u_2, which are interconnected so that

u_2 = y_1, and u_1 = y_2, then these 2 form a loop. Assuming that either of D_1 or D_2 is 0 (i.e. both do not have feed thru) then (other than round off error) the calling order for system 1 or

2 should not matter. When both have feed thru, then we have circularity at the y’s level and only then does the loop need to be broken.

The idea is almost correct. However there is a ordering that is implied here as well. The main point is that all the y outputs must be evaluated first (before the derivs). However, to

evaluate the y’s, when one depends on another, we need to have them evaluated in order so that the dependencies get resolved properly.

Come to think of it, what is currently being done is actually right. Lets take the 2-systems example we had from this morning, withonly one of them having a feed thru. Thus

y_1 = C_1 x_1 + D_1 y_2
y_2 = C_2 x_2

To evaluate this, we have to evaluate y_2 first, and then y_1 since the latter depends on y_2. So even in the case of no feed thru, there is an ordering dependency. The sorting graph built

by Dshell should add a edge based on feed thru alone. For the above equations, Dshell will thus see the output of system 2 connected to the input of system 1 (but not the other

connection), and will sort them so that system 2 is evaluated before system 1.

When y_2 also has a dependence on y_1, i.e. has a feed thru, then we have a true loop. And only then a break is required from the user.

Note however, that only the strict loops at the y level are a problem in that they require breaks to be specified by the user. However, we will have a connection from system 1 to system 2

so that y_1 can be used for the \dot x_2 computation. Dshell cannot tell the difference between whether the input is for the y or the \dot x evaluation, so assumes the worst and assumes it

is for a y evaluation and insists on a break. Do we have a way of telling the system what kind of coupling there actually is, so that the loop from the \dot x_2 dependency does not get seen?

Actually, for the most part DARTS does not feed thru. Input forces, accels etc that are set only effect \dot x and not any outputs. The only exception are

when masked Q/U coords are set. These immediately effect frame locations and velocities that may effect downstream models

when prescribed accels are set, and there are downstream models (eg. IMU, accelerometer) that depend on accel values

For these cases where DARTS has feed thru, how do we do the sorting? Is this where we leave it to the user to add constraints to ensure that these dependencies that are hard to

discover automatically must be specified by the user?

With this being the case, we do not need to include the inputs/outputs to and from DARTS in updateFlowOuts since for the most part they do not effect the ordering since there is no feed

thru.

So I believe, that what we are close to having a correct implementation - just need to make sure that all the outputs are computed first. I think we need to document this like this so that it

is clear as to what is going on.

See Havard’s email from <2017-02-27 Mon> for a nice long discussion about this. He also says that Simulink S-functions have a flag to indicate whether the block has feed thru. See

[[https://www.mathworks.com/help/simulink/sfg/s-function-concepts.html?requestedDomain=www.mathworks.com][Mathworks note]] on the precise semantics.

1.2.3. Dshell Assemblies

1.2.3.1. Assemblies creating signals

 TBD: update and clean up this section

(from Abhi’s draft notes)

the real reason for having an assembly to have an addSignal() call for each of its signals is so that it can run as a stand-alone assembly for unit testing which will ensure that it has no

external dependencies. This is the only requirement. We will refer to any signal with an addSignal call within and assembly as being owned by the assembly.

The owned signals (i.e. those with addSignal calls) define the interface for an assembly. These are the only signals that can be tied at its level (by regular or interface ties). All other ties

are ignored and simply fall through.

An assembly only has two categories of owned signals: model signals use to tie to the models created by the assembly, and connector signals meant to be used to connect models from

different children assemblies. A signal can belong to one or both categories. Though by and large, the model signals are consumed locally, while the connector signals are added to the

assembly’s pending ties, or directly to children’s signal ties.

For the purposes of the discussion below, we assume that we have 3 levels of assemblies denoted A→B→C.

If an assembly uses the signal to tie to a model it creates, then it must have an addSignal() call for it to work

However, if the signal is really only being used by C level sub-assemblies, and passed on as a signal tie from A via B, then there is really no need for an addSignal call within B since B can

run fine stand alone even though it does not need to create the signal. The C level assembly who actually ties the signal to a model will have to however create and own it.

one exception is if the higher level assembly B wants to use a different name for the signal (for it to be more reflective of its use) than the name in the lower level C assembly. Then it B

must have an addSignal call and own it as well.

this is also the case when we want to have a composite signal at B’s level, and want to pass on a slice as a tie to C. Then we must have an addSignal call for it at the B level for it to own it

as well.

So far the priniciple seems to be that pure feed thrus from A to C that are not used at the B level do not need to have an addSignal call within B, i.e. B does not need to own the signal.

Anything that mutates the B’s signal into C however requires B to own the signal and have an addSignal call for it (i.e. if there is mismatch between B and C’s view of the signal then we

need a ties and both need to own their versions).

Problem statement: So, thus when B is a serial link assembly for a robotic manipulator, decides to pass individual signal ties down to the C lower level motor assemblies so that they are

accessible to the user at the B level, what do we do? If this is the only way that the B arm assembly will be used, it is preferable that the user just provides accessor methods in B for the C

level signals instead of passing down signal ties.

However, what happens the day someone wants to attach an arm controller or pose manager for the arm, so that these signals need to be exposed to the common A parent assembly

for the B arm and the controller assemblyies. Clearly A must own the signals and have addSignals calls. How does A pass the signals down through the B arm assembly to the C motors

without us insisting that the B arm assembly have addSignals calls for signals as well? The point is, that these are run-time ties that can change from run to run and context to context.

How do get the B intermediate assembly to know to pass on these signal ties to the C level assemblies? In the current paradigm, we would need the B intermediate assembly to be

knowldegeable about these signals so that (a) it knows to put them in the signal ties of the C child assemblies, and (b) and therefore B would need to have addSignals call for them and

own them even though it has no direct use for them.

If we take this far enough, and we want to cover every possible use case, then each assembly must have addSignals call for and own every signal contained at every level of its sub-tree

to cover every possible use! Not a great idea.

Option A: mske use of structural and interface ties

Thus clearly we need to make a distinction between structural signal ties meant for the child’s immediate use (these are hard-coded in), and interface one’s that are for the whole

subtree to use (these are defined at run-time by the context). We call the first structural ties and the latter interface ties.

structural ties: These are hardcoded ties between signals owned by a parent to signals owned by a child. Ownership is required since otherwise some of the signals may not

exist in certain situations making stand alone testing impossible.

interface ties: These are signal ties that change from context to context. Assembly B may get from its parent A, and it uses them as well as passing on to its children C for use.

This is like the pending signal ties idea being used by the assembly builder. Each B assembly uses the combination of the input structural and interface signal ties to use within

itself to alias out its signals as requested. For its C children assemblies

the structural signal ties for C are hard-coded in as before.

The interface signal ties passed by B to C contain all the input interface signal ties, minus the entries that were used by B itself. This way the interface signal ties keep getting

passed down until they are fully consumed by the lower level assemblies. B can add its own pending ties to the list passed to C.

So what happens when assembly B has a structural signal tie for C’s signal, but also gets an alias request for C’s signal via the interface signal tie passed from A to B. This should

be an error. A should change the interface signal ties to B to refer to alias B’s signal rather than to C’s signal to avoid such conflicts. The principle is to tie to the highest level

possible in the assembly hierarchy.

Remove feed thrus?: Feed thrus are signals in B that we want to alias to signals with the same name in the child C. There is normally no need to do this aliasing unless there is a

pressing use for the signal to be owned at the B level. Most likely it is not needed once we introduce interface ties.

In the past we have had to use feed thrus because we have not had the notion of the interface signal ties.

Needs: We need the following methods:

Add a interface_ties argument to Assembly constructors. The parent assembly will mark all the passed on interface ties as having been consumed.

get rid of the notion of feed thrus and the updateTies() method. Now structural ties should be manually created.

if_ties = self.childInterfaceTies(structural ties, input_if_ties): this returns interface ties that consist of the input interface ties minus the interface ties consumed by the assembly

iteself). This method is used to get interface ties to pass onto children assemblies. Why do we need the structural ties aregument? Do we need an additional argument for the

assembly to add its own interface ties?

ties = self.unprocessedTies(): This will return ties consisting of the childInterfaceTies() minus the ones that have been passed onto children. This method is invoked by an

assembly’s lockObject() call to ensure that the return value is empty.

Add checker about proper ownership of the signals in the structural ties entry. Add warning when feed thrus are detected in the structural ties.

Impact/Transition:

all assembly constructors will have a new if_ties argument. (Not backwards compatible unless we put this at the end).

the existing signal ties argument will be treated as a structural ties and the interface ties will be empty. Thus things should continue to work.

Update assembly lockObject() to check that there are no unprocessed ties.

Down the line, get rid of the use of updateTies. Treat the second argument specific ties as being structural ties for the child. Get rid of feed thrus.

Audit: We need to catch typos etc that can lead to missed or incorrect connections. Some ideas:

Ownership: Check that for any structural tie passed between parent/child assemblies, that one side is owned by the parent and the other by the child.

Structural/Interface overlap: Check that a signal already being tied structurally is not also being tied via an interface tie.

Unprocessed ties: As the pending ties are passed down, we need to ensure that they all get consumed by some assembly in the hierarchy. One way to do this is for each

assembly to keep track of the pending interface ties (i.e. input ones minus the ones it consumes, and minus the ones it passes it on to children). During assembly locking, there

should be a error is this is non-empty.

Uneeded structural ties: How do we discover unneeded structural ties? Clearly feed thrus should be remove. Rather, a better check is if the left and right side names are the

same in structural ties. That means it is unneeded.

Questions:

should the interface ties entries use qualified names for the signals?

when A wants to structurally alias to a signal in C, should B own the signal as well or should we let structural ties be handed down recursively as for interface ties?

why cannot structural ties be combined with interface ties? why do they need to be distinct. What if we combine them, and pass down remaining signal ties to the child

assemblies?

Option B: treat all signal ties like current pending signal ties

Like now, each assembly passes signal ties to its child. The child consumes some of the ties, combines the remaining ones with some new ones of its own and passes them down to

its children - and so on. This avoids the need for feed thrus since unconsumed ties are automatically passed down to children.

This way assemblies are written to locally just create signal ties that they know about to pass to their children. However when the context is different, an ancestor assembly can

pass in signal ties to override what this assembly is doing, or pass in addition ones to pull up and expose low level signals to the higher level.

This option does not require a change to the assembly constructor API.

The addSignal methods used passed in signal ties if provided. The locally consumed ties are filtered out from the signal ties stack. Local ties are added to the remaining ones and

provided to child assemblies.

This approach also allows both hard-coded ties within assemblies, as well as the passing in of different ties at the top-level.

Difficulty with Option B: All ties are passed in via the signal ties argument. The pending ties that are given to the children are the unconsumed ones. The way they get cosumed is

via the addSignal calls in the assembly. How does one bootstrap the process? While we are able to propagate pending ties, how do we add new signals to pending ties? Add a

method for it?

Needs:

updateTies() works as before, except that it ignores, that have been consumed, adds in local ties, and treats the feed thru ties as if they are clones (like now). So the only change is

to add in the ties that were passed in, and were also not consumed (i.e. are in the _tied_signals map).

consumed_ties = self.consumedTies(): This will return ties consisting of consumed input ties by the assembly, i.e. the locally consumed input ties (_tied_signals) and the input ties

that have been consumed by the chidren assemblies (from calling their consumedTies() and filtering out for the input ties only).

This method will throw an exception if any of its children have not consumed all of the local ties given to it.

unconsumed_ties = self.unConsumedTies(): This will return ties consisting of unconsumed input ties by the assembly, i.e. the inputs signal ties minus the locally consumed ties

(_tied_signals) and the ones that have been consumed by the chidren assemblies (from calling their unConsumedTies()).

This method will throw an exception if (children_unconsumed_ties - input signal ties) is non-null. The idea is that at every level, the only possible unconsumed ties are the

ones passed in (since they might be consumed on a different branch).

This method is invoked by the simulation’s lockObject() call to the top level assembly. An exception will get thrown if there are locally generated ties that are not consumed

within the sub-tree. The top level assembly should return an empty map.

Impact/Transition:

Change updateTies() to include unconumed ties in the returned signal ties.

Update Simulation lockObject() to call topasm.unConsumedTies(). This should not throw and exception and should return an empty list.

May be able to get special handling in builder, and the notion of pending signal ties.

Audit: We need to catch typos etc that can lead to missed or incorrect connections. Some ideas:

Ownership: There is no ownership check. Any unconsumed ties are assemed to be for further down the hierarchy. So typos etc will result is some ties never getting consumed,

leading to errors during locking.

Overriding ties: We can have case where B has a tie for C in its local ties. However, A may pass in a tie to B for the same signal. In this case updateTies replaces the local tie with

the one from A. Typos, will lead to non-replacement and again alerts during locking.

Unconsumed ties: We need to ensure that any local time passed to a child assembly get consumed to catch typos and tie errors. This gets tricky if what we pass to the child is

one ties argument with the local ties and uncomsumed parent ties mixed in. It becomes difficult to handle the situation when there is an overlap between the local ties and

parent ties - since we cannot easily tell when an uncosumed tie is a local tie (which would be an error) or it came from the ancestor (which would be fine).

An option is to only pass local ties to the child. The child can figure out the unused ancestor ties by taking the difference between the parent’s input ties and the parent’s local

ties. This can be handled within the addSignal method.

One implication of this would be that the signalTies() method would only contain the local ties passed in by the parent assembly (and not the feed thru from the ancestor).

Thus signal ties would contain just the 'structural' ties, while the 'interface' ties would be computed.

Another implication would be that an assembly’s tied signals map could contain more entries than those passed in via the signal ties (since it can also contain entries from the

pending ties from the parent)

Unconsumed ties (OLD): The call to consumedTies() at any level will throw an exeption if any local created ties are not consumed by the children assemblies.

Unneeded addSignals?:

Bad pending additions: Make sure that we cannot put fake pending ties into only an assembly. Should not be possible if we use updateTies(). In any case, the slices on the right

need to exist.

Catch no updateTies use: Assembly’s should use updateTies() to compute ties for children so that unconsumed ties get added in. The reason is that any input signalTies() will

not get passed onto children if the assembly is directly computing the children’s signal ties.

To check this, at each assembly we should get the list of unconsumed ties, and verify that this list is contained in the list of signal ties for each child assembly, else generate a

warning.

Uneeded ties: How do we discover unneeded structural ties? What we want to find is ties from A that are essentially feed thrus (i.e. left and right side names are the same) and

ones that are consumed by just one child assembly. These represent unneeded feed thrus. We should only have such feed thrus if there is another child assembly that is using

the same signal.

we are looking for ties (where left name = right name) that are locally generated (i.e. not passed in), and which was consumed by only one child assembly.

thus call to updateTies() should add to a list of local_ties. The difference between child.consumed() ties and the local ties gives the list of local ties consumed ties by the child.

We need to keep a count of the number of children consumers for each local tie. After polling all the children, create a warning about unneeded feedthru if any of the local ties

is consumed by just one child, and is one where left name = right name. Note that the check that the number of consuming children is 0 is equivalent to the check done by

unConsumedTies.

Missing addSignal calls: do we have a way to catch missing addSignal calls?

a tie consumed by more than one child assembly’s sub-tree should be owned by the assembly

a model tie should be owned by the assembly

addSignal at correct level?: For every signal, show use its ties

Missing signal ties: do we need a way to catch ties that are in pending ties instead of signal ties?

if the right side signal slice belongs to the parent assembly, then the tie should be a signal tie, and not a pending tie.

Questions:

Say we have case where B has a local tie key which is also in the input signal ties. This is often the case when B needs to share its signal with multiple children, but A wants to

own the signal at its level. But there is technically the possibility that B is using the key to point to a different signal than the one from A is pointing to. This should be fine, but

when we are checking for consumed/unneeded ties, we should not just be focusing on the keys otherwise we will misread situations like this.

should the addSignal command add a 'tag' or a 'signalName' entry to the tied signal’s map?

How do we target/uniquify where a pending tie gets consumed? Should we qualify the name; should we be listing all the targetted consumers of a pending tie?

Should we be calling pending ties bridge or connector or interface ties?

How do we handle the case where there is a key in both the local ties passed in and the pending list? Clearly, the local ties should take precedence since it is structural and the

one in the pending list should be ignore. Right?

So we should indeed ensure that anything in signalTies has an addSignal within the assembly (since it is structural)

what should getSignalSlice() return - only stuff in signalTies?

Yes, only stuff from tied signals or locally created signals. The reason is that this method is used to get the slice to tie to models, and so has to work when the assembly is stand

alone and there are no pending ties. So this method is restricted to the owned signals, i.e. those having addSignals call.

How to detect unneeded addSignals() calls?

Should the tied map be split up into ones for the structural and the ones for the pending.

Use cases:

B/C: C owns signals, B does not care.

B/C: B has signal tie to alias out C’s signal

B/C: B has signal slice tie for C’s signal

A/B/C: A/B and B/C have ties - business as usual

AD/B/C: A has a child D, and has interface signal ties for B and D

AD/B/C: A has a child D and has interface signal ties for C

AD/B/C: A has interface signal ties for C and B also structural one for C (conflict)

A/B/C: A has interface signal ties for C and B also interface one for C (conflict)

AD/BE/C: B has a child E, and adds interace ties to the ones from A while passing on to C.

1.2.3.1.1. Finding the signals belonging to an assembly

How to find out all the signals owned by an assembly?

signalList() only returns the ones that are actually created

how do we get a list of all the ones that addSignals was actually called for? There now appears to be a _signals_made_with_add_signal member which keeps a list of all the signal names

that addSignal was called for. The, tag’s table for signals only keeps track of signals that belong to the assembly. The asm’s tiedSignalsTable() keeps track of all the local signals that were

aliased by signal ties.

Thus the answer is that the signals owned by an assembly, the ones actually created are returned by signalList() or the keys to signalsTable(), and the ones aliased out by ties are keys to

the tiedSignalsTable() map. So we really do not need the _signals_made_with_add_signal member, do we?

1.2.3.2. Assemblies creating bodies

The addBody method is used to add bodies to an assembly. If there is a body with the same name in the given scope (see below for more details) then that body will be reuturned,

otherwise, a new body with the given name will be created and returnd. The method is designed to be called using the following:

When the method searches for an already existant body with the name given by the bodyName argument, it refines the scope of its search using a root body. This root body is taken as one of

the following (in order of preferences):

1. The parent keyword argument.

2. The ANCESTOR_BODY context field; ANCESTOR_BODY is specified in DshellCommon.Constants.

3. The multibody virtual root.

The following flowchart shows the information above graphically:

If a body is found, then that body is returned. Otherwise, a new body is created whose inboard body is the root body found earlier.

Before returning the aforementioned body, the body is registered to the simulation with a tag. The tag is one of the following (in order of preference):

1. The tag keyword argument

2. The bodyName argument

The following flowchart shows the information above graphically:

addBody(self, bodyName: str, parent: "DartsBody" = None, tag: str = None)
PYTHON

skinparam backgroundColor transparent
@startuml
start
if (parent body is specified?) then (yes)
 :root body = parent body;
stop

else (no)
if (ANCESTOR_BODY context field is specified?) then (yes)

 :root body = ANCESTOR_BODY;
stop

 else (no)
:root body = mbody virtual root;

 stop
endif

endif
@enduml

PLANTUML

The assembly registers the body, regardless of whether it was looked-up or created. The reason is that when a user calls the addBody method from an assembly, they expect the assembly to

own the body, i.e., the body should be registered to the assembly.

1.2.3.2.1. Legacy behavior

For backwards compatibility purposes, the function can also be called using the following:

If the DartsCommonMode is ndarts, then the behavior of the method is the same as previously described. However, if it is dartspp, then the method will not search for a new body, it will

only create one. Moreover, when in dartspp mode, the ANCESTOR_BODY context field is not used when determining the root body, and the tag must be supplied.

1.2.3.2.1.1. Further resources
A full team talk on this topic can be found here (https://dartslab.jpl.nasa.gov/technotes/Talks/2022-04-21-sprint-assembly-addBody.mp4). For examples of the addBody method, see the reg tests in

Dshell++/test/test_add_body .

1.2.3.3. Assemblies creation/recreation

 TBD: update and clean up this section

For old abhi’s notes

we currently have multiple distinct ways of creating a simulation and the computation graph

via assembly builder

calls SimExecNdarts.createAssemblies(asm_info_dict, integ_options)

calls SimExec.createAssemblies(asm_info_dict)

calls topasm.addAssembliesFromAsmInfo(asm_info_dict) to create assemblies

calls setupDynSolver(integ_options) to create cegraph, dynsolver, integrator and bindParams

via ROAMS

SimExecRoams & SimExecRoams2 constructors call _createSolver

calls setupDynSolver(integ_options) to create cegraph and call bindParams

it calls createDynSolver(integ_options) to create cegraph, dynsolver, integrator

attach mbody root frame if unattached

call createCompGraph to create cegraph

creates a constrained subgraph and returns it

create & set right type of dynSolver based on integrator type

create right type of integrator and set it in dynSolver

calls bindParams for the top level asm

calls resetState for all assemblies

sets integrator tolerances

addRover to add a new rover

calls addAssemblies(lasms) to recreate cegraph if bodies have changed

if no solver calls createDynSolver() to create cegraph, dynsolver, integrator (see above) with default integ options

checks if bodies have changed via lasms and sets flag

if bodies have changed call teardownCEGraph for all assemblies

calls _setupSolver(lasms, bodies_changed) to recreate cegraph

if bodies changed, call recreateCompGraph

calls createCompGraph to create new cegraph

changes dynSolver’s sugbraph to be new cegraph

calls deleteCompGraph to delete old cegraph

changes dynSolver’s sugbraph to be mbody

skinparam backgroundColor transparent
@startuml
start
if (tag keyword is specified?) then (yes)
 :tag = tag keyword;
 stop
else (no)
 :tag = body name argument;
 stop
endif
@enduml

PLANTUML

addBody(self, parent: "DartsBody", bodyName: str, tag: str)
PYTHON

calls _deleteCompGraph to delete the cegraph

for each body in the cegraph, reset masking interface and removes the body from the cegraph and any associated aggreg. subgraphs (why is this not done by the

teardownCEgraph call????)

deletes the cegraph object using del

call bindParams, bindState, resetState for new lasms

if bodies changed, call updateCEGraph for all asms

calls lockObject

in script

tend to call createAssemblies which does the setup work

PROPOSED CHANGES

Update setupDynSolver so that after the bindParams call, updateCEGraph is called for all assemblies

the reason for this is that currently if we were to add one of the CE assemblies (eg. double wishbone), the compound body would never get set up!

We want to clean things up so that the sim.lockObject() will do all the work of recreating the comp graph if bodies have changed. The idea is that each assembly should set the

bodies_changed flag each time a body is added by an assembly. Within lockObject’s Python prewrapper, the cegraph will be recreated via a call to renewCompGraph() (see below) if

bodies have changed.

Rename _setupSolver to renewCompGraph. This method should only be called if bodies have changed (so remove the bodies_changed argument to it)

move the bindParams method out of _setupSolver

Get rid of sim.addAssemblies method

Make it the user’s responsibility to call bindParams, resetStates() & bindState after an assembly is added post-initializatino

add call to resetStates() after bindParams in setupDynSolver

get rid of _setupSolver method

update Assembly.setup method to automatically detect if the number of bodies has changed after a call to addAssemblies or addModels and use this to set a flag in sim object.

setupDynSolver should not create cegraph - this will be done by lockObject

End result

During initialiization, will call setupDynSolver as now. Roams will set integrator tolerances explcitly after that

within the sim.lockObject() call, If there is a cegraph, check if bodies have changed, delete the cegraph. If no cegraph create it and call updateCEGraph for all assemblies.

adding assemblies after initialization will require user to call bindParams, bindStates, resetStates themselves

we can then get rid of the addAssemblies, _setupSolver, _createSolver, and all the methods they call.

these changes will simplify things, but will make Dshell only work with Ndarts and will break compatibility with Darts++

The subgraph’s CM frame is now attached to its virtual root instead of the basebody by default

1.2.4. Dshell Models

1.2.4.1. Model Types

 TBD: Add descriptions for other types of models

1.2.4.1.1. ContinuousModel

This class is for a model that may participate in continuous dynamics (eg, has preDeriv/postDeriv functions and may have continuous states) but would not require a node or body to

attach to. This would be useful for operational models that might need to perform activities in preDeriv/postDeriv calls, provide multi-rate EndIOStep events, have continuous states,

etc, but are not classic models (Sensor, Actuator, Motor, Encoder).

The issue is not whether a model itself has continuous states, but rather whether its input or output needs to updated as part of the numerical integration. Thus even though a thruster

does not have continuous state, we implement is as a continuous model so that the force values can be changed based on state. Gravity models are a good example of a model that does

not have continuous states, but effects continuous dynamics.

1.2.4.1.2. DartsModel

These are derived from ContinuousModel but have access to the mbody() instance (but not nodes or bodies). Also could have a flow variant that does not even have mbody() access but

has continuous state methods.

1.2.4.1.3. FlowModels

Flow models have very limited functionality. Essentially they have tick() methods that are called each default IOStep.

The tick() function is essentially equivalent to the EndIOStep() callback. Perhaps one method could call the other.

Restructure the model hierarchy.

1.2.4.2. Models method guidelines

 TBD: update and clean up this section

only updateFlowOuts should be setting flowOuts - none of the other methods should

this method should be callable independently, so that all computations needed to set the flowOuts should be within the method

if the model sets any values in the mbody (eg. forces, accels) that effect the multibody dynamics, then these computations must go into preDeriv

if the model’s continuous state derivatives depend on mbody derivatives, then these computations should go into postDeriv. Otherwise, they can be in either pre of postDeriv. Indeed,

this means that as a rule of thumb all continuous state derivatives can be safely put into postDeriv.

if the flowOuts do not depend on the mbody derivatives, then their granularity should be PREDERIV. If they do depend on mbody derivatives, then granularity should in addition also be

POSTDERIV.

if the flowOuts do depend on mbody derivatives, then their granularity should be set to POSTDERIV. If their output goes into the input of another model there is a potential loop

between these models and DARTS. A break and constraints may be required from the user.

beginIntegrationStep should be used to update discrete states across the integration interval

there is no need for BEGININTEGRATION or ENDIO granularities

endIntegrationStep() should normall be empty (unless it is changing non-traditional mbody inputs such as body mass which can effect CM calculations done downstream by some other

model. Of course these computations should also be done in preDeriv then.)

endIOStep() should be empty.

beginIOStep() should be empty unless some pointers etc need to be one time initialized.

models do not know how their outputs will get used. So any time there is a loop calling model methods (preDeriv, endIntegrationStep etc etc) we need their inputs to be correct. Hence

every model’s updateFlowOuts should be called right before such loops by default. In fact, the default granularity should be BEGINIO+PREDERIV+ENDINTEGRATION. POSTDERIV

should only be added as needed.

Removing PREDERIV or ENDINTGRATION granularity is a way of coarsening the output computations for speed, and is entirely left to the user.

Should we allow updateFlowOuts to check the current calling level for the model so that they can change their computations depending on whether the model is at preDeriv,

endIntegration etc levels.

Remove preDeriv method from Sensor and Encoder models.

Create table which summarizes what the rules for each method are

loops with DARTS

what is the loop when a model’s input depends on Udot? u_m(Q, U, Udot, T) in general, though typically just u_m(Q, U).

autocode generator

if there are no flowOuts, do not generate updateFlowOuts stub

if there is no g_m, i.e. no inputs to mbody, then do not generate preDeriv stub

if there are no continuous states, skip postDeriv stub

if no params, skip processParams

if no states, skip beginIntegrationState

1.2.4.3. Models using objects as parameters

 TBD: update and clean up this section

From abhi

Object passing issues

Having trouble with CombinedModels

Due to virtual inheritance, only the concrete classes should be calling the constructor for DshellBaseIF (see [[https://www.cprogramming.com/tutorial/virtual_inheritance.html]

[link]])

So the Frame class should be calling DshellBaseIF constructor.

But what about the DartsNodeBase and DartsBody concrete classes which also derive from the Frame class. We have a diamond patter here, where these classes also derive from

DshellBaseIF. So should they or should they not be calling DshellBaseIF constructor? (Frame is already calling it)

This test breaks when changing the Frame param at run time

the param changing works when passing in another Frame, however breaks when passing in a node or a body

Is this a DartsBaseObject problem - or one to do with object passing?? Create a DartsBaseObject by itself to check this. DONE - no problems at this level.

For the non-Frame values, we are finding that the DVar is changing the pointer value - which apparently is OK, since this is ok when up & downcasting classes with multiple

inheritance

is this a SWIG issues? Can we create a pure C++ example?

the Frame class does not have diamond inheritance issue, is this why it works?

is the issue to do with mismatch between expected value, and a different passed value (node, body)?

Observations

DartsBaseObjectLeaf takes pointers of type DshellBaseIF (not NdartsBaseObject).

DshellBaseIF is all that models needs to now to get as objects. So we want to keep it minimal. NdartsBaseObject has a lot of stuff in it which is uncessary for DScene objects or for

Models. Hence we keep them separate.

The upCast method for DshellBaseIF needs to work for all classes - but DshellBaseIF does not have typeString method. So we need to check and invoke different and appropriate

upCast methods

The fromDictionary method needs to handle all DshellBaseIF instances since DVar params are the way communicate with Model params.

When I hack the DartsBaseObject’s value() method to cast the in value to a NdartsBaseObject, the Dshell models works, i.e. the model’s param value is getting set properly.

Howver querying the spec value back breaks

Are we getting multiple vtables for DshellBaseIF. Use gdb’s 'info vtbl' command.

Better issue - Found that if we take the set param value, this pointer is different from what we would obtain by static casting the raw param value to DshellBaseIF, and then

dynamic casting back to a NdartsBaseObect/Frame!!!!

Found a work around - change param value to the value obtained by the double cast to DshellBaseIF followed by Frame cast!!!

however this screws up the spec, so that calling value() on it gives back a bad result

we can get back the raw pointer from the derived value by casting back to DshellBaseIF

Why is the IF.cc while using reinterpret cast when creating the param spec leaf?

Who all should be calling DshellBaseIF constructor

New design

decouple the spec buffer from the element used in the model. So use xframe_buf for the DshellBaseIF raw buffer registered with the buffer.

When a value is set, the checker should use dynamic_cast to verify that it is valid, and then assign this cast value to the Frame xframe member within the class.

Jonathan

who all’s constructor is calling DshellBaseIF()

why are we using reinterpret_cast in IF.cc file?

create a separate buffer for the object spec to use

1.2.4.4. Multi-rate models

 TBD: Flesh out this section

All models can be multi-rate.

1.2.4.5. modelLinker

The DshellCommon.BaseParam class contains a static method called modelLinker that can be used to easily populate a parameter class’s data fields using a model’s parameters, and set a

model’s parameters using the data fields of a parameter class instance. For more information see the DshellCommon documentation

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/wikis/DshellCommon-Documentation#user-content-modellinker).

1.2.5. Linearization

 TBD: only partially complete for now

1.2.5.1. Variable-step �nite di�erence

By default, the step size used for numerical differentiation in linearization is governed by _eps . However, in some cases, we may want to vary the step size based on the magnitude of the

state or input being perturbed. In these cases, each column of the A, B, C, and D matrices would have its own step size. Our approach is based on what is done in

HC2CoaxialHelicopter/Helicopter/Analysis/analysis.py , which Havard says was chosen based on Matlab’s linearization.

To accomplish this variable step size, we add in a new variable _eps1 , which has a default value of zero and can be set using the set_eps1 function. The function throws an error if it is

used while we are using one of the Richardson extrapolation methods, because we think those methods are not compatible with using a variable finite-difference step size.

While we are calculating the effects of perturbations, we perturb the current state or input by the eps that was passed in (which may be _eps , -_eps , 2*_eps , etc. as governed by the

finite differencing scheme), plus a variable component based on the state or input’s magnitude, which is _eps1 * eps * abs(<current state or input>) . We also take care of the division-

by-step-size part of taking a finite difference at this point, dividing the matrix column by the absolute value of the size of the step we took. The rest of the finite difference math is done later,

once perturbations by each eps required for the finite differencing scheme have been completed.

1.2.5.2. Finite di�erence methods

This section describes the finite difference methods used by DARTS linearization to estimate derivatives. For each method, this document describes how the derivative is estimated, what

the error in the derivative is, and what the minimum step size should be.

Note that all errors are given as an order of magnitude, and the exact error value will differ based on the function, f, whose derivatives are being approximated. As a result, the rel_err

variable used to set tolerances in the simulation linearization is not exact (e.g. if rel_err = 1 × 10 −10), it is possible that the result has an error larger than 1 × 10 −10). This possibility is

exacerbated as the step size, which is calculated based on rel_err , approaches the minimum step size, because the minimum step size itself is merely an order of magnitude estimate.

Nomenclature

Let a derivative with respect to the variable x be denoted by a prime (i.e.,
df (x)

dx = f′(x)). Let a hat denote a quantity estimated by a finite difference. For example, if the true value is f′(x0), then

the finite-difference approximation is f̂ ′(x0)

2 Point Central Difference

How it is calculated:

f̂ ′(x0) =
f(x0 + h) − f(x0 − h)

2h

The error in the method:

f(x0 + h) = f(x0) + hf′(x0) + O(h2)

f(x0 − h) = f(x0) − hf′(x0) + O(h2)

Taking the difference between the two equations above and simplifying yields,

f′(x0) =
f(x0 + h) − f(x0 − h)

2h + O(h2).

Therefore, the error in the method is O(h2).

Minimum step size: Suppose that all calculations have a round-off error of δ and | δ | ≤ ϵ where ϵ is the machine-level precision. Then, the error, e, in the method can be bounded by,

e = | f′(x0) − f̂ ′(x0) | ≤ f′(x0) −
f(x0 + h) − f(x0 − h)

2h
+

δ(x + h) − δ(x − h)

2h
.

As shown previously, the order of error in the method is O(h2). Therefore, the error is ch2 for some constant c. In addition, the round-off error is bounded by e. Therefore,

e ≤ ch2 +
ϵ

h

Differentiating e with respect to h and setting the result equal to zero yields,

hmin =
3
√cϵ.

Note that the constant c in the above equation is different than the original constant. Moreover, the constant will be different for each function f; however, we can approximate the order of

magnitude of hmin as,

O(hmin) = O

3 ϵ

c
= O(

3
√ϵ)

4 Point Central Difference

How it is calculated:

f̂
′
(x0) =

f(x0 − 2h) − 8f(x0 − h) + 8f(x0 + h) − f(x0 + 2h)

12h

The error in the method:

f(x0 ± 2h) = f(x0) ± 2hf′(x0) + 2h2f′′(x0) ±
4h3

3
f′′′(x0) + O(h4)

f(x0 ± h) = f(x0) ± hf′(x0) +
h2

2
f′′(x0) ±

h3

6
f′′′(x0) + O(h4)

Taking a linear combination of the above equations such that f(x0), f′′(x0), and f′′′(x0) are eliminated, and simplifying yields,

f′(x0) =
f(x0 − 2h) − 8f(x0 − h) + 8f(x0 + h) − f(x0 − 2h)

12h
+ O(h4)

Therefore, the error in the method is O(h4).

Minimum step size: Suppose that all calculations have a round-off error of δ and | δ | ≤ ϵ where ϵ is the machine-level precision. Then, the error, e, in the method can be bounded by,

e = | f′(x0) − f̂ ′(x0) | ≤ f′(x0) −
f(x0 − 2h) − 8f(x0 − h) + 8f(x0 + h) − f(x0 − 2h)

12h +

δ(x − 2h) − 8δ(x − h) + 8δ(x + h) − δ(x + 2h)

12h .

As shown previously, the order of error in the method is 0(h4). Therefore, the error is ch4 for some constant c. In addition, the round-off error is bounded by ϵ. Therefore,

ϵ ≤ ch4 +
18ϵ

12h .

Differentiating e with respect to h and setting the result equal to zero yields,

hmin =
5
√cϵ.

Note that the constant c in the above equation is different than the original constant. The constant will be different for each function f; however, we can approximate the order of magnitude

of hmin as,

O(hmin) = O

5 ϵ

c
= O(

5
√ϵ).

| | | |

(√)

| |

| |

(√)

““

Richardson Extrapolation

How it is calculated: Richardson extrapolation can be used on any finite difference method to further reduce the error. To generalize, let the finite difference method for a given step size h

be given by D(h). Then, the Richardson extrapolation method is given by,

f̂ ′(x0) =
αnD(

h

α) − D(h)

αn − 1
.

The error in the method: For a given step size h, the original method has the error,

D(h) = f̂ ′(x0) = f′(x0) + chn + O(hn+ 1),

for some unknown constant c. Similarly, for a different step size
h

α
, where α is some positive real number,

D(
h

α) = f̂ ′(x0) = f′(x0) + c
h

α
n + O

h

α
n+ 1 .

Richardson extrapolation combines these two estimates as follows,

R(h, α) = f̂ ′(x0) =
αnD(

h

α
) − D(h)

αn − 1
= f′(x0) + O(hn+ 1).

Therefore, the error in the method is O(hn+ 1): an order of magnitude more accurate than the original method!

Minimum step size: Richard extrapolation uses a linear combination of the original methods. Hence, the minimum step size used should be the same as that of the original method.

1.3. Usage

1.4. Software

1.5. Raw documentation

 TBD: Need scrubbing before integration.

1.5.1. DshellCommon: Split Assembly into BaseAssembly and Assembly

TBD: Needs scrubbing. Notes brought over from issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/30#note_9372).

The old Assembly class has been split into _Assembly_Cpp , which contains the essential methods for an assembly, and AssemblyLegacy , which imports from _Assembly_Cpp and adds

the methods missing from _Assembly_Cpp . Thus, AssemblyLegacy is equivalent to the old Assembly . Importing Assembly from Dshell.Dshell_Py is equivalent to importing

AssemblyLegacy from DshellCommon.assemblies.AssemblyLegacy .

Moreover, DAssembly has been created, which imports from _Assembly_Cpp .

See https://docs.google.com/spreadsheets/d/1OnJ2E0wQqg5aDPqvdwz1v9_wrDZtZ78602HBwzmQI_4/edit#gid=0 to know what methods are only available in LegacyAssembly (marked

with "Assembly only") and what methods are available in _Assembly_Cpp and thus in both LegacyAssembly and DAssembly (marked with "BaseAssembly (both)").

In the distant future when AssemblyLegacy are made obsolete, we may rename _Assembly_Cpp to Assembly so that the SWIG wrapper and C++ classes have the same name.

1.5.2. Proposal: New state propagation design

With the introduction of support for multi-rate mode, event scheduling, zero-crossing events, etc. capabilities it has become clear that the current state propagation design - based on the

notion of simulation steps is outmoded and overly complex. This section proposes a cleaner and simpler design. Specific actions are being tracked in the gitlab issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellpp/-/issues/23).

1.5.2.1. Overall approach

The new paradigm focuses entirely based on state propagation from hop to hop . hop intervals are defined by the integrated timeline of hop barriers derived from model periods,

events, and user requests. Now that hop barriers can be explicit and implicit

explicit hop barriers:: These are defined as one where the time of occurrence is known, such as ones defined by model multi-rate periods, time-based events, user-specified time

advancements.

implicit hop barriers:: These barriers are usually defined by zero-crossing events, where the hop is required to end exactly when a specified condition is met, such as impact with

the ground, certain load conditions, etc. The exact time of occurrence is not known, and has to be sought out using an iterative procedure.

A key assumption regarding multi-rate models is that:

While the whole system state evolves together over hop intervals, the startIOStep() and endIOStep() methods for a model only get called when the

simulation is at hop boundaries matching the multi-rate period request for the model.

The following Simulation methods are proposed for state propagation:

() (())

_advanceOverExplicitHopInterval() :: This method is the basic workhorse, and attempts to propagate the system state to the end of the next explicit hop barrier. We say attempt,

because while this is the norm, the propagation may end sooner such as when we have a zero-crossing condition which when achieved, terminates the simulation prematurely (eg.

impact with the ground) without propagating all the way to the requested end-time.

_run() :: This method consists essentially of a while loop calling _advanceOverExpicitHopInterval() in each pass to advance the system state over the next hop interval. After each

such pass, this method will call the set of user-registered stopping callback functions , and terminates the while loop if any of these function returns true . Moreover. all of the

functions that return true are unregistered from the list of stopping functions. A rough prototype of this method is:

Our current simulation state propagation methods can be re-implemented using the _run() function as described below:

advanceTimeBy(delta_t)

This method will remain unchanged and will simply call advanceTimeTo() to do the work.

advanceTimeTo(final_t)

This method will register a no-op timed event for time final_t to create a explicit hop barrier, and will register a stopping callback function that returns true if the current simulation

time is equal to final_t , and then call _run() . The _run() method will terminate when it encounters the stopping function registered by this method.

step() and step(n)

These methods will simply call advanceTimeBy(n*_default_model_multirate_period) method.

sim terminate methods

Fsm’s often will set the terminate flag in the simulation. They can also register a stop callback that calls Simulation::isTerminated() to terminate the _run() loop.

clock classes

The ROAMS , CADRE etc classes call the sim.step() methods, and should remain unaffected.

Thus much of our current simulation state propagation can be achieved by using the _run() method in the new design. The current _advanceTime() method can be retired.

1.5.2.2. Hop propagation

The state propagation over a hop consists of calling the startHop methods of all the flow models. When there are continuous states in the system (either from models or from the

multibody system), one of the flow models is expected to be a state propagator flow model, (typically DebugFlowAdvanceDynamics) whose job is to call the _advanceContinuousStates()

method to have the integrator numerically integrate and propagate the continuous states. The _advanceHop() and _advanceState() methods pretty much do what we need.

The proposed _advanceOverExplicitHopInterval() method can use much of this code as is with clean up, with the additional functionality for it itself to figure out what the next explicit

hop barrier is to propagate the state over.

1.5.2.3. Handling model time delays

There are multiple possibilities and options for handling time delays. The primary requirement here is that we should be able to insert a hop barrier corresponding to any such model time

delay so that the model is then able to do its actual work at the right time.

Let us assume for now that the time delay for a model is explicitly known. This is likely to be the case in most circumstances, where we have a constant and known delay value, or the delay

amount depends on the state. In either of these cases, the value is known even at the start of the I/O step and/or the hop. We have two paths that we can pursue:

 std::vector<std::string> Simulation::_run()
{

 /* check that there is at least one registered stop callback to
avoid infinite loop */

 assert(_run_stop_cbss.size() > 0);

 bool stop = false;
std::vector<std::string> stop_cb_ids;

 std::vector<std::size> stop_cb_indices;
while (1)

 {
/* advance the state over the next explicit hop interval */

 _advanceOverExplicitHopInterval();

 /* loop over all stop methods and see if they are
* requesting a stop */

 size_t index = 0;
for (auto it: _run_stop_cbs)

 {
if (it->second())

 {
stop = true;

 stop_cb_ids.push_back(it_>first);
stop_cb_indices.push_back(index)

 }
++index;

 }

 if (stop) break;
}

/* unregister the stop cbs that have triggered */

 for (auto it = stop_cb_indices.rbegin(); it != stop_cb_indices.rend(); ++it)
{

 _run_stop_cbs.erase(_run_stop_cbs.begin() + *it);
}

 return stop_cb_ids;
}

CPP

1. The simplest approach would be for the model’s startIOStep() method to register an explicit hop barrier based on the time delay for the model.

2. In this approach, the explicit time barrier would be registered by the startHop() method. The one problem with this approach is that the new time barrier may precede the end of the

hop that is in progress. This situation can be handled using the available step validation capability. This feature allows the simulator to reject a hop advancement and roll back the

state to the start of the previous hop. The extra cost here is that the work done for the rejected step would be wasted. With that caveat in mind, we can allow startHop() to register the

new barrier, and if it is too short, then also register a step validation function that will cause the simulator to reject the ongoing hop state when it is completed. Once the hop is rejected,

the simulator will initiate a new hop - but this time to the newly registered earlier barrier, and everything can proceed normally. As noted, this process should work but will incur the

additional cost of a wasted propagation step every time this is done, so may not be desirable. However, this approach can be handy for situations where the time delay value is only

known at the start of the hop.

If fact, we may need to make this a standard part of our checks that when a hop completes, we can check if the next explicit hop barrier is in the past, and in which we should

automatically reject the hop since the barrier must have been added during the hop, and we need to repeat the hop while taking into account this new barrier.

1.5.3. Working with FSMs

We often see usage where there is a time stepping loop that has a check for the terminate flag being set to exit the loop. This is often done in the context of state machines managing the

simulation, where we want the the simulation to stop when a certain state has been reached. The problem with this approach is that the size of the individual steps are somewhat arbitrary

and have no real basis. Furthermore such a loop forces a return to the Python layer after each step which reduces performance. A better way would be to have the simulation start running

with only an end callback based on the FSM final state specified. This will get rid of the loops in the scripts, and also allow the execution to all happen at the C++ level.

1.5.4. Notes from issue (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellpp/-/issues/23) on the new time stepping scheme.

1.5.4.1. Summary of changes to sim stepping scheme

Now try to advance time to the next barrier, rather that trying to go to the next IO step.

We keep stepping from barrier to barrier until a stop callback is reached or the e_stop is triggered.

We added a second timed event queue that runs before the step rather than after it.

Added a priority minor counter to callback events. This allows us to sort events with the same time and priority value by the order they were registered in. This retains old behavior

where begn/endIOStepEvents with the same priority would execute in the order they were registered in.

beginIOStepEvents are now registered as timed events in the before-step timed queue. This has some consequences.

Previously, beginIOStepEvents ran at every IO step and in the residual between steps. For example, if the IO step was 1.0 seconds but I advanced time by 0.3 seconds, the event would

fire at 0.3 seconds when I tried to step the simulation again. This doesn’t happen anymore, the IO step events are only called at the IO step barriers. If you want to call the events for

some reason (to maintain previous behavior) there is a sim.executeBeginIOStepEvents method for this.

endIOStepEvents are not registered as timed events in the timed event queue. They have a +1000 added to their priority to ensure they fire before other timed events (this is to

maintain backward compatibility, as the previous time-stepping scheme fired these events before timed events). The same consequences that applied to beginIOStepEVents also apply

to endIOStepEvents : see above for details.

stepValidationEvents used to stop the sim from moving forward in time. Now, if you want that behavior, you need to request it by setting sim.e_stop = True in your callback. The

default is now to continue stepping the sim forward.

Added syncDefaultModelPeriodWithCurrentTime to sync the io_step tracker with the current time and setNextIntendedGlobalIOstepEnd to set it to a user-defined time. These can

be used to reproduce old behavior if advanceTimeBy or advanceTimeTo end at non-integer multiples of the default model period.

1.5.4.2. Notes for keeping old tests running

Step validation events no longer stop the current step unless explicitly told to do so. You can stop the sim from running by adding sim.e_stop = True to your callback.

Begin and EndIOStepEVents now run at the actual IO steps rather than at the IO steps + the beginning/end of the residual step. You may need to call sim.executeBeginIOStepEvents or

sim.executeEndIOStepEvents at the appropriate time if you are stepping just over/under the IO step size often.

For example, suppose the IO step size is one second, but you call sim.advanceTimeBy(0.7) . In the previous architecture, this would call the EndIOStepEvents at 0.7 seconds and the

BeginIOStepEvents at the same time when you begin to step the sim again. In the new paradigm, we only run these events at the IO boundaries. If you’d like to retain the old behavior,

then you will need to add EndIOStepEvents and BeginIOStepEvents in the appropriate spots.

Model IO step events also used to run at off-IO boundaries when advanceTimeTo or advanceTimeBy were called. Sometimes, calling an updateFlowOuts manually is required. For

example. in DshellDsends/test/test_AspireThrusterAssembly .

~~May need to use setNextIntendedGlobalIOstepEnd and syncDefaultModelPeriodWithCurrentTime to make the io_step tracker track with time in the way it used to. This can be

used to reproduce old behavior if advanceTimeBy or advanceTimeTo end at non-integer multiples of the default model period. See RoverVehiclesTest/test/test-

Integrators/test-ATRVJr/test_implicitTheta for an example.~~

I’ve added a ROLLBACK_TIME_STEP_REFACTOR macro in Simulation.cc. It can be enabled by defining ROLLBACK_TIME_STEP_REFACTOR at the top. This will print out warnings that can be

useful in helping to update reg tests. Users should also ensure deprecation messages are printed out, as there are some helpful messages there as well.

1.6. Sphinx documentation

1.6.1. Dshell Simulation

1.6.1.1. Physics Encapsulation Architecture

The model connection to multi-body dynamics enforces state views consistent with the underlying physics.

Figure 8. Physics Encapsulation of Multi-Body Dynamics

Full state is deliberately not made available to models.

Makes inter-connect definitions simple and avoids errors and global variables. Example: Moving a sensor from one body node to another is transparent to the user - the data view is

automatically updated by the underlying architecture.

Note This physics encapsulation strategy is specific to S/C dynamics modeling and is not appropriate for flight software design.

The complex non-linear differential equations governing the dynamics are simplified through a combination of:

multi-body dynamics encapsulation

data-flow modularization (via "signals")

Figure 9. Physics Encapsulation Data�ow

1.6.1.2. Basic simulation loop

Figure 10. Simulation Time Step

This illustrates the sequence of actions inside Dsends at every step of the simulation. Each step spans the following (in order);

Inputs at start of input/output step including commands and data

Pre dynamics State-Machine execution within which the following occur (in order):

State action procedures associated with each active state

Transition check procedures for each active state

State transitions as triggered by the transition checks

Execution of all of the side-effects specified for each transition made

Dynamics Data flow step within which the following occur (in order):

Discrete dynamics data-flow preceding continuous dynamics with the execution order managed by Dshell based upon the partial-ordering derived from the data-flow graph.of signal

connections

One or more integration steps managed and sequenced by the Dshell integrator, with the Darts engine computing the multi-body dynamics related derivatives, the individual models

providing additional derivative information as needed, and Dshell managing the execution order based upon the partial ordering constraints derived from the data-flow graph.

Discrete dynamics that follow the continuous dynamics with the execution order managed by Dshell based upon the partial ordering derived from the data flow graph of signal

connections

Post io-step Dshell managed watch-handlers that trigger their actions based on:

Monitored variables that change their value since he last simulation step

periodic user-specified events

Simulation outputs at end of simulation input/output step

Note that all these are executed in a single thread. The execution time for the entire step is T1 and the corresponding simulation time interval is T. Note that T1 should be less than T if a

real-time simulation is needed.

1.6.1.2.1. Initialization

Create assemblies, models, signals

Connecting model flowIns/flowOuts with signals

Update parameters

Update initial state

1.6.1.2.2. Simulation control

Run scripts

Setup:: These are the basic python code to initialize a sim:

Assembly/model configuration

See the Dshell::Model section

See the Dshell::Assembly section

Select parameters

See the Dshell Parameter Classes section

Manage runtime loop

You can use these commands to advance the simulation

Events

The Dshell::CallbackEvent class keeps track of a list of callback functions (which can be written in C or python) which can be invoked at specified times (e.g. at the start of each I/O

step). The user can add new events at the command line, specify how often they should be invoked, and can remove them from the event list.

single: Dshell Events Tutorial single: Tutorial; Dshell Events

1.6.1.2.3. Regression Tests

These are the same as in the table above.

test_Assembly test_Model test_Model2 test_Model7 test_Model8 test_Signals test_Events_io test_Events_model test_Events_timed2 test_Events_timed test_Events_add_remove_find

test_Events_combined test_Events_step_validation

 TBD: clean up the above

1.6.1.2.3.1. Dshell Basic Event Operations Example
Tutorial source:

Basic Dshell++ events regtest

1.6.1.2.3.2. Dshell Timed Events Example
Tutorial source:

Basic Dshell++ timed events regtest

1.6.1.2.3.3. Dshell Combined Events Example
Tutorial source:

Basic Dshell++ combined events regtest

Initialize Darts::
from Dshell import DartsCommonMode DartsCommonMode.init(dartspp=True)

 +
Create Dshell object from Dshell import Dartspp_Py from

 Dshell.Dshell_Py import DshellX from Dutils import Dvar_Py DshellObj =
DshellX()

 +
Initialize frames from Math.SOA_Py import Frame

 Frame.createRootFrame() rootfr = Frame.getRootFrame()
+

 # Set the mbody root frame. from Dshell.DartsBase_Py import
DartsBaseMbody DartsBaseMbody.setRootFrame(rootfr) # could be a

 different frame

PYTHON

Display number of integration steps per i/o step
DshellObj.integrationSteps()

Change the number of integration steps to 4
DshellObj.integrationSteps(4)

Display number of integration steps
DshellObj.integrationSteps()

Display duration of 1 I/O step
DshellObj.ioStepSize()

Change I/O step duration to 2.0
DshellObj.ioStepSize(2.0)

Advance sim by 1 I/O step
DshellObj.step() # advance by 1 tick

Advance sim by 10 I/O steps
DshellObj.step(10) # advance 10 ticks

Display current sim time
DshellObj.time()

PYTHON

Click to see the Dshell++/test/test_Ndarts/test_events/test_basic_event_operations/script.py script

Click to see the Dshell++/test/test_Ndarts/test_events//test_timed_events/script.py script

1.6.1.2.3.4. Dshell Step Validation Events Example
Tutorial source:

Basic Dshell++ step validation events regtest

1.6.1.2.3.5. Dshell Zero-Crossing Events Example
Tutorial source:

Basic Dshell++ zero-crossing events regtest

1.6.1.2.4. Propagating state (integration)

Use Darts + Dshell models to propagate state

One flow model should call DshellFlow::advanceDynamics() in its tick method. This will cause Dshell to do the DARTS computations. If no flow model makes this call, then Dshell will

print out a warning and do it for you after all Flow models have had their tick methods called.

1.6.1.2.5. Signal data �ows

See the Dshell::Signal section.

1.6.1.2.6. Data Inspection

See the DVar chapter.

1.6.1.2.7. Restarting

1.6.1.2.7.1. Clearing Dshell Tutorial
Clearing Dshell simulation tutorial regtest

1.6.1.3. Integration

1.6.1.3.1. Simulation State

Integrating involves propagating the system state which consists of the:

Multibody States assigned to the generalized coordinates Q, their derivatives dQ/dt for the multiple (possibly articulated and/or flexible) collections of bodies in the system.

Other Model States representing dynamics within various actuator, sensor, motor and encoder elements in the simulation (e.g. the rate-random walk process dynamics of an IMU

model).

These are shown in the figure:

Click to see the Dshell++/test/test_Ndarts/test_events/test_combined_event_timeline/script.py script

Click to see the Dshell++/test/test_Ndarts/test_events/test_step_validation/script.py script

Click to see the Dshell++/test/test_Ndarts/test_events/test_zero_crossing/script.py script

Click to see the Dshell++/test/test_Ndarts/test_clear/script.py script

Figure 11. Simulation States

1.6.1.3.2. Multibody Prescribed and Non-Prescribed States

1.6.1.3.3. Darts Multibody Engine

The Darts family of dynamics engines can process both the Forward and Inverse Dynamics of the multi-body system with each hinge in the system being associated with either a Prescribed

or Non-Prescribed state.

The corresponding integration schemes for each case involves embedding the Darts dynamics solver within an integration flow.

1.6.1.3.3.1. Integration from Hinge Generalized Force Inputs

Figure 12. Integrating Dynamics

1.6.1.3.3.2. Integration from Hinge Generalized Acceleration Pro�le Inputs

Figure 13. Integrating Prescribed Hinge Accelerations

1.6.1.3.3.3. Integration from Hinge Coordinate and Rate Information
The Darts dynamics engine is also capable of dealing with kinematic prescriptions of the generalized coordinates that are not at the acceleration level.

In this case an a generalized acceleration (dU/dt) is provided by the user to allow dynamics computations to be performed, but only the dQ/dt (determined from the prescribed U) is

integrated to evolve the coordinate Q.

Figure 14. Integrating with Prescribed Hinge Velocities

In this case an a generalized acceleration (dU/dt), velocity (U), and coordinate (Q) are provided by the user to allow dynamics computations to be performed, but no integration is performed.

Figure 15. Integrating with Prescribed Hinge Coordinates

The distinction between the various prescribed hinge types is indicated in the simulation by joint-level flags:

Prescribed Quantity Hinge Quantity Hinge Flag Hinge Prescribe Type

dU/dt acceleration PRESCRIBED UDOT

Prescribed Quantity Hinge Quantity Hinge Flag Hinge Prescribe Type

U velocity PRESCRIBED U

Q coordinates PRESCRIBED Q

 TBD: Fix the above - we only allow Udot prescribed motion. Use masking for Q and U

The Dshell state vector corresponding to the multi-body system can then be considered as having the components:

State Component Propagation

Q ODE solver based upon double integration of Darts dU/dtF

State Component Propagation

Q ODE solver based upon double integration of Darts dU/dt

Q ODE solver based upon single integration of Darts U

Q Responsibility of user

1.6.1.3.4. State Masking/Dummi�cation

To propagate the state vector for the general case involving a mixture of Prescribed and non-Prescribed generalized coordinates, Dshell adopts the following strategy:

Dshell always propagate the entire state by double integrating the dU/dt. However, the Dshell Integrator receives dummy and/or zero values for appropriate X and dX/dt components

corresponding to PRESCRIBED; TYPE U & Q

The propagated values are discarded as appropriate when updating Darts state

1.6.1.3.4.1. Advantages
Allows block (fast) copy of contiguous states between Darts and Models into integrator buffer

1.6.1.3.4.2. Disadvantages:
Ad-hoc scheme that is customized for the PRESCRIBED TYPE U and Q

Fairly opaque code with various calls to marshalling related pre/post pack/unpack calls.

Does not generalize to case state components need to be propagated using other propagators e.g. multi-rate integration, analytic propagation, high accuracy quaternion quadrature

May complicate/confuse integrator’s monitoring of relative and absolute tolerances as integration proceeds

May be inefficient if many states corresponding to prescribed state are unnecessarily propagated and then discarded

1.6.1.4. Derivative Evaluation

1.6.1.4.1. Steps

We examine first the sequence of steps involved in computing the derivatives required by the integrator:

Unmarshalling. The process by which the state vector is assigned to the Darts model multibody system hinge coordinates.

Mask. The process by which certain prescribed quantities override portions of the Darts model state.

Dynamics. The exercise of the Darts forward/inverse dynamics computation.

Dummify. The process by which certain elements of the model state are zeroed out.

Marshalling. The process by which the Darts model multibody state derivative is copied out for use by the integrator.

Figure 16. Steps for Derivative Evaluation

1.6.1.4.2. Unmarshalling

P_UDOT

P_U

P_Q

Figure 17. Simulation State Unmarshalling for Derivative Evaluation by Integrator

1.6.1.4.3. Mask

Figure 18. State Mask for Derivative Evaluation by Integrator

1.6.1.4.4. Dummify

Figure 19. State Dummify for Derivative Evaluation by Integrator

1.6.1.4.5. Marshalling

Figure 20. Simulation State Marshalling for Derivative Evaluation by Integrator

1.6.1.5. Integration Step

We next consider the sequence of steps involved in propagating the state across a time-step.

1.6.1.5.1. Steps

We examine first the sequence of steps involved in computing the derivatives required by the integrator:

Dummify.

Marshalling.

Integration.

Mask.

Unmarshalling.

Figure 21. Flow for Integration Steps

1.6.1.5.2. Dummify

Figure 22. State Dummify for Integration Step

1.6.1.5.3. Marshalling

Figure 23. Simulation State Marshalling for Integration Step

1.6.1.5.4. Mask

Figure 24. State Mask for Integration Step

1.6.1.5.5. Unmarshalling

Figure 25. Simulation State Unmarshalling for Integration Step

1.6.1.6. Implementation Notes

Dummify is implemented using

mbody→prePack

mbody→postPack

Masking implemented using

mbody→prescribed

Mbody→postUnpack

1.6.1.6.1. Automatic construction of the big "X" vector

Dshell creates a double array called "X Vector" large enough to hold all the Darts Q,U states and active models' x states (see figure below).

Dshell creates a second double array called "XDOT Vector" large enough to hold all the Darts Qdot, Udot states and active models' xdot data.

Changes to the number of states are handled as follows:

User must call DshellX::unlock() before making a topology change (adding/deleting/moving bodies or models).

The unlock() functions calls DartsMbody::unlock() and simply sets a "lock flag" to false.

Methods that change topology (e.g. adding a body) checks to make sure the lock flag is false otherwise an exception is raised.

Activating/Deactivating models do not require unlocking.

Prescribing/Unprescribing states do not require unlocking.

User must call DshellX::lock() when the changes are complete.

The DshellX::unlock() function does the following:;;

Calls DartsMbody::lock() which creates the big Darts Q,Qdot,U,Udot buffers.

Creates the Dshell X,XDOT vectors.

lock()/unlock() should only be called at I/O step boundaries.

Prescribed States

Prescribed states are handled in Darts not Dshell. The prescribed states are preserved by temporarily copying the prescribed states to a private buffer in Darts then restoring the values

(see figures below).

How prescribed states are preserved when copying from Darts to Dshell

How prescribed states are preserved when copying from Dshell to Darts

1.6.2. Dshell Models

1.6.2.1. Introduction

1.6.2.1.1. Dshell Model Basics

1.6.2.1.1.1. What are Dshell models?
Dshell simulations consist of a collection of component device models from model libraries assembled and connected together into a data flow to meet the required simulation behavior.

For example, a thruster model

Models a device that applies a thruster force on a body

is a C++ class derived from (and inherits all the properties of) an actuator C++ base class

Dshell models:

object-oriented design

Classes are organized into hierarchies involving related models, e.g. families of gravity models, thruster actuator models.

Each Dshell++ model:

Has a standard interface for parameter and state data

Has a standard interface for flow inputs and outputs which can be customized for each specific model.

Each Dshell model:

Has user-defined input and output ports

Data is shared between models by signals:

Signals tie a model’s input port to another model’s output port through a signal (basically a shared memory buffer).

Users can peek or poke the signal data through the Dvar interface.

1.6.2.1.1.2. What kinds of models are possible?
actuator (ActuatorModel models apply forces to bodies)

motor (MotorModel models apply forces to joints)

sensor (SensorModel models read values from bodies)

encoder (EncoderModel models read values from joints)

flow (FlowModel models are for anything else)

How are these model classes related?

 TBD: The above figure should have been autogenerated by graphiviz (not working):

1.6.2.1.1.3. Model Data Variables
Parameters

Parameters are values that are set when the simulation starts.

Parameters may be changed at run-time by the user. Parameters can be checkpointed. A model’s parameter variables are grouped into single structure (use the model’s params() method

to access a pointer to this structure).

Continuous States

Continuous states are updated by the numerical integrator in DARTS and require the model developer to fill in a method for computing derivatives of these states. Continuous states are

implemented as a C++ class object. Use the model’s contstates() method to access a pointer to this object. Flow models do not support continuous states.

Discrete states

Any "state" of the model that is not a continuous state (ie, does not require derivative evaluation for propagation) is a "discrete state".

Discrete states are initialized at start up and may be modified by both the model and the user during run-time.

A model state variables are grouped together into a single structure and can be used to share data among methods of the same I/O step within the same model. Use the model’s states()

method to access a pointer to the States structure. The difference between scratch and state variables is that state variables can be checkpointed.

Scratch

A model’s scratch variables are grouped together into a single structure and can be used to share data among methods of the same I/O step within the same model. Use the model’s

scratch() method to access a pointer to the States structure. The difference between scratch and state variables is that scratch variables are not checkpointed.

FlowIns

These are inputs to the model.

A model’s input variables are implemented as "pointers" so need to "tied" to a DshellSignal object. Use the model’s flowIns() method to access a pointer to the structure of inputs.

FlowOuts

These are outputs of the model.

A model’s output variables are implemented as "pointers" so need to "tied" to a DshellSignal object. The flow outs are normally computed in the model’s updateFlowOuts() method. Use

the model’s flowOuts() method to access a pointer to the structure of outputs.

1.6.2.1.1.4. Model Methods
The following methods are called by Dshell during initialization to create the model:

constructor

is called to instantiate (create) the model. Use it to set default values of states and parameters.

setup()

is called once after all models have been instantiated and parameter values have been set. Use this method to compute derived parameters whose values depend on other parameters.

processParams()

is called whenever parameters are updated. This function can be used to perform other intializations that are dependent on parameter values.

updateFlowOuts()

is used to compute the flowOuts. updateFlowOuts() is called by Dshell depending on the value passed to the model’s updateFlowOutsGranularity(flag) method. Valid flag values are:

GRANULARITY_PREDERIV : call updateFlowOuts() after every preDeriv() call

GRANULARITY_POSTDERIV : call updateFlowOuts() after every postDeriv() call

GRANULARITY_ENDINTEGRATION : call updateFlowOuts() after endIntegration step

GRANULARITY_ENDIO : call updateFlowOuts() at end of I/O step

The flags can be combined (e.g. GRANULARITY_PREDERIV | GRANULARITY_POSTDERIV)

For actuators, sensors, motors and encoders, the following methods are called by Dshell at each tick (I/O step) to advance the model’s state:

startIoStep()

is called at the beginning of every I/O step.

startIntegrationStep()

is called at the beginning of every integration step. This is often where commands to actuator and motor models are handled.

preDeriv()

is called by the DARTS numerical integrator immediately before the time derivatives of DARTS state vectors are computed. This method can be used to:

Apply forces/torques within actuator models on the nodes they are attached to

Apply force/torques within motor models to the hinges they are attached to.

The number of times this method is called per integration step depends on the numerical integrator used (four times for rk4, twice for euler).

postDeriv()

is called by the DARTS numerical integrator immediately after time derivatives of DARTS state vectors are computed. This method can be used to:

Access and use quantities that depend on derivatives of the dynamics state e.g. acceleration values

Compute and use time derivative of continuous states for the models that have them. For example, an IMU model could use the computed node accelerations which have been

computed by the dynamics engine to compute derived quantities such as the delta-V increments.

As with preDeriv(), the number of times this method is called per integration step depends on the numerical integrator used.

endIntegrationStep()

is called at the end of every integration step.

endIoStep()

is called at the end of every I/O step and often where sensor outputs are produced.

updateFlowOuts()

is used to compute the flowOuts. updateFlowOuts() is called by Dshell depending on the value passed to the model’s updateFlowOutsGranularity(flag) method. Valid flag values are:

GRANULARITY_PREDERIV : call updateFlowOuts() after every preDeriv() call

GRANULARITY_POSTDERIV : call updateFlowOuts() after every postDeriv() call

GRANULARITY_ENDINTEGRATION : call updateFlowOuts() after endIntegration step

GRANULARITY_ENDIO : call updateFlowOuts() at end of i/o step

The flags can be combined (e.g. GRANULARITY_PREDERIV | GRANULARITY_POSTDERIV)

Flow models have a tick() method which is called at every I/O step().

A model can do anything it wants in these methods, but typically:

Forces and torques from actuators and motors are applied in preDeriv(), because they affect the DARTS state.

Derivatives of continuous states for a model are computed in postDeriv(), because they may depend on the DARTS state.

The number of times preDeriv/postDeriv are called per integration step depends on the integration algorithm used (four times for 4th order Runge-Kutta and twice for Euler).

For models involved in continuous time dynamics, the figure illustrates the calling order of the various methods and the Darts dynamics engines. The figure shows an upstream model in

the model data-flow, a downstream model, and the dynamics engine. The various methods in each model are annotated with an index where the ordering of the indeces illustrates the

calling order e.g. 1.3.2 is called before 1.4, etc.

Figure 26. Dshell Model Calling OrdeXX

1.6.2.1.2. Dshell model functionality

Can model anything, including devices and processes

May be connected to Darts backbone and knows how to interact with integrator

The system’s DARTS multibody dynamics module is a key backbone layer supporting all the Dshell models. Dshell models can interact with the DARTS multibody dynamics library which

computes the kinematics and dynamics state of the space vehicle. The Dshell models have explicit interfaces to the relevant nodes and hinges in the DARTS model that allow them to

make direct function calls to get/set the needed data efficiently. The DARTS module is responsible for propagating the dynamics state of the system (e.g. spacecraft attitude and

velocities, momentum, mobility slippage, vibration modes) using numerical integrators. The multibody dynamics states can be highly non-linear and coupled, and even though the

physical assets (e.g. vehicles) may be distinct, their interactions must be handled together for the proper solution to the system’s dynamics. As a consequence, the dynamics module is

implemented as a unified model that includes contributions from all multibody components in the system. However, we have been careful to make sure this coupling does not adversely

impact the overall modularity of the system. Towards this, Dshell models have been designed to have a restricted interface to the multibody model to avoid unnecessary interactions and

coupling among the Dshell models.

Continuous or discrete states

Model states can include both discrete and continuous states. A model interface file declares these externally visible characteristics for each model. Auto-code generators based on the

Cheetah templating tool were written to read these interface files and generate C++ model code.

1.6.2.1.3. Dshell Model C++ API Overview

Basic Classes:

Model

The DshellModel class is the base class for dynamic (actuator, sensor or motor) models and flow models. For example, a thruster device should be derived from the ActuatorModel

class. To simplify the process, a user can create an ".mdl" file which is a template describing the model’s states, inputs and outputs. Stub C++ code can then be autogenerated from the

.mdl file.

ActuatorModel

The DshellActuator class represents an actuator (e.g. thruster).

SensorModel

The DshellSensor class represents a sensor (e.g. IMU) model.

MotorModel

The DshellMotor class represent a motor which is attached to a joint/hinge between bodies and is used to articulate bodies.

EncoderModel

The DshellEncoder class is attached to a joint/hinge between bodies and is used to determine coordinates for the hinge it is attached to for flight software.

FlowModel

The DshellFlow class represents a "flow" model.

Flow models do not have ties to DARTS, and are used to model valves, device electronics, etc. using a data-flow paradigm. They do not have continuous states. Flow models have only

the following method:

tick() - called once per I/O step

Note

One flow model should call advanceDynamics() in its tick method. This will cause Dshell to do the DARTS computations. If no flow model makes this call, then Dshell

will print out a warning and do it for you after all Flow models have had their tick method called.

1.6.2.1.4. Sorting Models / Model Order

Call DshellObj.modelOrder() in python to get the current model order.

Use DshellObj.sortModels() to return a list of models ordered according to how the inputs and outputs are tied together.

It is important that the models be sorted so that models which provide inputs for other models are run before the other models (so that the inputs to the other models correspond to the

current time).

Note

To see a presentation on Modeling and Model Order (sorting), please see:

Modeling and Model Order (April 2016 TIM)

1.6.2.1.5. Basic Dshell Model Tutorial

1.6.2.1.5.1. Example of Dshell Model Basic Commands
Tutorial source: Dshell++/test/test_basic/script.py

Dshell Model basic commands regtest

1.6.2.2. Creating Dshell Models

The steps to build a Dshell Model are:

1. Create a folder to hold the model.::

The folder should be named *Models (e.g. GeneralModels, IdealModels, etc.). This folder name is also referred to as the "module" name.

You can put more than one model in the same folder.

2. Create a .mdl file to specify the inputs/outputs.

Tip: For examples of .mdl files, look in the src/GeneralModels and src/IdealModels modules.

For the syntax of the .mdl file, please see this guide: models_mdl_file

3. Create a Makefile.yam file.

4. Run Makefile.yam to auto-generate stub code and the Dshell interface code.

5. Edit the stub code to insert your custom code.

6. Re-run Makefile.yam.

1.6.2.2.1. Creating an .mdl �le

The .mdl file contains the model specifications.

The .mdl file has the following advantages:

Automatic construction of data structures

Model information is human readable

Model information can be parsed/introspected

Separates boilerplate from user-written model code

Autogenerated code simplifies infrastructure upgrades

Developer can concentrate on model-related code

This is best illustrated with an example. Let’s say you want to build a Solar Panel Battery model with the following specs:

Parameters (data initialized only once at start up)

A scaling factor to convert one simulation "tick" to hours.

Nominal power storage in watt-hours.

Battery charging efficiency.

Click to see the Dshell++/test/test_Ndarts/test_models/script.py script

Inputs (data that changes at run-time)

Solar panel charging level in watts

Power load in watts

Outputs (data computed by the model based on inputs and parameters)::

Current battery power level in watt-hours

States (internal state data)::

Current battery power level in watt-hours

The Battery.mdl file would look something like this:

File: BatteryModels/Battery.mdl
Specify Model type.
Valid values for "Kind": "flow", "actuator", "sensor", "motor" or "encoder"
[Type]
Name = Battery
Kind = flow
Keywords = {Resource model!Power} {Power model} {Battery} {Rover!Power}

Summary and long description for .pod file
[Documentation]
Brief description = """Battery model"""
Long description = """This model sums up the draining and charging volts/sec using a nominal value"""

class parameters
[params]

[[tickFactor]]

 Type = double
Length = -

 Brief description = """scaling factor to convert ioStepSize() to hours/tick """
Long description = """"""

[[totalPower]]

 Type = double
Length = -

 Brief description = """Nominal power storage watt-hours"""
Long description = """"""

[[efficiency]]

 Type = double
Length = -

 Brief description = """battery charging efficiency (1.0 means 100% of input (src) power charges the battery)"""
Long description = """"""

class states
 [states]

 [[powerLevel]]
Type = double

 Length = -
Brief description = """current power level (watt-hours)"""

 Long description = """"""

class flowIn variables
[flow_in]

 [[src]]
Type = double

 Length = -
Brief description = """charge source from solar panel (watts)"""

 Long description = """"""

 [[load]]
Type = double

 Length = -
Brief description = """power load from components (watts)"""

 Long description = """"""

class flowOut variables
[flow_out]

[[powerLevel]]

 Type = double
Length = -

 Brief description = """battery's power storage level watts-hr"""
Long description = """"""

For a more detailed description of the syntax of the .MDL files, please see this description:

single: Dshell Model; Model Description Language File (.mdl) Syntax

1.6.2.2.1.1. Dshell Model Description Language File (.mdl) Syntax
The Dshell Model Description files (.mdl) describe the model.

The Model Description File (.mdl) contains information about the model grouped by keywords. The .mdl files are in Python ConfigObj format (see http://wiki.python.org/moin/ConfigObj for

details). The file is read by a Python script and uses a number of Python specific conventions (such as how Python treats and declares character strings).

““

1.6.2.2.1.1.1. Model Description File Sections
Supported sections:

Section De�nition

[Type] Tells the processor what type of model it is going to be.

[Documentation] Allows the model developer to enter in some information on the intent of the model as well as a little background

[scratch] Defines scratch/temporary variables

[flow_in] Defines variables as model inputs. Model inputs can be instructions to the model (aka variable settings) or data the model needs to

operate.

[flow_out] Defines variables as model outputs

[params] Defines variables as model parameters. Parameters are values set up values read in or set up by the configuration script at start up, but

are not changeable by the model itself.

[states] States are initialized at startup, and may be modified by both the model and the user during run-time. These are 'discrete' states.

[cont_states] Continuous states are updated by the numerical integrator in Darts, and require the model developer to fill in a method for computing the

derivatives of these states. Continuous states are either doubles, or arrays of doubles.

[structs] Defines C-style structures that can be used in other sections (such as 'scratch').

[enums] Define the specific enumeration constants that will be available for the C++ code to use to use enum tokens instead raw integer values. See

the GeneralModels/ExternalDisturbance model for an example.

[commands] Older models sometimes still use this older technique of providing inputs to models at run-time. Newer models use signals for similar

functionality.

[outputs] Older models sometimes still use this older technique of providing outputs from models at run-time. Newer models use signals for similar

functionality.

Each key word has their own specific items that must be included, but there are some common elements.

1.6.2.2.1.1.1.1. The 'Type' section
In the [Type] section, the developer can describe the nature of the model. A type section might look like this:

The 'Name' field is the name of the model and all the C++ files associated with the model will use this for the name of the files.

The 'Kind' is the kind of model. Allowed kinds are

'actuator'

'sensor'

'motor'

'encoder'

'flow'

The 'Keywords' field allows the developer to add keywords that can be used to identify and sort the models. Multiple keywords can be added, as shown. The keywords are divided into a

hierarchy using the exclamation symbol, as shown.

The 'Type' section also supports the 'BaseModel' field. If the model is to be derived from an existing model, that model is identified using the 'BaseModel' field. The format is:

BaseModel = Module/ModelName

For examples, see the models in the 'EDLAeroModels' module.

1.6.2.2.1.1.1.2. The 'Documentation' section
In the 'Documentation' section, the developer can provide documentation for the model. An example might look like this:

The 'Brief description' is generally a short description used in lists, etc. The 'Long description' can be much longer and more detailed.

1.6.2.2.1.1.1.3. The data sections

[Type]
Name = AsphericalGravity
Kind = actuator
Keywords = {Gravity!J2 term} {Gravity!J3 term}

INI

[Documentation]
Brief description = """"""
Long description = """

The AsphericalGravity actuator is a gravity model which inherits all properties
 of the PointMassGravity model and adds aspherical compensation terms to it.

Currently, only the J2 and J3 zonal harmonics are supported. (See Wertz,
 "Spacecraft Attitude Determination and Control")"""

INI

““

The [scratch], [states], [cont_states], [params], [flow_in] , and [flow_out] sections have a similar format (excerpts from AsphericalGravity model):

Each variable definition has the name of the variable in double-brackets (as shown).

The 'Type' is the data type of the variable. Known types are the typical C++ data classes such as: int, long, short, char, uint, ulong, ushort, uchar, double, float, string, etc. The names of

previously defined 'structs' and 'enums' can also be used for the type.

Note that signals only support a subset of these data types as described in signals : int, bool, double, and string. Only vectors of 'int' and 'double' are currently supported.

The 'Length' field indicates the size of the data:

'-' means it is a scalar

'3' means it is a 3-vector

'*' means it is vector of unspeci�ed size

The description fields apply to the associated variable and can be used to provided more detailed documentation for the variable.

Thanks to the JSC team for providing an early version of this documentation for .MDL files.

1.6.2.2.2. Make�le structure for model modules

The next step is create a Makefile (which should be named "Makefile.yam") to build the model.

Example of a Makefile to for a module called "BatteryModels":

#===
File: BatteryModels/Makefile.yam
To run this makefile, type "make -f Makefile.yam all"
#===

Add any additional (external) object files (*.o) or libraries (lib*.a or lib*.so) here
ADDT_OBJS =

Set MODEL_COMPILE_FLAG to any additional compilation flags that need to be passed
on to the compilation process
export MODEL_COMPILE_FLAGS =

Use the standard Makefile.yam for model libraries

ifndef YAM_ROOT
 include ../../etc/SiteDefs/Makefile.yam.model
else
 ifeq ($(YAM_ROOT)/etc/SiteDefs/Makefile.yam.model,$(wildcard $(YAM_ROOT)/etc/SiteDefs/Makefile.yam.model))

include $(YAM_ROOT)/etc/SiteDefs/Makefile.yam.model
 endif
endif

#--
when building binary executables and shared libraries, list any extra
libraries that must be linked in and any -L options needed to find them.
#--
CFLAGS-libBatteryModels += -I/usr/include

the following defines the import command to be added to the
auto-generated Python file to pull in required modules
PYTHON_IMPORTS := OLDMath_Py Dutils.Spice_Py
PYTHON_IMPORTS :=

You can export any file to the etc/ folder
ETC_MODULE_LINKS :=

[params]

 [[G]]
Type = double

 Length = -
Brief description = """Universal gravitational constant"""

[scratch]

[[Accel]]
 Type = double

Length = 6
 Brief description = """acceleration due to gravity"""

Long description = """"""

[states]

[[BodyPosition]]
 Type = double

Length = 3
 Brief description = """body inertial position vector (J2000)"""

Long description = """position vector of the attracting body in an inertial frame (J2000)"""

INI

1.6.2.2.3. Generating C++ stub code

Use the following command to generate the C++ stub code:

gmake -f Makefile.yam links

The following files will be generated:

Battery.cc, Battery.h

Stub code. You need to edit this code.

auto/BatteryIF.cc, auto/BatteryIF.h

Dshell interface code. Do not edit these files.

1.6.2.2.4. Editing the auto-generated Dshell Model C++ �le

You will need to edit the auto-generated files (Battery.cc, Battery.h) to customize the model. You normally need to do this:

Set the default parameter values in the constructor Battery::Battery(). Make sure all strings (if any) are properly null terminated.

Initialize local variables in the Battery::setup() method. The setup() method is called after Dshell has called the constructors of all models.

If you allocate memory (e.g. call malloc() or new), you should clean up memory in the destructor Battery::~Battery().

Whenever the user changes a parameter, Dshell notifies the model that a parameter has changed by calling the model’s processParams() method.

For Flow models, Dshell calls the model’s tick() method at every I/O step so the code to compute the model’s outputs should be placed here.

Here is the BatteryModel.cc filled out to compute the desired outputs:

1.6.2.2.5. Compiling the Model

Run the Makefile.yam to build the model library object files:

/*
* Battery.cc -- C++ source file
 *
* User will always edit this file, to fill in code for methods
 */

#include "Battery.h"

/*
* Battery - This is the constructor method, which is called
 * immediately after the model is allocated. Use it to set
* default values for states and parameters, which will be
 * overridden by any values specified in the model file and
* initial state file.
 */
Battery::Battery(std::string modelName) : BatteryIF(modelName)
{

/*
 * INITIALIZE BatteryParams DATA STRUCTURE -- this sets default values

* in case they are not specified in the model input file
 */

params()->tickFactor = 1/3600; //scaling factor to convert ioStepSize() to hours/tick
 params()->totalPower = 69.1; // watts hr

params()->efficiency = 100.0; // battery efficiency
 states()->powerLevel = params()->totalPower;
}

/*
 * ~Battery - This is the destructor method, which is called
* before the model is deallocated. Use it to deallocate any
 * memory allocated by the model.
*/
Battery::~Battery()
{
}

/*
* setup - This method is called to compute the values of
 * "derived" parameters, which are parameters whose
* values depend on those of other parameters.
 *
* This method is called only once, after the constructor
 * and after values for parameters from the model file
* are set. Do NOT set default values for non-derived
 * parameters in this method - it will override values
* provided in the model file.
 */
void
Battery::setup()
{
 states()->powerLevel = params()->totalPower;
}

/*
 * tick - This method is called once in each I/O step.
*/
void
Battery::tick()
{

double pwr;
 double deltatime;

 deltatime = ioStepSize();
deltatime *= params()->tickFactor;

 // determine charging or draining power to/and from the battery
pwr = (*(flowIns()->src)) * params()->efficiency - *(flowIns()->load);

states()->powerLevel += pwr*deltatime;

 if (states()->powerLevel > params()->totalPower)
states()->powerLevel = params()->totalPower;

 if (states()->powerLevel < 0.0)
states()->powerLevel = 0.0;

*(flowOuts()->powerLevel) = states()->powerLevel;

}

/*
* processParams - This method is called when:
 * -- a parameter is changed with the 'Dparam' Tcl command
* -- once during initialization after the 'setup()' methods are called
 * -- when the C function 'BatteryParamsSet()' is called by simulator
* Its purpose is to update the values of scratch variables
 * when a parameter changes.
*/
void
Battery::processParams()
{
}

C++

gmake -f Makefile.yam all

This will create two files:

1. BatteryModels_Py.so is a loadable Python module

2. libBatteryModels.so contains the compiled C++ code

1.6.2.2.6. Example Python Script

Here is an example model.py and Python script to exercise the Battery model:

tutorials/modelCreation

1.6.2.3. Advanced Topic

When you run a python script, how does it know about various models?

Auto-generate python pyIndex file in 'auto' directory

Each module pyIndex includes rules to load the module for specific model names (model 'A' is in module 'X')

All pyIndex files are linked into the lib/ModulesTclIndex/ directory of your sandbox

When you run scripts in your sandbox

All 'pyIndex' files in lib/ModulesTclIndex/ are processed (note: the name is for historical reasons; ModulesTclIndex has nothing to to with Tcl).

At runtime, when you request model 'A', it knows to import module 'X'

SUMMARY: Any model defined in a module in your sandbox will be available automatically from python; you do not need to do anything extra.

Basics of model inheritance

Dshell Models can be derived from other models. As an example, let’s say we want to extend the {Dshellpp_Battery.mdl_script_uri}[Battery.mdl] to add a new output to trigger an alarm

if the battery level falls below a certain level.

The .mdl file for this new model would look like:

File: BatteryModels/Battery2.mdl
This model is derived from BatteryModels/Battery.mdl.
All parameters, states, inputs, outputs, etc defined in Battery.mdl
will be accessible from Battery2.
[Type]
Name = Battery2
BaseModel = BatteryModels/Battery

add new parameters for this model
[params]
 [[alarm_threshold]]
Type = double

 Length = -
Brief description = """Alarm will be triggered if power falls below this level (watt-hours) """

 Long description = """"""

add new outputs
[flow_out]
 [[alarm]]
Type = int
 Length = -
Brief description = """1 if alarm is set, 0 if alarm is off"""
 Long description = """"""

You can then auto-generate the Battery2.cc and Battery2.h stub code from the .mdl file with the command:

gmake -f Makefile.yam links

If you examine the auto-generated Battery2.cc file, you will see how the derived class methods call the base class methods. For example, this is the stub code for Battery2::tick():

You can modify this to add your own code to set the alarm:

void Battery2::tick()
{

Battery::tick(); // calls base class method
}

C++

The command to compile the .cc code would be:

gmake -f Makefile.yam all

1.6.3. Dshell Signals

1.6.3.1. The Purpose of Signals

Dshell signals are basically C++ data buffers that can be used to communicate data between various entities at runtime:

Model-to-model

 TBD: The above figure should have been autogenerated by graphiviz (not working):

User inputs into models (from runtime scripts or guis)

 TBD: The above figure should have been autogenerated by graphiviz (not working):

User-accesible outputs from models

 TBD: The above figure should have been autogenerated by graphiviz (not working):

During the initialization of a simulation, all model inputs and outputs must be tied to signals.

1.6.3.2. Types of Signals

Each Dshell signal (Signal) allocates and manages a memory buffer. The signal memory is accessible via a Dvar variable. So signal information can be retrieved or set using standard Dvar

operations (see the DVar section.

Only a limited subset of all Dvar types are supported as signals. These include the following scalar values:

int

void Battery2::tick()
{
 Battery::tick(); // calls base class method

 // Code to set alarm.
// Battery::states()->powerLevel refers to the powerLevel state

 // defined in the base class.
if (Battery::states()->powerLevel < params()->alarm_threshold)

 *(flowOuts()->alarm) = 1;
else

 *(flowOuts()->alarm) = 0;
}

C++

bool

double

string

Signals that are vectors are also supported for two types:

vector of ints

vector of doubles

Note

For simplicity, all scalar-valued signals are represented as vectors of length 1.

1.6.3.3. Signal Slices

A signal can be an array of data, and 'Signal Slices' provide a way to split out a part of the array as a separate signal. That way parts of a signal array can be sent to different models. Or data

from several models can be combined into a larger signal array.

 TBD: The above figure should have been autogenerated by graphiviz (not working):

Signal slices can be created in several ways in python.

In assemblies code, signal slices can be retrieved easily. To get a complete signal:

where 'self' is the assembly object. To get just a subset of the signal:

where the range list is [<start-index>, <end-index>]. This will construct a subset of the signal that only has the first two entries.

An alternate sytax is available when accessing signals via Dvar. Given a spec_node that contains a signal named 'signalName':

To get the subset (as above):

where the range is specified as part of the signal name as shown.

1.6.3.4. Advanced Signal Topics

1.6.3.4.1. Signal Granularity

How often a signal is refreshed depends on the model that outputs data into the signal. The model granularity flag specifies when the DshellModel::updateFlowOuts() method is called to

write data to the signals tied to the model’s output ports. The following flags (which are bit flags which may be combined) are available:

signal = self.getSignalSlice('signalName')
PYTHON

slice = self.getSignalSlice('signalName', [0,1])
PYTHON

signal = spec_node['signalName']
PYTHON

slice = spec_node['signalName(0-1)']
PYTHON

GRANULARITY_PREDERIV (update after every preDeriv() call)

GRANULARITY_POSTDERIV (update after every postDeriv() call)

GRANULARITY_ENDINTEGRATION (update after endIntegration() step)

GRANULARITY_ENDIO (update at end of i/o step)

A model usually sets the granularity using the DshellModel updateFlowOutsGranularity<DartsModel::updateFlowOutsGranularity> function during model initialization. Note:

FlowModel models do not support setting granularity.

1.6.3.4.2. Model Sorting

When we process models during integration, it is important to evaluate the models in the correct order so the inputs to a model are as current as possible.

Suppose Model-A generates an output which is connected to an input of Model-B via a signal.

 TBD: The above figure should have been autogenerated by graphiviz (not working):

Clearly, the computations that Model-B performs normally depend on the input it receives from Model-A. Therefore, Model-A should send out new data to the signals connected to its

outputs before Model-B performs its computations. This implies that Model-A should appear before Model-B when model updates are run in the main simulation loop (such as preDeriv()

calls).

Dshell uses a graph-sort technique to make sure that each model receiving data from another model is invoked after its 'up-stream' model. In cases where the dependencies are circular

loop, the creator of the models must specify where to break the loop. The decision on where to break such as loop requires an analyst to evaluate the models involved and decide where the

break should be done logically. The resulting decision is usually incorporated into the Assembly code.

1.6.3.4.3. Signal Freshness

Some models may require a significant amount of computation. If the inputs to the model (signals) have not changed, there may be no need to re-perform the computations to update the

models outputs.

For instance, a signal that initiates a motor command should not be repeated each time the model is executed. The model needs to recognize when it receives a new motor command (via a

signal) and only deal with new motor commands once.

So signals have a mechanism that supports determining whether the signal value has changed since the last time the model accessed the signal. The concept is signal freshness.

In practice, signal freshness is simply an integer that is incremented each time the signal is updated. Each signal keeps its own freshness index. Each flowIn port of a model keeps track of

the value of the freshness index for its associated signal and can therefore tell if the signal has changed. Some models take advantage of this.

For an example of a model that uses signal freshness, see the SetBodyMass model. It uses signal freshness to keep from updating the body mass unless the input signal for mass has really

changed.

Note: There are some examples of accessing signal freshness near the end of the tutorial below.

1.6.4. Dshell Assemblies

1.6.4.1. Motivation for Assemblies

When modeling a system, it is common to have multiple instances of a type of subsystem.

For wheeled systems:

For spacecraft:

 Assemblies let us prepackage subsystems in a reusable way!

1.6.4.2. Assembly Basics

What are Assemblies?

Assemblies are hierarchical building blocks for organizing simulation components.

Assemblies are reusable containers for groupings of signals, bodies, models, and subassemblies.

Purpose of Assemblies

Create models, signals, bodies, and subassemblies at runtime

Connect model flowIns/flowOuts with signals

Contain other assemblies as needed

Encourage loose coupling of models

Assemblies are more self-contained so that updates to one have less chance to affect others

Improves code maintainability

Encourage reusable code

Once an Assembly is written, it can be reused easily

Assemblies capture domain area expertise

Tests specific to the assembly can be written to assure correct functionality and improve maintainability

Hierarchical Assemblies encourage reuse

Assemblies for sub-components (eg, thrusters) can be reused in a variety of sub-systems (single thrusters, thruster sets)

Share assemblies across different types of systems

Provide subsystem-level functionality

1.6.4.2.1. Assembly Architecture

To see a presentation on Assembly Design and Creation, please see:

link::.//extras/DLabDocs/src/Dshell++/doc/source/documents/Assembly-Design-and-Creation-2014-08-26.pdf[Assembly Design and Creation (August 2014 TIM)].

An assembly is meant to be a self-contained unit.

Creates all the models, signals, bodies and sub-assemblies it needs

There can be more that one instance of an assembly type

e.g. multiple thruster assemblies

All assemblies are derived from the C++ Assembly class

 TBD: The above figure should have been autogenerated by graphiviz (not working):

+

+ Assembly logic is easier to implement/maintain in Python Conceptually possible to make Assemblies out of all C++ ** Dartslab Assemblies are all Python

Assemblies are hierarchical

Assemblies can contain other Assemblies

Assemblies have params, config and context attributes

config: Specifies configuration properties for the assembly (eg. number of thrusters)

params: Configuration parameters (eg. body mass, geometry)

context: Context information needed to embed/connect the assembly with its parent (eg. parentBody)

 TBD: The above figure should have been autogenerated by graphiviz (not working):

+

Assemblies often support variants that can be selected by configuration parameters

Trade-off with options vs derived classes

1.6.4.2.2. Assembly Parameters

Assembly parameters classes are based on the paramTypes base class

Defines required and optional parameter elements

Contains description and units information for the elements

May enforce type checking

May have extra class methods (eg. rover dimensions class) to derive additional data

Generic parameter instances as well as for specific hardware (eg. crossbow IMU, planet earth, Thruster parameters)

Lazy binding of parameters

1.6.4.2.3. Assembly I/O (Signals)

Assemblies define the models and signals they contain

Assemblies create signals for models to communicate with each other

Signals serve as the interface objects to inter-connect assemblies/models

Between unassociated assemblies (via global signals)

Between associated assemblies

parent/child/sibling assemblies

child assembly signals tied to signals in a parent assembly

Assemblies connect model flowIns and flowOuts to signals

 TBD: The above figure should have been autogenerated by graphiviz (not working):

Who creates/owns the interface signals?

The assembly that created it (or parent assembly)

Figure 27. A signal that is used to communicate between child assemblies should be created by the parent assembly and passed down to each child assembly. See Signal Mapping for more

details on this.

1.6.4.3. Stages of Assembly Construction

Note

Examples from EDL/python/models/dyn/fuelTankAssembly.py (unless otherwise noted)

As an Assembly is being created, the following methods are called automatically in this order during initialization.

addSignals()

addModels()

addAssemblies()

After initialization, it is up to the user-run script to call these functions:

params() - To store the raw values of the parameters

bindParams() - To process the parameters and apply the various parameter values to associated bodies and models.

bindState() - To do final pre-run initialization

1.6.4.3.1. Add signals

Add any signals needed by the Assembly models or by models of sub-assemblies

For more information about signals, see the Dshell Signals section.

1.6.4.3.2. Add models

Add models for the assembly

Create needed bodies and any needed nodes

Add models

Define which signals connect to which flowIns and flowOuts

NOTES:

The second argument ('actuator' here) tells the assembly what kind of model to add. Supported types of models include:

'actuator'

'motor'

'flow'

'sensor'

'encoder'

See Dshell Models section for more information on these model types

The MODEL_TIES entries tells the autocoder how to connect the model flowIns and flowOuts with the available signals.

The class entry should resolve to the name of a model class. See Dshell Model name resolution section to understand how the model names are resolved at run-time.

The node entry should resolve to a DartsNode object that the object will be attached to.

1.6.4.3.3. Add subassemblies

Since assemblies are potentially hierarchical, any assembly can add subassemblies.

Example from ThrusterSetAssembly (abridged):

def addSignals(self):
name = self.name()

 self.addSignal('FuelUsed' , { 'length': self.maxlines, 'type': 'double',
'comment': 'Fuel line draws on ' + name + ' tank' })

 self.addSignal('FuelRemaining' , { 'length': 1, 'type': 'double',
'comment': 'Fuel remaining in ' + name + ' tank' })

PYTHON

def addModels(self):
name = self.name()

Add the body

 from Dshell import DartsCommon
mbody = DartsCommon.DartsMbodyLookup()

 self.body = DartsCommon.DartsBody.asBody(mbody.body(context['body'], 0, True))

 # Add the actuator node
self.node = self.body.createActuatorNode(self.nodeName)

Add the fuel tank model

 self.addModel(name, 'actuator', {
'MODEL_TIES': {

 'entry0': { 'ioName': 'fuel_burned',
'ioSlice': [0, self.maxlines-1],

 'ioType': 'flowIn',
'signal': 'FuelUsed'},

 'entry1': { 'ioName': 'fuel_remaining',
'ioSlice': [0,0],

 'ioType': 'flowOut',
'signal': 'FuelRemaining'},

 },
'class': self.config()['model'],

 'node': self.node,
'PARAMS': {},

 })

PYTHON

NOTES:

The context is used to provide the parent body that the thruster set will be attached to.

The config is used to provide configuration information about the assembly itself. In this case, it provides the name of the ThrusterSet.

the 'childTies' argument to the 'addSubAssembly' function is important.

1.6.4.3.3.1. Signal Mapping
Signal mapping

How do parent assemblies access signals from child assemblies?

As mentioned in the xef:Sphinx_Dshellpp_assembly_io_signals[Assembly I/O (Signals)] section, a parent assembly can instruct its child assemblies to use a signal that it (the parent

assembly) provides in the place of a signal that the child assembly would normally created.

Suppose a child assembly 'B' creates a model with a flowout signal called 'b_out'. Now suppose that this signal needs to be sent to a model in a peer assembly, 'C'. In model in assembly 'C',

the flowin signals is called 'c_in' The normal way to accomplish this is for the parent assembly, 'A', to create a signal, 'a', and passes it down to both children so that they use it.

Figure 28. Assembly A creates a signal 'a' that it provides to child assemblies B and C so that they can communicate with each other.

In model 'B', the flowout is named 'b_out'. In the assembly code that creates model 'B', it will create a signal to attach to that flowout. Its add signals code would look like this:

Similarly for Assembly C:

And model 'B' would instruct the model to connect this 'model_b_output' signal to the flowout of the model:

def addAssemblies(self):
childTies = self.createChildTies1()

 context = { 'parentBody' : self.parentBody }
for thrusterName in self.config()['model']:

 config = self.config()['model'][thrusterName]
self.addSubAssembly(thrusterAssembly (thrusterName,

 config, context,
childTies))

PYTHON

def addSignals(self):
 """ for assembly B """
self.addSignal('model_b_output' , { 'length': 1, 'type': 'double', 'comment': '' })

PYTHON

def addSignals(self):
 """ for assembly C """
self.addSignal('model_c_input' , { 'length': 1, 'type': 'double', 'comment': '' })

PYTHON

def addModels(self):
 """ for assembly B """
self.addModel('ModelB', 'actuator', {
 'class' : 'ModelBClassName',

'MODEL_TIES' : {
 'entry0': { 'ioName': 'b_out',

'ioSlice': [0,0],
 'ioType': 'flowOut',

'signal': 'model_b_output'},
 },

'node' : nodeObject
 })

PYTHON

Similarly for Assembly C:

In order for the parent assembly to connect these two models in the desired way, several small pieces of code are necessary.

1. In the parent assembly 'addSignals' method, we create the necessary shared signal, named 'a':

2. In the parent assembly 'addAssemblies section', when we create assembly B (with model B), we instruct assembly B to use the signal created by the parent (signal 'a') instead of the

signal it would have created for its output. Similarly, we instruct model C to use the provided signal ('a') instead of the input signal model C would have created:

When assemblies B and C are created as shown here, they do not create their own signals to connect to their model’s flowins or flowouts; they use the ones provided by the parent

instead.

The feed_thru list is a list of signal names can be used to pass shared signals through this assembly so it can be used by assemblies that are children of the direct children assemblies (B

and C here). It is a list of names of signals that the parent assembly has been provided when it was created by its parents. In other words the when a signal is shared, the parent creating

the shared signal passes it to its children using the 'child_ties' approach shown here. To pass the signal through assemblies B and C, they have to use the 'feed_thru' list when they create

their own children assemblies.

Note

The code snippets in this section are simplified and incomplete and are only for illustration purposes.

1.6.4.3.4. Bind parameters

Collect parameters and update parameters in models and subassemblies

NOTES:

There are three aspects of binding parameters

def addModels(self):
""" for assembly C """

self.addModel('ModelC', 'actuator', {
'class' : 'ModelCClassName',

 'MODEL_TIES' : {
'entry0': { 'ioName': 'c_in',

 'ioSlice': [0,0],
'ioType': 'flowIn',

 'signal': 'model_c_input'},
},

 'node' : nodeObject
})

PYTHON

def addSignals(self):
 """ for parent assembly A """

self.addSignal('a' , { 'length': 1, 'type': 'double', 'comment': 'shared signal' })

PYTHON

def addAssemblies(self):
 """ for parent assembly A """

 # Add assembly B
signal_map = { 'model_b_output' : self.getSignalSlice('a') }

 feed_thru = []
child_ties_b = self.updateTies(self.signalTies(), signal_map, feed_thru)

 self.addSubAssembly(AssemblyBClass('asm_B', config={}, context={}, child_ties_b))

 # Add assembly C
signal_map = { 'model_c_input' : self.getSignalSlice('a') }

 feed_thru = []
child_ties_c = self.updateTies(self.signalTies(), signal_map, feed_thru)

 self.addSubAssembly(AssemblyBClass('asm_C', config={}, context={}, child_ties_c))

PYTHON

def bindParams(self):
name = self.name()

 param_set = self.params()

 # Update model parameters
self.modelParamSet(name, 'num_thrusters', self._numFuelLines)

 self.modelParamSet(name, 'starting_fuel', 'Tank.startingFuel', param_set)
self.modelParamSet(name, 'empty_mass',

 param_set['Body']['mass']() - param_set['Tank']['startingFuel']())

 inval = param_set['Body']['cmInertia']()
invalflat = inval[0] + inval[1] + inval[2] # flatten matrix to a 9 vec

 self.modelParamSet(name, 'initial_inertia', invalflat)
self.modelParamSet(name, 'empty_inertia', emptyInertiaSum)

 self.modelParamSet(name, 'initial_CM', [0,0,0])
self.modelParamSet(name, 'empty_CM', 'Tank.emptyCM', param_set)

Set up parameters for the fuelTank body

 vec = SOA_Py.SOAVector3(param_set['Node']['bodyToNode']())
vec.thisown = False

 self.node.setBodyToNode(vec)

 # Bind any parameters of subassemblies
DsendsAssembly.bindParams(self)

PYTHON

Updating the parameters for any models created by the assembly (lines 5-16)

Updating the parameters for any bodies that the assembly created (lines 18-21)

Instructing child assemblies to update their parameters (line 24)

In this example, there are no subassemblies so this could have been omitted.

It is necessary that parameters of all child assemblies be passed down to them by invoking the 'params()' function before executing the 'DsendsAssembly.bindParams(self)'

function call.

1.6.4.3.5. Set the initial state

The bindState() function is use to initialize models and signals belonging to the Assembly.

1.6.4.4. Debugging Assembly design/coding problems

Debugging assembly code development can be difficult

Transition from Python to C++ sometimes makes isolating problem difficult

'print' is your friend!

Debugging procedure

From your error messages, guess at the source of the problem

You may need to run with debugging:

Instrument main Assembly functions (addSignals(), addModels(), etc) by adding print messages at beginning and end of functions:

Execute assembly code to isolate problem area

Repeat process at lower levels until the C++ call is isolated

At C++ call interface, examine inputs carefully for problems

Other tips:

Use pformat to output data in useful ways

Examine outputs for suspicious values

1.6.4.5. Assembly Usage Tutorial

1.6.4.5.1. Dshell Assembly Basics Tutorial

Dshell++ Assembly basic usage regtest

1.6.5. Dshell Parameter Classes

1.6.5.1. Parameter System Basics

Simulation parameters are used to initialize the system at the start of the simulation. These parameters are set up by the user to build up spacecraft assemblies, set the parameters of the

C++ models used in the simulation, control thresholds and triggers in the state machine, and generate auxiliary parameter sets for third-party simulation tools integrated into the

simulation (such as MarsGram, Spice, etc).

In Dsends, this parameter information is managed by a set of parameter classes which provide functionality related to required and optional data, units, data types, and parameter source

documentation.

def bindState(self):
name = self.name()

 model = self.config()['model']

 # model internal states
if model in ['FuelTank',]:

 self.modelObj(name).specNode()['state.fuel_remaining'](0.0)
self.modelObj(name).specNode()['state.sum_fuel_consumed'](0.0)

initialize signals

 self.signalSlice('FuelUsed').setToNominalValue()

 # initialize any subassemblies
DsendsAssembly.bindState(self)

PYTHON

> Dmain.py --file script.py --usegdb
SH

print '***** addModels', self.name()

[original code]

print '***** addModels done'

PYTHON

from pprint import pformat
print "--"
print pformat(self.params()()) print
"--"

PYTHON

Click to see the Dshell++/test/test_Ndarts/test_assembly/script.py script

Examples of parameters include:

initial state

spacecraft mass properties

sensor or actuator properties

GNC parameters

Model modes

1.6.5.2. Design Goals

All parameters must be designed to have the same "look and feel" with regard to their specifications, instancing, unit systems, etc

Parameters are provided by the user and may be

Required. The absence of a required parameter is an error

Optional. The absence of an optional parameter implies that the simulation system provides a default value

The same parameter must not be multiply defined. i.e. a single defined value must "fan out" to all uses of the parameter

Parameters for initializing third-party tools integrated into the simulation (e.g. GRAM atmosphere models) must be autogenerated from the parameter system.

Parameters must be capable of being over-written in top-level scripts to support Monte-Carlo and Parametric Sweeps.

1.6.5.3. Key Requirements

The parameter classes must encapsulate the parameters into a hierarchy with each sub-class:

Augmenting the required parameters of the base class as needed.

Augmenting the optional parameters of the base class as needed.

Remapping those parameters that were optional for the base class but are to considered as required for the sub-class.

Providing pre-determined parameter values for the base class i.e. those that are not to be provided by the user.

Providing default values for the optional parameters that may be set by the users.

Defining and computing dependent parameters that are functions of the (independent) required and optional parameters in the class instance. Note that what is considered as a

dependent parameter in one sub-class of a parent class may be an independent (required) parameter for another sub-class derived from the same parent class.

Figure 29. Parameter Class Hierarchy

The parameter class must support units by:

Providing for the user to specify the units for each parameter field

Converting the user-provided values into the unit specified in the parameter class definition.

Provide a description of each parameter field in the parameter class definition.

Provide a capability for the user to provide information on the source of:

each parameter field

the parameter class instance as a whole

Provide python methods to support ancillary functionality associated with the parameter classes.

Utilize the underlying Dshell provided Dvar C++ class capabilities to implement parameter storage and access.

Provide to users, where possible, a python dictionary-style access to the parameter fields.

1.6.5.4. Parameter Classes

DshellCommon Parameter Reference<DshellCommonParamReference>

DshellCommon base parameter class (Baseparam)<DshellCommonBaseParam>

1.6.6. Dshell++ Events

Events are an important part of the DARTS Dshell framework which enable many capabilities. DARTS/Dshell supports the following types of events (which will be described following

sections):

Events that occur at a regular or non-periodic intervals

Events that occur at every system-wide BeginIOStep or EndIOStep

Events that occur at every endHop

Events that occur with specific model functions

Step Validation Events / "Zero-Crossing" events

Here is a sample timeline of example events occurring during a simulation:

This timeline of events was created by this regtest:

Combined events regtest

1.6.6.1. Basic Event C++ API

Each event has the following primary features:

A callback function that the event executes

A trigger that defines when the callback function is executed

The C++ API for registering events is similar in all cases and follows the form:

void register<type>Event(conststd::string &name,
 EventFunction* f,

EventCondition* condition,
 void* cookie,

...
 <more optional arguments>);

C

where <type> corresponds to the type of event being registered and name is the name of the event (for various event operations); the event name must be unique. There may be some

variation of these arguments for registering some types of events. The other arguments are as follows:

EventFunction — The "callback" function that will be executed when the event is "fired". Its API is:

EventCondition — The (optional) trigger function that must evaluate to true in order for the event callback function to be executed. Its API is:

cookie — The "client data" is passed to the callback function and event condition function.

Note that the API shown here is for the C++ implementation. The Python interfaces for these functions are very similar although there are some conveniences that the Python interface

offers.

Note

The exact API for each type of event can be found in Dshell++/Simulation.h

1.6.6.1.1. Event Utility Functions

There are also several other utility functions for dealing with events. To find an event by its string name:

To delete an event by its string name:

To delete all events:

To get a list of all the names of registered events:

1.6.6.2. Time-based Events

These events occur at specific times in the simulation. These times can be at a specific time, some fixed rate (periodic), or at arbitrary intervals (self-rescheduling).

Here is an example using the Python API (this can also be done in C++):

The final line here creates several one-time events for each of the items in the list (via extensions to the interface in the python interface). Note that the names of the events are appended

with the execution times so the event names are unique.

For examples of timed events, see these regtests in Dshell++/test:

Timed events regtest

Combined events regtest

It is also possible to create an a timed event that reschedules itself in an arbitrary way. See regtest timed events regtest for an example of this.

 TBD: Double check that the Dshellpp_test_Events_timed_regtest_uri[regtest] does reschedule a event (used to be timed2 regtest)

1.6.6.3. IOStep or endHop Events

Events can be registered to occur immediately after regular system-wide IO steps (at BeginIOStep or EndIOStep). These are separate from the normal model C++ beginIOStep()/endIOStep()

functions which get executed at IO Step boundaries.

Python API (can also be done in C++)

typedef void (EventFunction)(void *);
C

typedef bool (EventCondition)(void *);
C

CallbackEvent* findEvent(conststd::string &name);
C

void deleteEvent(conststd::string &name);
C

void clearEvents(void);
C

std::vector< std::vector<std::string> > listEvents(void);
C

def callback():
print "event hit!"

A SINGLE event
sim.registerTimedEvent("ev", 3.0, callback)

SEVERAL events
sim.registerTimedEvent("ev1", [1.0, 2.0, 3.0], callback)

PYTHON

Note that registerEndIOStepEvent could have been registerBeginIOStepEvent or registerEndHopEvent to associate the event callback with those system-wide functions.

For examples of IOStep/endHop events, see these regtests in Dshell++/test:

Basic events regtest

Combined events regtest

 TBD: Double check that the Dshellpp_test_Events_basic_regtest_uri[regtest] does does have endHop events (used to be io regtest)

1.6.6.4. Model Events

Model events allow adding event callbacks that execute when a specific model’s C++ function (such as preDeriv) is called. This does not require recompiling model code.

The callback function AND trigger function can be C++ or python. Implementing these callbacks and triggers in Python is useful for prototyping functions. These callback can be set to

execute before or after corresponding the C++ function.

where:

mdl is the model object

True here indicates that the callback occurs before the model’s preDeriv() function.

f is the callback function

Note that 'PreDeriv' here can be replaced with a name of some other normal model function.

For examples of model events, see these regtests in Dshell++/test:

{Dshellpp_test_Events_model_regtest_uri}[Model events regtest]

Combined events regtest

test_events/script_model_events.py

test_Ndarts/test_events/test_combined_event_timeline/script.py

 TBD: Double check that the Dshellpp_test_Events_model_regtest_uri[regtest] exists

1.6.6.5. Step Validation / Zero-Crossing Events

In realistic simulations, we often encounter situations where we need to stop simulation at the precise time that a condition is met (eg. something touching the ground). Step-Validation

events allow carrying out of actions at the exact time when a condition is met whose timing cannot be predicted explicitly in advance.

Here is representation of what occurs in step validation events.

def f(t):
t is the sim.time function. Call t to get the time

 print "callback at time={}".format(t())

sim.registerEndIOStepEvent('event', f, t = sim.time)

PYTHON

def f(t):
t is the sim.time function. Call t to get the time

 print "callback at time={}".format(t())

Sim.registerPreDerivModelEvent('pdev', mdl, True, f)

PYTHON

Here a step-validation event is used to determine exactly when specified condition is met, even if it is in the middle of an integration step. This is accomplished as follows:

The user provides callback function that determines when the condition occurs even if it is in the middle of an integration step. The trigger function is usually when a DVar specNode

('var1' in the figure above) crosses some value ('target' in the figure above). If the condition occurs during in a substep, the substep is reverted (eg, the substep is NOT validated and is

rejected, hence the name "Step Validation")

When the trigger condition occurs, the simulation enters an iterative process to determine exactly when to end the hop (and interrupt the current IO step):

The current integration step is reverted.

The end of the next trial substep is set part way through the step.

A trial substep is taken: If the condition is still violated, the substep is reverted again and the trial time is reduced

This process iterates until condition is achieved (within epsilon). This terminates the hop at the zero-crossing time (effectively an implicit barrier is inserted).

Then events associated with the zero-crossing condition are handled, and a new hop is used to complete the interrupted hop.

A few notes on this process:

We are only retrying substeps (not full IO steps).

We do not touch I/O steps, FSM transitions or other data not captured in the full multibody or model state.

If the trigger condition is met, the step is terminated early, and the next hop begins earlier than it otherwise would have. The end of the next hop syncs up with the normal I/O step cycle.

It is possible that the user may have made qualitative changes to the system in the step-validation callback function. Therefore we need to reevaluate the full dynamics of the system at

that point and start propagating again from that point. In the figure above, notice the changed behavior of 'var2' due to system changes during the step-validation event.

By default, the iterative process of determining exactly when an event occurs uses a bisection algorithm but other types of iterative approches can be implemented in C++.

The C++ API for Step-Validation Events is a little different:

where

_x_var - is the DVar specNode to be monitored

_x_target - the callback triggers when the value of _x_var reaches this value

_from_below - the user indicates which direction the value of _x_var is approaching _x_target

_eps - how accurately the value of _x_var needs to reach _x_target (the convergence routine iterates until this is reached)

f - the event callback to be called when the event occurs

cookie - data to be provided to the EventFunction f when it is invoked.

The Python API makes it a bit simpler to use. Note that it uses the bisection algorithm by default:

This Step Validation event will trigger when the value of the DVar specNode 'spec' reaches '0.0'. Notice that the Python interface processes any extra arguments (such as 't' here) and bundles

them into the 'cookie'. These arguments are eventually passed to the event function as a series of extra arguments. So the function cb(t) receives the callable function 't' when it is called.

For examples of step validation events, see these regtests in Dshell++/test:

Step validation events regtest

test_step_validation/test_integration_rollback/script.py

 The C++ API does support step validation events using an arbitrary trigger function. Please see these files for details:

Dshell++/Simulation.h

Dshell++/CallbackStepValidation.h

1.6.7. MultiRate EndIOStep Execution

The DARTS Dshell framework supports having models whose EndIOStep() functions are called at arbitrary rates. There is easy-to-use support for fixed rate multirate models. There is also

support for user-defined arbitrary multirate execution of a model’s EndIOStep function.

Multi-rate schedule for a model can be done by two approaches using methods in Dshell::Simulation :

Fixed Rate

void registerStepValidationEvent(const std::string &name,
const DVar::Leaf_T<double> &_x_var, # or vector

 double _x_target,
bool _from_below,

 double _eps = 1e-6,
EventFunction* f = NULL,

 void* cookie = NULL);

C

def cb(t):
print "callback at time={}".format(t())

sim.registerStepValidationEvent('zcev', spec, 0.0,
 False, f=cb, t=sim.time)

PYTHON

void Simulation::registerMultiRateModel(Model &model, double fixed_rate_hz);

User-provided callback function

void Simulation::registerMultiRateModel(Model &model, multirate_callback_t cb);

Both can be done externally (in a run script) or in a model’s C++ setup() function.

All models can be configured to be multirate models (including flow models). This does not have to be done in the model’s C++ code.

Note

The usual functions of a multirate model (such as StartIntegrationStep, preDeriv, postDeriv, etc) operate along with all models during ALL integration steps. What

distinguishes multirate models is that their their EndIOStep() function is called at the times their multrate registration specifies — and ONLY at those times — 

Specifically, not at the normal system-wide end of IO steps (unless the rate specified by the registration happens to coincide with the system-wide IO step times).

Therefore, if you want operations to happen at the times specified when the model is registered as a multirate model, the operations must be called in the models

(overridden) EndIOStep() function.

1.6.7.1. Fixed Rate

Once the model is registered using the fixed rate API, the specified model will be called at the fixed rate specified and NOT at the usual simulation-wide IO-step schedule (unless the

specified rate is commensurable with it). Note that the fixed rate does not need to be related to the current IO Step size. No further actions are needed to enable fixed-rate mulitrate

support.

1.6.7.2. User-provided callback function

If more flexibility is needed, the model time trigger points can be arbitrarily specified by calling the second version of registerMultiRateModel(), and providing a callback function (of type

multirate_callback_t). This callback function returns the time trigger points.

For example, a the multirate callback function for a mode can be an override of model base class function getNextMultiRateIOTime() or an arbitrary function can be defined with an API

like this:

MultirateStatus nextStepTime(Time::TimeSpec &desired_time);

then this function can registered using the simulation’s function

sim.registerMultiRateModel(<model>, nextStepTime);

The callback function must set the desired time for the next IO step callback for the specific model <model> and return the appropriate MultirateStatus (see Dshell++/Model.h for details):

NOT_MULTIRATE

MULTIRATE_HAVE_FUTURE_TRIGGER

MULTIRATE_NO_FUTURE_TRIGGER

Note that registering a model as a Fixed Rate multirate model simply uses the rate provided and registers the Model base class function Model::getNextMultiRateIOTime() to handle the

fixed rate callbacks.

For examples of how to set up more complicated multirate_callback_t functions, please see the C++ files in:

Dshell++/test/test_multirate/models/

1.6.7.3. Multi-rate timing

A note on overhead for multirate support: Our tests indicate that using the multirate functionality adds less than 1% overhead.

1.7. Regression Tests

1.7.1. Dshell++ Regression Tests

1.7.1.1. A few useful regression tests for reference

Link to regression test Description

test_Assembly Simple assembly tests

test_Model Simple model tests

test_Model2 Use signal splitter/joiner models and verify signal connectivity

test_Model7 Test model sorting constraints

test_Model8 Using model meta data without creating a model instance

test_Signals Demonstrate basic signal operations

test_Events_io Demonstrate using IO events

test_Events_model Demonstrate using model function events

test_Events_timed2 Demonstrate using timed events (including self-rescheduling)

Link to regression test Description

test_Events_timed Demonstrate using timed events

test_Events_add_remove_find Demonstrate adding, removing, and finding events

test_Events_combined Plot a timeline of various combined events

test_Events_step_validation Basic step validation / zero-crossing event example

2. DshellCommon

2.1. Background

2.1.1. Reference & Source material

DshellCommon Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

2.2. Design

2.2.1. InputDict: replacement for anonymous dictionaries

InputDict are utility classes that allow us to organize data in a single object. They are similar to python built-in dataclasses and C++ struct. They can act as subsitutes for python dictionaries

when we know what fields to expect in the dictionary.

2.2.1.1. Motivation

Let’s consider we have a function print_house(…) that takes a python dictionary (info), which contains necessary information for the function to work:

By inspection of the source of the function, we see that info must have the fields "name" and "homeworld" . Additionally, the field "major" can optionally be given. Moreover, we could

predict that "name" and "homeworld" must be strings, while "major" must be a boolean. Users would need to know this information to properly use print_house(…) , and to do so, they

must also inspect the source code of the function.

While reading the code is simple in this example, this might not always be the case. Having to find and read the source of a function before using it is a tedious and error-prone process,

especially when the functions span many lines. Ideally, we would like to be able to fully understand how to use a function from its signature and docstring.

Simple use case

We can use an InputDict to solve this problem without even having to change the source code of the function:

As we can see, we created a new class HouseInformation that inherits from InputDict . We declared three fields, name , homeworld , and major , and their types: str , str , and bool .

Moreover, we provided a default value for major (False). Finally, we added a type hint to the signature of print_house(…) declaring that the input info should be an instance of

HouseInformation .

Now, when users want to use print_house(…) , they only need to inspect the signature and discover that the input should be a HouseInformation . Then, they can inspect

HouseInformation and easily see a list of the appropriate fields and their types.

Given that the source of the function has not changed, both a dictionary and HouseInformation are valid and equivalent inputs to the function:

2.2.1.2. Advantages of InputDict over anonymous dictionaries

def print_house(info):
name = info["name"]

 homeworld = info["homeworld"]
major = info.get("major", False)

 print(f"{'Great' if major else ''} House {name} of {homeworld}")

PYTHON

from DshellCommon.input_dict.input_dict import InputDict

class HouseInformation(InputDict):
 name: str

homeworld: str
 major: bool = False

def print_house(info: HouseInformation):
name = info["name"]

 homeworld = info["homeworld"]
major = info.get("major", False)

 print(f"{'Great' if major else ''} House {name} of {homeworld}")

PYTHON

print_house({
"name": "Atreides",

 "homeworld": "Caladan",
"major": True,

})
Great House Atreides of Caladan

print_house(HouseInformation(
 name = "Atreides",

homeworld = "Caladan",
 major = True,
))
Great House Atreides of Caladan

PYTHON

As explained in the previous section, using InputDict allows users to quickly understand what information is required by a piece of code (a function, class…). This means faster

development with errors.

Using a modern code editor (such as VSCode with Python intellisense) will show all necessary information as pop-up windows, thus removing the need to navigate to the source code of

the class: \[INSERT IMAGE basic_popup]

Activating syntax highlighting for incorrect types in your code editor will allow you to catch errors before even running the code: \[INSERT IMAGES error highlight]

At runtime, validation will be performed on the inputs. This allows you to contain all input validation on the InputDict and thus write a clearer, more concise function. Input validation

consists on:

checking the types of the inputs. For example, setting "homeworld" to be an integer will raise an exception.

any other more complex and arbitrary validation. For instance, we might create an InputDict that checks that the first letter of the input "homeworld" is in upper case.

More info on Validation in section Validation.

InputDict subclasses might be created from a python dictionary or text files using parse and parse_file . See Parsing functions for details.

InputDict can easily be transformed into options for commands in the CLI. See DictLinker for more details.

InputDict subclasses can be autogenerated from Models. See ModelLinker

InputDict can act as elegant wrappers for DVar Branches. See DVarInputDict.

How to use InputDict

In the Simple use case section, we saw how one might implement a simple InputDict. In this section, we are going to expand on this and explore all possibilities for InputDict.

Accessing the �elds of an InputDict

In the previous section, we saw that we could use array-like syntax to access the values stored in an InputDict:

However, attribute-like access is also supported and acts exactly the same as the array-like operations:

New code should always aim to use attribute-like access (info.homeworld), as this preserves type hints. Array-like access is supported mainly to allow using InputDict with legacy code that

was written with python dictionaries in mind and thus uses array-like access (info["homeworld"]).

Dict-like behaviour
InputDict inherits from the python abstract class MutableMapping . This means that not only we can get and set fields, but also use other operators and methods such as keys , items ,

values , get , __iter__ …

The __del__ method is also supported, but its usage is heavily discouraged in new code. Deleting a field in an InputDict will make it so trying to access the value raises a KeyError, similar to

regular dictionaries. For new code, the recommended approach is to use None and declare the type as Optional . This explicitely signals to users that the field might become a None , while

deleting a field can be done silently and thus cause problems on the long term:

Usage of __del__ for dict-like compatibility:

Recommended approach for new code:

Required and optional �elds

In Simple use case we saw examples of required fields and a field with a default value:

info = HouseInformation(name="Atreides", homeworld="Caladan")
assert info["homeworld"] == "Caladan"
info["homeworld"] = "Arrakis"

PYTHON

info = HouseInformation(name="Atreides", homeworld="Caladan")
assert info.homeworld == "Caladan"
info.homeworld = "Arrakis"

PYTHON

class HouseInformation(InputDict):
 homeworld: str

info = HouseInformation(homeworld="Caladan")
del info["homeworld"]
assert "homeworld" not in info
assert "homeworld" not in info.keys()
info["homeworld"] # <- raises a KeyError

PYTHON

from Dutils.typing import Optional

class HouseInformation(InputDict):
 homeworld: Optional[str]

info = HouseInformation(homeworld="Caladan")
info["homeworld"] = None
assert "homeworld" in info # Note that the `in` operator returns True now!
assert info["homeworld"] is None

PYTHON

class HouseInformation(InputDict):
 name: str
 homeworld: str
 major: bool = False

PYTHON

To specify optional fields with no default we need to use the function Dfield , which allows us to provide additional information for each of the fields of an InputDict:

When we create an InputDict we must always provide values for required fields. We might also provide values for optional fields. If we do not provide values for these, defaults will be used.

If the field is optional without default, then the field will not contain any value; similarly to calling __del__ on the field, accesing the attribute will raise a KeyError :

Much like how the usage of __del__ was discourged for new code, we also discourage using optional fields without default. To obtain similar but more explicit behaviour (i.e. safer), use

Optional types and None as the default:

The Dfield function can also be used to provide a default value by specifying default . Alternatively, a default_factory can be provided. This must be a callable object (function) that

takes no arguments and returns a default value for the field:

Note that default values are always deepcopied before being assigned. This means that having mutable types (lists, dictionaries) as default is valid and each instance will have their own

copy.

Description of each �eld

For documentation purposes, it’s useful to provide descriptions for each of the fields of an InputDict. Descriptions are not only useful as documentation for the users, but they might also be

used by other systems that use InputDict (for example, autogenerated CLI options will use the description as the help message for the option). There are two ways to set the description for

a field: through the use of Dfield(… , description=…) or by writing "docstrings" in the numpy format. These two snippets are equivalent:

Using Dfield

using the "docstring"

from DshellCommon.input_dict.input_dict import Dfield

class HouseInformation(InputDict):
 name: str
 homeworld: str
 major: bool = False
 title: str = Dfield(required=False)

PYTHON

info = HouseInformation(name="Atreides", homeworld="Caladan")

assert "title" not in info
assert "title" not in info.keys()
info["title"] # <- raises a KeyError
info.title # <- raises a KeyError

info.title = "Duke"
assert "title" in info
info.title # <- does not raise a KeyError

PYTHON

from Dutils.typing import Optional

class HouseInformation(InputDict):
 name: str
 homeworld: str
 major: bool = False
 title: Optional[str] = None

PYTHON

from DshellCommon.input_dict.input_dict import Dfield

default_world = "Terra"

class HouseInformation(InputDict):
 homeworld: str = Dfield(default_factory= lambda: default_world)
 major: bool = Dfield(default=False)

print(HouseInformation())
HouseInformation(homeworld='Terra', major=False)

default_world = "Ceres"
print(HouseInformation())
HouseInformation(homeworld='Ceres', major=False)

PYTHON

class HouseInformation(InputDict):
 name: str = Dfield(description="The common name of the House")
 homeworld: str = Dfield(description="The planet seat of power of the House")
 major: bool = Dfield(default=False, description="Whether this is a House Major")

PYTHON

While the first option is more compact, the second option is easier to read and allows IDEs to display the information on hover: \[INSERT IMAGE docstring]

2.2.1.3. Inheritance

InputDict can inherit from one or more InputDict . The resultant class will have all the fields of the parent InputDict , plus the ones defined in the new class body. Moreover, fields can

be specified again to override their definition.

Note that fields are "inherited" following python’s class inheritance scheme. In this case, LegionCommander fields are set first, then HouseInformation fields, and finally those defined in

MajorHouseInformation . Fields that are set later override those defined before.

2.2.1.4. Validation

Input validation is one of the core features of InputDict. Any InputDict class will use the types given in the class definition to check whether inputs are of the correct type:

2.2.1.4.1. Advanced types

In addition to regular types, the greater part of the python’s "typing" module is supported. Users are encouraged to read the python documentation on type hinting

(https://docs.python.org/3/library/typing.html).

Users are also strongly encouraged to read the DARTS-specific typing documentation

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/core-modules/dshellenv/-/wikis/DshellEnv-documentation#user-content-typing) (in DshellEnv), which covers both python

typing and the special extensions to typing done in DARTS.

The Dutils.typing documentation shows an example of a function with several type annotations, which is used to illustrate the range of possibilities of typing. The following snippet

shows an InputDict with the same type annotations and demonstrates that validation with these types can also be performed in InputDict :

class HouseInformation(InputDict):
"""Contains information about a Dune House.

Parameters

name : str

 The common name of the House
homeworld : str

 The planet seat of power of the House
major : bool

 Whether this is a House Major
"""

 name: str
homeworld: str

 major: bool = False

PYTHON

class HouseInformation(InputDict):
name: str

 homeworld: str
major: bool = False

class LegionCommander(InputDict):
 number_of_legions: int

class MajorHouseInformation(HouseInformation, LegionCommander):
major: bool = True

 vassal_house: str

import pprint
pprint.pprint(MajorHouseInformation(
 name="Harkonnen",

homeworld="Giedi Prime",
 number_of_legions=10,

vassal_house="Rabban",
), sort_dicts=False)
MajorHouseInformation({'number_of_legions': 10,
'name': 'Harkonnen',
'homeworld': 'Giedi Prime',
'major': True,
'vassal_house': 'Rabban'})

PYTHON

class HouseInformation(InputDict):
 name: str

major: bool

HouseInformation(name=42, major=True)
raises a TypeError because 42 is not a string

HouseInformation(name="Corrino", major="test")
raises a TypeError because "test" is not a boolean

PYTHON

2.2.1.4.2. Annotated types

As explained in the DARTS-specific typing documentation

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/core-modules/dshellenv/-/wikis/DshellEnv-documentation#user-content-typing) (in DshellEnv), we use Annotated and

FieldCheck to add additional constrains to certain types. This extended types can also be used in InputDict :

The Dutils.typing module is filled with built-in FieldCheck classes and type alias that are useful for InputDict classes. Reading the docs for this module is (again) encourged (link).

2.2.1.4.3. Other validation with FieldCheck

While using Annotated with FieldCheck allows you to perform any validation possible on the value, sometimes we do not want to "contaminate" the type declaration with the checks. To

add checks to a field without using its type we can use the validators keyword argument in Dfield :

In the previous snippet, we are specifying the parameter validators to be a list that contains an instance of this PositiveCheck class. Even though the input -1 met the type

requirement (it is an integer), it failed the validator PositiveCheck() .

Type checking is always performed before validation, so you may assume that the type is "correct" in your validator function definition.

from Dutils.typing import (
 Optional,
 Union,
 Literal,
 List,
 Tuple,
 Set,
 Dict,
 Sequence,
 Iterable,
 Mapping,
 Any,
)

class MyType:
 ...

ListOfAgencies = List[Literal["NASA", "ESA", "JAXA", "Roscosmos"]]

class TypesTest(InputDict):
 a_type: MyType
 b_union: Union[str, bool]
 c_optional: Optional[str]
 d_literal: Literal["foo", True, 42]
 e_list: List[str]
 f_tuple: Tuple[int, ...]
 g_tuple_fixed: Tuple[int, str, float]
 h_set: Set[str]
 i_dict: Dict[str, int]
 j_sequence: Sequence[float]
 k_iterable: Iterable[int]
 l_mapping: Mapping[str, int]
 m_combinations: Union[List[Union[str, float]], Optional[Set[int]]]
 n_alias: ListOfAgencies
 o_any: Any

PYTHON

from DshellCommon.input_dict.input_dict import InputDict
from Dutils.typing.field_check import FieldCheck
from Dutils.typing import Annotated

class PositiveCheck(FieldCheck):

 def check(self, value):
 return 0 < value

PositiveInt = Annotated[int, PositiveCheck()]

class HouseInformation(InputDict):
 number_of_legions: PositiveInt

HouseInformation(number_of_legions = 1000) # ok

HouseInformation(number_of_legions = -1)
TypeError: Value -1 failed check PositiveCheck

PYTHON

from DshellCommon.input_dict.input_dict import InputDict
from Dutils.typing.field_check import FieldCheck

class PositiveCheck(FieldCheck):

 def check(self, value):
 return 0 < value

class LegionCommander(InputDict):
 number_of_legions: int = Dfield(validators=[PositiveCheck()])

LegionCommander(number_of_legions = 42) # ok

LegionCommander(number_of_legions = -1)
RuntimeError: number_of_legions failed field check: Value -1 failed check PositiveCheck

PYTHON

2.2.1.4.4. Unsafe functionality

Validation (and type checking) can be disabled. This is discouraged, as most of the time one can better define the type of a field or its validation function instead of simply turning validation

off. However, for completion purposes, the different ways of disabling validation are explained here.

2.2.1.4.4.1. Class-wide
One can disable validation and type checking for all instances of a class and their sub-classes by providing the keyword arguments type_check and validate on the class signature:

As we can see, setting type_check or validate to "never" will allow you to always bypass these checks both on initialization and when setting attributes. If type_check or validate

are set to ̀ "on_init" , however, then the checks are only performed when the class is constructed, but not when setting attributes. By default, type_check or validate are "always" .

2.2.1.4.4.2. Field-speci�c
If you want to disable type checking for a single field in a class, add type_check=False to Dfield :

If you want to disable validation for a field, then simply avoid providing validators for that field.

2.2.1.4.4.3. Instance-speci�c
If you want to turn off type checks/validation only for one instance, then you can use the unsafe_init and unsafe_set_field to temporarily bypass checks:

2.2.1.5. Parsing functions

All InputDict subclasses provide two convinience functions to parse raw data into an InputDict; parse and parse_file . These parser functions will attempt to convert input data into an

InputDict object. parse will take dictionary whose keys correspond to the fields of the InputDict, or it will take keyword arguments where the keywords are the fields of the InputDict:

from DshellCommon.input_dict.input_dict import InputDict, Dfield, FieldCheck

class PositiveCheck(FieldCheck):
 def check(self, value):
 return 0 < value

class Unsafe(InputDict, type_check="never", validate="never"):
 my_unsafe_int: int = Dfield(validators=[PositiveCheck()])

my_unsafe = Unsafe(my_unsafe_int = "test")
my_unsafe = Unsafe(my_unsafe_int = -42)
my_unsafe.my_unsafe_int = "test"
my_unsafe.my_unsafe_int = -42

class Unsafe(InputDict, type_check="on_init", validate="on_init"):
 my_unsafe_int: int = Dfield(validators=[PositiveCheck()])

my_unsafe = Unsafe(my_unsafe_int = 1)
my_unsafe.my_unsafe_int = "test"
my_unsafe.my_unsafe_int = -42

PYTHON

from DshellCommon.input_dict.input_dict import InputDict, Dfield

class Safe(InputDict):
 my_unsafe_int: int = Dfield(type_check=False)

Safe(my_unsafe_int="test")

PYTHON

from DshellCommon.input_dict.input_dict import InputDict, Dfield, FieldCheck

class PositiveCheck(FieldCheck):
 def check(self, value):
 return 0 < value

class Safe(InputDict):
 my_safe_int: int = Dfield(validators=[PositiveCheck()])

Safe.unsafe_init(bypass_type_check=True, bypass_validate=True, my_safe_int="test")
Safe.unsafe_init(bypass_validate=True, my_safe_int=-4)

my_safe = Safe(my_safe_int=32)
my_safe.unsafe_set_field("my_safe_int", "test", bypass_type_check=True, bypass_validate=True)
my_safe.unsafe_set_field("my_safe_int", -3, bypass_validate=True)

PYTHON

There are two things to mention about the parsing function:

The parsing function will silently attempt to transform the data to fit the given types. The previous example shows three examples of this:

The "major" entry was transformed from an integer 1 to a boolean True .

The "members" entry was transformed from a tuple to a list.

The "choam_shares" was transformed from a float 143.7 to an integer 143 by ignoring the decimals: some information loss is possible.

Strings can be converted to numerics. Moreover, entries with types that accept units will parse the units from the strings:

For single values with units, the notation "[NUMERIC] [UNIT]" can be used.

For arrays with units, the unit must given in the last entry of the array. These are possible notations: [[NUMERIC_1], "[NUMERIC_2][UNIT]"] , ("[NUMERIC_1]", "[NUMERIC_2]

[UNIT]") .

The function parse_file acts similarly to parse . Instead of taking a dictionary or the values, however, it takes the path to a file that contains the data. Internally, it works by loading the

file’s contents to a dictionary and then using the parse function, so both functions should act equivalently:

2.2.1.6. DictLinker

DictLinker, similarly to the older ParamLinker, is capable of autogenerating options for Dclick commands and later building InputDict from user inputs on the Command Line Interface or

through config files.

Note that the generated command will have a rich help message, so you can always do:

to get an idea on how to use the command.

2.2.1.6.1. Single linker

We can create the options for a Dclick command by calling the .cli method on an InputDict class. Then, within the command function definition, we must call

Dclick.add_options(COMMAND_NAME, Dclick.cli.commands[COMMAND_NAME], kwargs) . This will store the values (kwargs) passed to the command COMMAND_NAME at the options

dictionary under the key COMMAND_NAME . Finally, we can construct the InputDict with the class method from_linker . This is best illustrated with an example:

from DshellCommon.input_dict.input_dict import InputDict
from Dutils.typing import List
from Dutils.typing import Annotated
from Dutils.typing.Dtyping import PositiveInt
from Dutils.typing.Dtyping import Time
from Dutils.typing.Dtyping import LengthArray
from Dutils.typing.field_check import SizeCheck

class HouseInformation(InputDict):
major: bool

 members: List[str]
choam_shares: PositiveInt

 years_since_formation: Time
homeworld_position: Annotated[LengthArray, SizeCheck(3)]

unparsed_data = {
 "major": 1,

"members": ("Feyd", "Vladimir"),
 "choam_shares": 143.7,

"years_since_formation": "1000 years",
 "homeworld_position": ["1", "2", "3km"]
}

import pprint
pprint.pprint(HouseInformation.parse(unparsed_data), sort_dicts=False)
HouseInformation({'major': True,
'members': ['Feyd', 'Vladimir'],
'choam_shares': 143,
'years_since_formation': array(1000.) * yr,
'homeworld_position': array([1., 2., 3.]) * km})

PYTHON

unparsed_harkonen_file.yaml
major: 1
members:
 - Feyd

- Vladimir
choam_shares: 143.7
years_since_formation: 1000 years
homeworld_position: [1, 2, 3km]

YAML

import pprint
pprint.pprint(HouseInformation.parse_file("unparsed_harkonen_file.yaml"), sort_dicts=False)
HouseInformation({'major': True,
'members': ['Feyd', 'Vladimir'],
'choam_shares': 143,
'years_since_formation': array(1000.) * yr,
'homeworld_position': array([1., 2., 3.]) * km})

PYTHON

srun my_command --help

2.2.1.6.2. Customizing the behaviour of DictLinker

DictLinker will automatically make several "decisions" when transforming an InputDict to click options. Most of these decisions can be overriden or otherwise altered by passing

arguments to the cli method:

The prefix input allows you to add a prefix to all options for the InputDict

The exclude input is a list of strings that will tell DictLinker to ignore creating options for certain fields. Note that if these fields are required, we will have to input them manually. This

is discussed later in this section.

If remove_defaults is True, then the InputDict defaults are not transformed to click option defaults.

cli_hints is a dictionary that maps field names to objets of the type CliHint (from "DshellCommon.input_dict.dict_linker"). These allow you finer control over each option by using

different keyword arguments (which you can see in DshellCommon/python/input_dict/dict_linker.py). Some useful keywords are:

default used to override the field default with another one.

nargs allows you to define how many arguments this option takes. This is useful for fields that do not prescribe a number of arguments themselves (List[int] takes any number of

arguments, for example), as click needs to know the number of arguments beforehand.

help allows you to customize the help string of the option. By default, this is the description of the field in the InputDict (if available).

Finally, when we call from_linker , we can pass the ext_fields argument. This is a dictionary that allows you to manually add fields that were not specified through the CLI. This is useful

for required fields that were not included as options but that must be provided for InputDict to be created.

Let’s see an example:

from DshellCommon.input_dict.input_dict import InputDict
from Dutils.typing import Annotated
from Dutils.typing.Dtyping import Velocity
from Dutils.typing.Dtyping import LengthArray
from Dutils.typing.field_check import SizeCheck

import Dutils.Dclick as Dclick
import click

class Ornithopter(InputDict):
 max_speed: Velocity
 destination: Annotated[LengthArray, SizeCheck(3)]

class Pilot(InputDict):
 age: int

@Dclick.cli.command()
@click.pass_context
@Ornithopter.cli
@Pilot.cli
def ornithopter(ctx, **kwargs):
 """
 Options to pass to a flying ornithopter assembly.
 """
 Dclick.add_options("ornithopter", Dclick.cli.commands["ornithopter"], kwargs)

This imitates inputing a CLI command in the shape:
srun ornithopter --max-speed 120m/s --destination 1 2 3km --age 32
cfgobj, ctxobj = Dclick.cli([
 "ornithopter",
 "--max-speed", "120m/s",
 "--destination", "1", "2", "3km",
 "--age", "32",
], standalone_mode=False)

Usually, one does not input the command directly, so the following is used:
cfgobj, ctxobj = Dclick.cli(standalone_mode=False)

ornithoper_input_dict = Ornithopter.from_linker(cfgobj["ornithopter"])
pilot_input_dict = Pilot.from_linker(cfgobj["ornithopter"])

import pprint
pprint.pprint(ornithoper_input_dict, sort_dicts = False)
Ornithopter(max_speed=array(120.) * m/s, destination=array([1., 2., 3.]) * km)
pprint.pprint(pilot_input_dict, sort_dicts = False)
Pilot(age=32)

PYTHON

2.2.1.6.3. Using .cli multiple times

Sometimes we want to create multiple InputDict of the same class from different commands. This leads us to use .cli on different commands, possibly with different customizations

(prefix , cli_hints …). Because of this, when we use from_linker , the method does not know which customization options should be used. To solve this, we need to pass the command

from which to we want to create the InputDict to from_linker :

from DshellCommon.input_dict.input_dict import InputDict
from Dutils.typing.Dtyping import Velocity
from Dutils.typing import List
from DshellCommon.input_dict.dict_linker import CliHint

import Dutils.Dclick as Dclick
import click

class Ornithopter(InputDict):
 max_speed: Velocity
 crashes: List[int]

class Pilot(InputDict):
 age: int
 name: str

orni_hints = {
 "max_speed": CliHint(default=100),
 "crashes": CliHint(nargs=2),
}

@Dclick.cli.command()
@click.pass_context
@Ornithopter.cli(cli_hints=orni_hints)
@Pilot.cli(prefix="pilot", exclude=["name"])
def ornithopter(ctx, **kwargs):
 """
 Options to pass to a flying ornithopter assembly.
 """
 Dclick.add_options("ornithopter", Dclick.cli.commands["ornithopter"], kwargs)

This imitates inputing a CLI command in the shape:
srun ornithopter --crashes 3054 3056 --pilot-age 32
cfgobj, ctxobj = Dclick.cli([
 "ornithopter",
 "--crashes", "3054", "3056",
 "--pilot-age", "32",
], standalone_mode=False)

Usually, one does not input the command directly, so the following is used:
cfgobj, ctxobj = Dclick.cli(standalone_mode=False)

external_fields_pilot = {"name": "Duncan"}

ornithoper_input_dict = Ornithopter.from_linker(cfgobj["ornithopter"])
pilot_input_dict = Pilot.from_linker(cfgobj["ornithopter"], ext_fields=external_fields_pilot)

import pprint
pprint.pprint(ornithoper_input_dict, sort_dicts = False)
Ornithopter(max_speed=100.0, crashes=[3054, 3056])
pprint.pprint(pilot_input_dict, sort_dicts = False)
Pilot(age=32, name='Duncan')

PYTHON

In the previous example, we used Ornithopter.cli twice. For the ornithopter command we provided a default max_speed , while for the elite command we did not. Therefore,

max_speed is a required option in the elite command, but it is not for ornithopter . When we build the InputDict with from_linker , we need to specify the command with

command=Dclick.cli.commands[COMMAND_NAME] . Note that this was unnecessary for the Pilot.from_linker method, as only one .cli was ever called.

2.2.1.6.4. Specifying the units of an argument

In the previous examples, we saw how we can specify the units for fields that accept units by adding the corresponding unit symbol in the CLI:

As we can see, for options that take multiple arguments, the units must be specified only on the last argument. Note that there cannot be any separation (spaces) between the numerical

value and the symbol.

An alternative notation is possible:

The two commands above behave equivalently. These styles can be mixed, but not used at the same time for the same option (… --max-speed 120m/s --units-max-speed km/s is illegal,

for example).

2.2.1.6.5. Using con�guration �les

Configuration files can be used to simulate running commands on the CLI. This works as expected with Dclick options generated from InputDict.cli . While CLI will have option names

in the format "--[NAME]-[NAME]", the keys of a config file are in the format "[NAME]_[NAME]". The config file and command:

from DshellCommon.input_dict.input_dict import InputDict
from Dutils.typing.Dtyping import Velocity
from DshellCommon.input_dict.dict_linker import CliHint

import Dutils.Dclick as Dclick
import click

class Ornithopter(InputDict):
 max_speed: Velocity

class Pilot(InputDict):
age: int

orni_hints = {"max_speed": CliHint(default=100)}

@Dclick.cli.command()
@click.pass_context
@Ornithopter.cli(cli_hints=orni_hints)
@Pilot.cli(prefix="pilot")
def ornithopter(ctx, **kwargs):
 """

Options to pass to a flying ornithopter assembly.
 """

Dclick.add_options("ornithopter", Dclick.cli.commands["ornithopter"], kwargs)

@Dclick.cli.command()
@click.pass_context
@Ornithopter.cli
def elite(ctx, **kwargs):

"""
 Options to pass to an elite ornithopter assembly.

"""
 Dclick.add_options("elite", Dclick.cli.commands["elite"], kwargs)

This imitates inputing a CLI command in the shape:
srun ornithopter --pilot-age 32 elite --max-speed 150m/s
cfgobj, ctxobj = Dclick.cli([

"ornithopter",
 "--pilot-age", "32",

"elite",
 "--max-speed", "150m/s",
], standalone_mode=False)

Usually, one does not input the command directly, so the following is used:
cfgobj, ctxobj = Dclick.cli(standalone_mode=False)

ornithoper_input_dict = Ornithopter.from_linker(cfgobj["ornithopter"], command=Dclick.cli.commands["ornithopter"])
pilot_input_dict = Pilot.from_linker(cfgobj["ornithopter"])

elite_orni_input_dict = Ornithopter.from_linker(cfgobj["elite"], command=Dclick.cli.commands["elite"])

import pprint
pprint.pprint(ornithoper_input_dict, sort_dicts = False)
Ornithopter(max_speed=100.0)
pprint.pprint(pilot_input_dict, sort_dicts = False)
Pilot(age=32)
pprint.pprint(elite_orni_input_dict, sort_dicts = False)
Ornithopter(max_speed=array(150.) * m/s)

PYTHON

srun ornithopter --max-speed 120m/s --destination 1 2 3km

srun ornithopter --max-speed 120 --units-max-speed m/s --destination 1 2 3 --units-destination km

are equivalent to:

2.2.1.7. ModelLinker

Models are defined through .mdl files and loaded into DARTs on initialization. These models are identified by a unique name in the format "[MODULE].[MODEL]", for example

"DshellCommonModels.Accelerometer". Each model can define a series of parameters, with unique names, types, descriptions… Creating InputDict classes from these Model definitions is

useful to expose these parameters to users or generate CLI commands.

When transforming Models to InputDict , we can use two functions defined in "DshellCommon.input_dict.model_linker": model_linker_source and model_linker . The first method will

generate the source code of an InputDict equivalent to the model as a string. This means you can write this source on a .py file and it will be loaded as a simple InputDict . This method

is therefore static: once you generate the source code and paste it in a file, changing the Model will not update the InputDict definition, as these are not linked.

The second method, on the other hand, returns the InputDict class directly. This class can be treated as any other type in python: one can construct instances from it, or use it as the parent

class of other InputDict . Because this class is generated on-the-fly when model_linker is called, it will keep itself updated with changes in the models automatically.

Whether you use the source code or evaluated version of the function depends on your preferences. The source code version is clearer, as you can inspect the result and assert that the

translation happened as desired. Moreover, users and IDE will be able to inspect the fields and their types, thus making its usage simpler and safer. However, it will not be updated with

changes in .mdl .

The evaluated version is more opaque, but is the fastest to implement and will keep itself updated. For rapid prototyping of new models, the evaluated version is recommended, while it

might be worth using the source code option for more settled models.

2.2.1.7.1. model_linker_source

The following script will write the source code for an InputDict that represents the fields of "DshellCommonModels.Accelerometer" on a new python file:

Once the my_accel.py file has been created, we can import Accelerometer (the generated class) from it. Then, we can use it as if it were any other InputDict class (because it is):

2.2.1.7.2. model_linker

Its usage is very similar to model_linker_source , except that the return object is the class object directly:

2.2.1.7.3. Customizing the behaviour of DictLinker

Both model_linker_source and model_linker can be called with optional arguments to customize their behaviour:

The prefix input allows you to add a prefix to all fields of the generated InputDict

The exclude input is a list of strings that will tell ModelLinker to ignore creating fields for certain parameters of the Model.

mdl_param_hints is a dictionary that maps param names to objets of the type MdlParamHint (from "DshellCommon.input_dict.model_linker"). These allow you finer control over each

field by using different keyword arguments (which you can see in DshellCommon/python/input_dict/model_linker.py). Some useful keywords are:

default is used to override the param default with another one.

quantity to establish the quantity for a parameter (e.g. "Length").

cfg.yml
ornithopter:
 max_speed: 120 m/s
 destination: [1, 2, 3]
 units_destination: km
 age: 32

YAML

srun --in-cfg cfg.yml ornithopter

srun ornithopter --max-speed 120m/s --destination 1 2 3 --units-destination km --age 32

from DshellCommon.input_dict.model_linker import model_linker_source

acc_class_source, _ = model_linker_source("DshellCommonModels.Accelerometer")

with open("my_accel.py", "w") as f: f.write(acc_class_source)

PYTHON

from my_accel import Accelerometer

accel = Accelerometer(vwn=2.3, vrw=1.2, ...)

class MyExtendedAccelerometer(Accelerometer):
 extra_field: int

extended_accel = MyExtendedAccelerometer(vwn=2.3, vrw=1.2, ..., extra_field=2)

PYTHON

Accelerometer = model_linker("DshellCommonModels.Accelerometer")

accel = Accelerometer(vwn=2.3, vrw=1.2, ...)

class MyExtendedAccelerometer(Accelerometer):
 extra_field: int

extended_accel = MyExtendedAccelerometer(vwn=2.3, vrw=1.2, ..., extra_field=2)

PYTHON

description to provide the description of the field, instead of obtaining it from the Model.

2.2.1.8. DVarInputDict

DVarInputDict is a subclass of InputDict that maintains a DVar branch harmonized with themselves. Changing fields of the DVarInputDict python object will cause changes in the

underlying DVar branch. This makes handling DVar objects simpler, as users only need to worry about the python-side DVarInputDict , which acts very similarly to a regular InputDict .

One can access the DVar branch with .specNode() :

2.2.1.8.1. Using the DVar branch

By default, all DVar branches associated with DVarInputDict objects are stored in the DVarInputDict.common_branch DVar branch. However, if one wants to place this branch at a

different position, one has to use the addSpecNodeTo in DVarInputDict . If one wants to return the branch to the storage DVarInputDict.common_branch , then the detachSpecNode must

be called. To check whether a branch is in use (i.e. it is no longer in DVarInputDict.common_branch) one can use isSpecNodeInUse .

2.2.1.8.2. Copy on get attribute

When we retrieve a mutable attribute (lists, dictionaries…) from a DVarInputDict , this attribute is deep copied before being returned. This means that changes to the returned value will

not affect the DVarInputDict . To update the DVarInputDict , one has to re-set the attribute. This is done so that users cannot modify values of the DVarInputDict without this object

"noticing" and thus updating the DVar branch:

2.2.1.8.3. Fields with units

from DshellCommon.input_dict.dvar_input_dict import DVarInputDict
from Dutils.typing import List
from DVar.DVar_Py import Container

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
dvc = Container()
DVarInputDict.register_dvar_container(dvc)

Declare DVarInputDict exactly the same as an InputDict
class Foo(DVarInputDict):
 foo: int
 baz: List[int]
 bar: str = "test"

foo = Foo(foo=44, baz=[1, 2, 5])

foo.specNode().dumpValues()
.dvarInputDictCommonBranch.Foo_...
{'bar': 'test', 'baz': [1, 2, 5], 'foo': 44}

foo.baz = [1, 9]
foo.specNode().dumpValues()
.dvarInputDictCommonBranch.Foo_...
{'bar': 'test', 'baz': [1, 9], 'foo': 44}

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
DVarInputDict.close_class()

PYTHON

from DshellCommon.input_dict.dvar_input_dict import DVarInputDict
from Dutils.typing import List
from DVar.DVar_Py import Container

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
dvc = Container()
DVarInputDict.register_dvar_container(dvc)

Declare DVarInputDict exactly the same as an InputDict
class Foo(DVarInputDict):
 foo: int
 baz: List[int]
 bar: str = "test"

foo = Foo(foo=44, baz=[1, 2, 5])

Will not do anything to the DVarInputDict
foo.baz.append(999)

print(foo.baz) # [1, 2, 5]
foo.specNode().dumpValues()
.dvarInputDictCommonBranch.Foo_...
{'bar': 'test', 'baz': [1, 2, 5], 'foo': 44}

my_baz = foo.baz
my_baz.append(999)
foo.baz = my_baz

print(foo.baz) # [1, 2, 5, 999]
foo.specNode().dumpValues()
.dvarInputDictCommonBranch.Foo_...
{'bar': 'test', 'baz': [1, 2, 5, 999], 'foo': 44}

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
DVarInputDict.close_class()

PYTHON

Values with units are transformed when they are passed to DVar objects. From the given unit, they are transformed to the system units. Moreover, the unit and quantity attributes are

specified in the DVar leaf:

2.2.1.8.4. DVarInputDict with None, empty list/tuple or deleted attriubte

When a value is set to None or to an empty list or tuple , the DVar branch will not generate a Leaf for that attribute. Similarly, if a field is deleted or if it’s a non-initialized optional field

without default, no Leaf will be generated:

from DshellCommon.input_dict.dvar_input_dict import DVarInputDict
from Dutils.typing.Dtyping import Length
from Dutils.typing.Dtyping import LengthArray
from DVar.DVar_Py import Container
from quantities import km

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
dvc = Container()
DVarInputDict.register_dvar_container(dvc)

Declare DVarInputDict exactly the same as an InputDict
class Foo(DVarInputDict):

tam: Length
 bar: Length

kap: LengthArray

foo = Foo(tam=44, bar=12*km, kap=[1, 2]*km)

print(foo)
Foo(tam=44, bar=array(12.) * km, kap=array([1., 2.]) * km)

foo.specNode().dumpValues()
.dvarInputDictCommonBranch.Foo_...
{'bar': 12000.0, 'kap': [1000.0, 2000.0], 'tam': 44.0}

foo.specNode()["tam"].dump()
name = tam
type = double
...
units = m
quantityType = Length

foo.specNode()["bar"].dump()
name = bar
type = double
...
units = m
quantityType = Length

foo.specNode()["kap"].dump()
name = kap
type = doubleVector
...
units = m
quantityType = Length

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
DVarInputDict.close_class()

PYTHON

from DshellCommon.input_dict.dvar_input_dict import DVarInputDict
from DshellCommon.input_dict.input_dict import Dfield
from Dutils.typing import Optional, List
from DVar.DVar_Py import Container
from quantities import km

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
dvc = Container()
DVarInputDict.register_dvar_container(dvc)

Declare DVarInputDict exactly the same as an InputDict
class Foo(DVarInputDict):
 tam: Optional[int]

bar: List[int]
 baz: int

kal: int = Dfield(required=False)

foo = Foo(tam=None, bar=[], baz=2)

foo.specNode().dumpValues()
.dvarInputDictCommonBranch.Foo_...
{'baz': 2}

del foo["baz"]
foo.specNode().dumpValues()
.dvarInputDictCommonBranch.Foo_...
{}

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
DVarInputDict.close_class()

PYTHON

2.2.1.8.5. Nested DVarInputDict

It is possible for DVarInputDict to contain other DVarInputDict within themselves. This means that a DVarInputDict attribute can be another DVarInputDict , a list of DVarInputDict ,

or a dictionary where the values are DVarInputDict . When this happens, the branch of the contained DVarInputDict will be a child of the branch of the container DVarInputDict :

In the previous example, the spec string ".dvarInputDictCommonBranch.Foo_[].par.child_a" shows that the branch corresponding to the Bar DVarInputDict in foo.par["child_a"] is a

sub-branch of foo’s branch ".dvarInputDictCommonBranch.Foo_[]".

2.2.1.8.6. Exclusivity

A DVarInputDict can only be used within another DVarInputDict when its branch is living in the ".dvarInputDictCommonBranch" branch. This means that, as soon as the underlying

branch is being used elsewhere (such as being part of an assembly DVar tree or already contained withing another DVarInputDict), we cannot make this DVarInputDict a subelement of

another DVarInputDict .

If one wants to move a DVarInputDict object from one DVarInputDict object to another, then the current container DVarInputDict has to stop "containing it":

from DshellCommon.input_dict.dvar_input_dict import DVarInputDict
from Dutils.typing import Dict, List
from DVar.DVar_Py import Container

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
dvc = Container()
DVarInputDict.register_dvar_container(dvc)

class Bar(DVarInputDict):
 name: str

Declare DVarInputDict exactly the same as an InputDict
class Foo(DVarInputDict):
 tam: Bar
 kaz: List[Bar]
 par: Dict[str, Bar]

foo = Foo(
 tam=Bar(name="foo_tam"),
 kaz=[Bar(name="foo_kaz_0"), Bar(name="foo_kaz_1")],
 par={
 "child_a": Bar(name="foo_par_a"),
 "child_b": Bar(name="foo_par_b"),
 })

foo.specNode().dumpValues()
.dvarInputDictCommonBranch.Foo_[]
{'baz': 2}

foo.tam.specNode().dumpValues()
.dvarInputDictCommonBranch.Foo_[].tam
{'name': 'foo_tam'}

foo.kaz[0].specNode().dumpValues()
.dvarInputDictCommonBranch.Foo_[].kaz.0
{'name': 'foo_kaz_0'}

foo.par["child_a"].specNode().dumpValues()
.dvarInputDictCommonBranch.Foo_[].par.child_a
{'name': 'foo_par_a'}

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
DVarInputDict.close_class()

PYTHON

from DshellCommon.input_dict.dvar_input_dict import DVarInputDict
from DVar.DVar_Py import Container

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
dvc = Container()
DVarInputDict.register_dvar_container(dvc)

class Bar(DVarInputDict):
 name: str

class SimpleBarContainer(DVarInputDict):
 my_bar: Bar

cont_1 = SimpleBarContainer(my_bar = Bar(name="my_bar"))

This will cause an error because it would mean that cont_1.my_bar
is stored both in cont_1 and cont_2
cont_2 = SimpleBarContainer(my_bar=cont_1.my_bar)

my_bar = cont_1.my_bar
cont_1.my_bar = Bar(name="other_bar")
cont_2 = SimpleBarContainer(my_bar=my_bar)

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
DVarInputDict.close_class()

PYTHON

In this example, we replaced cont_1.my_bar with a new Bar . This made the old value (stored temporarily in my_bar) independent and thus able again of being a sub-element of a

different DVarInputDict (cont_2).

2.2.1.8.6.1. Updating sub-DVarInputDict
DVarInputDict objects are not deep-copied when an attribute is retrieved from a parent DVarInputDict . This allows modifying nested DVarInputDict in place. Continuing from the

example in "Nested DVarInputDict":

2.2.1.8.7. Words of caution

Users should be careful when storing references of the underlying Leaf and Branch objects in a DVarInputDict . Certain operations can cause these objects to be destroyed and thus

potentially cause segmentation faults:

Users can prevent this from happing by defining the field types so that the "structure" of the DVar never needs to change. Things to avoid to keep the "structure" of a DVar unchangeable:

Fields that accept values that parse into different Leaf objects. If a type is Union[str, int] , then both "foo" and 2 are acceptable but they each require a different kind of DVar Leaf

(StringLeaf , IntLeaf) thus we would need to destroy one to create the other if the input types change.

Fields that accept lists or arrays of different sizes. If the type is List[int] , then both [1, 2] and [1, 2, 3] are valid inputs. However, to accomodate variable-sized lists, we need to

destroy and recreate the Leaf, as DVar Leaf have fixed dimensions.

Dictionaries with arbitrary fields. Changing from {"a": 0, "b": 1} to {"b": 1, "c": 2} would require destroying the Leaf corresponding to "a" and creating a new one in "c".

Finally, note that the harmonization does not (currently) occur both ways: updating DVarInputDict will update the DVar branch, but updating the branch will not update the values stored

in the DVarInputDict . Therefore, users are adviced to not modify the Branch directly to prevent data mismatch.

2.2.1.9. BaseDParam

BaseDParam are a subclass of DVarInputDict that allows setting the source for the value of each field. This source will then be used as the "source" attribute of the corresponding Leaf

and Branch of the DVar tree.

This class provides all the functionality that old-style BaseParam ("DshellCommon.params.BaseParam") did.

The source can be specified class-wide (with the source attribute), or field-specific (with the sources.[FIELD NAME] attribute). Specific sources will take priority over class-wide ones.

Both types of sources can be provided on class initialization through source keyword (a string) or sources (a dict whose keys are field names):

foo.tam.name = "new_foo_tam"
foo.kaz[0].name = "new_foo_kaz_0"
foo.par["child_a"].name = "new_foo_par_a"
foo.specNode().dumpValues()
{'kaz': {'0': {'name': 'new_foo_kaz_0'}, '1': {'name': 'foo_kaz_1'}},
'par': {'child_a': {'name': 'new_foo_par_a'},
'child_b': {'name': 'foo_par_b'}},
'tam': {'name': 'new_foo_tam'}}

This is usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
DVarInputDict.close_class()

PYTHON

from DshellCommon.input_dict.dvar_input_dict import DVarInputDict
from Dutils.typing import Dict
from DVar.DVar_Py import Container

This usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
dvc = Container()
DVarInputDict.register_dvar_container(dvc)

class Foo(DVarInputDict):
 bar: Dict[str, int]

foo = Foo(bar = {"a": 0, "b": 1, "c": 2})

bar_a_leaf = foo.specNode()["bar"]["a"]
print(bar_a_leaf()) # 0

foo.bar = {"b": 1, "c": 2}
Foo_[].bar.a no longer exists, thus the following throws an error
print(bar_a_leaf()) # Segmentation fault

This usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
DVarInputDict.close_class()

PYTHON

2.2.1.9.1. Default sources

You can provide the source for a default value by creating the Sources subclass in your BaseDParam . Note that this subclass must inherit from

DshellCommon.input_dict.base_dparam.Sources . Then, in this class definition, you can specify the default source of any field. You do not need to declare the source of all fields. When the

object is created, if the default value is used, then the default source will also be used. Otherwise, the default source will be ignored:

2.2.2. DAssembly

2.2.2.1. Introduction

Go to Cheatsheet: Transforming old Assembly to DAssembly if you want to translate an existing Assembly . Note that the rest of this wiki is worth reading to gain extra insight.

DAssembly objects are collections of models, signals, bodies, frames… that work together to create some functionality in the simulation. A DAssembly can represent a vehicle, a sensor, a

motor, a planet, a force, and many other possibilities.

from DshellCommon.input_dict.base_dparam import BaseDParam
from DshellCommon.input_dict.dvar_input_dict import DVarInputDict
from DVar.DVar_Py import Container

This usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
dvc = Container()
DVarInputDict.register_dvar_container(dvc)

class Foo(BaseDParam):
 bar: int

baz: int

foo = Foo(source="General source", bar=5, baz=12)
print(foo.specNode()["bar"].getAttribute("source")) # General source
print(foo.specNode()["baz"].getAttribute("source")) # General source

foo.source = "New general source"
print(foo.specNode()["bar"].getAttribute("source")) # New general source
print(foo.specNode()["baz"].getAttribute("source")) # New general source

foo = Foo(sources={"bar": "bar source"}, bar=5, baz=12)
print(foo.specNode()["bar"].getAttribute("source")) # bar source
print(foo.specNode()["baz"].getAttribute("source")) #

foo.source = "General source"
print(foo.specNode()["bar"].getAttribute("source")) # bar source
print(foo.specNode()["baz"].getAttribute("source")) # General source

foo.sources.bar = "new bar source"
print(foo.specNode()["bar"].getAttribute("source")) # new bar source
print(foo.specNode()["baz"].getAttribute("source")) # General source

foo.sources.bar = ""
print(foo.specNode()["bar"].getAttribute("source")) # General source
print(foo.specNode()["baz"].getAttribute("source")) # General source

foo.source = ""
print(foo.specNode()["bar"].getAttribute("source")) #
print(foo.specNode()["baz"].getAttribute("source")) #

This usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
DVarInputDict.close_class()

PYTHON

from DshellCommon.input_dict.base_dparam import BaseDParam
from DshellCommon.input_dict.base_dparam import Sources
from DshellCommon.input_dict.dvar_input_dict import DVarInputDict
from DVar.DVar_Py import Container

This usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
dvc = Container()
DVarInputDict.register_dvar_container(dvc)

class Foo(BaseDParam):
 bar: int = 5

baz: int

class Sources(Sources):
 bar: str = "Default bar source"

foo = Foo(baz=12)
print(foo.specNode()["bar"].getAttribute("source")) # Default bar source
print(foo.specNode()["baz"].getAttribute("source")) #

foo.source = "General source"
print(foo.specNode()["bar"].getAttribute("source")) # Default bar source
print(foo.specNode()["baz"].getAttribute("source")) # General source

foo = Foo(bar=10, baz=12)
print(foo.specNode()["bar"].getAttribute("source")) #
print(foo.specNode()["baz"].getAttribute("source")) #

This usually done by the SimulationExecutive, but it is done here
manually for the purpose of testing and demonstration
DVarInputDict.close_class()

PYTHON

DAssembly are thus high-level objects designed to facilitate simulation-building for users. Developers of DAssembly should think of ways to implement the desired functionality through

lower level objects (models, signals, bodies, frames…). Then, these lower-level objects can be encapsulated within thematic DAssembly classes, which handle the creation and configuration

of these objects.

DAssembly objects usually take user inputs to configure how the lower-level objects are created and configured. For example, a spacecraft DAssembly could take the the mass of the

spacecraft as one of its inputs. By making DAssembly classes customizable, we increase reusability and thus maintainability.

This wiki covers how to define and use DAssembly objects.

2.2.2.2. DAssembly input de�nition

Inputs to DAssembly classes are organized into three "groups": parameter inputs ("params"), configuration inputs ("config"), and context inputs ("context"). There is very little functional

distinction between these groups; whether an input should be a "param" or a "config" is up to the developer.

In general, however, "config" entries are used for inputs that change how or what lower-bodies are built. For example, through a "config" entry we might change the name of a node created

by the DAssembly, or we might register additional frames. "context" entries, on the other hand, are usually related to how the DAssembly relates to other objects in the simulation. For

example, a DAssembly that creates a gravity force on a body might take the object representing this body as a "context" entry. Finally, "param" inputs are used usually used to parametrize

models or models. A DAssembly that creates a PID-controller model might take as input the Kp, Ki, and Kd parameters so that it can use this parameters to configure the PID model.

Every "config", "context", and "param" must have a name and a type. The name is a unique string identifier that should be written in snake_case . The type is represented through a python

type annotation and is enforced at runtime. For example, an input might be given the type List[int] , and thus require that all user inputs for that field be lists of integers. "Extended"

DARTS-flavoured typing is also supported, as described in this wiki (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/core-modules/dshellenv/-/wikis/docFiles/typing). This

means you can set arbitrary constraints for the inputs.

In terms of syntax, this information is written in the form of specially-named inner classes within the DAssembly class. These inner classes must also inherit from a special class, and are as

a consequence a subclass of DVarInputDict . To understand the details of how InputDict and DVarInputDict work, see this wiki

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/wikis/InputDict:-replacement-to-anonymous-dictionaries).

The following example shows how to declare a simple DAssembly class that implements no functionality except accepting user inputs:

In the above snippet we have declared the three inner classes Params , Config , and Context , which inherit from DAssembly.Params , DAssembly.Config , and DAssembly.Context . The

Config and Params classes declare fields, while Context is empty (does not define any fields). Because of this, we can avoid defining the class and the runtime behaviour will be the same:

from DshellCommon.assemblies.DAssembly import DAssembly
from Dutils.typing import Iterable
from Dutils.typing import Mapping
from Dutils.typing.Dtyping import FilePath

class MyDAssembly(DAssembly):

 class Config(DAssembly.Config):
 foo: Iterable[FilePath] = []
 bar: Mapping[str, int] = {}

 config: Config

 class Params(DAssembly.Params):
 distance: Length
 weights: MassArray
 factors: List[RealArray] = []

 params: Params

 class Context(DAssembly.Context):
 ...

 context: Context

 def __init__(
 self,
 parent: Union[DAssembly, AssemblyLegacy],
 name: str,
 config: Optional[Config] = None,
 context: Optional[Context] = None,
 signal_ties: Union[SignalSliceMap, Mapping[str, SignalSlice]] = {},
 params: Optional[Params] = None,
 description: str = "",
 tag: str = "",
):
 super().__init__(parent, name, config, context, signal_ties, params, description, tag)

PYTHON

Also note that we have made the config and context optional and have given them a default value of None` in the init method. The convention dictates that a None value for config

and context shall be equivalent to passing MyDAssembly.Config() or MyDAssembly.Context() . This means that for None to be supported, the Config or Context classes must be

either empty or have only fields that have defaults. If these classes have a required field, and we attempt to create them without providing any information, we will get an error. Because of

this, if Config or Context have at least a required field, then it’s recommended that you do not mark them as optional:

If you are defining a DAssembly that is a subclass of a different DAssembly (e.g. TargetDAssembly inherits from TargetBaseDAssembly), then the inner classes should also inherit from

the superclass inner classes:

The above class MySubDAssembly inherits from MyDAssembly . Similarly, Config inherits from MyDAssembly.Config . Any fields defined in the inner subclass will either override previous

fields (such as the case of bar in the above snippet), or be added (such as the case of extra). MySubDAssembly.Config will therefore have the fields foo , bar , and extra , where bar has

the type and default Mapping[str, float] and {"default": 42.0} . Since we have not defined either Params or Context , then these will be the same as the superclass inner classes

(MyDAssembly.Params , and MyDAssembly.Context).

2.2.2.3. DAssembly functionality methods

Lower-level objects (models, bodies, frames, signals…) are created and configured in the methods addSignals , addPendingTies , addModels , addAssemblies , and setModelBreaks ,

bindParams , bindStates .

The following are descriptions of each method:

from DshellCommon.assemblies.DAssembly import DAssembly
from Dutils.typing import Iterable
from Dutils.typing import Mapping
from Dutils.typing.Dtyping import FilePath

class MyDAssembly(DAssembly):

 class Config(DAssembly.Config):
 foo: Iterable[FilePath] = []
 bar: Mapping[str, int] = {}

 config: Config

 class Params(DAssembly.Params):
 distance: Length
 weights: MassArray
 factors: List[RealArray] = []

 params: Params

 def __init__(
 self,
 parent: Union[DAssembly, AssemblyLegacy],
 name: str,
 config: Optional[Config] = None,
 context: Optional[DAssembly.Context] = None,
 signal_ties: Union[SignalSliceMap, Mapping[str, SignalSlice]] = {},
 params: Optional[Params] = None,
 description: str = "",
 tag: str = "",
):
 super().__init__(parent, name, config, context, signal_ties, params, description, tag)

PYTHON

 def __init__(
 self,
 parent: Union[DAssembly, AssemblyLegacy],
 name: str,
 config: Config,
 context: DAssembly.Context,
 signal_ties: Union[SignalSliceMap, Mapping[str, SignalSlice]] = {},
 params: Optional[Params] = None,
 description: str = "",
 tag: str = "",
):
 super().__init__(parent, name, config, context, signal_ties, params, description, tag)

PYTHON

class MySubDAssembly(MyDAssembly):

 class Config(MyDAssembly.Config):
 bar: Mapping[str, float] = {"default": 42.0}
 extra: int = -1

 config: Config

 def __init__(
 self,
 parent: Union[DAssembly, AssemblyLegacy],
 name: str,
 config: Optional[Config] = None,
 context: Optional[MyDAssembly.Context] = None,
 signal_ties: Union[SignalSliceMap, Mapping[str, SignalSlice]] = {},
 params: Optional[MyDAssembly.Params] = None,
 description: str = "",
 tag: str = "",
):
 super().__init__(parent, name, config, context, signal_ties, params, description, tag)

PYTHON

addSignals :

addPendingTies :

addModels :

addAssemblies :

setModelBreaks :

bindParams :

bindStates :

In the above methods, you will need to access the values of user inputs (config, context, params). To do so, use the attributes config , context , and params . The following snippet shows

three examples of doing this. In the addModels method, we are accessing the values stored in config . In bindParams , the specNode stored in params is used in modelParamSet :

2.2.2.4. Using DAssembly

To instantiate a DAssembly, the input data must be passed through the inner classes:

2.2.2.5. Cheatsheet: Transforming old Assembly to DAssembly

2.2.2.5.1. Basic pointers

Instead of inheriting from Assembly in Dshell.Dshell_Py , inherit from DAssembly in DshellCommon.assemblies.DAssembly

BaseParam classes that are transformed should be named ___DParam (from TargetParam to TargetDParam)

Assembly classes that are transformed should be named ___DAssembly (from TargetAssembly to TargetDAssembly)

If a BaseDParam and DAssembly are closely related, the BaseDParam should live the the DAssembly module (both TargetDParam and TargetDAssembly should live in

TargetDAssembly.py)

There is no need to call .register() for DAssembly

Docstrings are heavily encouraged, both on the DAssembly class and its inner classes.

2.2.2.5.2. Transforming BaseParam classes to BaseDParam

class MyDAssembly(DAssembly):

 class Config(DAssembly.Config):
foo: Iterable[FilePath] = []

 bar: Mapping[str, int] = {}

 config: Config

 class Params(DAssembly.Params):
distance: Length

 weights: MassArray
factors: List[RealArray] = []

params: Params

def __init__(...): ...

def addModels(self):

for file_path in self.config.foo:

 ...

 for bar_k, var_v in self.config.bar.items():
...

def bindParams(self):

self.modelParamSet("MyModel", "Distance", "distance", self.params.specNode())

PYTHON

sim = SimulationExecutiveNdarts(...)

my_assembly = MyDAssembly(
 sim.topAssembly(),

"MyAssemblyName",
 config = MyDAssembly.Config(

bar = {"hello": 42}
),

context = MyDAssembly.Context(), <- This line is not needed, as the default None is equivalent to MyDAssembly.Context()
 params = MyDAssembly.Context(

distance = 12*km,
 weights = [1*kg, 2*gr],

),
)
On creation, the following are called: addSignals, addPendingTies, addModels, addAssemblies, and setModelBreaks.

sim.setupDynSolver() # This calls bindParams for all assemblies
sim.bindState() # This calls bindState for all assemblies
sim.resetState(0.0)
sim.lockObject()

...

sim.close()

PYTHON

DataField objects have been deprecated in favour of the typing system explained in this wiki

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/core-modules/dshellenv/-/wikis/docFiles/typing). BaseParam classes now inherit from BaseDParam , which are

InputDict and thus follow their syntax (see the InputDict wiki here

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/wikis/InputDict:-replacement-to-anonymous-dictionaries)).

To convert existing BaseParam classes to the new format (for example TargetParam which lives in DshellCommon.params.TargetParam), use the param-conv.py script:

This will store the generated class source code in TargetDParam.py . Note that if the class you tranform inherits from a different Param class, then you will also have to transform the super

class.

The transformation will change all field names to snake_case format and will make all nonrequired fields without default Optional type with default value None . This transformation is

not complete: it merely adapts the DataField`s. Other functionality (such as custom ̀ init behaviour) must be implemented by hand (for example, by implementing the

pre_type_check abstract function).

2.2.2.5.3. Transforming param �eld declarations:

to

In the code above:

Instead of using the class variables _param_types , _requiredParamFields , _optionalParamFields , we define the inner class Params which inherits from the super class

(DAssembly) inner class (DAssembly.Params).

The field names are written (in snake_case) within the inner class in the format: "name: type".

Types are defined through the typing system (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/core-modules/dshellenv/-/wikis/docFiles/typing). In the old system, if

TARGET took a dictionary of TargetParam (for example: {"Earth": earthTarget, "Mars": marsTarget}), then the type was simply TargetParam . Now, the fact that a dictionary can

be accepted must be made explicit: Mapping[str, TargetDParam] (Mapping means anything dict-like).

Default values can be given with the notation "name: type = default". For example, target was given the default {} (which will be deepcopied when used). A field will be considered

required if it doesn’t have a default value.

The description for each field can be provided through the docstring in the format shown above.

2.2.2.5.4. Transforming con�g and context �eld declarations

to

srun param-conv.py TargetParam --class-module DshellCommon.params.TargetParam > TargetDParam.py

GRAVITY = "Gravity"
TARGET = "Target"

class GravityAssembly(Assembly):
 _param_types = {
 GRAVITY: GravityParam,
 TARGET: TargetParam,
 }
 _requiredParamFields = Assembly._requiredParamFields + [GRAVITY,]
 _optionalParamFields = Assembly._optionalParamFields + [TARGET,]

PYTHON

from Dutils.typing import Mapping

class GravityDAssembly(DAssembly):

 class Params(DAssembly.Params):
 """
 Parameters

 gravity: GravityDParam
 Description for the gravity parameter
 target: Mapping[str, TargetDParam]
 Descriptions can be
 multi-line

 and even have double line-breaks
 """
 gravity: GravityDParam
 target: Mapping[str, TargetDParam] = {}

 params: Params

PYTHON

SPICE_KERNELS = "spiceKernels"

class GravityAssembly(Assembly):

 _requiredConfigFields = Assembly._requiredConfigFields + []
 _optionalConfigFields = Assembly._optionalConfigFields + [SPICE_KERNELS]

 _requiredContextFields = Assembly._requiredContextFields + []
 _optionalContextFields = Assembly._optionalContextFields + []

PYTHON

We see:

Config and context fields are defined the same as params fields: through inner classes (Config and Context)

The types need not be BaseDParam : they can be arbitrarily complex types (as defined in the typing wiki

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/core-modules/dshellenv/-/wikis/docFiles/typing)). For example, the spice_kernels fields accepts either a single file

path (a string that points to a valid file), or a list of file paths.

If you don’t need to declare extra fields with respect to the super class, you do not need to specify the class (above, Context is not defined, which is interpreted as "use the superclass'

Context`""). This is true for ̀ Params , Config , and Context . Note that DAssembly.Params , DAssembly.Config , and DAssembly.Context don’t have any field.

2.2.2.5.5. Constructor

The constructor should always be defiend and type-hinted:

If Config or Context are empty or only have optional fields, these can be set to None and will be transformed to _DAssembly.Config() or _DAssembly.Context() :

2.2.2.5.6. Accessing data in params, con�g, or context

While most methods remains the same in the DAssembly class w.r.t Assembly , accesing the input data is done differently. Key aspects:

Instead of asm.paramObj("the_key") do asm.params.the_key .

asm.getConfigValue("the_key") and asm.getContextValue("the_key") are discouraged and should be replaced by asm.config.the_key , asm.context.the_key .

Doing asm.params() no longer returns the params DVar branch. Instead, do asm.params.specNode() or asm.paramsSpecNode() . Similarly, doing asm.config.specNode() ,

asm.configSpecNode() , asm.context.specNode() , or asm.contextSpecNode() is supported.

asm.config() and asm.context() are not supported, do asm.config or asm.context .

By default, all params , config , and context objects are read-only. If you need to modify them within the DAssembly class, do asm.params.unsafe_set_field("the_key",

the_value, bypass_read_only=True) (in this example params can be replaced with config or context).

The values within BaseDParam classes should be accessed as attributes: asm.params.gravity.apply_torque is prefered over asm.params.gravity["apply_torque"] .

from Dutils.typing import Union, List
from Dutils.typing.Dtyping import FilePath

class GravityDAssembly(DAssembly):

 class Config(DAssembly.Config):
 """
 Parameters

 spice_kernels: Union[FilePath, List[FilePath]]
 Description for the spice_kernels config
 """
 spice_kernels: Union[FilePath, List[FilePath]] = []

 config: Config

 # Context need not be defined, as we don't need to add any field

PYTHON

from Dutils.typing import Union
from Dutils.typing import Mapping
from Dutils.typing import Optional
from Dshell.Dshell_Py import SignalSlice, SignalSliceMap
from DshellCommon.assemblies.DAssembly import DAssembly
from DshellCommon.assemblies.AssemblyLegacy import AssemblyLegacy

class GravityDAssembly(DAssembly):

 ...

 def __init__(
 self,
 parent: Union[DAssembly, AssemblyLegacy],
 name: str,
 config: "GravityDAssembly.Config",
 context: "GravityDAssembly.Context",
 signal_ties: Union[SignalSliceMap, Mapping[str, SignalSlice]] = {},
 params: Optional["GravityDAssembly.Params"] = None,
 description: str = "",
 tag: str = "",
):
 super().__init__(parent, name, ...)

PYTHON

 def __init__(
 self,
 parent: Union[DAssembly, AssemblyLegacy],
 name: str,
 config: Optional["GravityDAssembly.Config"] = None,
 context: Optional["GravityDAssembly.Context"] = None,
 signal_ties: Union[SignalSliceMap, Mapping[str, SignalSlice]] = {},
 params: Optional["GravityDAssembly.Params"] = None,
 description: str = "",
 tag: str = "",
):
 super().__init__(parent, name, ...)

PYTHON

2.2.2.5.7. Constructing a DAssembly object

You must use the inner classes for the config , context , and params :

2.2.2.5.8. Parameters, con�g, and context that are used in multiple assemblies

In certain cases, especially in vehicle assemblies, parameters may be passed from a parent to a child. In this case, one must remember to detach the specNode from the parent class before

it is passed to the child class. Otherwise, they will end up with errors like the following:

Here is a simple, standalone example where this is done incorrectly:

To fix it, simply add a call to detachSpecNode() on the parameter being passed from Asm1 to Asm2 , like this:

asm = GravityDAssembly(
sim.topAssembly(),

 "MyGravity",
config = GravityDAssembly.Config(spice_kernels = ["home/..."]),

 params = GravityDAssembly.Params(
gravity = GravityDParam(apply_torque=True, ...),

 target = {
"Earth": TargetDParam(mass=42 * kg, ...),

 "Mars": TargetDParam(mass=24 * kg, ...),
}

),
)

PYTHON

ValueError: Cannot create Branch from DVarInputDict asm2_param(v=3) because that DVarInputDict's
specNode is already present in another branch (current spec: .Dshell.Assemblies.asm1.param.p2.p1.
This might be because it is already nested (used) within another DVarInputDict. If so, Remove
this DVarInputDict from the other DVarInputDict before proceeding.

from DshellCommon.assemblies.DAssembly import DAssembly
from DshellCommon.input_dict.base_dparam import BaseDParam
from Dutils.typing import Dict
from DshellCommon.SimulationExecutiveNdarts import SimulationExecutiveNdarts

class asm2_param(BaseDParam):
v : int

class Asm2(DAssembly):
 class Params(DAssembly.Params):

p2 : asm2_param

class Asm1(DAssembly):
 class Params(DAssembly.Params):

p2 : Dict[str, asm2_param]
 params : Params

 def addAssemblies(self):

 for k,p in self.params.p2.items():
Asm2(self, k, params=Asm2.Params(p2=p))

 super().addAssemblies()

sim = SimulationExecutiveNdarts()
p1 = asm2_param(v=3)
p2 = asm2_param(v=4)
params = Asm1.Params(p2={"p1":p1, "p2":p2})
asm = sim.topAssembly()

my_asm = Asm1(asm, "asm1", params=params)

PYTHON

Here (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/38) is the issue where these examples were pulled from.

2.2.2.5.9. Examples

The following classes have an Assembly and DAssembly version: TargetBaseDAssembly , TargetDAssembly , TargetBallDAssembly , TargetSpiceDAssembly ,

TargetSpiceFrameDAssembly , GravityBaseDAssembly (in GravityModels), NBodyGravityDAssembly (in GravityModels).

The following tests illustrate usage:

DshellCommon/test/test_Ndarts/test_TargetSpiceDAssembly

DshellCommon/test/test_Ndarts/test_TargetDAssemblies

GravityModels/test/test_NBodyGravityDAssembly

AeroModels/test/test_AeroCmSensor_DAssembly

2.2.2.5.10. Gotchas

Errors regarding passing non-pickleable values from config , context , or params are typically due to making calls to them in the assembly class like self.config().my_value rather

than self.config.my_value . Calling self.config() rather than self.config attempts to make a copy of the config class via deepcopy , and, if values stored in it are not pickleable, then

an error is thrown.

Errors with text such as Cannot create Branch from DVarInputDict are typically due to sharing DVarInputDict`s, i.e., sharing ̀ param`s, ̀ config`s, or ̀ context`s across

assemblies without calling the ̀ detachSpecNode method. See above for more details.

2.3. Usage

2.3.1. Module Usage

2.3.1.1. Parameters

2.3.1.1.1. modelLinker

modelLinker is a static method of the BaseParam class that helps automatically populate data fields in a parameter class using the parameter data in a given model class. The model class

is specified via a string as the first argument to the method.

The data fields names in the parameter class will have the same names as the parameter names in the model class, plus an optional prefix (default is blank) prepended to the beginning of

each name that is specified via a keyword argument to modelLinker. The remaining keyword arguments of modelLinker are:

exclude - Any model parameter whose name matches an element in this list (of type string) will be skipped.

mdl_hints - This dictionary is used to add to /overwrite the information included from the model. The keys of this dictionary are strings that match the names of the parameters in the

model, and the values are dictionaries whose key/value pairs specify the data to be added / overwritten.

from DshellCommon.assemblies.DAssembly import DAssembly
from DshellCommon.input_dict.base_dparam import BaseDParam
from Dutils.typing import Dict
from DshellCommon.SimulationExecutiveNdarts import SimulationExecutiveNdarts

class asm2_param(BaseDParam):
 v : int

class Asm2(DAssembly):
 class Params(DAssembly.Params):
 p : asm2_param

class Asm1(DAssembly):
 class Params(DAssembly.Params):
 p : Dict[str, asm2_param]
 params : Params

 def addAssemblies(self):

 for k,p in self.params.p.items():
 p.detachSpecNode()
 Asm2(self, k, params=Asm2.Params(p=p))
 super().addAssemblies()

sim = SimulationExecutiveNdarts()
p1 = asm2_param(v=3)
p2 = asm2_param(v=4)
params = Asm1.Params(p={"asm2_a":p1, "asm2_b":p2})
asm = sim.topAssembly()

asm1 = Asm1(asm, "asm1", params=params)
asm2_a = asm1.assemblyList()[0]
asm2_b = asm1.assemblyList()[1]

Modify the param via the asm1 specNode
asm1.specNode()["asm2_a"]["param"]["p"]["v"](5)

Modify a param via the Python interface
asm1.params.p["asm2_b"].v = 6

Print out the final results in the specNode
print(asm1.specNode()())

PYTHON

modelLinker returns a dictionary whose keys are the data field names and whose values are the data field classes. This dictionary’s values are meant to be added directly to the parameter

list of the parameter class being created. The examples that follow elaborate.

Example Suppose we wanted to create a control parameter that includes a frequency parameter and all the parameters of the GeneralModels.SinglePID model except the maxOutput

parameter. Moreover, we want to add/modify the information coming from the model so that the defaults for the proportional, derivative, and integral gains are 1.0. This can be

accomplished as follows:

The mdl_hints keyword was used here to add/modify the default value of the proportional, derivative, and integral gains. Furthermore, the exclude keyword was used to skip the

maxOutput parameter of GeneralModels.SinglePID . As specified earlier, modelLinker outputs a dictionary; hence, the ** Python operator was used to unpack this dictionary into the

_params dictionary.

The full version of this example and other examples of modelLinker can be found in the DshellCommon module under test/test_basic/test_model_linker . In addition, this team talk

(https://dartslab.jpl.nasa.gov/technotes/Talks/2021-11-4-leake-param-linker.mp4) discusses modelLinker and how to use it.

modelLinker automatically sets a dictionary as the mldSource variable of the associated data fields of the parameter class that can be used to set model parameters at run time. For

example,

would set the model parameters of a GeneralModels.SinglePID model (called pidModel in this example) using a ControlParam instance (called controlParamObj in this example). Again,

the exclude keyword can be used to indicate model parameters that are excluded from the parameter class. It is important that anything excluded when calling modelLinker be included

in the exclude list when calling setModelLinkerParams as setModelLinkerParams checks that all model parameters except those in the exclude list have been set. If this is not the case,

then setModelLinkerParams will throw an error. For a similar example written out in full, see test/test_basic/test_model_linker/setParams .

2.3.1.1.2. ParamLinker

ParamLinker is a class in the BaseParam module. In addition, the BaseParam class (and all derived classes) provide methods that create and utilize the ParamLinker class. The latter is the

more common way to use ParamLinker .

ParamLinker is designed to help automatically populate the options of a click command (i.e., it is designed to be used with Dclic) using the data fields in a parameter class. In addition,

ParamLinker is used to create instances of parameter classes given the corresponding sections of the Dclick options dictionary. ParamLinker is typically utilized via the cli and

createParam methods of any parameter class derived from the BaseParam class.

cli is a decorator that decorates the corresponding function with click options that correspond to the data fields of the associated class. The keywords of this class are similar to

modelLinker :

prefix - Used to prepend a prefix to the names of the click options.

exclude - Any parameter whose name matches an element in this list (of type string) will be skipped.

mdl_hints - This dictionary is used to add to /overwrite the information included from the model. The keys of this dictionary are strings that match the names of the parameters in the

model, and the values are dictionaries whose key/value pairs specify the data to be added / overwritten.

remove_defaults - This boolearn is used to remove all defaults from the options added to the click command.

Example Suppose we wanted to create a Dclick control command using the parameter class that we generated in the modelLinker example. Moreover, suppose we want to add an

additional option called --is-enabled :

Here, the cli method of the ControlParam parameter class was used automatically populate the Dclick command control with options that correspond to the data fields of the

ControlParam class.

Suppose later on we want to take the Dclick options dictionary, let’s call it cfgobj , and use it to create an instance of ControlParam . This can be done using the createParam method like

so:

"mdl_hints" are used to add information or modify existing information
mdlParamData = {"kp": {"default_value": 1.0}, "kd": {"default_value": 1.0}, "ki": {"default_value": 1.0}}

Exclude is used to exclude information from modelLinker
exclude = ["maxOutput"]

class ControlParam(BaseParam):
 _params = {
 "frequency" : FloatDataField(default_value=100, description="Controller frequency [Hz]"),
 **BaseParam.modelLinker("GeneralModels.SinglePID", exclude=exclude, mdlParamData=mdlParamData)
 }

PYTHON

exclude = ["maxOutput"]
pidModel.setModelLinkerParams(controlParamObj, exclude=exclude)

PYTHON

@Dclick.cli.command()
@click.pass_context
@click.option("--is-enabled", type=bool, default=True, show_default=True, help="Enable accelerometer assembly.")
@ControlParam.cli()
def control(ctx, **kwargs):
 """
 Options to pass to the control assembly.
 """

 Dclick.add_options("control", Dclick.cli.commands["control"], kwargs)
 }

PYTHON

The full version of this example can be found in and other examples of ParamLinker can be found in DshellCommon module under test/test_basic/test_model_linker . Other

examples of ParamLinker can be found in the DshellCommon module under test/test_basic/test_param_linker . In addition, this team talk

(https://dartslab.jpl.nasa.gov/technotes/Talks/2021-11-4-leake-param-linker.mp4) discusses ParamLinker and how to use it.

2.3.1.1.2.1. Unit speci�cation
If a parameter class has a data field with a quantity, then the option --param-units will automatically be added the associated Dclick options. The --param-units option is a multi-option,

meaning it can be specified more than once, and it takes in two strings. The first of these strings specifies the data field for which units are being specified, and the second string is the units.

For example, to set the units of the data field radius to feet, one would use --param-units radius ft . Since --param-units stores all values passed to it, if a value is specified more than

once, e.g., radius is specified in meters in a configuration file and then in feet on the command line, the most recent version will be used.

Note that whenever a --param-units value is specified, the value of that parameter must be specified in the same place as well. For example, you cannot specify the --param-units for

radius in a config file, without also specifying the value for radius in the same config file. The reason it is implemented this way is to avoid accidental unit conversions by the user. For

example, if raidus had a default value of 2 , and that default value is supposed to be in meters, and the user specified the --param-units for raidus to be ft in a config file with no

associated value, then the sim will get a value of 2 feet, which is likely incorrect. Thus, users must specify a value for the parameter they are specifying --param-units for in the same place

they specify --param-units . However, if units are specified along with a value, that value can be changed downstream without having to specify units again. For example, suppose we

again specify that radius should have units of ft in a config file, and we set the value of radius to be 1 in that config file. Then, later on in the CLI we specify that radius has value 2 ,

without giving any specification for the units. This will not throw any errors, and the value passed from Dclick to the sim will be 2 ft , i.e., using the units specified in the config file.

During the createParam call, any units specified via the --param-units option are applied to the associated data fields.

A full team talk on this topic can be found here (https://dartslab.jpl.nasa.gov/technotes/Talks/2022-04-21-sprint-param-units.mp4).

2.4. Software

2.5. Raw documentation

 TBD: Need scrubbing before integration.

2.5.1. DshellCommon: Add an optional reference frame path/uuid �eld to NodeParam class

TBD: Needs scrubbing. Notes brought over from issue (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/7)

.

Currently, the NodeParam class is used to specify the pose of a body node wrt its parent body frame. However, there are times when we need to specify the pose in a different frame (eg. for

sensors). This has come up for teh CADRE project where they would like to specify frame poses wrt designated frames independent of our body frames. Having to compute the actual body

relative pose and pass it in can be ugly.

When this is desired, one way to solve this is to pass in information about the reference frame (eg.via a frame uuid, or a string path) that the class can use to look up the reference frame.

This can be used to internally compute the actual body relative pose to set the body2node transform for the node.

Since the reference frame is expected to be set by the external user, using a string identifier such as the frame name may be preferable over having to specify its uuid . However, the frame

name itself may not be unique, so we may need to use something a like an abbreviated path such as A.B.C where A , B etc are frame names used to narrow down the context for

finding the frame. For instance the chassis frame on rvr3 may be specified via rvr3.chassis etc to avoid conflict with the chassis frames on other vehicles.

2.5.2. DshellCommon: Create MarsAssembly etc assemblies speci�c to known planetary bodies

TBD: Needs scrubbing. Notes brought over from issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/2#note_7093).

Key design elements of the proposed implementation for this are:

All python modules will live in DshellCommon/python/assemblies/known_targets

Two abstract classes are created: KnownTargetAssembly (subclass of TargetSpiceAssembly) and KnownTargetParams (subclass of TargetSpiceParam). They declare class attributes that

are to be defined by subclasses.

For each target, subclasses of KnownTargetAssembly and KnownTargetParams should be declared (e.g. MarsTargetAssembly and MarsTargetParams).

KnownTargetParams implements init_subclass . This method parses the class attributes and changes the defaults of the data fields contained in KnownTargetParams. This way,

instantiating an instance of a subclass of KnownTargetParams without any input will have enough default information to be a complete TargetSpiceParam (while also allowing for

default overriding).

KnownTargetParams also implements init , which adds the source of the default values.

KnownTargetAssembly marks the TARGET param as optional (it is required in TargetSpiceAssembly). The init method is implemented to pass a default instance of the appropriate

KnownTargetParams to TargetSpiceAssembly.init in case none is provided by the user.

KnownTargetAssembly.init also adds a default KnownTopoConfig to the config if this is available for that known target.

All implemented targets provide basic information (mass, mu, radius…). Depending on the availability of data, some also provide spherical harmonics coefficients and known topos.

DshellCommon/doc/source/guide/targets.rst has been updated to reflect the existence of these KnownTargetAssembly.

This is an example of the declaration of Mars-specific classes, which would live in a single module MarsTargetAssembly.py :

controlParamObj = ControlParam.createParam(cfgobj["control"])
PYTHON

To instantiate the target assembly (with all default params and config), the user would simply use:

Alternatively, if they want to override one parameter (but keep the rest of the defaults), they may:

or override the default topos:

The following known targets are available:

CallistoTargetAssembly

DeimosTargetAssembly

EarthTargetAssembly (KnownTopos ID: EarthWGS84, Spherical Harmonics: GGM03C)

EnceladusTargetAssembly (KnownTopos ID: SphericalEnceladus)

EuropaTargetAssembly (KnownTopos ID: SphericalEuropa)

GanymedeTargetAssembly

IoTargetAssembly

JupiterTargetAssembly (KnownTopos ID: Jupiter, Spherical Harmonics: jupiter)

MarsTargetAssembly (KnownTopos ID: SphericalMars, Spherical Harmonics: MRO120F)

MercuryTargetAssembly (Spherical Harmonics: MESS160A)

MoonTargetAssembly (KnownTopos ID: SphericalMoon, Spherical Harmonics: GL0900D)

NeptuneTargetAssembly (KnownTopos ID: Neptune, Spherical Harmonics: neptune)

PhobosTargetAssembly (KnownTopos ID: SphericalPhobos)

PlutoTargetAssembly

SaturnTargetAssembly (Spherical Harmonics: saturn)

SunTargetAssembly (KnownTopos ID: SphericalSun)

TitanTargetAssembly (KnownTopos ID: Titan)

class MarsTargetParam(KnownTargetParam):

 _default_params = {
 NAME: "Mars",
 MU: MARS_MU_DEFAULT,
 MASS: 0.64169e24 *kg,
 ROTATION_RATE: (2*pi *rad) / (24.6229 *hr),
 RADIUS_EQUATOR: 3396.2 *km,
 RADIUS_POLE: 3376.2 *km,
 SPH_HARM_FILE: os.path.join(os.environ["YAM_ROOT"], "etc", "GravityModelData", "MRO", "MRO120F.tab"),
 BODY_ID: 499,
 }

 _default_params_source = {
 MU: MARS_MU_DEFAULT_SOURCE,
 MASS: 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html',
 ROTATION_RATE: 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html',
 RADIUS_EQUATOR: 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html',
 RADIUS_POLE: 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html',
 SPH_HARM_FILE: '''Konopliv, A. S., Park, R. S., Rivoldini, A., Baland, R. M., Le Maistre, S., Van Hoolst, T., ... & Dehant, V. (2020). Detection of the Chandler wobble of
Mars from orbiting spacecraft. Geophysical Research Letters, 47(21), e2020GL090568.''',
 BODY_ID: "https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/naif_ids.html",
 }

class MarsTargetAssembly(KnownTargetAssembly):

 _param_types = {
 **KnownTargetAssembly._param_types,
 TARGET: MarsTargetParam,
 }

 _default_topos_config = "SphericalMars"

mars = MarsTargetAssembly(sim, params={EPOCH: epoch})

mars = MarsTargetAssembly(
 sim,
 params={
 TARGET: MarsTargetParam(mu=42)
 EPOCH: epoch
 })

mars = MarsTargetAssembly(
 sim,
 params={EPOCH: epoch},
 config={TOPOS : {"zero" : TopoAnalyticDemConfig(topo="zero")}}
)

UranusTargetAssembly (Spherical Harmonics: uranus)

VenusTargetAssembly (KnownTopos ID: Venus, Spherical Harmonics: MGNP180U)

2.5.3. DshellCommon: New Object-Oriented way to handle Assemblies (design requirements)

TBD: Needs scrubbing. Notes brought over from issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/19).

Design notes for the creation of the InputDict and DAssembly classes.

Currently, instantiating new assemblies is a slow, error-prone job when you are not familiar with their format and required inputs.

The IDE cannot give any hints with respect to the inputs, as all Assembly constructors have the same signature.

Information about how to create/use these assemblies is spread over video tutorials, notebooks, tests, docs, gitlab issues and wikis, Q&As, or the source code. Having to navigate so many

resources is slow.

Current approach is data-oriented (dicts within dicts within dicts full of “magic strings”), which is anti-pythonic and it is easy to make mistakes (easy to misspell something or forget a

parameter)

Sometimes, when creating two different assemblies, the same information needs to be input twice, which leads to errors / inconsistencies / longer syntax.

The use of Param classes was a step in the direction of using objects instead of anonymous dictionaries, while still retaining backward compatibility. These classes should serve as

inspiration for further steps in this direction.

Requirements for solutions:

The IDE should show as much information as possible

Methods must be type-hinted (see (https://docs.python.org/3/library/typing.html))

Method arguments shall be explicitly defined. Whenever possible, avoid the use of dictionaries to group inputs and *arg and **kwarg arguments.

Methods should be mostly self-documenting through docstrings and type-hints.

Avoid making the user input the same information twice

Completely (runtime) backward compatible. It is acceptable (even desirable) for the IDE to highlight any old syntax as "incorrect", but at runtime old code must work as expected.

TODO: attach link(s) to presentation(s) on this issue

2.5.3.1. Assembly constructors

Assembly constructors should be one of the main objectives of this refactor. Currently, all Assembly constructors take the shape:

The relevant information is hidden within the dictionaries config , context , and params . By simple inspection, it is not possible to determine the required content of each of these

dictionaries. Moreover, IDEs will not be able to show any useful information.

2.5.3.1.1. Constructors follow up

This comment aims to introduce a way to instantiate Assembly that allows us to retain the current structure for the init , yet enhances it so that it is clearer through type hints and

docstrings. This solution is fully backward compatible.

Each Assembly subclass would include three inner classes: Config , Context , and Params . These classes would declare the content (and its type) of each of the corresponding dictionaries.

These inner classes are python dataclass es (see python docs (https://docs.python.org/3/library/dataclasses.html#module-dataclasses)) for ease of declaration. These classes can then be transformed

into current-style dictionaries, so that the constructor can treat them as they did before.

The following implementation shows only a Config implementation, but the other two dictionaries would be equivalent:

def __init__(
 self,
 parent_asm,
 name,
 config,
 context,
 signal_ties=None,
 params=None,
 description="",
 tag="",
):
 """ Initializer """

The dummy class TargetAssembly declares the inner dataclass Config . This class can have a docstring as detailed as desirable so that the use of every field is clear to any user. The fields

of this Config (topo , foo , mass) are declared below, along with their types.

Optional fields (mass) are differentiated from required fields (topo , foo) because optional fields indicate the default value = None . When the object is transformed into a dictionary, any

entries with a value equal to None are removed from the dictionary. This is done in line with current behavior, which identifies whether or not a user specified a field by determining if the

relevant key is present in the dictionary.

In the constructor of the assembly, we see that config takes either a dict[str, Any] (in line with current behavior) or an object of type Config . However, if a Config object is passed,

the initializer will quickly convert it to its equivalent dictionary with the Assembly.dataclass_to_dict function.

Using a regular dictionary or a Config object should render exactly the same behavior:

However, using the Object-Oriented syntax would create more helpful IDE messages: config_init

con�g_init_ide_error

con�g_init_ide_missing

And even fail at runtime if not all required inputs are given:

2.5.3.1.2. Con�g, context, params

from dataclasses import dataclass, asdict
from typing import List, Union, Optional, Any

class Assembly:
 """Dummy Assembly class"""

 @staticmethod
def dataclass_to_dict(dataclass) -> dict[str, Any]:

 dict_ = asdict(dataclass)

 # None values are removed from the dictionary
for key in list(dict_.keys()):

 if dict_[key] is None:
dict_.pop(key)

return dict_

class TargetAssembly(Assembly):

@dataclass
 class Config:

"""Config of the TargetAssembly class.

Parameters

topo: str
 A test string argument

foo: List[int]
 A test list of int argument

mass: Optional[float]
 A test optional float argument

"""
 topo: str

foo: List[int]
 mass: Optional[float] = None

def __init__(

 self,
config: Union[Config, dict[str, Any]],

) -> None:
Config objects are turned to dicitonaries -> backward compatibility

 if isinstance(config, type(self).Config):
config = type(self).dataclass_to_dict(config)

self.config = config

OO_style_target = TargetAssembly(
 config = TargetAssembly.Config(

topo = "test",
 foo= [1,2]

)
)

Data_style_target = TargetAssembly(
config = {

 "topo": "test",
"foo": [1,2]

 }
)

assert OO_style_target.config == Data_style_target.config

TargetAssembly.Config(topo = "test")
TypeError: __init__() missing 1 required positional argument: 'foo'

The new Config , Context , and Param classes could be leveraged to automate the declaration of the required and optional config, context, and param. To do so, the parent Assembly class

should implement the init_subclass method. Modify the previous code to include the following:

With this addition, all subclasses of Assembly would automatically populate the _requiredConfigFields , _optionalConfigFields , and _config_type class attributes:

2.5.3.1.3. More on Con�g, Context inheritance

Config , Context , and Params objects may inherit from the equivalent parent class' objects.

For example, the subclass TargetSpiceAssembly of TargetAssembly , could be written as:

and then instantiated as:

from dataclasses import dataclass, asdict, fields, MISSING
from typing import List, Union, Optional, Any

class Assembly:

 _requiredConfigFields = []
 _optionalConfigFields = []

 _config_type = {}

 def __init_subclass__(cls) -> None:

 for input_dict in ("Config",):

 if not hasattr(cls, input_dict):
 continue

 for field in fields(getattr(cls, input_dict)):

 if field.default is MISSING and field.default_factory is MISSING:
 cls._optionalConfigFields.append(field.name)
 else:
 cls._requiredConfigFields.append(field.name)

 # Retrieve original type from Optionals
 # Optional[float] -> float
 if (
 hasattr(field.type, "__origin__")
 and hasattr(field.type, "__args__")
 and field.type.__origin__ is Union
 and len(field.type.__args__) == 2
 and type(None) in field.type.__args__
):
 typ = list(field.type.__args__)
 typ.remove(type(None))
 cls._config_type[field.name] = typ[0]
 else:
 cls._config_type[field.name] = field.type

>>> print(TargetAssembly._requiredConfigFields)
['mass', 'foo']
>>> print(TargetAssembly._optionalConfigFields)
['topo']
>>> print(TargetAssembly._config_type)
{'topo': <class 'str'>, 'mass': <class 'float'>, 'foo': typing.List[int]}

class TargetSpiceAssembly(TargetAssembly):

 @dataclass
 class Config(TargetAssembly.Config):
 """
 ...
 """
 bodyID: Optional[int] = None

 def __init__(
 self,
 config: Union[Config, dict[str, Any]],
) -> None:
 TargetAssembly.__init__(self, config)

>>> OO_style_target = TargetSpiceAssembly(
... config = TargetSpiceAssembly.Config(
... topo = "test",
... foo= [1,2],
... bodyID= 500
...)
...)

>>> print(OO_style_target.config)
{'topo': 'test', 'foo': [1, 2], 'bodyID': 500}

>>> print(TargetSpiceAssembly._config_type)
{'topo': <class 'str'>, 'foo': typing.List[int], 'mass': <class 'float'>, 'bodyID': <class 'int'>}

However, a major problem is that one cannot define required fields in subclasses if the parent class has optional fields. In the previous example, declaring bodyID as a required field would

result in an error. A solution for this issue is available in python 3.10 (using kw_only).

EDIT: A solution for python < 3.10 is possible, although it’s not very elegant:

In the previous syntax, Parent defines an optional argument bar . The Child class would like to define a required field baz , but this is usually not possible. Instead, we give a "fake"

default REQUIRED_FIELD() . On instantiation, if this parameter is not defined, an error will be raised.

The use of TYPE_CHECKING in REQUIRED_FIELD is used to trick the IDE into believing that the argument does NOT have a default, and thus it will show it as a required field:

con�g_required

2.5.3.1.4. Con�g, context docstrings creation

It is possible to provide extra information for dataclass fields by using the field method. In particular, the metadata argument is of interest since it can hold arbitrary information,

which we can leverage. For example, we may choose to declare the description of each field within metadata , instead of in the docstring. This can help automate docstrings for subclasses.

For example, let’s consider the previous class and subclass:

As we can see, to create the docstring for TargetSpiceAssembly.Config we had to repeat the entire TargetAssembly.Config docstring. This is tedious and can lead to inconsistent

definitions when changes are made in some classes (but forgotten in others).

from dataclasses import dataclass, field, fields
from typing import TYPE_CHECKING

class _NOT_DEFINED_TYPE:
 pass
NOT_DEFINED= _NOT_DEFINED_TYPE()

REQUIRED_FIELD = field if TYPE_CHECKING else lambda *args, **kw: field(default=NOT_DEFINED, *args, **kw)

@dataclass
class InputConfig:
 def __post_init__(self) -> None:
 for field in fields(self):
 if getattr(self, field.name) is NOT_DEFINED:
 raise TypeError(f"Missing required argument: '{field.name}'")

@dataclass
class Parent(InputConfig):
 foo: int
 bar: str = "SAP"

@dataclass
class Child(Parent):
 baz: float = REQUIRED_FIELD()

class TargetAssembly(Assembly):

 @dataclass
 class Config:
 """Config of the TargetAssembly class.

 Parameters

 topo: str
 A test string argument
 foo: List[int]
 A test list of int argument
 mass: Optional[float]
 A test optional float argument
 """
 topo: str
 foo: List[int]
 mass: Optional[float] = None

 ...

class TargetSpiceAssembly(TargetAssembly):

 @dataclass
 class Config(TargetAssembly.Config):
 """Config of the TargetAssembly class.

 Parameters

 topo: str
 A test string argument
 foo: List[int]
 A test list of int argument
 mass: Optional[float]
 A test optional float argument
 bodyID: Optional[int]
 A test optional int argument
 """
 bodyID: Optional[int] = None

 ...

Instead, we can provide the description as a metadata entry:

and then let a script write the Parameters part of the docstrings for us:

This script could be deployed automatically on svn (git) commit, or alternatively called manually by developers.

2.5.3.1.5. Variable names

The issue of variable names may also find a solution through the metadata input.

Input dictionaries to Assemblies are filled with argument names with inconsistent naming conventions: we can find arguments in UpperCamelCase (Target), lowerCamelCase (bodyID),

and snake_case (frame_assembly). Ideally, the user would be presented with a consistent convention. Given that python uses snake_case for variable and attribute names, I would argue

that this convention should be retained.

However, the issue of backward compatibility remains. Even though we would like to rename an input to "topo" , the assembly code expects that input to be accessible in the dictionary as

"Topo" . Moreover, other users have historically used "Topo" or used the constant TOPO= "Topo" . An "alias" entry to the metadata of a field could resolve this.

Consider the following implementation

class TargetAssembly(Assembly):

 @dataclass
class Config:

 """Config of the TargetAssembly class.
"""

 topo: str = field(metadata={"description": "A test string argument"})
foo: List[int] = field(metadata={"description": "A test list of int argument"})

 mass: Optional[float] = field(default=None, metadata={"description": "A test optional float argument"})

 ...

class TargetSpiceAssembly(TargetAssembly):

 @dataclass
class Config(TargetAssembly.Config):

 """Config of the TargetSpiceAssembly class.
"""

 bodyID: Optional[int] = field(default=None, metadata={"description": "A test optional int argument"})

 ...

>>> def autogen_args_docstring(cls):
... result = "Parameters\n----------\n"
... for field in fields(cls):
... result += f"{field.name}: TYPE" # TODO: get type
... if field.default is MISSING and field.default_factory is MISSING:
... result += ", optional"
... result += f"\n {field.metadata.get('description', '_desc_')}\n"
... return result

>>> print(autogen_args_docstring(TargetSpiceAssembly.Config))
Parameters

topo: TYPE, optional

A test string argument
foo: TYPE, optional

A test list of int argument
mass: TYPE

A test optional float argument
bodyID: TYPE

A test optional int argument

The field topo in TargetAssembly.Config has a new metadata entry: "alias" . This entry maps to a list of alias for the field topo . In this case, this only includes TOPO . The relevant

functionality is implemented in Assembly.dataclass_to_dict . When the equivalent dictionary is generated, additional keys are populated that correspond to the alias. That way,

Assembly.dataclass_to_dict(config)["topo"] == Assembly.dataclass_to_dict(config)[TOPO] :

As we can see, even though we instantiated TargetAssembly.Config with the argument topo , the key "TOPO" is also available in the resulting dictionary.

My main concern with this feature is inconsistency. While users might be glad to use a consistent, pythonic naming conventions for the inputs, they might be confused when they see the

same "thing" being referred to in two different ways.

2.5.3.1.6. Comparsion with legacy BaseParam classes

While similar, there are several differences between this proposal and the Param-DataField system:

The Param system does not provide type-hints. This is because type-hints must be known statically, while it is not possible to ascertain the types corresponding to a DataField statically.

The Param system enforces the types, while this system does not. This makes the Param system safer and more powerful, but it also makes it less flexible. Data fields must be of a

specific type or have some specific length. The Param system struggles with nested structures and arrays of unknown length (this, however, makes it naturally fit with command-line

interfaces). In contrast, the config , context , and param dictionaries never enforced their type and tolerated many different formats, including complex, nested structures.

The Param system can perform sanity checks and provide defaults. This system does not do this. This system was built trying to be a discrete layer on top of the current architecture. It

does not provide extra functionality, only a more user-friendly layer of paint. The only exception to this is that runtime errors will be raised when required fields are not provided,

although this was considered harmless given that one could assume that similar errors would be raised either way down the line.

2.5.3.1.7. More on Param class functionality

Param objects provide most of the functionality that we want with this refactor, as they substitute dictionaries for objects. The two following inputs are equivalent:

from dataclasses import dataclass, asdict, fields, field
from typing import List, Union, Optional, Any

TOPO = "Topo"

class Assembly:

 @staticmethod
 def dataclass_to_dict(dataclass) -> dict[str, Any]:
 dict_ = asdict(dataclass)

 for field in fields(dataclass):
 for alias in field.metadata.get("alias", []):
 dict_[alias] = dict_[field.name]

 # None values are not included
 for key in list(dict_.keys()):
 if dict_[key] is None:
 dict_.pop(key)

 return dict_

class TargetAssembly(Assembly):

 @dataclass
 class Config:
 """Config dictionary of the TargetAssembly class.
 """
 topo: str = field(metadata={"alias": [TOPO]})
 mass: Optional[float] = field(default=None)
 foo: Optional[List[int]] = field(default=None)

 def __init__(
 self,
 config: Union[Config, dict[str, Any]],
) -> None:
 if isinstance(config, type(self).Config):
 config = Assembly.dataclass_to_dict(config)

 self.config = config

OO_style_target = TargetAssembly(
 config = TargetAssembly.Config(
 topo = "test",
 foo = [1, 2]
)
)

Data_style_target = TargetAssembly(
 config = {
 TOPO: "test",
 "foo": [1,2]
 }
)

>>> print(OO_style_target.config)
{'topo': 'test', 'foo': [1, 2], 'Topo': 'test'}
>>> print(Data_style_target.config)
{'Topo': 'test', 'foo': [1, 2]}

However, there are certain features that would make Param objects more user-friendly, mainly related to type-hinting and docstrings.

One of the most important methods to update is the constructor. Current constructors take the following format:

This is a very flexible approach, as any input arguments are captured with **kw and then inserted into the params dictionary. This, however, means that the IDE is not aware of what

inputs to expect and their type.

2.5.3.1.7.1. Option A
The most straightforward possible change involves writing each input explicitly:

This would replicate exactly the existing behavior.

An alternative syntax for the same concept is possible using the locals() dictionary:

This syntax is shorter but slightly less readable.

A bad aspect of this implementation is that the defaults must be None , which is not representative of the actual behavior. Moreover, it is not clear which arguments are required and which

are optional. Finally, the hints are bloated due to the inclusion of Optional .

It might be possible to set the defaults in init to be the same as the defaults in _params :

However, this would create opportunities for bugs due to mismatch between init and _params . If the default in init is 1 and the default in _param is 2 , then init 's input will be taken

as if it were a user’s input, thus overriding the default behavior. Moreover, for required fields, a default value is still needed in init so that the method can be called without specifying it

(as it can be specified in the params dictionary).

2.5.3.1.7.2. Option B
This option involves tricking the IDE into thinking the init has a certain shape, while in reality, it does not:

params = {
 MY_PARAM: MyParam(foo=2, bar="3")
}

params = {
 MY_PARAM: {"foo": 2, "bar": "3"}
}

def __init__(self, params= None, source= None, source_params= None, **kw):
 params = BaseParam.assignKeywordArgs(params, kw)
 BaseParam.__init__(self, params, source, source_params)

def __init__(self,
 startingFuel: Optional[float] = None,
 startingCM: Optional[Vector3] = None,
 inertiaDataOrigin: Optional[Literal["BODY_ORIGIN", "CENTER_OF_MASS"]] = None,
 params: params: Optional[dict[str, Any]]= None,
 source: Optional[str] = None,
 source_params: Optional[dict[str, str]] = None,
 **kw,
):
 """ Docstrings """
 if startingFuel is not None:
 kw["startingFuel"] = startingFuel
 if startingCM is not None:
 kw["startingCM "] = startingCM
 ...

 params = BaseParam.assignKeywordArgs(params, kw)
 BaseParam.__init__(self, params, source, source_params)

 ...
 """ Docstrings """
 for param in self._params:
 if locals().get(param, None) is not None:
 kw[param] = locals()[param]

 params = BaseParam.assignKeywordArgs(params, kw)
 ...

def __init__(self,
 startingFuel: Optional[float] = None,
 startingCM: Vector3 = [0,0,0],
 inertiaDataOrigin: Literal["BODY_ORIGIN", "CENTER_OF_MASS"] = "BODY_ORIGIN",
 params: params: Optional[dict[str, Any]]= None,
 source: Optional[str] = None,
 source_params: Optional[dict[str, str]] = None,
 **kw,
):
 """ Docstrings """

In the above code, TYPE_CHECKING is a boolean variable defined in the typing module. This variable is designed to be read as True when the IDE analyzes it, but False at runtime.

This means that when the IDE tries to find how the init is defined, it will see that TYPE_CHECKING is True , and thus believe that the second definition of init is overriding the first,

thus that the second definition is the final definition.

On the other hand, at runtime, since TYPE_CHECKING is False , the second definition of init is never reached, thus the first definition of init is used.

One of the main advantages of this option is that it is impossible for it to have any effect on current behavior, as the code is functionally equivalent at runtime. Mismatches between init
and _param will only be visual.

Because the second init is never really used, we may declare it as we please. As we can see, startingFuel does not have a default value, which serves to indicate that this is a required

field. Moreover, all types are reflected faithfully without the Optional[] . All defaults are also exactly as defined in the DataField object. Also, The **kw dictionary is not included in this

definition. This will make the IDE highlight unnecessary inputs, which could be sources of error.

A bad aspect about this option is that what the IDE sees and the reality are not exact matches, which may be confusing for some users and future developers.

2.5.3.1.8. Autogenerating init

Since all required information is declared in _params , it is possible to automate the creation of these init (both for Option A and B).

Option B would be slightly easier to automate since it only involves adding code and not modifying existing code. A script could run on svn/git commit or on user demand, which would

append to the definition of the class something like:

2.5.3.1.9. Setting �elds

In the spirit of making Param classes more object-like, instead of dictionary-like, we might consider supporting accessing the fields of the Param class as attributes. These two statements

would be equivalent:

Setting the value could also be supported.

2.5.3.1.9.1. Option A
Uses properties to wrap the inner dictionary:

The best thing about this approach is that the attributes can be given docstrings describing them. With this approach, when you hover over my_params.foo , the type (float) and docstring

(Lore ipsum) will show.

The bad aspects of this approach are that the syntax is quite long and that it mismatches between _param and the properties may cause errors. For example, if _param includes a new field

bar , but the property for this field has not been defined (for whatever reason), then users that attempt to call my_params.bar will cause an error.

2.5.3.1.9.2. Option B
Involves implementing the getattr and setattr methods in BaseParam :

def __init__(self, params= None, source= None, source_params= None, **kw):
params = BaseParam.assignKeywordArgs(params, kw)

BaseParam.__init__(self, params, source, source_params)

if TYPE_CHECKING:
 def __init__(self,

startingFuel: float,
 startingCM: Vector3 = [0.0, 0.0, 0.0],

inertiaDataOrigin: Literal["BODY_ORIGIN", "CENTER_OF_MASS"] = "BODY_ORIGIN",
 source: Optional[str] = None,

source_params: Optional[dict[str, str]] = None,
):

"""Docstring"""
 pass # Implemented in __init__ above

...
Autogenerated code: DO NOT TOUCH
if TYPE_CHECKING:

def __init__(self,
 ...

End of autogenerated code

print(my_params["foo"])

print(my_params.foo)

 @property
def foo(self) -> float:

 """Lore ipsum"""
return self["foo"]

@foo.setter

 def foo(self, value: float) -> None:
self["foo"] = value

This will make it so calling my_params["foo"] is equivalent to my_parms.foo as long as "foo" is a field in the params object. Note that setattr is already implemented in BaseParam , so

the existing method would need to be modified to support this behavior.

In the subclass definition, these "fake" attributes should be declared:

The best thing about this approach is that even if developers forget to add the declaration of the "fake" attribute, my_params.foo will always work as long as "foo" is a field. The IDE will

complain about an unknown attribute, but at runtime everything will be fine. Moreover, this syntax is much shorter.

The worst thing about this approach is that it is not possible to attach a docstring to each variable (so hovering over the variable will not show Lore Ipsum).

2.5.4. DshellCommon: Replacing anonymous dictionaries with explicit classes

TBD: Needs scrubbing. Notes brought over from issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/21).

See https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/25 for context on why it might be desirable to move

away from using anonymous dictionaries (a dictionary that can take any input) as inputs to classes/functions.

The proposed approach is creating a class that can act as a regular dictionary but that adds an extra layer of information for the user. Developers would declare what entries they expect the

dictionary to have and their type, and optionally provide a docstring explaining how each entry might be used.

This proposed class has been (tentatively) named InputDict to reflect that it should be used to encapsulate user inputs and the fact that it can work like a dictionary.

2.5.4.1. Simple use case

Simplest example usage:

In the above code snippet, object_knight and dict_knight will behave exactly the same. One can perform any operation on dict_knight and object_knight with the same effect.

The advantage of InputDict is that it is explicit in how it should be populated, thus writing code that uses Knight instead of the anonymous dict will be clearer and less error-prone.

Not only InputDict can be manipulated as dictionaries, but also the fields can be accessed as attributes. This has the advantage that type-hints are retained and the syntax is shorter:

print(knight["age"]) is equivalent to print(knight.age)

knight["age"] = 20 is equivalent to knight.age = 20

New code should aim to use attribute access over dictionary access; type-hinting is preserved this way. Dictionary-like access is supported to permit using InputDict as a regular dictionary

(see below on how InputDict can be integrated into existing code).

There are other advantages to using InputDict : default values and required fields can be declared:

 def __setattr__(self, k, v):
 if k in self._params:
 self[k] = v
 else:
 super(BaseParam, self).__setattr__(k, v)

 def __getattr__(self, k):
 if k in self._params:
 return self[k]
 else:
 raise AttributeError

class MyParam(BaseParam):
 foo: str
 bar: int

 class Knight(InputDict):
 '''Represents a Knight with age and a title'''
 age: int = NO_DEFAULT
 title: str = NO_DEFAULT

 object_knight = Knight()
 dict_knight = dict()
 assert object_knight == dict_knight

 object_knight = Knight(age=23)
 dict_knight = dict(age=23)
 assert object_knight == dict_knight

 object_knight = Knight(age=23, title="Sir")
 dict_knight = dict(age=23, title="Sir")
 assert object_knight == dict_knight

PYTHON

This syntax is shorter than checking for presence of required fields and providing defaults inside functions. It is also clearer to users and allows reusability.

2.5.4.2. Using InputDict with existing code

The following is an example on how to transform old code into code that uses InputDict as inputs. Imagine we have a function that takes an anonymous dictionary:

The new syntax would resemble:

Note that the ... # Do stuff is exactly the same in both old and new code: other than checking for the requied fields and providing the default, Knight will behave exactly like a

dictionary.

Now, it is much clearer what the train function needs as input. if we have more functions that take Knight as input, then we don’t need to perform the sanity checks for every function.

If you want to support using both Knight objects and dictionaries as inputs (because other parts of the code already use train and they pass dictionaries) you can do:

This will cast the dictionary (or a Knight) to a Knight object. Aside from allowing the train function to manipulate knight as an object with attributes, this will also apply the defaults

and required checks on the input. This is important because a dictionary and an InputDict may differ even when instantiated if and only if the InputDict model uses defaults/required

fields (i.e. does not use NO_DEFAULT in all its fields):

2.5.4.3. Deleting �elds and testing for presence

It is not uncommon for existing code to query the presence of an entry in an input dictionary:

In the code above, we tested that the field "title" was present in the dictionary, and run some code depending on that. We also deleted the field, which would later make our assert statement

pass. This deletion (del) and presence behavior (contains) are not commonly translated into object attributes. Instead, a valid approach would be:

 class Knight(InputDict):
 '''Represents a Knight with age and a title'''
 age: int
 title: str = "Sir"

 invalid_knight = Knight()
 # ValueError: Missing required field: 'age'

 knight = Knight(age=23)
 assert knight.title == "Sir"

PYTHON

 def train(knight):

 if "age" not in knight:
 raise ValueError("knight must have 'age'")

 if "title" not in knight:
 knight["title"] = "Sir"

 ... # Do stuff

PYTHON

 class Knight:
 age: int
 title: str = "Sir

 def train(knight: Knight):

 ... # Do stuff

PYTHON

 def train(knight: Knight):

 knight = Knight(**knight)

 ... # Do stuff

PYTHON

 class Knight(InputDict):
 '''Represents a Knight with age and a title'''
 age: int
 title: str = "Sir"

 dict_knight = dict(age=23)
 object_knight = Knight(age=23)

 # `object_knight["title"]` is `"Sir"`, while `object_knight["title"]` throws a KeyError
 assert object_knight != dict_knight

 dict_knight = dict() # No error thrown
 object_knight = Knight() # Throws an error due to the missing required input title

PYTHON

 def train(knight):

 if "title" in knight:
 old_title = knight["title"]
 del knight["title"]

 assert "title" not in knight

PYTHON

Note that both behaviors are currently permitted with InputDict . If one wants to use an InputDict with existing code that uses constructs as in the first example (del , in), they would

declare the InputDict as:

where NO_DEFAULT is a sentinel value for InputDict that lets it know that that field should not be included in the dictionary if the user does not specify its value. Trying to access the field

as an attribute (knight.title) will raise a KeyError, similar to dictionary-like access (knight["title"]).

New functions that use InputDict should avoid using del and in , and instead do things like comparing to None (as in the second example). They would declare the InputDict as:

The main advantage of this approach is clarity. By explicitly declaring the type of title as Optional[str] (which is equivalent to Union[str, None]), we are signaling to users, other

developers, and type-checking tools that title might be None at some point of its life, and proper care should be taken.

2.5.4.4. Using Dfield to add information to �elds

DField represents a field of an InputDict class. On class creation, each annotation is interpreted as a field, and a DField is generated to store its information. Users may provide additional

information to a field by using the Dfield function.

The following two snippets are equivalent:

Each DField object stores certain information about the associated field. This includes:

Information about the default value. This is specified either through default or default_factory , but not both. If neither is specified, the field is assumed to be required. If default

is provided, then the default value will be a unique deep copy of default (this allows defaulting to a mutable type safe). Alternatively, if default_factory is specified,

default_factory will be called (without arguments) and the return value will be used.

Whether to skip type checking. If type checking is activated but type_check of a field is False, then that field will not be type-checked. If type checking is not activated in the class,

type_check will not have any effect. See details on type checking in https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-

framework/dshellcommon/-/issues/22.

Alias of the field. TBD

A human-readable description of the field. If it is not specified, InputDict will try to scrape the definition from the class docstring

Metadata about the field. metadata is a dictionary that other users may populate as they please. InputDict does not use it.

Validators for the value of the field. validators is a list of either a validator function or a FieldCheck , which will be called always after type checking. If any returns False, an error is

raised. See details on validation in https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/22.

The type annotation of the field.

2.5.4.5. Validation

All code shown in previous examples performs no validation of the inputs, other than raising an error if a required field is not given. While this behavior is desirable for existing code, which

used anonymous dictionaries that also did not validate the data, newer code might move to perform validation within InputDict instead of within the functions that use them.

This behavior might be supported. A dedicated discussion is active on issue: https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-

framework/dshellcommon/-/issues/22

2.5.4.6. Implementation

 def train(knight):

 if knight.title is not None:
old_title = knight.title

 knight.title = None

 assert knight.title is None

PYTHON

 class Knight(InputDict):
'''Represents a Knight with age and a title'''

 age: int
title: str = NO_DEFAULT

knight = Knight(age=23)

 assert "title" not in knight

PYTHON

 class Knight(InputDict):
'''Represents a Knight with age and a title'''

 age: int
title: Optional[str] = None

knight = Knight(age=23)

 assert knight.title is None

PYTHON

 class Knight(InputDict):
age: int

 title: str = "Sir"
weapon: str = Dfield(default="sword")

PYTHON

class Knight(InputDict):
 age: int = Dfield()

title: str = Dfield(default="Sir")
 weapon: str = Dfield(default="sword")

PYTHON

Implementation details have been left out of this Issue for brevity. However, the source code for InputDict is attached to this issue. The code has been extensively documented. Still, if

something is not clear about it, questions are encouraged. Recommendations on alternative ways to implement a feature are similarly welcome.

2.5.4.7. Changelog

Created issue. Uploaded input_dict.py v1.

Added information about DField and Dfield . Uploaded input_dict.py v2 (expanded the documentation on DField).

input_dict.py

2.5.5. DshellCommon: Use of InputDict with Assembly classes notes

TBD: Needs scrubbing. Notes brought over from issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/23).

Issue https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/19 identified to need to make Assembly

constructors clearer. The main issue with current constructors is that they have the same signature: they take three dictionaries config , context , params . What goes inside each

dictionary is not shown, and users are left to review supporting documentation and test cases to find out how to use this class. This often leads to users copy-pasting inputs blindly without

understanding how each input impacts the inner workings of the assembly, which can lead to insidious undesirable behavior.

Issue https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/21 proposes a new class that can act as a regular

dictionary but that adds an extra layer of information for the user. Developers would declare what entries they expect the dictionary to have and their type, and optionally provide a

docstring explaining how each entry might be used. More details are available in the issue.

This issue reflects a proposed use of InputDict to substitute the three anonymous dictionaries config , context , params . Through this change, we aim to allow developers to extensively

document their Assemblies for future users. We would also like to maintain backward compatibility, so that:

1. New-style assemblies can be constructed with InputDict

2. New-style assemblies can be constructed with anonymous dictionaries

3. Old-style assemblies can be constructed with InputDict

4. Old-style assemblies can be constructed with anonymous dictionaries

For the purpose of this issue, "new-style" assemblies are those that use InputDict to substitute the three anonymous dictionaries config , context , params , while old-style assemblies

are those that don’t. Compatibility requirement 1 is met by design. Compatibility requirement 3 is met because InputDict is designed to be able to 100% mimic the functionality of

anonymous dictionaries. See more details on "Adapting old assemblies to use InputDict " below.

2.5.5.1. Changes to how Assembly classes are declared

Each assembly that wants to use InputDict as their input to config , context , params would need to declare up to three inner classes, Config , Context , and Params , that inherit from

InputDict . Those inner classes that are not declared are autogenerated empty (if an Assembly does not need any context input, the Context class need not be declared). If none of these

classes is implemented, the Assembly is assumed to be "old-style"; no changes are done to its functionality (which ensures that compatibility requirement 4 is met).

Developers that use InputDict in their Assembly class are free to use as many of the features of InputDict as they desire. The minimum implementation, which acts exactly like an

anonymous dictionary, would have all their fields assigned the NO_DEFAULT sentinel value. The next step would be declaring required fields and giving default values to optional fields.

Finally, type checking and complex validation could be used. See https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-

framework/dshellcommon/-/issues/21 and https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/22.

In the following snippet, we are declaring an Assembly that takes inputs for config and params , while context should be empty.

In the Config inner class, we declare two fields: age (a required positive int that should be < 500), and has_moat (an optional boolean that defaults to False). Since type_check=True , the

types will be enforced: age MUST be an integer > 0 and has_moat has to be a boolean, else a TypeError is raised when these classes are instantiated.

In contrast, Params simply declares a required field walls that SHOULD be WallParam object. Since no type_check=True is provided, no errors will be raised if the input walls is not a

WallParam. However, an error will be raised if the walls field is not defined at all. Additionally, both Config and Params provide docstrings that describe each of their inputs.

Finally, the init_ has the same signature as always, with the exception of additional typing hints to signal users that they should use the specific InputDict as inputs. Note that these

type-hints, like most type-hints, are not enforced. Also, note that since we are not defining Context in this class, but rather we inherit it from Assembly (empty), we need to use the

forward type hint "Fortress.Context" .

The Fortress assembly will be instantiated as:

When a new user encounters the Fortress class for the first they will:

1. Read the docstring of the class, which should given them information about the purpose and general working. If they believe this is the right assembly for the job, then they will want to

create it.

2. They will check out the init method, and see the type hints for config , context , and params . They will see that they have specific classes associated with them.

3. For each of the inner classes, they will inspect them. They will see what fields are required, which are optional, and their defaults. They will also read the docstring, hopefully describing

how each field influences the final Assembly class. The types of each field are clear, and they can also see the special requirement for Config.age (that it must be < 500).

All the above can be accomplished by looking at the source of a class; it is almost as self-documenting as possible. Moreover, if their IDE/editor supports it, all this information will be

displayed by hovering over the classes. Syntax highlight will also point out places where they are about to make a mistake (missing inputs, incorrect types…).

2.5.5.1.1. Auto-population of class attributes

Note that Fortress has not declared any of the required class variables: _requiredConfigFields , _optionalConfigFields , _requiredContextFields , _optionalContextFields ,

_requiredParamsFields , _optionalParamsFields , or _params_type . This is because, on class creation, the Config , Context , and Params objects are scanned to automatically populate

these attributes:

class Fortress(Assembly):
 """A fortress is a defensive building that...

 This Assembly should be created when...

 See its usage in the following tests: ...
 """

 class Config(InputDict, type_check=True):
 """
 Parameters

 age : PositiveInt
 The age of this fortress. Is used in...
 has_moat : bool, optional
 Whether the fortress has protective..., by default False
 """
 age : PositiveInt = Dfield(validators=[lambda age: age < 500])
 has_moat: bool = False

 class Params(InputDict):
 """
 Parameters

 walls : WallsParam
 Characteristics of the walls of this fortress.
 """
 walls: WallsParam

 def __init__(self,
 parent_asm: Assembly,
 name: str,
 config: Config,
 context: "Fortress.Context",
 signal_ties: Optional[dict] = None,
 params: Optional[Params] = None,
 description: str = "",
 tag: str = "",
) -> None:

 if config.has_moat:
 print(params.walls)

 assert 0 < config.age < 500

 Assembly.__init__(...)

fortress = Fortress(...
 config = Fortress.Config(age=2),
 context= Fortress.Context(),
 params = Fortress.Params(walls=WallsParam(...))
)

The _config_type and _context_type are additionally populated.

2.5.5.1.2. Inheritance

Assembly that inherit from other Assembly should have their InputDict classes also inherit from the parent Assembly class' InputDict . This way, fields are added to the parent

InputDict . It is also possible to modify previous fields, although this should be done with care not to break any parent class behaviour.

2.5.5.2. Adapting old assemblies to use InputDict

2.5.5.2.1. InputDict as a documentation tool

In the simplest use case for InputDict , we would like them to act exactly like anonymous dictionaries, with the exception that they can provide additional information to users (what fields

to use, their types, and docstrings). To do so, the NO_DEFAULT value is used. The two following snippets are equivalent:

print(Fortress._requiredConfigFields)
['age']

print(Fortress._optionalConfigFields)
['has_moat']

print(Fortress._config_type)
{'age': typing.Annotated[int, RangeCheck(0, inf)], 'has_moat': <class 'bool'>}

class Castle(Fortress):
 """A castle is a type of fortress with a noble ruling it"""

 class Config(Fortress.Config):
"""..."""

 age : PositiveInt = Dfield(validators=[lambda age: age < 200]) # Change existing field

 class Params(Fortress.Params):
ruler: NobleParam # Add a new field

def __init__(self, ...

 config: Config,
context: "Castle.Context",

 params: Params,
...

) -> None:
...

class Fortress(Assembly):

 class Config(InputDict):
"""

 Parameters

 age : PositiveInt
The age of this fortress. Is used in...

 has_moat : bool, optional
Whether the fortress has protective...

 """
age : PositiveInt = NO_DEFAULT

 has_moat: bool = NO_DEFAULT

 def __init__(self,
parent_asm: Assembly,

 name: str,
config: Config,

 context: "Fortress.Context",
signal_ties: Optional[dict] = None,

 params: Optional["Fortress.Params"]= None,
description: str = "",

 tag: str = "",
) -> None:

if "age" not in config or not isinstance(config["age"], int):

 raise ValueError

 if config["age"] <= 0 or config["age"] >= 500:
raise ValueError

if "has_moat" not in config:

 config["has_moat"] = False
elif not isinstance(config["has_moat"], bool)

 raise ValueError

 if config["has_moat"]:
print("Must learn to swim!")

Assembly.__init__(...)

fortress = Fortress(...
 config = Fortress.Config(age=2),

...
)

The only advantage to the new syntax over the old syntax is the use of type hinting (which can be picked up by the IDE). The content of init or other operations to be done on config are

exactly the same in both cases with the same end result. No changes to old code are necessary, besides including the declaration of Config and adding the type-hints to the init .

2.5.5.2.2. Using InputDict features

Ideally, InputDict is not only used as a source of documentation + type-hinting, but also to enforce required fields, provide defaults, and validate the input. The code below is equivalent to

the two snippets above:

As we can see, all input validation is left to the InputDict , while the code that uses the data remains the same (remember InputDict may be used as regular dictionaries). The snippet

above, however, will only work with InputDict inputs for Config . This is because if we assign to config an anonymous dictionary dict(age=2) , the required fields, defaults, and

validations will not be performed. In the case above, a key error will be raised since "has_moat" is not in dict(age=2) .

To solve this, a line can be introduced at the beginning of init , which will cast any anonymous dictionary into the InputDict object, thus triggering all required field checks, defaults, and

validation:

class Fortress(Assembly):

 _optionalRequiredFields = ["age"]
 _optionalConfigFields = ["has_moat"]

 def __init__(self,
 parent_asm,
 name,
 config,
 context,
 signal_ties= None,
 params= None,
 description= "",
 tag= "",
) -> None:

 if "age" not in config or not isinstance(config["age"], int):
 raise ValueError

 if config["age"] <= 0 or config["age"] >= 500:
 raise ValueError

 if "has_moat" not in config:
 config["has_moat"] = False
 elif not isinstance(config["has_moat"], bool)
 raise ValueError

 if config["has_moat"]:
 print("Must learn to swim!")

 Assembly.__init__(...)

fortress = Fortress(...
 config = dict(age=2),
 ...
)

class Fortress(Assembly):

 class Config(InputDict, type_check=True):
 """
 Parameters

 age : PositiveInt
 The age of this fortress. Is used in...
 has_moat : bool, optional
 Whether the fortress has protective...
 """
 age : PositiveInt
 has_moat: bool = False

 def __init__(self,
 parent_asm: Assembly,
 name: str,
 config: Config,
 context: "Fortress.Context",
 signal_ties: Optional[dict] = None,
 params: Optional["Fortress.Params"]= None,
 description: str = "",
 tag: str = "",
) -> None:

 if config["has_moat"]:
 print("Must learn to swim!")

 Assembly.__init__(...)

fortress = Fortress(...
 config = Fortress.Config(age=2),
 ...
)

After that line, config , context , and params will be of the respective InputDict types. This feature allows us to meet compatibility requirement 2: all new-style assemblies can accept

both anonymous dictionaries and InputDict with the exact same effect.

2.5.5.3. Implementation

Implementation details have been left out of this Issue for brevity. However, the source code for the necessary changes to Assembly is attached to this issue. The code has been

documented. Still, if something is not clear about it, questions are encouraged. Recommendations on alternative ways to implement a feature are similarly welcome.

2.5.5.4. Changelog

Created issue. Uploaded assembly.py v1.

assembly.py

2.5.6. DshellCommon: Validation with InputDict

TBD: Needs scrubbing. Notes brought over from issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/22).

Issue https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/21 covers the motivation for creating a class that

helps encompass user inputs in a more concise manner than simple anonymous dictionaries.

The implementation discussed in that issue does not cover validation of the inputs, other than raising an error if a required field is not given. While this behavior is desirable for existing

code, which used anonymous dictionaries that also did not validate the data, newer code might move to perform validation within InputDict instead of within the functions that use them.

Ideally, we would make this an opt-in feature. Users are familiar with using normal dictionaries for their inputs and therefore it makes sense for the simplest form of InputDict to also not

perform input validation. We would like to encourage "plug-and-play", and then once they are comfortable using these classes they can begin to expand their functionality.

2.5.6.1. Type checking

The simplest form of validation is ensuring that user inputs are of the correct type. The "correct" type is inferred from the class annotations. To turn on type checking in an InputDict ,

users may add type_check=True to the class declaration.

For example, the two following code snippets are equivalent:

As we can see, only by adding type_check=True we are ensuring that our inputs are all of the correct types. Moreover, InputDict can perform more advanced type checking than a simple

isinstance . If we want to add a field to our input that should be a list of strings, then InputDict will be able to correctly type check values, while isinstance(value, List[str]) would

fail.

This works for the most commonly used type-hints:

 def __init__(self,
 parent_asm: Assembly,
 name: str,
 config: Config,
 context: "Fortress.Context",
 signal_ties: Optional[dict] = None,
 params: Optional["Fortress.Params"]= None,
 description: str = "",
 tag: str = "",
) -> None:
 config, context, params = self.init_dicts(config, context, params)

 if config["has_moat"]:
 print("Must learn to swim!")

 Assembly.__init__(...)

 def train(knight):
 assert isinstance(knight["age"], int)
 assert "title" not in knight or isinstance(knight["title"], str)
 ... # Do stuff

 knight = dict(age=23, title=42)
 train(knight)

 class Knight(InputDict, type_check=True):
 age: int
 title: str = "Sir"

 def train(knight):
 ... # Do stuff

 knight = Knight(age=23, title=42)
 train(knight)

 class Knight(InputDict, type_check=True):
 age: typing.Union[int, float]
 title: typing.Literal["Sir", "Lord"] = "Sir"
 weapons: typing.List[str] = []

In the previous example, age can be either a float or an int. title must be either "Sir" or "Lord". weapons must be a list of strings. Nested collections are also valid:

typing.List[typing.List[str]] will require a list of lists, each with only strings.

Type checking for specific fields might be skipped by adding type_check=False to the field definition:

2.5.6.2. Validation through FieldCheck

FieldCheck is class representing a validation function to an InputDict field.

Subclasses of FieldCheck must always implement the abstract method check , which takes in a value and should return True if this value is "valid". The definition of a "valid" value is

completely up to the definition of the implementer: a FieldCheck subclass might check that a number is greater than zero, while another might check that the value is a correctly-spelled

Klingon word.

Subclasses may optionally implement fail_message , which should return a human-readable fail message for the check.

2.5.6.2.1. Usage with Annotated to expand types

Python’s typing.Annotated can be used to append metadata to type hints (see https://peps.python.org/pep-0593/). This can be leveraged to make type checks perform additional validation.

When InputDict performs a type check, it finds if the type is Annotated . If so, it will first perform a regular type check with the type that is being "annotated". It will then scan its

arguments (the metadata). If any of these objects are of the type FieldCheck it will run the check. If it fails, it will raise a TypeError.

Let’s consider validating that an input is a positive integer. We might create RangeCheck that ensures a value is between two bounds, and then Annotate the int type:

In order to prevent clutter and increase reusability, a type alias can be used:

Now, PositiveInt can be used in any InputDict that requires an integer greater than zero.

Annotated types, much like regular types, can be arbitrarily combined. For example, a list of positive multiples of three might be declared as:

Possible FieldCheck of interest in DARTS could be:

RangeCheck : tests whether a float is between two values. (PositiveFloat = Annotated[float, RangeCheck(gt=0)])

QuantityCheck : tests whether a float has units of the specified quantity. (Area = Annotated[float, QuantityCheck("Area")])

PathCheck : to check whether strings are valid files/directories. (FilePath = Annotated[str, PathCheck(exists=True, dir_okay=False)])

SizeCheck : to check the size of arrays/matrices. ('Vector3 = Union[SOAVector3, Annotated[Iterable[float], QuantiyCheck(3)]')

It would be possible to populate a module with commonly used type alias so that users can import them and simply use them on their InputDict : PositiveInt , Length , Mass ,

InertiaTensor , SpiceFile …

2.5.6.2.2. Usage in InputDict �elds

Sometimes, we would like to validate a field without having to change its type hint. This is especially true for very specific validations that may only happen once. For example, the type

DimensionlessIntHigherThan16 might be a bit overkill.

In this case, we can use the validators input in the field declaration function Dfield :

 class Knight(InputDict, type_check=True):
age: int

 title: str = Dfield(default="Sir", type_check=False)

 class RangeCheck(FieldCheck):
def __init__(self, lower: float, upper: float):

 self.lower = lower
self.upper = upper

def check(self, value) -> bool:

 return self.lower < value < self.upper

 class Knight(InputDict, type_check=True):
age: Annotated[int, RangeCheck(0, np.inf)]

 title: str = "Sir"

 Knight(age=-1)
TypeError: Type of field age is incorrect; Value -1 failed check RangeCheck

PositiveInt = Annotated[int, RangeCheck(0, np.inf)]
 class Knight(InputDict, type_check=True):

age: PositiveInt
 title: str = "Sir"

PositiveInt = Annotated[int, RangeCheck(0, np.inf)]
 MultipleOf3 = Annotated[PositiveInt, MultipleOfCheck(3)]

ListMultipleOf3 = List[MultipleOf3]

 class Knight(InputDict, type_check=True):
age: int = Dfield(validators=[RangeCheck(gt=16), QuantityCheck("Dimensionless")])

 title: str = "Sir"

Alternatively, validation functions may be input directly, which should have the signature (Any) -> bool (take one input and return True or False):

Field validator functions are always run, independently of whether type checking is activated or not. If type checking is performed, then validator functions will run after the type check,

and in the order that they were given in validators . This means that one can trust that age will be an integer by the time higher_than_16_fun is run.

2.5.6.3. Class-wide validation

InputDict subclasses may also implement the validate method, which will be called after the type checks, and can be used to perform additional checks:

This is useful to perform validation that depends on the content of multiple fields. This method is not expected to return anything, but it should raise an Error if values are not in

compliance with the desired constraints.

This method is called once all value assignments have been performed, when all type checks have passed, and after field-specific validators have passed.

Possible use of this method is to alter the values stored in the object. For example, one may use one default or another depending on how other fields were set. If behavior like this is

implemented, the user is advised to clearly document it, as it can be unintuitive.

The method pre_type_check can also be implemented and follows a similar purpose to validate , except that it is called before type checking occurs and field-specific validators are run.

Much like the validate method, this could be used to generate defaults that depend on other parameters. In this case, the generated default will go through type checking and field-

specific validators, which might be desirable behavior.

2.5.6.4. Implementation

Implementation details have been left out of this Issue for brevity. However, the source code for FieldCheck is attached to this issue. The source for InputDict is available in issue

https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/21. The code has been extensively documented. Still, if

something is not clear about it, questions are encouraged. Recommendations on alternative ways to implement a feature are similarly welcome.

2.5.6.5. Changelog

Created issue. Uploaded field_check.py v1.

field_check.py

2.6. Sphinx documentation

2.6.1. Getting Started

2.6.1.1. Introduction

2.6.1.1.1. Introduction

This document is intended to give the user an overview of DshellCommon and provide examples of using DshellCommon modules to quickly build a simulation and assemble various

models. Prior to continuing with this guide, it is suggested that the user familiarize themselves with Darts and Dshell (see User’s Guides for Darts and Dshell).

2.6.1.1.2. What is DshellCommon?

DshellCommon can be thought of as a "user interface" to Darts and Dshell whose function is to facilitate the assembly of desired models to build a simulation. As the name implies,

DshellCommon is designed to serve as the foundation from which all future simulations are built upon, whether modeling spacecraft or rovers. DshellCommon consists of a suite of python

modules and we’ll summarize each of them in the following sections; for a more detailed description of each module, see the DshellCommon reference documentation.

2.6.1.2. Module Description

The python modules that make up DshellCommon can be found in the src directory under DshellCommon/python. At the top level of this directory there are three modules, namely,

SimulationExecutive.py, SimulationAssembly.py, and BaseAssembly.py. As you might have guessed, these modules also perform "top level" functions that all lower level DshellCommon

modules depend upon.

Also in this top level directory are four subdirectories, namely, assemblies, fsm, params, and utils.

assemblies

The assemblies directory in general (but not always) contains a single python module for each model to be simulated . These can be simulation executive models such as "Mission Elapsed

Time", hardware models such as IMUs, or environment models such as gravity. In most cases the assemblies function to "connect" desired models that make up the simulation. By "connect"

we are referring to tasks required access to the underlying compiled C++ files whose code actually contains the programming for the specific model. In addition to bringing in the desired

model, tasks include managing the models inputs and outputs (flowIn’s and flowOut’s), and performing the required parameter initialization. As eluded to earlier, not always does a single

python assembly module necessarily map directly to a single C++ based module. An engine assembly, for example, may perform the tasks related to configure an engine consisting of several

models such as nozzles, actuators, etc. The idea though is to avoid having the "kitchen sink" approach where complex logic is required in the assembly to perform the required tasks of many

different models. Instead, assemblies will be named according the function they provide and may inherit from other assemblies. Indeed, all assemblies inherit from at least the top level

assembly BaseAssembly.py.

 higher_than_16_fun = lambda value: return value > 16

 class Knight(InputDict, type_check=True):
 age: int = Dfield(validators=[higher_than_16_fun, QuantityCheck("Dimensionless")])
 title: str = "Sir"

 class Knight(InputDict, type_check=True):
 age: int
 title: str = "Sir"

 def validate(self):
 if age < 40 and title == "Lord":
 raise ValueError

fsm

The fsm directory contains the "Finite State Machine" related modules. These modules contain the mechanisms to "control" the simulation at runtime. These controls include the capability

to execute user specified functions at virtually any user specified event.

params

The params directory contains the modules responsible for initializing the required parameters in the assemblies.

utils

Finally, the utils directory currently contains the doctestutils.py module.

The following sections describe the individual DshellCommon modules. We will be refering to DshellCommon-RunScripts as well as the individual module test scripts that are found under

DshellCommon/test.

2.6.1.3. Basic DshellCommon Assembly Classes

2.6.1.3.1. SimulationExecutive

The SimulationExecutive.py module is the "top most" module that contains class SimulationExecutive that provides all DshellCommon executive functions as well as the those available

through its base class DshellX. As shown in Section 2 in the example user run script, the SimulationExecutive "sim" instance is where all DshellCommon objects "live". In this simple example,

the user can see that only three "sim" methods are required prior to executing the simulation. The SimulationExecutive class also manages the FSM (Finite State Machine(s)). A top level

state machine is created by default, but the SimulationExecutive can actually manage a FSM for each assembly if desired by the user. The SimulationExecutive also initializes the root

frames, steps the sim, etc. It is suggested the user browse the test directories to get a feel for the rich set of capabilities available through the SimulationExecutive.

2.6.1.3.2. SimulationAssembly

The SimulationAssembly.py module contains class SimulationAssembly. A single instance of this class is used in the SimulationExecutive as the default top level assembly to house all

assemblies that exist in the simulation.

2.6.1.3.3. BaseAssembly

The BaseAssembly.py module contains the DshellCommon BaseAssembly class that all assemblies use as their base. The BaseAssembly class in turn has the Dshell Assembly as its base. A

somewhat new concept in DshellCommon is that all assemblies can have an optional Finite State Machine that can be configured by the user to control the simulation.

2.6.1.4. Useful DshellCommon Assembly Classes

2.6.1.4.1. TargetAssembly

2.6.1.4.2. VehicleAssembly

2.6.1.4.3. ExternalDisturbanceActuatorAssembly

2.6.1.4.4. Gravity Assemblies

2.6.1.4.5. Time Assemblies

2.6.1.4.6. IMU Assemblies

2.6.1.5. Targets

In the DARTS/Dshell framework, planetary bodies are called 'targets'. This is terminology is largely historical due to the dominant focus in the past of landing spacecraft at specific locations

(targets) on planetary bodies. We may eventually migrate to a more generic terminology, but for now please understand that a 'Target' in a simulation refers to any planetary body, whether

they are the planned location of a spacecraft landing or not.

Targets have two primary roles in DARTS/Dshell simulations:

Serve as a center of gravitational attraction for nearby spacecraft and

Provide a way to create planetary bodies that have physical/visual representations and provide position and velocity information for other purposes, such as point-to-point

communication analysis, day-night cycle analysis,

Note that we do not hard-code gravity models into Targets since each spacecraft might need different types of gravity model for its own operational requirements. So gravity models are

separate but typically use Targets in order to get the relative position from the spacecraft to the Target’s location so the gravity model can compute its gravitational contributions.

There are two primary types of Targets that are most relevant to most simulations: plain Target (created with TargetAssembly) and Spice Targets (created with TargetSpiceAssembly). Spice

is software tool kit provided by JPL to help track the positions and velocities of planetary bodies (see http://naif.jpl.nasa.gov/naif/toolkit.html for more details). These two types of Targets

are explained in more detail below.

In general, Targets create two bodies: (1) A PCI body (Planet Centered Inertial) that may (or may not) translate to track the actual motion of the corresponding planetary body, and (2) a PCR

body (Planet Centered Rotating) that rotates as the Target generally rotations but translates with the corresponding PCI body. These two bodies are actually DARTS bodies for a variety of

reasons including the ability to attach other bodies (such as spacecraft or rovers) to them.

2.6.1.5.1. TargetAssembly

A plain target (created with TargetAssembly) represents a very simple concept: the PCR body rotations about the PCI body about one axis at a prescribed rotational rate. In general, the PCI

body does not move and is usually coincident with the "inertial frame" of the simulation. Spice is NOT used to control its motion.

Here is what the description of a plain Target in a run script might look like[1]:

'Mars' : {
 'class' : 'TargetAssembly',
 'params' : { 'Target' : targets['Mars'],
 }

PYTHON

The 'Target' parameter given will define the Target’s name, radius, mass, and rotational rate. The 'Target' parameter will usually be instances of the parameter class TargetBaseParam.

The joint between the PCI and PCR bodies in this case will always be a pin joint with the rotational axes defaulting to the Z axis.

Note that no 'Bodies' parameter item is given in the 'params' block. The TargetAssembly defaults to creating very simplistic PCI and PCR bodies. In most cases, the PCI body does not move

and the PCR body rotates about the PCI body with a fixed rotational rate. The motions of both are prescribed and therefore the mass properties of the PCI and PCR bodies are irrelevant. It is

permitted to add 'Bodies' parameter item, but it should extend the expected body parameters as specified in the function TargetBaseAssembly.defaultTargetBodyParams()---in particular,

the joint between the PCI and PCR bodies must be a pin joint unless the run script takes responsibility for setting up the initial positions and rotational rates.

In this case, no initial position or attitude information parameters are provided so the PCI and PCR will initially both be coincident with the "inertial frame" of the simulation. If an 'Attitude'

parameter specified in the 'params' block, it will be used to set the initial rotational angle of the PCR body with respect to its PCI body. Attitude parameter classes are usually derived from

the StateAttitudeBaseParam class and support a variety of ways to initialize the angle of PCR with respect to PCI.

Targets created using TargetAssembly add a PinEncoder model which provides an angle signal for the 1-DOF rotation of the PCR body with respect to the PCI body.

2.6.1.5.2. TargetSpiceAssembly

In most simulations, it is very desirable for the Targets to accurately track the motion of their corresponding physical planetary bodies. The Spice toolkit provides the software tools and

libraries to do that. In these cases, users will want to use instances of the 'TargetSpiceAssembly' in their simulations.

For instance, to create a Spice Target for Mars, the description in the user’s run script might look like this[2]:

In this case, the 'Target' parameter item is an instance of the 'TargetSpiceParam' parameter class and primarily includes the name of the planetary body, its Spice ID (e.g. 499 for Mars), and a

list of Spice kernels that will need to be loaded in order for Spice to have the appropriate data for its computations.

There is also an 'Epoch' state parameter that essentially only provides the exact epoch (date and time) for the Spice library to use for the initial date and time at the start of the simulation.

Spice Targets should NOT specify a 'Bodies' parameter; that is handled internally by the TargetSpiceAssembly class.

Spice Targets use a ball joint between the PCI and PCR bodies in order to accommodate the arbitrary rotations that Spice may require.

When Spice targets are initialized in the bindParams() phase, two things are done: (1) the SpiceTargetAssembly loads the kernels specified in the 'Target' parameter and then (2) sets the

Spice epoch using the date and time specified in the 'Epoch' parameter. Then the parent class, TargetBaseAssembly bindParams() is called which uses body parameters specified in

TargetSpiceAssembly.defaultTargetBodyParams which sets up the ball joint between the PCI and PCR bodies and token mass and inertial properties.

For Spice Targets, the full motion of the PCI body is controlled by Spice using two models SpiceFramePCIBodySync and SpiceFramePCRBodySync that move the bodies to match the motions

prescribed by Spice during the simulation (in preDeriv).

Spice Targets created using TargetSpiceAssembly add a BallEncoder model which provides three signals for the three rotational angles of the ball joint encoder as well as a full quaternion

for the rotation between the PCI and PCR bodies.

2.6.1.5.3. Topographic Objects

It is possible to attach topographic objects such as Digital Elevation Maps (DEM) or topographic mesh objects on to Targets by adding an additional config item. For instance to attach an

analytic DEM object onto a target:

more complex types of anlyatic dems can be specified by filling out more of the TopoAnalyticDemConfig object (see DshellCommon/python/configs/TopoAnalyticDemConfig.py or

TopoAnalyticDemConfig).

Multiple topographic entries can be attached to a target by adding more items to to the 'topos' config item dictionary. The keys will be the names of the topographic objects.

Targets can host topographic objects created by specifying TopoStoreConfig (TopoStoreConfig) entries (for topographic objects that are saved in SimScape 'Store' objects).

There are also a set of "known" topographic objects such as 'SphericalSun' or 'EarthWGS84' which can be created by using the class 'TopoKnownConfig' (TopoKnownConfig). Note these are

not attached to the parent Target since they are stand-alone bodies. They can be created this way for convenience purposes.

For usage examples, please see the ???.

2.6.1.5.4. KnownTargetAssembly

'SpiceMars' : {
'class' : 'TargetSpiceAssembly',

 'params' : { 'Target' : targets['SpiceMars'],
'Epoch' : states['MSL 05-19']['Epoch'],

 }
},

PYTHON

from DshellCommon.configs.TopoAnalyticDemConfig

asm_info = {
...

'SpiceMars' : {
 'class' : 'TargetSpiceAssembly',

'topos' : {'zero' : TopoAnalyticDemConfig(topo='zero')},
 'params' : { 'Target' : targets['SpiceMars'],

'Epoch' : states['MSL 05-19']['Epoch'] }
 },

...
}

PYTHON

Most use cases require well-known targets of the Solar System. For convinience, DARTS provides a set of pre-built TargetSpiceAssembly corresponding to all planets, the Sun, and several

satellites. For each of these known targets, a dedicated Assembly class and TargetParam is defined. Both the Assembly and TargetParam classes are loaded with defaults corresponding to

known constants of each body. All targets have their mass, gravitational constant, radius (or equatorial and polar radius), rotation rate, and NAIF ID defined. Some targets have Spherical

Harmonic Coefficient data (for gravity modelling). Some targets have topology associated with them, but if a corresponding KnownTopo exists.

To create a Target Assembly corresponding to Mars, one might do: .. code-block:: python

'Mars' : \{

'class' : 'MarsTargetAssembly', 'params' : \{'Epoch' : states['MSL 05-19']['Epoch'],} },

or by directly calling the python initializer: .. code-block

python from DshellCommon.assemblies.known_targets.MarsTargetAssembly import MarsTargetAssembly

MarsTargetAssembly(parent_asm, params=\{'Epoch': states['MSL 05-19']['Epoch']})

If one wants to override one or more parameters while preserving the other defaults, the body-specific TargetParam may be used. Let’s consider that we wish to change Mars' mass to 6e23

kilograms. One would do: .. code-block:: python from DshellCommon.assemblies.known_targets.MarsTargetAssembly import MarsTargetAssembly from

DshellCommon.assemblies.known_targets.MarsTargetAssembly import MarsTargetParam

MarsTargetAssembly(

parent_asm, params=\{ 'Epoch': states['MSL 05-19']['Epoch'] 'Target': MarsTargetParam(mass=6e23) })

Overriding the topology is also simple, as one simply has to pass the config dictionary: .. code-block:: python from DshellCommon.assemblies.known_targets.MarsTargetAssembly import

MarsTargetAssembly

MarsTargetAssembly(

parent_asm, config=\{'topos' : \{'zero' : TopoAnalyticDemConfig(topo='zero')}} params=\{'Epoch': states['MSL 05-19']['Epoch']})

Currently, the following known targets are available: * CallistoTargetAssembly * DeimosTargetAssembly * EarthTargetAssembly (KnownTopos ID: EarthWGS84, Spherical Harmonics:

GGM03C) * EnceladusTargetAssembly (KnownTopos ID: SphericalEnceladus) * EuropaTargetAssembly (KnownTopos ID: SphericalEuropa) * GanymedeTargetAssembly * IoTargetAssembly

* JupiterTargetAssembly (KnownTopos ID: Jupiter, Spherical Harmonics: jupiter) * MarsTargetAssembly (KnownTopos ID: SphericalMars, Spherical Harmonics: MRO120F) *

MercuryTargetAssembly (Spherical Harmonics: MESS160A) * MoonTargetAssembly (KnownTopos ID: SphericalMoon, Spherical Harmonics: GL0900D) * NeptuneTargetAssembly

(KnownTopos ID: Neptune, Spherical Harmonics: neptune) * PhobosTargetAssembly (KnownTopos ID: SphericalPhobos) * PlutoTargetAssembly * SaturnTargetAssembly (Spherical

Harmonics: saturn) * SunTargetAssembly (KnownTopos ID: SphericalSun) * TitanTargetAssembly (KnownTopos ID: Titan) * UranusTargetAssembly (Spherical Harmonics: uranus) *

VenusTargetAssembly (KnownTopos ID: Venus, Spherical Harmonics: MGNP180U)

Footnotes

2.6.1.6. Parameters

Add tutorial material or merge with params in reference. In the mean time:

See DshellCommonReference

2.6.1.7. Data Logging through Dstore

Dstore is a mechanism for logging in DshellCommon and uses the HDF5 pytables module. Dstore includes most of the logging features available in Dwatch, but adds HDF5, CSV, and Report

output format as well as unit conversions capability and other controls.

To configure Dstore for specific logging requirements, Dstore reads a Python ConfigObj configuration file which contains the user log controls. The controls are also available at run time

through the Dstore object.

Below are the contents of the Dstore ConfigObj file that was automatically rendered through Dstore function writeDefaultCfg(). The file contains commented section that also should help

describe available specifications. The .cfg extension stands for a 3rd party Python extension ConfigObj. ConfigObj as used here is a convenient way to specify user input that Python can

easily interpret.

We’ll begin by disecting the file into sections. Each section begins with the keywords in brackets. Python stores all specification following the bracketed keyword in a Python dictionary with

that keyword as the key, until another bracketed keyword is encountered, which is interpreted as a nested dictionary. This means you have to be somewhat careful when moving things

around or adding content.

Finally, there may be mention of Phasing in the following descriptions. Phasing is a DshellCommon mechanism of controlling the simulation in a similar fashion as the FSM but also has a

built in printmanager which handles when to log. For more information see Phasing getting started section.

2.6.1.7.1. Default CFG File

that allows section and subsection specification. Sections are
defined in brackets. Subsection in double brackets. The sections
name "Parameters", "Includes", or starts with "Format_" are
predefined. Others sections are user defined groups to log.

The first section is "Parameters" which takes the top level logging
specifications described below.

[Parameters]

 # states - This is either a state or phase name or a list of states
 # to be logged. If states = None (or not specified), then all states
 # are recorded.

 states = None

 # startTime - This it the time in which to start logging. Group logging
 # specification can modify startTime for its group but can not be
 # earlier than the top level startTime specified in this section.
 # If startTime is not specified logging begins immediately

 startTime = 0.0

 # timeInterval - This specifies the time interval in which to log.
 # If timeInterval is NOT specified, then all IO times steps are
 # recorded beginning after startTime. If None, only record beginning
 # or end of states if specified in groups.

 timeInterval = 0.005

 # strictInterval - If strictInterval is True, log
 # only on exact intervals of startTime + timeInterval.

 strictInterval = False

 # timeResolution - Floating point delta compare for strictInterval
 # log test

 timeResolution = 0.0001

 # select - This specifies which output groups to log. If not
 # specified or an empty list will log all groups, even included groups

 select = []

 # formats - This specifies the output formats. Supported formats
 # are listed below.
 # 1. 'hdf5' - This is default output
 # 2. 'report' - Text output in customizable format
 # 3. 'csv' - Comma Separated Value format and flavors thereof
 # Note: An hdf5 will always be created. It will be in addition to the
 # 'report' or 'csv' files that are created

 formats = ['hdf5', 'report', 'csv']

The Includes section is used to merge other '.cfg' files.
The keywords in this section can be any unique string and are not used.
Dstore ignores the "Parameters" and "Includes" sections in included files.
Example:
1 = "./traj_aero.cfg"

[Includes]

The following sections that begin with "Format_" contain special code

Format_report - This section specifies report attributes

[Format_report]

 # If filename is not specified, use the cfg filename with '.rpt'. To print
 # to standard output, specifiy filename 'stdout'

 filename = traj.rpt

 # source - This indicates what states to log. onState is based on time.

 source = ['onState', 'onEnterState']

 # startTime - This controls the time when the report should start. Defaults to
 # group or main startTimes if None

 startTime = None

 # stopTime - This controls the time when the report should stop. Ignored if None.

 stopTime = None

 # freq - Frequency of the onState to log. Cannot be more frequent than what is
 # specified by group or top level timeInterval. Every record if None.

 freq = None

 # reportChar - The character used to format the report.

 reportChar = -

 # nameLength - Space allocated for variable names. Set to longest name for
 # optimal alignment

 nameLength = 15

 # decimal - Set to True to force the floating point format g to always print a decimal.

 decimal = False

 # precision - Floating point precision

 precision = 8

 # ncolumns - The number of columns in the report

 ncolumns = 3

 # header - Contains variable source, units, description

 header = True

 # UTC - This correspond to a list or tuple containing the Universal Time:
 # Base yr, mon, day, hr, min, sec, microsec as integers, seconds from epoch as double
 # Can also be a variable in the namespace the has the vaule of the tuple.

 UTC = None # 'utc_ref'

 # MET - This corresponds to a list or tuple containing Mission Elapsed Time:
 # days, hours, minute, second, microseconds as integers
 # Can also be the variable name in the Dstore namespace that contains the tuple.

 MET = None # 'met_ref'

Format_hdf5 - This section specifies default hdf5 attributes
[Format_hdf5]

 # If no filename is specified, the cfg filename is used with the extension replaced with '.h5'

 filename = traj.h5

 # Description is stored in the HDF5 file.

 description = File contains ISS Model and Trajectory Output

Format_csv - This section specifies default csv attributes
[Format_csv]

 # source - specifies where the history comes from: onEnterState, onState, onExitState, or any
 # If icludeStates is True, the FSM state names are included

 source = ['onState', 'onEnterState']

 # If no filename is specified, the cfg filename is used with the extension replaced with csv

 filename = traj.csv

 # startTime - This controls the time when the CSV should start. Defaults to
 # group or main startTimes if None

 startTime = None

 # stopTime - This controls the time when the CSV should stop. Ignored if None.

 stopTime = None

 # freq - Frequency of the onState to log. Cannot be more frequent than what is
 # specified by group or top level timeInterval. Every record if None.

 freq = None

 # comments - optional file comments

 comments = Trajectory Data

 # header - If True print the vaiable name header

 header = True

 # units - If True print the units

 units = False

 # colwidth - Column width spacing

 colwidth = 12

 # decimal - Set to True to force the floating point format g to always print a decimal.

 decimal = True

 # precision - Floating point precision

 precision = 8

 # Separates columns. Should be a single character.

 delimiter = ,

 # includeStates - If true print the state or phase names

 includeStates = False

The final sections contain groups of desired output parameters. Each group name should appear in
single brackets and be followed by desired output parameter specification as shown below. A double
bracketed GroupSpec may appear after all vaiable declarations for that group. GroupSpec is used to
further control logging at the group level.

#[Group_name]

varame = ["source", "OutputUnits", "PostProcClass", "Description", "InternalUnits", "VectorSuffix"]

GroupSpec - This is optional and has to be last in the configobj groups to conform with that
API. GroupSpec further manages logging at the group level.
[[GroupSpec]]
description = 'LAS' # will appear report header and H5 group description
timeInterval = 0.025 # log frequency for this group
startTime = 0.0 # start time for this group
vectorSuffix = '012M' # Name sequences of len 4 this Default XYZM
onEnterState = True # Log enter events for group
onExitState = False # Log exit events for group
stateCharLen = 50 # Size allotted for the state (phase) name in HDF5 file (default 40)
#

2.6.1.7.2. CFG File Section Descriptions

The Dstore cfg file may contain one or more user defined output groups to be logged. The groups may be defined in a given cfg file or may be included from other cfg files. This is important

to keep in mind as Dstore has log controls at the top level as well as the group level. The Parameters section contains the top level log controls for the HDF5 output file. At the group level,

each group may have further log specification for that particular group. Each group corresponds to a separate HDF5 table in the HDF5 file. Finally, both the CSV and Report options have

their own specific log controls.

2.6.1.7.2.1. [Parameters]

This section specifies the logging frequency, group selection, and file format type specification for desired output. The logging frequency is global for all output and can be further restricted

at the group level. Note that the opposite is NOT true in that groups groups cannot be directed to log more frequent than the specification in this section. Group selection can pertain to

groups defined within this cfg file or other cfg files included in as explained in the following section. In a similar fashion, CSV or Reports can not be generated more frequent than the

specific group is logged.

2.6.1.7.2.2. [Includes]
This section is used to include output specification of groups from other .cfg files. The [Parameters], [Includes], and [Format_] sections of included files are ignored. The key in this section

can be any unique value as the only used information is the filename value.

2.6.1.7.2.3. [Format_FILETYPE]

This section is used to specify attributes of the desired FILETYPE.

FILETYPE = 'hdf5'

This filetype is written by default as a Python HDF5 pytables. If multiple groups are specified, each group is written as a separate table, so there is a correlation between Dstore Groups

and HDF5 groups.

filename - Output filename. Will take on the cfg filename with a .h5 basename if not specified.

description - File description.

Common to * FILETYPE = 'csv' and 'report'

source - Can equal onState, onEnterState, onExitState, or any combination thereof. This corresponds to the Dstore log method used to store the data.

startTime - Time to start producing output

stopTime - Time to end output.

freq - Output frequency for onState if specified. This has no effect on onEnterState, or onExitState.

header - If True, print variables name header.

precision - Desired number of significant digits. Default is 6.

FILETYPE = 'csv'

filename - This filetype will append the group name to the specified filename and a .csv'. If not specified, will take on the `.cfg basename.

comments - This will be the 1st line in the file.

units - If True, print units name header.

colwidth - Column width.

decimal - If True force the floating point g format to always print a decimal.

delimiter - Field separater character.

includeStates - If True include the FSM states in the output.

FILETYPE = 'report'

filename - If not specified, will take on the .cfg basename and ".rpt".

reportChar - Character used to format the report. '-' is default.

nameLength - Space allocated for the group item name. 12 is default.

ncolumns - Number of columns. Default is 3.

MET - Optional MET time banner is output when specified (Mission Elapsed Time). Must be set to the desired reference MET as a sequence of days, hours, minute, second,

microseconds as integers. MET = 0, 0, 0, 0, 0

MET can also be set to a variable in the namespace that contains the above tuple. For example, if the variable in the namespace is equal to met, the following can be specified. MET =

met

UTC - Optional UTC time banner is output when specified (Coordinated Universal Time). Must be set to the desired reference UTC as a sequence of year, month, day, hour, minute,

second, microseconds as integers, and the reference UTC time as a float. The UTC reference is user defined and may be set according to the mission such as the Grenwich Hour Angle.

UTC = 2010, 7, 26, 0, 0, 0, 0, 0.0

UTC can also be set to a variable in the namespace that contains the above tuple. For example, if the variable in the namespace is equal to utc, the following can be specified. MET =

met

2.6.1.7.2.4. [GROUPNAME]
This section is used to specify groups that contain desried output parameters. In this example, there are 2 groups [group1] and [group2], but [group2] is not output. Also, [group3] is

selected for output and exists in the include.cfg file.

select - This is a list of single quoted variables to be output for the group. If not specified, all variables in the group are output.

VARIABLE_DEFS - This is one or more variable definitions taking on the form below described below.

name = ['source', 'units', 'postproc', 'description', 'internal_units', 'vector_suffix', 'aliases']

name - Variable name as to appear in output.

source - Internal object containing the value. This can be a string corresponding to a specNode, an expression to be evaluated, or a callable object. If this object is a string that has to

eval’d each log time, expect an increase in run time. A callable object (like a specNode) is stored at initialization and does not have to be eval’d each log time which reduces run time.

units - Desired output units

postproc - Class to "postprocess" the internal value at each write time point. This is computationally slow and it is suggested to perform this type of processing after simulation

termination if at all posssible.

description - Variable description. This is typically a short description as in plot axis labels.

internal_units - This is used to allow specification for internal units if they can not be retrieved internally. Specifying this field will take precedence and ignore any available

internal units (a debug warning would be posted for this case).

vector_suffix - This is a string containing letters used as a suffix to name. This specification will override the default group specification.

aliases - This is a list of string variable name aliases in which to name the variable in output. This field overrides the vector_suffix field and the name. Aliases must be of same

length as the source object value.

- This section contains optional group output controls that allow the following specification. To abide by the ConfigObj rules, this must appear after all variable declarations for the

particular group.

description - Group description. This appears in the hdf5 group table and in the report output.

startTime - Time to start logging the specified group.

timeInterval - Group log time interval. This specification can not log more frequent than that specified in the [Paramters] section. It is used to reduce the frequency.

vectorSuffix - String containing letters used as a suffix for sequences. This can be overwritten for each output item.

onEnterState - If set to False, the onEnterState is not logged.

onExitState - If set to False, the onEnterState is not logged.

stateCharLen - Size allotted for the state name in HDF5 file (40 is default)

2.6.1.7.3. The Namespace Object

To create a Dstore instance, a namespace is generally provided to contain references to all the objects specified in the .cfg file. Here a module containing objects referenced in the cfg file is

used, but any object that has an dict attribute can be used. The following is from test_Dstore.

2.6.1.7.4. Dstore Speci�cations

The following sections detail the API of Dstore. Most options available in the cfg input file are also available at run time.

2.6.1.7.4.1. Dstore Module Attributes
csv - csv object (see csv attributes)

report - report object (see report attributes)

2.6.1.7.4.2. Dstore Module Functions
writeDefaultCfg() - This writes a default CFG file.

2.6.1.7.4.3. Constructor Call

import math, sys
from Math.SOA_Py import SOAVector3, SOAQuaternion, SOAEuler
from DshellCommon.utils.units import unitConvert
from DshellCommon.SimulationExecutive import SimulationExecutive
sim = SimulationExecutive.simulationLookup()

class Container:pass
chaser = Container()
target = Container()
chaser.assembly = sim.assembly('ChaserVehicle', 0, True)
target.assembly = sim.assembly('TargetVehicle', 0, True)

class Position:
 def __init__(self, body_obj):
 self.body_obj = body_obj
 def __call__(self):
 return self.body_obj().positionInertialFrame()()

class Velocity:
 def __init__(self, body_obj):
 self.body_obj = body_obj
 def __call__(self):
 return self.body_obj().velocityInertialFrame()()[3:]

class Magnitude:
 def __init__(self, vec_obj):
 self.vec_obj = vec_obj
 def __call__(self):
 return SOAVector3(self.vec_obj()).magnitude()

chaser.pos = Position(chaser.assembly.rootbody)
chaser.vel = Velocity(chaser.assembly.rootbody)
chaser.posmag = Magnitude(chaser.pos)
chaser.velmag = Magnitude(chaser.vel)
grav = chaser.assembly.findAssembly('gravity')
grav_model = grav.model('gravity')
chaser.grav_spec = grav_model.specNode()

target.pos = Position(target.assembly.rootbody)
target.vel = Velocity(target.assembly.rootbody)
target.posmag = Magnitude(target.pos)
target.velmag = Magnitude(target.vel)
grav = target.assembly.findAssembly('gravity')
grav_model = grav.model('gravity')
target.grav_spec = grav_model.specNode()

from numpy import array
class TargetPos(object):
 """Example of how to customize name output and specify unit conversion. When
 units_conversion is specified the units in the cfg are for display only. """
 def __init__(self):
 self.obj = Position(target.assembly.rootbody)
 self.table_names = ['TPCIX', 'TPCIy', 'TPCIZ']
 self.unit_conversion = array([0.3048, 0.3048, 0.3048])

 def __call__(self):
 return self.obj()

class TargetVel(object):
 """Example of how to customize name output and specify unit conversion. When
 units_conversion is specified the units in the cfg are for display only. This
 example shows output_units and from_units are for display only"""
 def __init__(self):
 self.obj = Velocity(target.assembly.rootbody)
 self.table_names = ['TVPCIX', 'TVPCIy', 'TvCIZ']
 self.unit_conversion = array([1.0, 1.0, 1.0])
 self.output_units = 'ft/s'
 self.from_units = 'm/s'

 def __call__(self):
 return self.obj()

PYTHON

2.6.1.7.4.4. Dstore Object Attributes
See CFG description for attribute descriptions.

states - See cfg description

startTime - See cfg description

timeInterval - See cfg description

strictInterval - See cfg description

timeResolution - See cfg description

select - See cfg description

format - See cfg description

outputDir - See cfg description

h5f - This is the Dstore HDF5 file object. The same object when reading an Dstore HDF5 file.

2.6.1.7.4.5. Dstore Object Methods
addGroup(group_name, group_dict, namespace) -

keys() - Return a list of group names. To retrieve a group object use::: group_obj = dstore_obj[group_name]

renderCfg(filename=None) - Write out a cfg file with the current Dstore state. If no filename is given, use "[input_cfg]rendered.cfg".

logOnState(time, state) - Log the state according to the startTime, timeInterval, timeResolution

logOnEnterState(time, state) - Log the record when entering a state.

logOnExitState(time, state) - Log the record when exiting a state.

onStateHistory - Return the states recorded from logOnState

onEnterStateHistory - Return the states recording for logOnEnterState

onExitStateHistory - Return the states recording for logOnExitState

values() - Return the list of Dstore group objects.

2.6.1.7.4.6. Dstore Group Object Attributes
See CFG description for attribute descriptions.

timeInterval

startTime

description

onEnterState

onExitState

vectorSuffix

stateCharLen

data - The group HDF5 data table.

header - The group HDF5 header table.

name - The group name.

2.6.1.7.4.7. Dstore Group Object Methods

addItem(item_name, item_attributes, namespace) - Add items to the group. Update must be called after all:: items have been added to the group.

item_name - The variable name as in the CFG file. item_attributes - List of variable attributes as in the CFG file. ** namespace - The namespace containing the item source definition.

keys() - List of item names in the group.

update() - Method to update HDF5 table and when new items have been added.

values() - Return the list of Dstore group item objects.

2.6.1.7.4.8. Dstore Item Object Attributes
description - Variable name description.

dstore_obj = Dstore.Dstore(cfg_file=None,
 namespace=None,
 output_dir='./')

* **cfg_file** - None

 If no `cfg` file is provided, the default settings are used. These are the same settings that exist
 in the cfg file produced by writeDefaultCfg(). Updating this value after construction has no effect.

* **namespace** - None

 This is a module or class container containing the names needed by the user defined output items.

* **output_dir** - './'

 This is the location of the output. Updating this value after construction, currently has no effect.

PYTHON

name - Variable name

units - Output units

2.6.1.7.4.9. Dstore Item Object Methods
rawvalue - Returns the item value without unit conversions.

value - Returns the item value with unit conversion applied.

2.6.1.7.4.10. Dstore csv Object Attributes
See the CFG descriptions.

colwidth

comments

decimal

delimiter

freq

header

includeStates

precision

startTime

stopTime

source

units

2.6.1.7.4.11. Dstore report Object Attributes
See the CFG descriptions.

decimal

freq

header

nameLength

ncolumns

precision

reportChar

startTime

stopTime

source

2.6.1.7.5. Usage Examples

2.6.1.7.5.1. Print the Dstore Object
This will produce the information of the Dstore object that is also printed as the header of the traj.rpt.orig output and is shown below. Important to note that if there are no internal units,

no unit conversion is performed. It can be seen below for DstoreGroup "chaser" that "ri" and "grav_accel" will have unit conversions performed since both "Internal" and "Output" units are

available. The DstoreGroup "target" shows one other way to specify unit conversions and output variable names. Note that the TargetPos() and TargetVel() are class instances defined in

module namespace.py. This approah shows how to create callable class objects to customize output. This approach requires the unit_conversion attribute value to be initialized as the cfg

string units are NOT used to derive the unit conversion value. Here the unit string values are tags that take precedence over the cfg values.

Also, note that the tables specifies a * for items that are callable. This is an indicator that run time performance is optimal. Note that variable "noncallable" source is not a callable object.

This means Dstore performs an "eval" every time to log the value. A callable object is much faster than the "eval" approach.

DstoreGroup: chaser
 Number of variables: 6
 Description: Chaser Vehicle
 Variable Units
 (Callable=*) Internal Output Source Description
 ------------ -------- -------- ------------------------------------- --
 mass * kg lbm chaser.assembly.mass Mass
 rimag * None m/s chaser.posmag Velocity Magnitude
 vimag * None m/s chaser.velmag Velocity Magnitude
 grav_accel * ft/s**2 m/s**2 chaser.grav_spec['flowOut.lin_accel'] Grav Accel
 ri * m ft chaser.pos Position
 vi * None m/s chaser.vel Velocity
 ------------ -------- -------- ------------------------------------- --

DstoreGroup: target
 Number of variables: 8
 Description: Target Vehicle
 Variable Units
 (Callable=*) Internal Output Source Description
 ------------ -------- -------- ------------------------------------- --
 mass * None target.assembly.mass Mass
 rimag * None m/s target.posmag Velocity Magnitude
 vimag * None m/s target.velmag Velocity Magnitude
 grav_accel * None target.grav_spec['flowOut.lin_accel'] Grav Accel
 ri * None m TargetPos() Position
 vi * m/s ft/s TargetVel() Velocity
 vi2 * None m/s target.vel Velocity
 noncallable None m/s 9.81 Grav constant
 ------------ -------- -------- ------------------------------------- --

2.6.1.7.6. Using the Dstore methods to perform the logging

Below is a class that can be used by the FSM to log the desired dstore object.

2.6.1.7.7. Using the Dstore methods to modify logging at run time

Below is a function that is executed as a transistion function to change the group timeInterval to 30. sec. Note that this is the group timeInterval for "chaser" and NOT the file timeInterval.

2.6.1.7.8. Adding groups at run time

The following is an example of adding a new DstoreGroup "aero" at runtime. The method addGroup takes as arguments the group name, a dictionary of group items, and the namespace.

2.6.1.7.9. Adding items at run time

The following is an example of adding DstoreItems to a DstoreGroup at runtime. After adding items the updatePrintGroup with the specific group must be executed.

2.6.1.7.10. Query internal HDF5 table at run time

class log_onState:
 def __init__(self, dstore_obj, state):
 self.dstore_obj = dstore_obj
 self.state_name = state
 def __call__(self):
 self.dstore_obj.onState(sim.time(), self.state_name)

states = [
 ['Initialize', [], [log_onState('Initialize', dstore_traj)], []],
 ['State1', [], [log_onState('State1', dstore_traj)], []]
]

PYTHON

def decrease_chaser_log():
 dstore_traj['chaser'].timeInterval = 30.0
 print("Reducing chaser log rate to %4.1f" % dstore_traj['chaser'].timeInterval)

PYTHON

dstore_traj.addGroup('aero',
 {'cm_aero_CA': ["get_aero_data()['cat']", "", None, 'CM Axial Aero Coefficient'],
 'cm_aero_CD': ["get_aero_data()['cdt']", "", None, 'CM Drag Aero Coefficient'],
 'cm_aero_CL': ["get_aero_data()['clt']", "", None, 'CM Lift Aero Coefficient']},
 namespace)

PYTHON

for name, attr in (
 # Output
 # Name Value Source Units Description
 ('cm_aero_FA', ["get_aero_data()['fa']", "N", None, 'CM Axial Aero Force']),
 ('cm_aero_FN', ["get_aero_data()['fn']", "N", None, 'CM Normal Aero Force']),
 ('cm_aero_FX', ["get_aero_data()['fx']", "N", None, 'CM X Aero Force']),
 ('cm_aero_FY', ["get_aero_data()['fy']", "N", None, 'CM Y Aero Force']),
 ('cm_aero_FZ', ["get_aero_data()['fz']", "N", None, 'CM Z Aero Force'])
):

 cm_group.addItem(name, attr, namespace) # Each item has it's own namespace
Need to refresh the DstoreGroup
dstore_traj.updatePrintGroup(cm_group)

PYTHON

Will produce the following (see test_Dstore).

Query example: Note: recType 3 contains onState records
Chaser, time: 170.0000, State: 3rd State, VI: 7811.6048, RI: 6589068.6863
Chaser, time: 200.0000, State: 3rd State, VI: 7813.9678, RI: 6586967.9710

2.6.1.7.11. Closing Output Files

At the end of the simulation, the output files can be closed if desired although Python will close all output before it ends the process.

dstore_traj.closeOutput()
dstore_event.closeOutput()

2.6.1.8. Finite State Machine

The description that follows will reference the code snippet below. In this example an FSM is created from the ISS assembly. In fact, the DshellCommon FSM allows each assembly to have

its own FSM.

from DshellCommon.FsmUtils import uponStateEntry, generalTrigger
iss = sim.findassembly('ISS')
iss.createFsm(sim)
fsm = iss.fsm()
states = [
 # STATE_NAME, ENTRY_ACTION, DURING_ACTION, EXIT_ACTION
 ['Setup', None, None, None],
 ['Coast', [uponStateEntry, enter_store], None, None],
 ['LVLH Hold',[uponStateEntry, enter_store, cmd_hold], None, None],
 ['End',[uponStateEntry, enter_store, sim.terminate], None, None],
]
transitions = [
 # FROM_STATE, TO_STATE, CHECK_FUNCTION, ACTION_FUNCTIONS
 ['Setup', 'Coast', True, []],
 ['Coast', 'LVLH Hold', generalTrigger(sim.time, 'value >= 587.0'), []],
 ['LVLH Hold','End', generalTrigger(sim.time, 'value >= 2500.0'), []],
]
fsm.parseStates(states)
fsm.parseTransitions(transitions)
fsm.debugOff()
fsm.transition_info = sim.time
fsm.setCurrentState('Setup')

In general, a simulation might use the default FSM (the default is the SimulationAssembly fsm) which can be referenced from the SimulationExecutive instance, which is sim in this

example. This could be done as follows.

fsm = sim.fsm()

2.6.1.8.1. State Speci�cation

States are the mechanism to specify controls to place on the simulation or to just distinguish an event that is desired to have logged. Here states is a list of lists. Each sublist contains the

information of a given state described in order below.

1. State Name - The 1st item in the list is the state name or title.

2. On Enter State Function (ENTER_ACTION) - The second item in the list is a function reference (or a list of function references) to be executive when transitioning into that state. Here

we use a list containing uponStateEntry (is used to echo the simulation time and the state) and our user defined enter_store function. None can be used when no function is specified.

3. On State Function (DURING_ACTION) - The 3rd item is a function reference (or list of function references) to be executed each I/O step while in that state (or None).

4. On Exit State Function (EXIT_ACTION) - The last item is a function reference to be executed when transitioning out of this state, and yes you guessed it, it can be a list of function

references too or None if no action is desired.

2.6.1.8.2. Transition Speci�cation

Next we specify the information directing the sim to "transition" from one state to another. We do this through the transitions list, which like states, is a list of lists. Here each sublist contains

information for a single transition described in order below.

1. From State - This is a state that we specified in the states list and is the state we plan to transition out of.

2. To State - This is the state that we specified in the states list that we want to transition into.

3. Monitor Function (CHECK_FUNCTION) - The monitor/check function is a reference to a function which when returns True will direct the simulation to transition from the From state

to the To state. Here we are using the utility generalTrigger available in FsmUtils which is a callable class. Here we use the class approach to "store internally" the trigger information,

namely, the variable to monitor, and the condition in which to trigger the transition.

4. Transition Function (ACTION FUNCTIONS) - This is a reference to a function (or a list of function references) to execute if the monitor function returns True. The transition function

will execute after executing On State functions then On Exit functions specified with the given From State and before the To State On Enter functions.

Note in the example that the fsm.transition_info is set to the simulation time (the default is the number of steps that have been taken). Setting to time might be useful when printing the

fsm condition so that the time is tagged to the the time the state occured.

data = dstore_traj['chaser'].data
print("\nQuery example: Note: recType 3 contains onState records")
recs = data.where('(recType == 3) & (time > 40.) & (vimag > 7804.) & (rimag < 6589069.)')
for rec in recs:
 print('Chaser, time: %8.4f, State: %10s, VI: %10.4f, RI: %10.4f' % (rec['time'], rec['state'], rec['vimag'], rec['rimag']))

PYTHON

2.6.1.9. Controlling the Simulation with Phasing

Phasing is a module similar to the Finite State Machine used to halt the simulation through phases and issue user commands (phases are analogous to FSM states). Phasing sequences can be

created at the assembly level for a particular vehicle, and there is a main phasing sequence at the simulation level. Phasing has Fixed, Free, Floating, and Optional type phases. Free phases

can trigger any time after the previous Fixed phase. Optional phases are like Free phases, except that they are no longer monitored after the next Fixed phase occurs. Floating phases are

similar to Optional phases, in that they are bounded by two Fixed phases, and that they may occur any time relative to Free and Optional phases that are being monitored. However, the

Floating phase must occur before the next Fixed phase may occur. Phasing also has a RegulaFalsi type mechanism which alters the integration step size to hit the event within a specified

tolerance. This is useful if you need to execute some type of control at exactly some time point or an exact point in the trajectory such as altitude as shown in the example below. The Step

Manager module, which is related to Phasing, contains execution and step size management functions.

2.6.1.9.1. Creating a Phasing / Step Manager Instance

The first step in getting phasing set-up is importing the PhasingManager class and the optional PhaseTime class. PhaseTime is a mechanism for monitoring time spent in a current event

and triggering the phase when reaching that value. When a phase 'triggers', it is invoked and its command actions are performed. The command actions can be a single command or a list of

commands.

The phasing instance is used to manage the user defined phases, as well as providing print management.

2.6.1.9.2. Initialize Desired Phases

The example below shows 3 phases being initialized. Phases require a number which is used by phasetype This can be provided in the phase specification as shown below or if not provided

the PhaseManager will increment phase numbers by 10 when added through addPhase. Phases may not trigger in numerical order. For example, in the example below, phase 20 is a Free

phase. Free phases can occur at any time point after the previous (number) Fixed phase. In the case below, phase 20 may trigger after phase 30 if the altitude is not reached prior to 1000

seconds.

The following are allowable phase specification. Those with default values are optional.

1. number - All phases require a number. If not specified the addLog will set the number 10 higher than the current highest number. The number is how the sim manages what phases

have to be monitored, or in other words, what candidate future phases can trigger. This is not to be confused with the actual phase trigger order.

2. name - The name or title of the phase.

3. monitor - This is the attribute that we want the sim to monitor to determine if it is time to phase. Monitor can be a simple function reference that returns the value as in the case with

"sim.time" in phase 20 or a python callable class object "PhaseTime" as is the case with phase 1.

4. value - This is simply the value or the target we’re trying to hit with the monitor attribute. This can be a simple scalar or a callable function. When the monitor function reaches the

target value, the phase triggers and then executes the specified cmd[s].

5. phasetype - (Default = "Fixed") Currently we have four phase types, namely, "Fixed", "Free", "Optional", and "Floating". A "Fixed" phase has to occur before the next "Fixed" phase

triggers". A "Free" phase can occur any time after the prior "Fixed" phase. Optional phases are like Free phases, except that they are no longer monitored after the next Fixed phase

occurs. Floating phases are like Optional phases, in that they are bounded by two Fixed phases, and that they may occur any time relative to Free and Optional phases that are being

monitored. However, the Floating phase must occur before the next Fixed phase may occur.

6. slope - (Default = "ASC_GTE")The slope determines how the value is approached. The value "GTE" means Greater Than or Equal". This means if the variable altitude is monitored with

"GTE" it will trip as soon as the monitor value is greater or equal to the value. The value "CID" means Change in Direction, which monitors a variable for a sign flip in the first derivative.

Valid "Trip" Options: 'LT', 'GT', 'LTE', 'GTE', 'DES_LT','DES_LTE', 'ASC_GT', 'ASC_GTE', 'CID', and 'EQ'.

Valid "Regula-Falsi" Options: 'ASC' or 'DES'.

The "DES" stands for "descending" such that the monitor is decreasing to the target. Conversely, "ASC" defines that the parameter must be increasing to the target.

7. cmd - (Default = None) This is the function reference (or list of function references) you want to execute (or callable class instance) when the phase triggers.

from DshellCommon.fsm.phasing import PhasingManager, PhaseTime
from DshellCommon.fsm.StepManager import StepManager
phasing = PhasingManager(sim)
manager = StepManager(sim)

PYTHON

phasing.addPhase(number=1,
 name='Coast',
 monitor=PhaseTime,
 value=100.0,
 phasetype='Fixed',
 slope='GTE',
 cmd=None)

phasing.addPhase(number=20,
 name='Max Time',
 monitor=sim.time,
 value=1000.0,
 phasetype='Free',
 slope='GTE',
 priority=50,
 cmd=sim.terminate)

phasing.addPhase(number=30,
 name='Max Time',
 monitor=alititude,
 value=400000.0,
 phasetype='Free',
 slope='GTE',
 priority=50,
 tolerance=10.0,
 tolerance_type='Absolute',
 monitortype='RegulaFalsi',
 cmd=sim.terminate)

PYTHON

8. priority - (Default = 100) This tells the sim which phase to trigger if more than one phase is scheduled to trigger at a given time. Higher priority phases first.

9. monitortype - (Default = 'Trip') This directs the sim how to hit the target value. Two options are available, "Trip" which means trigger whenever the threshold is passed. The second

option "RegulaFalsi" instructs the sim to change the integration step size in order to hit the target within as specified tolerance. After hitting the tolerance, the integration stepsize is

returned to the value prior to monitoring.

10. tolerance - (Default = 0.1) Tolerance used to determine if the monitor value is within the target value. This parameter is only used for Regula-Falsi and is not used during Trip

monitortype. It means how close to the target value must the monitor value before the Regula-Falsi event is considered to be met.

11. tolerance_type - (Default = "Percent") "Absolute" and "Percent" are options to determine how option tolerance is interpreted. This parameter is only used for Regula-Falsi and is not

used during Trip monitortype.

12. relaxation_factor - (Default = 0.85) This parameter is only used for option Regula-Falsi to slow down convergence in meeting monitor parameters target. Smaller value will have the

affect of smaller integration step sizes in trying to achieve the target. Helpful for very dynamic parameters.

2.6.1.9.3. Phasing Print Manager

Phasing has a print manager which facilitates data logging. The print manager is a wrapper around the DshellCommon Dstore function. See Dstore getting started section. Note that the obj

returned from the addLog method is a Dstore instance. Printing the object displays some useful log specification information. Also, the namespace is described in the Dstore documentation.

The following are printmanager features.

1. setOutputDir - Method to set directory for output. The files themselves are defined in the Dstore .cfg files.

2. log_start_of_phase - Log data at each phase trigger time.

3. addLog - Add the specified Dstore .cfg file and the corresponding namespace.

2.6.1.9.4. Execution

Phasing & Step Manager provide the following execution related items.

1. echo_freq - Echo to stdout sim time and the current phase.

2. execute - Execute the simulation until a sim.terminate is encountered.

3. printTriggeredPhases - Print a listing of phases that triggered as well as how well they achieved their target, time of trigger etc.

4. printmanager.generateOutput - Actually a print manager function to generate the output files.

2.6.1.9.5. Interactive Execution

Interactively invoking the simulation in the python shell, or better yet the ipython shell is useful for trajectory analysis, debugging, or general introspection. Step Manager currently has

three mechanisms for stepping the sim described below.

Take a single step or multiple.

Step to the specified phase. In the following example the sim will step and trigger all candidate phases until it reaches phase 30 (or until the sim terminates).

or similarly step to a desired time. Here phases may trigger before halting at the desired time.

2.6.1.9.6. Regula-Falsi Implementation

Regula-Falsi is a technique used to determine the moment when a monitored value matches a target value within a specified tolerance. It does this by changing the integration and IO

stepsizes to achieve the targeted valued within the specified tolerance. Once the target value has been achieved, the associated phasing event will occur (i.e. Perform a Burn Command at a

certain Mission Elapsed Time).

The way COMPASS implements Regula-Falsi is not true “Regula-Falsi” because the simulation does not step backwards if the target value is overshot. Instead, the COMPASS Regula-Falsi

Implementation is more accurately described as a “Forward Cubic Spline” algorithm where the last four monitor values and simulation times are used to determine the appropriate step

size to use in order to inch toward the future target value.

phasing.printmanager.setOutputDir('./results')
phasing.printmanager.log_start_of_phase = True

namespace = phasing.printmanager.namespace
namespace.vehicle1 = sim.assembly('Vehicle1', 0, True)
namespace.vehicle2 = sim.assembly('Vehicle2', 0, True)
for cfg_file in ('dwatch/traj.cfg', 'dwatch/event.cfg'):
 obj = phasing.printmanager.addLog(cfg_file, namespace)

PYTHON

phasing.echo_freq = -1
print 'Initial Phases:\n', phasing
Begin Execution
print 'Begin Execution'
manager.execute()
phasing.printTriggeredPhases()
print 'Remaining phases:\n', phasing

PYTHON

manager.step(nsteps=1)
PYTHON

manager.steptoPhase(phasing_manager, 30)
PYTHON

manager.steptoTime(10.0)
PYTHON

The following Flow Chart shows pseudo-code logic to illustrate how a Regula-Falsi Monitor Phase is executed by the PhaseManager for an Ascending case.

The UpdateHistory routine on the top of the flow chart shows that the current sim time and monitor value is collected into a local history array for both sim time and the monitor value. (The

monitor value can be any measured value from the sim).

The local history array of sim time and monitor values are used to extrapolate the predicted monitor value based on the current step size. If it turns out that the predicted value surpasses

the target value, then a new step size is determined. A predicted target sim time for the target value is determined using a CubicSpline on the local history arrays. The new step size is

determined by taking the difference of the predicted target sim time and the current sim time, but wait… there’s more! The new step size is also a function of a parameter passed in when

the phase was created called… Relaxation Factor. The relaxation factor is multiplied by the difference of the two sim times and is used to slow down convergence in meeting the monitor

value target. Smaller values will result in smaller integration step sizes used in trying to achieve the target monitor value.

The original step size is retained so that the simulation step size may be restored to that value after a Regula-Falsi phase event has occurred

This kind of logic leads toward the kind of simulation steps shown in the Figure Below

new_stepsize = (pred_target_sim_time - current_sim_time) * relaxation_factor
PYTHON

The yellow small dots on the time-line progression represent every time an official sim step was taken and data logged. An official sim step is defined to be the state after every IO Step the

simulation has taken. When Regula-Falsi changes step sizes to inch towards the target value, it alters both the IO Step size and the integration step size. The dotted lines represent when the

PhasingManager extrapolated the future monitor values but found that it would overshoot. The change in color of an arc represents the changing of the step size by the PhaseManager.

The flow chart logic repeats until the simulation takes a step in which the monitor value matches the target value within the Regula-Falsi tolerance and the data is logged. Afterwards, a

calculated step size is used to reach a time that is consistent with the nominal step interval, then the nominal step size is restored. (see figure above Red Arc Step back in Sync to original

Blue Arc Step)

What happens if the monitored value already exceeds the target value (and tolerance) during Regula-Falsi? Great Question! The way the Regula-Falsi is coded at this moment, the

Regula-Falsi event will overshoot the target value and the simulation will terminate from an Exception: Cannot step back in time x (seconds) in Phase Y. For example, consider a cannonball

sim with step sizes of 1.0 seconds with Earth gravity always pulling down the negative Z-Axis The initial conditions are a cannonball of 1.0 Kilogram mass droped from an intertial frame at

sim time = 0. If a Regula-Falsi monitortype were to be added to the Phasing Manager with a monitor of Z position and a target value of -10.0, tolerance of 0.1, slope of 'DES', and a phasetype

of 'Free', by the second step the sim would have already stepped over the target value and the Regula-Falsi event will not be triggered. The sim would terminate from an uncaught

exception. An example of this thrown exception is shown below.

Consider this scenario when creating Regula-Falsi phases so as to not overshoot your target value.

2.6.1.9.7. Regula-Falsi Example

Let’s assume an example of a cannonball of 1.0 Kilogram mass is being exerted on by gravity downwards (- Z-Axis) in an inertial frame. The initial conditions of our scenario would be for the

cannonball to be dropped from inertial position origin at time 0.0

First Step is to create an instance of the PhasingManager by passing in your cannonball simulation.

Traceback (most recent call last):
 File "CannonBallSim.py", line 141, in <module>
 manager.execute()
 File "/ms/ua/compass2/work/galaniz/dev/Cycle15/lib/PYTHON/DshellCommon/fsm/phasing.py", line 137, in execute
 res = self.step()
 File "/ms/ua/compass2/work/galaniz/dev/Cycle15/lib/PYTHON/DshellCommon/fsm/phasing.py", line 152, in step
 self._monitor()
 File "/ms/ua/compass2/work/galaniz/dev/Cycle15/lib/PYTHON/DshellCommon/fsm/phasing.py", line 227, in _monitor
 self._checkForTrigger()
 File "/ms/ua/compass2/work/galaniz/dev/Cycle15/lib/PYTHON/DshellCommon/fsm/phasing.py", line 237, in _checkForTrigger
 res = phase.monitor_inst()
 File "/ms/ua/compass2/work/galaniz/dev/Cycle15/lib/PYTHON/DshellCommon/fsm/phasing.py", line 562, in __call__
 return self.checkConvergence()
 File "/ms/ua/compass2/work/galaniz/dev/Cycle15/lib/PYTHON/DshellCommon/fsm/phasing.py", line 622, in checkConvergence
 self.changeStepsize(new_stepsize)
 File "/ms/ua/compass2/work/galaniz/dev/Cycle15/lib/PYTHON/DshellCommon/fsm/phasing.py", line 629, in changeStepsize
 raise Exception('Cannot step back in time %.14g in %s' % (new_stepsize, self.phase))
Exception: Cannot step back in time -1.9122324159021 in Phase: 1 SimpleExample (Free)

PYTHON

from DshellCommon.fsm.phasing import PhasingManager, PhaseTime
phasing = PhasingManager(sim)

PYTHON

Now all that is needed is to add a phases to monitor the Regula-Falsi event.

These input fields are used to add Trip Event (by Default) and Regula-Falsi Phases. Some of the fields are Regula-Falsi Specific/Unique, which include:

1. slope - (Default = 'ASC_GTE')

2. tolerance - (Default = 0.1)

3. tolerance_type - (Default = "Percent")

4. relaxation_factor - (Default = 0.85)

Elaboration of these parameters are explained in the above section 'Initialize Desired Phases'.

Let’s explain the values of all the fields that are passed in this example

The number field will be a unique phase number identifier from other phases. 1 is chosen for this SimpleExample.

The monitor value will be populated with the cannonball’s Z Velocity function call.

The target value is chosen to be -48.5 meters/second (m/s). (Note: The monitor and target values do not have to depend on time, but any measured value from the simulation)

The phase type is Free because the event can happen at any time.

The slope is descending because the velocity is increasing negatively. If the phase monitortype is 'RegulaFalsi', the only valid strings are 'ASC' or 'DES'.

The monitor type is chosen as 'RegulaFalsi' to allow the event to be triggered at the target value within a tolerance.

The tolerance is chosen to be within 0.1 m/s. The tolerance field is only used when the monitortype is 'RegulaFalsi'.

tolerance_type is 'Absolute' because the tolerance is not a percentage of the target value. This tolerance_type field is only used when the monitortype is 'RegulaFalsi'

The relaxation_factor is 0.85 to make sure that the predicted step size will not overshoot the target value. The lower the relaxation factor, the more steps will be taken to inch toward the

target value. This relaxation_factor field is only used when the monitortype is 'RegulaFalsi'.

Finally, the cmd field is populated with a reference function to call upon when the monitor value matches the target value within the specified tolerance. In this case, the sim.terminate

function will be called upon the Regula-Falsi event being triggered.

All of that just takes care of the phasing setup.

We will not set the IO step size and integration steps for the simulation to allow the default step size of 1 second to be used

The final step is to execute the simulation by executing the Step Manager.

During the simulation, the triggered events will be printed to the screen

Time: 4.9345 Start Phase: 1 SimpleExample (Free)
 Monitor Var: ballZVel
 Trigger time: 4.93449541
 Monitor Val: -48.5
 - Sim Val: -48.4074
 Delta: -0.0925999887
Simulation terminated at t=4.93450

Each of the triggered Phases has the Simulation Time at which the event was triggered, the target value and the monitored simulation value showing that the event triggered within the

tolerance.

As a final note, it is possible to pass in the debug flag as true when adding the regula falsi monitor phases to the phase manager. This will allow more info during the simulation run of how

the step sizes are being altered during the run to acheive the target value.

2.6.1.10. Utilities

2.6.1.10.1. CUBIC SPLINE (cubicspline.py)

Provides a CubicSpline class for interpolation.

This class is used to interpolate using a cubic spline given x, y sequences. x must be monotonically increasing or decreasing sequence. Also, len(x) == len(y)

phasing.addPhase(number=1,
 name='SimpleExample',
 monitor= ballZVel,
 value= -48.5,
 phasetype='Free',
 slope='DES',
 monitortype='RegulaFalsi',
 tolerance=0.1,
 tolerance_type='Absolute',
 relaxation_factor=0.85,
 cmd=sim.terminate)

PYTHON

manager.execute()
PYTHON

The class instance is callable as the following example shows usage:

2.6.1.11. Writing DshellCommon Simulation Run Scripts

In order to construct a simulation use tools provided by the DshellCommon module, users will create a run script. The run-scripts have several parts:

2.6.1.11.1. Run script preamble

The beginning of the run script has several 'preamble' elements

Do some basic imports

Create the simulation executive

Import the parameter libraries to be uses in the simulation

At a minimum, a preamble might look like this:

2.6.1.11.2. De�ne the simulation de�nition block

The next part of a run script is the simulation definition block.

The following excerpt from an example simulation script illustrates the structure of simulation definition block:

 :param x: List of independent values
 :param y: List of dependent values

 >>> x = [1., 2., 3., 4., 5.]
 >>> y = [2., 8., 12., 13., 25.]
 >>> f = CubicSpline(x, y)
 >>> print([f(x) for x in (0., 2., 3., 4., 5., 15., 45.)])
 [-4.125, 8.0, 12.0, 13.0, 25.0, 113.75, 380.0]

PYTHON

Create the simulation

from DshellCommon.SimulationExecutive import SimulationExecutive

sim = SimulationExecutive()

Load the parameter libraries

import sys
sys.path.append('./library')

import targets
import bodies
import states

Get access to necessary assembly classes
from DshellCommon import assemblies

PYTHON

Figure 30. Layout of Example Simulation De�nition Block

In this simulation, we create

The target planet (Mars)

Spacecraft 'SC1' (which contains an attached 'probe' body)

Spacecraft 'SC2'

NOTES

The structure of the assembly definition for the target planet, SC1, and SC2 are identical. An assembly class must be specified (the 'class' item), and the other items are optional.

Note that in the SC1 assembly definitions there is an 'assemblies' block (enclosed in dotted lines). It has the same structure as the top-level block. In fact, the entire simulation

definition block can be thought of as the 'assemblies' block for the top-level assembly.

Spacecraft SC1, SC2, and probe are all instances of the VehicleAssembly class.

The nested nature of the construction is deliberate. The 'probe' assembly is actually a separate VehicleAssembly because it could potentially be detached from SC1 and become free-

flying spacecraft.

For more information about the syntax and grammar of the simulation definition block, see the reference section: reference/scripts_bnf .

For an example of how to create and share signals in a run script, please this regression test:

2.6.1.11.2.1. Creating signals and signal ties in assembly de�nition
Basic test

Creating signals and signal ties basic regtest

More detailed test

Creating signals and signal ties more detailed regtest

2.6.1.11.3. Initialize the simluation

After the simulation structure is defined, all objects defined in it can be created by a few simple calls:

Create all the assemblies

sim.createAssemblies(config)

sim.bindState()

sim.resetState(0.0)

PYTHON

2.6.1.11.4. Run the simulation

At this point, the simulation is ready to run. The user can provide code to alter initial conditions, set up finite state machines, etc. If a finite state machine is not used, executing the

simulation could be very simple:

2.6.1.11.4.1. Example run script
2.6.1.11.4.1.1. test_VehicleAssembly_attach/script_attachVehicle.py
The run script shown in this page is simplified from the test/test-Vehicle-attach/script_attachVehicle.py doctest:

Create and attach 2 vehicles regtest

Dwatch Regtest

For examples on how to log data using Dwatch, please see this example:

Simple test for basic Dwatch functionality in a simulation

2.6.1.11.4.2. Suggestions for writing run scripts
2.6.1.11.4.2.1. Library Imports in User Scripts
In older user scripts, we often used the syntax:

and when we reference something in the bodies library file:

However, a cleaner syntax is do it differently. Import the library file like this:

Then we can reference it like this:

2.6.1.11.4.2.2. Prede�ned Constants in User Scripts
In config dictionaries in user run scripts have many string tokens that are used in the scripts such the strings 'class', 'basename', 'params', 'signals', etc:

We have defined a set of constants for these string tokens. In order to use them you will need to do an import:

Notice that the string tokens have been replaced by uppercase constants. Most of the commonly encountered tokens have constants defined for them. To see the full list of available

constants, please see the file:

DshellCommon/python/assemblies/ConfigConstants.py

Note that these constants can also be used in python Assembly classes.

The goals for these constants are

Reduce potential errors due to misspellings of the string tokens. An error in a constant name will be caught immediately when the code is executed.

Run the simulation to a specific end time

tfinal = 5.0

while sim.time() < tfinal:
 sim.stepSim()

PYTHON

sys.path.append('./library')
import bodies

PYTHON

bodies.Library['SC']['CapsuleBase']
PYTHON

sys.path.append('./library')
from bodies import Library as bodies

PYTHON

bodies['SC']['CapsuleBase']
PYTHON

config = {
 'SC1' : {
 'class' : 'VehicleAssembly',
 'basename' : 'baseBody',
 'params' : {
 'Bodies' : bodies.Library['SC1']['Bodies']
 },
 'signals' : {
...

PYTHON

from DshellCommon.ConfigConstants import CLASS, BASENAME, PARAMS, BODIES, SIGNALS

config = {
 'SC1' : {
 CLASS : 'VehicleAssembly',
 BASENAME : 'baseBody',
 PARAMS : {
 BODIES : bodies['SC1']['Bodies']
 },
 SIGNALS : {
...

PYTHON

The constants are very obvious in the user scripts and stand out from user-defined strings (eg, for assembly or body names). This helps the user read and understand the user script

more easily.

The constants reduce the amount of indenting required (slightly).

2.6.1.12. Useful Example Scripts (Regression Tests)

Doctests tests form a valuable resource since they are example scripts that exercise many aspects of the system. DshellCommon has many regression tests. In order to make it easier to

locate useful tests, the following table lists all the DshellCommon regression tests and a little about each of them. The link in the left column provides a link to allow readers to examine the

script for the regtest.

Link to regression test Description

test_BaseAssembly Simple stand-alone test for BaseAssembly class

test_Dwatch Simple test for basic Dwatch functionality in a simulation

test_SimulationAssembly Simple test for basic SimulationAssembly functionality

test_SimulationExecutive Simple test for basic SimulationExecutive functionality without Spice

test_SimulationExecutive Simple test for basic SimulationExecutive functionality with Spice

test_child_signals Example of creating signals and signal ties in the user run scripts by specifications in the user run script (in the assembly

definition part).

test_FSM_basic Create a finite state machine based on DshellCommonFSM and exercise its functionality in a stand-alone test (without a

simulaton).

test_FSM_sim Create a finite state machine based on DshellCommonFSM and exercise its functionality in a simulation. Check basic

transitions and termination during simuation.

test_FSM_sim2 Create a finite state machine based on DshellCommonFSM and exercise its functionality in a simulation. Check basic

transitions and termination during simuation using the 'generalTrigger' trigger function from FsmUtils.py

test_derivedParamAndAssembly Tests to create parameter classes of derived classes and test them in assembly creation.

test_VehicleAssembly_checkpoint Test checkpointing with a simulation with 1 vehicle with one body. Start the simulation, checkpoint, run the simulation,

restore from checkpoint and verify the restored state.

testVA_script_1v1b Manually create a VehicleAssembly with 1 body, no gravity.

testVA_script_1v3b Manually create a VehicleAssembly with 3 bodies, no gravity.

testVA_script_2v1b Manually create two VehicleAssemblys' 1 body each, no gravity.

testVA2_script_1v3b_nograv Create a VehicleAssembly with 3 bodies, no gravity, using the normal run script approach.

testVA2_script_1v3b_grav Create a VehicleAssembly with 3 bodies and gravity, using the normal run script approach.

testVA2_script_2v3b_grav Create two VehicleAssembly’s with 2 bodies on one, 1 body on the other, and gravity, using the normal run script approach.

testVA2_script_2v4b_grav Create two VehicleAssembly’s with 3 bodies on one (including one on a subsidiary VehicleAssembly), one body on the other,

and gravity, using the normal run script approach. Tests hierarchical VehicleAssembly construction.

test_ExtDistActuatorAssembly Create a free-flying vehicle without gravity and apply a force and torque to test ExternalDisturbanceActuatorAssembly.

test_ExtDistMotorAssembly Create a free-flying vehicle without gravity and apply a force and torque to test ExternalDisturbanceMotorAssembly.

testVA_attach_detach1 Create a vehicle with 2 bodies and a separable probe body. Detach the probe and lock it (freeze it) with respect to the inertial

frame.

testVA_attach_detach2 Create a vehicle with 2 bodies and a separable probe body. Detach the probe and let it fly free with respect to the inertial

frame.

testVA_attach_attachToBody1 Create a vehicle with 2 bodies and a separable probe body. Detach the probe and lock it to a rotating planetary body (PCR).

testVA_attach_attachToBody2 Create a vehicle with 2 bodies and a separable probe body. Detach the probe and let it fly freely with respect to a rotating

planetary body (PCR).

testVA_attach_attachVehicle Create 2 vehicles. In the simulation one vehicle attaches to the other vehicle to roughly simulate docking a vehicle to the

space station.

test_VehicleAssembly_target Create a vehicle with 3 bodies and a planetary target body. Set up simple gravity.

test_VehicleAssembly_gravity Create a vehicle with 3 bodies and a planetary target body. Set up an aspherical gravity tied to the planetary body.

test_VehicleAssembly_spice Create a vehicle with 3 bodies and a planetary target body initialized with Spice. Set up simple gravity.

Link to regression test Description

test_VehicleAssembly_fsmsep Create a vehicle with 2 attached bodies: a service module and command module. Separate the the two bodies during the

simulation using a finite state machine.

test_Topos Test adding topographic objects to Targets.

test_MultiRun Test cases for multirun execution of a simulaiton.

Simple test for basic Dwatch functionality in a simulation

Simple stand-alone test for BaseAssembly class

Create a free-flying vehicle without gravity and apply a force and torque to test ExternalDisturbanceActuatorAssembly.

Create a free-flying vehicle without gravity and apply a force and torque to test ExternalDisturbanceActuatorAssembly.

Simple test for basic Dwatch functionality in a simulation

Create a finite state machine based on DshellCommonFSM and exercise its functionality in a stand-alone test (without a simulaton)

Create a finite state machine based on DshellCommonFSM and exercise its functionality in a simulation. Check basic transitions and termination during simuation.

Create a finite state machine based on DshellCommonFSM and exercise its functionality in a simulation. Check basic transitions and termination during simuation using

the 'generalTrigger' trigger function from FsmUtils.py

Test cases for multirun execution of a simulaiton.

Simple test for basic SimulationAssembly functionality

Test adding topographic objects to Targets.

SimulationExecutive related

Simple test for basic SimulationExecutive functionality

Simple test for basic SimulationExecutive functionality

TargetAssembly related

VehicleAssembly with 3 bodies and a planetary target body, simple gravity.

Create 2 vehicles. In the simulation one vehicle attaches to the other vehicle to roughly simulate docking a vehicle to the space station.

VehicleAssembly related

Manually create a VehicleAssembly with 1 body, no gravity.

Click to see the DshellCommon/test/test_Ndarts/test_Dwatch/script1.py script

Click to see the DshellCommon/test/test_Ndarts/test_BaseAssembly/script1.py script

Click to see the DshellCommon/test/test_Ndarts/test_ExtDistActuatorAssembly/script.py script

Click to see the DshellCommon/test/test_Ndarts/test_ExtDistMotorAssembly/script.py script

Click to see the DshellCommon/test/test_Ndarts/test_fsm/script_sim.py script

Click to see the DshellCommon/test/test_Ndarts/test_fsm/script_basic.py script

Click to see the DshellCommon/test/test_Ndarts/test_fsm/script_sim.py script

Click to see the DshellCommon/test/test_Ndarts/test_fsm/script_sim2.py script

Click to see the DshellCommon/test/test_Ndarts/test_MultiRun/script2.py script

Click to see the DshellCommon/test/test_Ndarts/test_SimulationAssembly/script.py script

Click to see the DshellCommon/test/test_Ndarts/test_Topos/script1.py script

Click to see the DshellCommon/test/test_Ndarts/test_SimulationExecutive/script1.py script

Click to see the DshellCommon/test/test_Ndarts/test_SimulationExecutive/script2.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly_target/script.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly_attach/script_attachVehicle.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly/script_1v1b.py script

Manually create a VehicleAssembly with 3 bodies, no gravity.

Manually create two VehicleAssemblys' 1 body each, no gravity.

VehicleAssembly with 2 bodies and a separable probe body. Detach the probe and lock it (freeze it) with respect to the inertial frame

VehicleAssembly with 2 bodies and a separable probe body. Detach the probe and let it fly away with respect to the inertial frame

VehicleAssembly with 2 bodies and a separable probe body. Detach the probe and lock it to a rotating planetary body (PCR)

VehicleAssembly with 2 bodies and a separable probe body. Detach the probe and let it fly freely with respect to a rotating planetary body (PCR)

Test checkpointing with a simulation with 1 vehicle with one body. Start the simulation, checkpoint, run the simulation, restore from checkpoint and verify the restored

state.

Create a vehicle with 2 attached bodies: a service module and command module. Separate the the two bodies during the simulation using a finite state machine

VehicleAssembly with 3 bodies and a planetary target body, aspherical gravity.

VehicleAssembly with 3 bodies and a planetary target body with Spice, simple gravity.

VehicleAssembly2 related

Regular creation of a VehicleAssembly with 3 bodies, no gravity.

Regular creation of a VehicleAssembly with 3 bodies, with gravity.

Regular creation of two VehicleAssembly with 2+1 bodies, with gravity.

Regular creation of two VehicleAssembly with 3+1 bodies, with gravity.

Miscellaneous

Test basic derived Assembly and param classes

Example of creating signals and signal ties in the user run scripts by specifications in the user run script (in the assembly definition part).

Example of creating signals and signal ties in the user run scripts by specifications in the user run script (in the assembly definition part).

2.6.2. Reference

2.6.2.1. DshellCommon Simulation Executive

2.6.2.1.1. SimulationExecutive

2.6.2.1.1.1. Introduction
The SimulationExecutive is the simulation engine.

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly/script_1v3b.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly/script_2v1b.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly_attach/script_detach1.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly_attach/script_detach2.p script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly_attach/script_attachToBody1.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly_attach/script_attachToBody2.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly_checkpoint/script.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly_fsmsep/script.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly_gravity/script1.py (with AsphericalGravityActuatorAssembly) script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly_spice/SpiceFramesTest.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly2/script_1v3b_nograv.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly2/script_1v3b_grav.py script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly2/script_2v3b_grav.p script

Click to see the DshellCommon/test/test_Ndarts/test_VehicleAssembly2/script_2v4b_grav.py script

Click to see the DshellCommon/test/test_Ndarts/test_derivedParamAndAssembly/script.py script

Click to see the DshellCommon/test/test_Ndarts/test_child_signals/script1.py (basic test) script

Click to see the DshellCommon/test/test_Ndarts/test_child_signals/script2.py (more detailed test) script

SimulationExecutive is derived from the C++ DshellX simulation engine.

2.6.2.1.1.1.1. How to use the SimulationExecutive
In order to use the SimulationExecutive in your user run scripts, only a few lines are needed:

This constructs the simulation object and does some basic initialization.

Popular SimulationExecutive Functions

Some of the most common functions for the SimulationExecutive are:

Functions related to accessing and advancing the simulation time:

Function Purpose

sim.step()

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/classDshell__Py_1_1Simulation.html#a0c33975fda4de1a5214990d13f62caaf#a4dcb139d466f705cdb1d19ce5720392d)

Step the

simulation

forward in

time one step

and advance

any finite state

machines set

up by the

simulation

script.

sim._advanceTimeBy(delta_time) (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/classDshell__Py_1_1Simulation.html#a0c33975fda4de1a5214990d13f62caaf) Step the

simulation

forward by

delta_time

seconds.

sim._advanceTimeTo(time) (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/classDshell__Py_1_1Simulation.html#acd0a8b0df0621972f77870f02e2549d9) Step the

simulation to

time seconds.

sim.time() (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/classDshell__Py_1_1Simulation.html#a2ab4e9ed003fe1c9b0a8e4fe604a4bbc) Return the

current

simulation

time in

seconds.

Functions for saving/restoring/resetting the state of the simulation

Function Purpose

sim.checkpoint(filename)

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/classDshell__Py_1_1Simulation.html#a55e2c6eeaea60b4107e683a4e98c42af)

Write the entire state of the simulation out to a

checkpoint file.

sim.restoreFromCheckpoint(filename)

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/classDshell__Py_1_1Simulation.html#a758ddf674dc004582e5bac5b2aafa751)

Restore the entire state of the simulation from a

checkpoint file.

sim.clear()

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/classDshell__Py_1_1Simulation.html#a9f4d5b8d4581ad4be096320ecbbcf8c0)

Reset the integrator back to time=0.0

Functions for creating and dealing with assemblies

Function Purpose

sim.assemblyList()

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/classDshell__Py_1_1Simulation.html#ab16f089baec6ad340920753a8097b5fd)

Returns a list of all assembly objects in the

simulation.

sim.assembly(name,depth,strict)

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/classDshell__Py_1_1Simulation.html#a1f082c0f3f2adea6a8d56a50d2b3c6a7)

Get the specified assembly object

Functions for dealing with the integrator

Functions for dealing with the integrator Purpose

Create the simulation

from DshellCommon.SimulationExecutive import SimulationExecutive

sim = SimulationExecutive()

PYTHON

Functions for dealing with the integrator Purpose

sim.currIntegrator()

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/classDshell__Py_1_1Simulation.html#adc6967d27796015d2c93029071b592e0)

Get the integrator object

sim.integratorSelect(name)

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/classDshell__Py_1_1Simulation.html#ab83c00272af2c0cfad0094dd30f1857f)

Switch to the specified integrator

sim.stepSize(sec,nanosec)

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++/html/classDshell__Py_1_1Simulation.html#a91077e8b2f302d1d2ddd0432dc2ee8f5)

Get or set the step size (integer seconds,

nanoseconds)

There are many other commands that SimulatonExecutive supports including commands to help set up the simulation structure (Assemblies), dealing with the integrator, setting up the

simulaton time step size, etc. For more details see the SimulationExecutive API Documentation section below.

2.6.2.1.1.2. Related Regression Tests
For an example of how to use the most basic functions of SimulationExecutive, see these test:

2.6.2.1.1.2.1. test_SimulationExecutive/script*.py
Note: Many of the regression tests use SimulationExecutive.

Simple test for basic SimulationExecutive functionality without Spice

Simple test for basic SimulationExecutive functionality with Spice

2.6.2.1.1.2.2. test_VehicleAssembly_checkpoint/script.py
Test checkpointing with a simulation with 1 vehicle with one body. Start the simulation, checkpoint, run the simulation, restore from checkpoint and verify the restored state.

2.6.2.1.1.3. SimulationExecutive API Documentation

Note

For Doxygen documentation, please see: SimulationExecutive

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1SimulationExecutive_1_1SimulationExecutive.html)

2.6.2.2. DshellCommon Parameter Basics

2.6.2.2.1. Parameter Class Overview

A parameter class is basically a dictionary that lists the allowed parameters, describes each of the parameters and provides the associated units.

Parameter classes are the preferred method for setting parameters for a given assembly and model. Although these classes can be treated by the user as a dictionary, they offer several

benefits over dictionaries:

Name checking: Parameter classes have a list of all allowed parameters and whether each parameter is required or optional.

Descriptions: Each parameter is associated with a long description to allow introspection.

Units: Parameters are associated with units. These are used to provide input parameter unit conversions (future capability)

Alternate inputs: Each assembly and model depends on a specific set of parameters in a specific reference frame or coordinate system. Parameter classes provide the user the flexibility

of inputting a given parameter type in a different way. These inputs are converted to the form required by the assembly. For example: A parameter class can convert keplerian elements

into the cartesian vectors required by the VehicleAssembly. Without this the assembly would have to handle all permutations of desired inputs making it much more complex or

multiple assemblies would be required.

2.6.2.2.1.1. Parameter Class Functionality
Although parameter classes are primarily dictionary-like objects, they are functional python classes and can have methods.

Default values: A common function is to set a default value in the parameter class before it is loaded by the assembly and converted to a DvarBranch.

Derived values: Another common function is to calculated derived values from required inputs.

2.6.2.2.1.1.1. Functionality Parameter Classes Should Not Have
Parameter classes should not contain code that is intended to be called::: * directly by the user to generated derived values * cyclically during the simulation

2.6.2.2.1.1.2. Naming Convention
Parameter classes have a naming convention. The prefix shall be descriptive of the high level nature of the parameters. Using the high level description will help group like param classes.

The fundamental parameter class will have the name 'Base'. Derived classes will replace 'Base' with a more descriptive name. The suffix will always be Param. Example: TargetBaseParam

and TargetAsphericalParam.

2.6.2.2.1.1.3. Creating a Parameter Class
There are two basic types of parameter classes, Base and Derived. A Base class derives directly from BaseParam. It contains parameters that are essential to a broad category of similar

models. Derived classes derived from a Base class and typically provide additional parameters that are required for a more specific or specialized model.

Code example defining a parameter class with one parameter field, 'Q', might look like this:

if 'rotationAngle' not in params:
params['rotationAngle'] = 0.0

PYTHON

if 'radiusPole' in params:
 params['flattening'] = (params['radiusEquator'] - params['radiusPole']) / params['radiusEquator']
 params['eccentricity'] = math.sqrt(params['radiusEquator']**2 - params['radiusPole']**2) / params['radiusEquator']

PYTHON

where the constant 'Q' is introduced to reduce the chances of misspelling.

An instance of this parameter can be constructed using one of two approaches:

1. Using the 'params' dictionary:

or

2. Using the keyword approach:

Notice the difference in the parameter field name in the two approaches (quoted in 1 and without in 2). Using the keyword approach has some advantages since it looks simpler, and

misspellings of the parameter field 'Q' will be caught automatically.

2.6.2.2.1.2. DshellCommon API Reference - Primary Param Classes
BaseParam EpochParams StateParams TargetParams BodyParams NodeParams GravityParams

2.6.2.2.1.2.1. BaseParam
BaseParam Class Introduction

Base class for DshellCommon parameter classes

The BaseParam class will be the parent class of all Param classes defined in DshellCommon.

Derived from the C++ DshellParams class

Provides a layer over the C++ DshellParams class for any needed additional functionality.

BaseParam Class API Documentation

Note

For Doxygen documentation, please see: BaseParam<BaseParam::BaseParam>

DshellCommon.params.BaseParam

2.6.2.2.1.2.2. Epoch Parameters
Class Documentation

Introduction

The Epoch Param classes have a single purpose: set the j2000BaseTime that resides in Dshell. This time is used to compute all other derived times.

Note

Instead of using the Epoch Param classes, you can pass the epoch through the start_time parameter in the SimuationExecutiveNdarts constructor.

Epoch Param Classes

EpochBaseParam: not intended to be used directly.

EpochDateParam: Use Spice to interpret a string based time and date..

EpochETParam: Directly set seconds from J2000 epoch in ephemeris time.

Class API Documentation

from DshellCommon.params.BaseParam import BaseParam, ParamInfo

Q = 'Q'

class TestParam(BaseParam):
"""
Test parameter
"""

_params = {

 Q : ParamInfo(required=True,
 description='Q',
 data_type=float),
 }

def __init__(self, params=None, source=None, source_params=None, sim=None, **kw):
 """Constructor."""
 params = BaseParam.assignKeywordArgs(params, kw)

 BaseParam.__init__(self, params, source, source_params, sim)

PYTHON

qpar = TestParam(params = {'Q' : 1.0})
PYTHON

qpar = TestParam(Q = 1.0)
PYTHON

Note

For Doxygen documentation, please see: * EpochBaseParam * EpochDateParam * EpochETParam

EpochDateParam

DshellCommon.params.EpochDateParam.EpochDateParam.init

DshellCommon.params.EpochDateParam.EpochDateParam.setInitTime

EpochETParam

DshellCommon.params.EpochETParam

2.6.2.2.1.2.3. State Parameter
Class Documentation

Introduction

The State Param classes are used to convert various states into inertial states for use by Darts. The state is defined as a translational and rotational state, and there are two base classes

from which the remaining State Param classes are derived:

StateAttitudeBaseParam

StatePosVelBaseParam

State Attitude Param Classes

Document State Attitude Param classes.

State Position/Velocity Param Classes

State Position Velocity param classes provide various means of generating an inertial cartesian state required by Darts.

Document State Pos/Vel Param classes.

Class API Documentation

Note

For Doxygen documentation, please see

StatePosVelBaseParam

StatePosVelCartesianParam

StatePosVelSphericalParam

StateLatLonAltParam

StatePosVelVehRelParam

StateAttitudeBaseParam

StateAttitudeEulerParam

StateAttitudeFPAlignParam

StateAttitudeVehRelParam

2.6.2.2.1.2.4. Target Parameters
Introduction

The Target Param classes establish parameters for planetary bodies.

Target Param Classes

TargetBaseParam TargetBallParam TargetSpiceParam TargetAsphericalParam

Class API Documentation

Note

For Doxygen documentation, please see

TargetBaseParam

TargetBallParam

TargetSpiceParam

TargetAsphericalParam

2.6.2.2.1.2.5. Body Parameters
Introduction

The BodyParam class provides all parameters required to specify a single Darts body.

BodyParam API Documentation

Note

For Doxygen documentation, please see: BodyParam

Body Parameter definition

2.6.2.2.1.2.6. Node Parameters
Introduction

The NodeParam class provides all parameters required to specify a single Darts node.

Construction parameters:

param params - Dictionary of param fields and values

param source - The source for all the parameter values

param source_params - Dictionary of parameter field names and corresponding data source.

param kw - Keywords (all parameter field values can be passed in as keyword/value assignments)

Parameter fields (either in the ‘params’ dictionary or as a keword argument):

referenceToNode: The 3-vector to the node frame from the reference frame

referenceToNodeQuat: attitude of node with respect to reference frame

referenceFramePath: if set, the reference frame wrt to home the transform values are specified. If unspecified, the parent body of the node is used as the reference frame.

bodyToNode: The 3-vector to the node frame from the reference frame

NodeParam API Documentation

Note

For Doxygen documentation, please see: NodeParam

Node Parameter definition

2.6.2.2.1.2.7. Gravity Parameters
Introduction

Most gravity parameter classes are derived from GravityBaseParam.

GravityBaseParam

The base class for most gravity parameter classes.

GravityAsphericalParam

The gravity force actuator attributes for an aspherical gravity model.

Class API Documentation

GravityBaseParam API

Note

For Doxygen documentation, please see: GravityBaseParam

Gravity Actuator Parameter definition

GravityBaseParam API

Note

For Doxygen documentation, please see: GravityAsphericalParam

Ashperical Gravity Actuator Parameter definition

2.6.2.2.2. Simpli�ed Parameter Object Construction

In DshellCommon, we define the BaseParam class and use it as a parent class for most parameter classes. Originally, constructing a parameter object required specifying the parameter

data using a dictionary. In early user scripts, we often used syntax like this for specifying body parameters:

The use of dictionary for the params object works fine but can be a little error prone to create or update because of all the string constants.

Note that the suggested corresponding parameter constructor class looks like this (omitting some of the imports and docstrings for brevity):

By adding the call to assignKeywordArgs() as shown on line 25, parameters passed in as keywords (kw) are appended to the param dictionary as if they had been specified there.

Notice that constants used for the parameter fields are defined at the module level (lines 4 and 5.) This make the code in parameter class definition less problem prone (since we are dealing

with constants instead of raw strings).

This approach means the ExampleParam invocation above can be re-coded as follows:

As the keyword arguments are processed, each is checked against the known parameters and an error is raised if it is unknown.

Also notice that a default value was defined for 'const1' in line 18 above. If the user had not defined 'const1' here, the default value would have been used (2.0).

This has several advantages over the earlier approach:

No python dictionary is necessary.

The parameter constructor is cleaner, shorter, and easier to read.

Misspellings of parameter names (eg 'length') are caught early in the process.

This approach should be more robust to errors by new users.

2.6.2.2.3. Units

2.6.2.2.3.1. Using units in parameter speci�cations
All model variables and flows defined in model defintion file can specify their units. This includes scratch and state variables, parameters, flowIns and flowOuts. In order to take advantage

of this capability, the desired units need to be specified in the .mdl file:

[params]

 [[angle]]
 Type = double
 Length = -
 Units = rad
 Brief description = """The angle"""

Note that the angle parameter has been specified as radians here. The units information is saved in the model meta data (as a string) and is available for run-time inspection.

In the parameter specification, the units can be used to automatically convert the angle parameter to radians:

'Par1' : ExampleParam(
 params = {
 'length' : 20.0,
 'const1' : 3.0,
 },
 source = None),

PYTHON

from DshellCommon.params.BaseParam import BaseParam
from DshellCommon.ConfigConstants import UNITLESS

LENGTH = 'length'
CONST1 = 'const1'

class ExampleParam(BaseParam)

 _params = { LENGTH : ParamInfo(required = True,
 units = 'm',
 description = 'length'
 data_type = float),

 CONST1 : ParamInfo(required = False,
 units = UNITLESS,
 description = 'const 1',
 data_type = float,
 default_value = 2.0)
 }

 def __init__(self, params=None, source=None,
 source_params=None, sim=None, **kw):
 """Constructor."""

 params = BaseParam.assignKeywordArgs(params, kw)

 BaseParm.__init__(self, params, source, source_params, sim)

PYTHON

'Par1' : ExampleParam(length = 20.0,
 const1 = 3.0,
 source = None),

PYTHON

By multiplying the numerical value with the deg object as shown here, the resulting value is converted to radians internally. The ensures that the value stored in the model variable is in the

desired units.

Similar conversions can be done for length (meters, feet), force (newtons, lbf), speed (m/s, feet/sec, fps), etc.

To specify a variable without units, use the keyword: 'unitless'.

Notice that each type of unit needed in the file needs to be imported explictly.

2.6.2.2.3.2. Types of Units Available
The units conversion code is based on the quantities package. See http://packages.python.org/quantities/index.html for more information.

The quantities package supports most common units SI and US Customary Units.

The easiest way to determine if a particular unit definition is supported is to try to import it. For example:

2.6.2.2.4. Parameter Fields

2.6.2.2.4.1. Overview of Parameter Field Classes
The Dshell parameters are composed of several parameter fields. The most generic of these is ParamInfo. However we now have many new parameter fields that are more specialized for

validating input data. The following table lists the available parameter fields and a bit about their behavior. Note that the term "Array" in these class names means that the item is a list (or

tuple) of the underlying parameter field types. To determine which arguments each parameter field class supports, see their source code in DshellCommon/python/params/fields/

Field Name File Notes

BooleanParamField (API Docs <BooleanParamField>) boolean.py Accepts only True or False values

BooleanArrayParamField (API Docs

<BooleanArrayParamField>)

boolean_array.py List or tuple of BooleanParamField values

FilenameParamField (API Docs <FilenameParamField>) filename.py Accepts the full path to a file. By default, the file MUST exist unless the optional

constructor argument must_exist is set to False.

FilenameArrayParamField (API Docs

<FilenameArrayParamField>)

filename_array.py List or tuple of FilenameParamField values

FloatParamField (API Docs <FloatParamField>) float.py Floating point value (floats, doubles, int, long ints). Two options are available to control

each fields behavior:

positive_only - Requires the float values to be positive (not zero). Default is False.

positive_or_zero_only - Requires the float values to zero or positive (non-negative).

Default value is False.

minimum - Requires that the float value be greater than or equal to this value.

maximum - Requires that the float value be less than or equal to this value.

FloatArrayParamField (API Docs <FloatArrayParamField>) float_array.py List or tuple of FloatParamField values. The options positive_only,

positive_or_zero_only, minimum, and maximum can be given and operate as

described for FloatParamField. Another option is available:

max_length - Sets the maximum allowed length of the array.

FloatOrVector3ParamField (API Docs

<FloatOrVector3ParamField>)

float_or_vector3.py Allows a single floating point value or a 3-vector (a list/tuple of three float values or an

SOAVector3 object)

GeometryParamField (API Docs <GeometryParamField>) geometry.py A dictionary of body/part geometry data. Three types are supported: Primitive shapes

('sphere', 'cone', 'cylinder', 'cube'/'box'), known "Topo" objects such as SphericalSun, or a

reference to a SimScape store object (note that the existance of the SimScape store

directory is checked immediately). This field is used in BodyParam.py for the 'geometry'

param field or for 'partGraphics' (which is deprecated; use 'geometry' instead).

To find out more please visit GeometryParamFieldRef .

from DshellCommon.units import deg

Library = {
 'State': { 'Attitude':
 AngleParam({ 'angle': 23.0 * deg }),
 }
 }

PYTHON

>>> from DshellCommon.units import feet
>>> feet
UnitQuantity('feet', 1.0 * ft, 'feet')

PYTHON

Field Name File Notes

InertiaMatrixParamField (API Docs

<InertiaMatrixParamField>)

inertia_matrix.py A 3x3 inertia matrix composed of valid float values. Three options are available to

control the behavior of the field:

epsilon - Specify the epsilon to be used when checking the matrix validity. Default is

SOABase.epsilon.

allow_zero - Allow an inertia matrix of all zeros (for phantom bodies). Default is True.

allow_semidefinite - Allow semi-definite inertia matrices. Default is True.

IntegerParamField (API Docs <IntegerParamField>) integer.py Accepts only integer values. Two options are available to cotnrol the behavior of the

integer param field:

positive_only - Allow only positive integers (not zero). Default is False.

positive_or_zero_only - Allow only positive or zero integers (non-negative). Default is

False.

minimum - Requires that the float value be greater than or equal to this value.

maximum - Requires that the float value be less than or equal to this value.

This field also supports the normal choices option to provide a list of allowable integer

values.

IntegerArrayParamField (API Docs

<IntegerArrayParamField>)

integer_array.py List or tuple of IntegerParamField values. The options positive_only,

positive_or_zero_only, minimum, and maximum can be given and operate as

described for FloatParamField. Another option is available:

max_length - Sets the maximum allowed length of the array.

JointLimitsParamField (API Docs <JointLimitsParamField>) joint_limits.py A list or tuple of float values.

ModelEnumParamField (API Docs <ModelEnumParamField>) model_enum.py A field that contains a value (or list/tuple of values) from a model enum. This field has

two required options:

model_name - The name of the model the enum is defined in

enum_name - The name of the enum

If this field is to be an array of enum values, set the option list_permitted to True. You

may also specify the length option to require the list of enum values to be a particular

length.

PointerParamField (API Docs <PointerParamField>) pointer.py Accepts pointer values (long int). The field may be set to 0 if the option allow_zero is

set to True.

PointerArrayParamField (API Docs

<PointerArrayParamField>)

pointer_array.py List or tuple of PointerParamField values

QuaternionParamField (API Docs <QuaternionParamField>) quaternion.py Accepts a legal quaternion value either as an SOAQuaternion object or a list/tuple of 3

float values that form a legal unit quanterion.

RotationMatrixParamField (API Docs

<RotationMatrixParamField>)

rotation_matrix.py A valid 3x3 rotation matrix. One option is available to control the behavior of the field:

epsilon - Specify the epsilon to be used when checking the matrix validity. Default is

SOABase.epsilon.

SpiceIDParamField (API Docs <SpiceIDParamField>) spice_id.py Accepts string Spice ID names or Spice integer ID values.

SpiceIDArrayParamField (API Docs

<SpiceIDArrayParamField>)

spice_id_array.py List or tuple of SpiceIDParamField values.

StringParamField (API Docs <StringParamField>) string.py Accepts a string value.

StringArrayParamField (API Docs <StringArrayParamField>) string_array.py List or tuple of StringParamField values

Vector3ParamField (API Docs <Vector3ParamField>) vector3.py Accepts a list or tuple of 3 float values or an SOAVector3 object.

Vector3ArrayParamField (API Docs

<Vector3ArrayParamField>)

vector3_array.py List or tuple of Vector3ParamField values

Table: Parameter Field Classes

2.6.2.2.4.2. Parameter Field API Documentatin
BooleanParamField API Documentation

DshellCommon.data_fields.boolean

BooleanArrayParamField API Documentation

DshellCommon.data_fields.boolean_array

FilenameParamField API Documentation

DshellCommon.data_fields.filename

FilenameArrayParamField API Documentation

DshellCommon.data_fields.filename_array

FloatParamField API Documentation

DshellCommon.data_fields.float

FloatArrayParamField API Documentation

DshellCommon.data_fields.float_array

FloatOrVector3ParamField API Documentation

DshellCommon.data_fields.float_or_vector3

GeometryParamField API Documentation

DshellCommon.data_fields.geometry

InertiaMatrixParamField API Documentation

DshellCommon.data_fields.inertia_matrix

IntegerParamField API Documentation

DshellCommon.data_fields.integer

IntegerArrayParamField API Documentation

DshellCommon.data_fields.integer_array

JointLimitsParamField API Documentation

DshellCommon.data_fields.joint_limits

ModelEnumParamField API Documentation

DshellCommon.data_fields.model_enum

PointerParamField API Documentation

DshellCommon.data_fields.pointer

PointerArrayParamField API Documentation

DshellCommon.data_fields.pointer_array

QuaternionParamField API Documentation

DshellCommon.data_fields.quaternion

RotationMatrixParamField API Documentation

DshellCommon.data_fields.rotation_matrix

SpiceIDParamField API Documentation

DshellCommon.data_fields.spice_id

SpiceIDArrayParamField API Documentation

DshellCommon.data_fields.spice_id_array

StringParamField API Documentation

DshellCommon.data_fields.string

StringArrayParamField API Documentation

DshellCommon.data_fields.string_array

Vector3ParamField API Documentation

DshellCommon.data_fields.vector3

Vector3ArrayParamField API Documentation

DshellCommon.data_fields.vector3_array

2.6.2.3. DshellCommon API Reference - Primary Assembly Classes

2.6.2.3.1. Assembly

2.6.2.3.1.1. Class Documentation
Introduction

The Assembly class is the parent class of all classes defined in DshellCommon.

Assembly is (swig-wrapped) C++ Assembly class

Assembly provides a layer over the C++ Assembly class for any needed additional functionality such as:

Data structures and functions to track the origins of parameters

Functions for checking types of parameter data structures

Functions to create new assemblies based on assembly defintions

Low-level utilities for providing factory-like conversion of string names to python classes.

Construction Options

config - None

context - None

signalTies - None

params - None

Suggestions for Developers Writing New Classes derived from Assembly

Here are few suggestions for developers when writing new classes derived from Assembly:

Use ParentClassX.func() syntax rather than super.func() syntax for invoking members of parent classes.

At the end of each class definition file, include a line like:

NewClass.register()

This registers the new class with the class factory managed by the Assembly class. Also, add a line to import the new file in the appropriate init.py file.

When creating a group of related classes

Put the related classes into a separate directory (as is done with gravity, imu, and time).

Derive the new base class for the group of related classes from Assembly.

Factor any common code into the new base class.

Create a 'init.py' file in the new directory and add lines in it to import each instantiable class. For example, see 'DshellCommon/python/assemblies/init.py'.

Ensure all functions in classes which are derived from the new base class call their parent’s versions of the same function (since it may be desirable to add/modify code in the new

base class without updating all derived classes).

Related Regression Tests

Simple stand-alone test for BaseAssembly class

Assembly Class API Documentation

Note

For Doxygen documentation, please see: Assembly<Assembly::Assembly>

Manages a group of Model, DartsGraph and Signal objects.

C++ includes: Assembly.h

2.6.2.3.2. SimulationAssembly

2.6.2.3.2.1. Introduction
The SimulationAssembly is the top-level assembly for simulations.

The only functionality that SimulationAssembly adds is to add the 'adv_dyn' flow model to advance the dynamics simulation.

2.6.2.3.2.1.1. The Role of SimulationAssembly and Dvar
TheSimulationAssembly class has two significant and related roles in simulations. Let the instance of the SimulationAssembly class that the SimulationExecutive creates be called top_asm

in the following discussion. top_asm contains all the simulations created for the simulation. Since all all assemblies are created hierarchically and are contained directly or indirectly in

top_asm, the implication is that full Dvar names of any assembly or model-related object in the system has 'Assemblies', the Dvar name of top_asm in simulations using

SimulationExecutive.

For instance, in the regression test ../regtests/test_VehicleAssembly_target , the full Dvar 'specString' of the gravitational acceleration is:

'.Dshell.Assemblies.SC1.grav.models.grav.flowOut.lin_accel'

where:

Dshell - is the name of the top-level Dvar branch containing all Dvar data related to models, signals, and assemblies. Note that there is a parallel branch 'mbody' that contains all

multibody bodies, hinges, and nodes.

Assemblies - is the Dvar name of the top-level instance of the;; SimulationAssembly class. The name 'Assemblies' is defined by the SimulationExecutive object when creating the top-

level SimulationAssembly.

SC1 - is the name of the spacecraft (VehicleAssembly)

grav - is the name of the gravity assembly

models - is the name of the Dvar branch for all model-related Dvars for the gravity assembly.

grav - is the name of the gravity model

flowOut - is the Dvar branch for all 'grav' model flowOut’s

lin_accel - is the name of the Dvar leaf for the linear acceleration flowIn

2.6.2.3.2.2. Construction Options
SimulatonAssembly has no config, context, signalTies, or params options.

The SimulationAssembly class will never need to be created by the end user or developer since it is created automatically by the SimulationExecutive.

2.6.2.3.2.3. Related Regression Tests
2.6.2.3.2.4. SimulationAssembly API Documentation

Note

For Doxygen documentation, please see: SimulationAssembly<SimulationAssembly::SimulationAssembly>

The following API documentation includes many functions from parent classes that end users should not use.

SimulationAssembly - The top-level assembly class for the simulation

2.6.2.3.3. VehicleAssembly

INTRODUCTION

VehicleAssembly is the base vehicle assembly class.

The VehicleAssembly models a vehicle such as spacecraft, ground vehicle, or aerial vehicle.

The VehicleAssembly class is derived from the C++ Assembly class will be the parent class of all vehiclular assemblies.

The VehicleAssembly is very flexible. It can be used to model

Simple one-body vehicles

Vehicles with multiple connected bodies

Vehicles that can separate

Vehicles with parts that can be detached or ejected

The key idea here is that any vehicle or part of a vehicle that can potentially be disconnected from its parent vehicle should be modeled as a VehicleAssembly in its own right.

In the initial configuration, VehicleAssembly vehicles are attached by specifying them hierarchically. In other words, if a vehicle has part that could be detached, the detachable part should

be modeled as a VehicleAssembly in its own right and defined in the 'assemblies' list of its parent vehicle.

Each vehicle has a 'root' body. This is the first body in the multibody tree/chain in the vehicle.

Each vehicle also as a 'base' body. This is the body the main body for the vehicle. In many cases this is the same as the root body. But if the main body of the vehicle is modeled as a

translational body coincident with a ball joint, then the 'base' body could be the second (rotational) body since it has both translational and rotational degrees of freedom.

A few notes about VehicleAssemblies

If a vehicle has a gravity model, it must be associated with the 'root' body of the vehicle.

Any attachment to a vehicle must be an attachment to its 'root' body. The 'root' body of a vehicle may be attached to any body of its parent vehicle.

If gravity is included in the simulation, each VehicleAssembly must include appropriate gravity models. The gravity models for child vehicles will be inactive initially since the top-most

parent vehicle’s gravity model will provide gravity for all child vehicles. When a vehicle separates from its parent, its separate gravity model will be activated.

CONSTRUCTING VEHICLEASSEMBLYs

config - None

VehicleAssembly has one required config setting:

'basename'

This is the name of the first body in the vehicle.

A vehicle also has a 'root' body, which may or may not be the 'base' body. The 'root' body is actually the first body of the spacecraft in terms of its multibody tree.

In some cases, it is convenient to have a first 'pseudo' body (that is a 3DOF translational body with zero mass and inertia) followed by the real first body of the vehicle (that has non-zero

mass and inertia and is attached to the 'root' body via a ball joint). In this case, the 'root' body is the 3DOF body and the 'base' body is the second body which is, in a sense, the first real

body of the vehicle.

VehicleAssembly has one optional config setting:

'bodygraph'

The 'bodygraph' describes the bodies in the vehicle and their connectivity. Note that if there is only one body in the vehicle, it is not necessary to specify the 'bodygraph' since it is

redundant.

The 'bodygraph' is a dictonary with two parts:

'edges' - a dictonary describing multibody connectivty information in the following form of key/value pairs:

'verts' - THIS IS HERE FOR LEGACY REASONS. PLEASE DO NOT SPECIFY THIS. A list of the bodies in the spacecraft IN ORDER: parents then children.

<childBodyName> : <parentBodyName>

context

VehicleAssembly has one optional context setting:

'parentBody'

If 'parentBody' is specified, the 'root' body of a child vehicle will be attached to the the body with the specified name in the parent vehicle.

signalTies - None

param

VehicleAssembly has two required parameters:

'Bodies'

This should point to a dictionary of BodyParam parameter class objects. It must include entries for all bodies in the assembly. The 'Bodies' parameter data is used to initialize the

multibody/mass properties of the bodies composing the vehicle.

VehicleAssembly has two optional parameters:

'Position'

This should point to a StatePosVelCartesianParam parameter class object (or any parameter class object derived from StatePosVelBaseParam). It is used to initialize the inital

position of the vehicle.

'Attitude'

This should point to a StateAttitudeFPAlignParam parameter class object (or any parameter class object derived from StatePosVelBaseParam). It is used to initialize the inital

attitude of the vehicle.

Note

The 'Position' and 'Attitude' parameters are optional but must appear together.

2.6.2.3.3.1. Example Construction Syntax

or:

config = {
 'SC1' : {
 'class' : 'VehicleAssembly',
 'basename' : 'Probe',
 'params' : { 'Bodies' : bparams['SC1']['Bodies'] },
 }
 }

PYTHON

2.6.2.3.3.2. VehicleAssembly Usage
2.6.2.3.3.2.1. Signal Information
There are no signals in this assembly.

2.6.2.3.3.2.2. Param Class Information
2.6.2.3.3.2.2.1. UserClockParam
Describes the base time characteristics (at sim time=0.0) of user defined clocks

Required Parameters
None

Optional Parameters

Name Type Length Quantity Units Description

baseTime string 1 N/A time value of clock at sim

time = 0.0

2.6.2.3.3.2.2.2. StateAttitudeBaseParam
State attitude knowledge/delivery specification for the start of a simulation and attitude rate. When using this parameter class in a VehicleAssembly, the inertial frame in the descriptions

for initQ and initOmega refers to the Planet-Centered Inertial (PCI) frame. When this class is used with the stateInit utility, the inertial frame refers to the frame provided by the assembly

passed in as an argument.

Required Parameters

Name Type Length Quantity Units Description

initQ name double string 4 1 Quaternion N/A initial attitude quaternion

from body frame to inertial

frame either directly

specified or derived from

angle data name of instance

Optional Parameters

Name Type Length Quantity Units Description

initAdjustquat double 4 Quaternion attitude quaternion

adjustment

initOmega vector3 1 AngularVelocity rad/s body angular velocity with

respect to the inertial frame

initOmegaBody vector3 1 AngularVelocity rad/s body angular velocity with

respect to the body frame

2.6.2.3.3.2.2.3. BodyParam
The BodyParam class provides all parameters required to specify a single Darts body.

Required Parameters

Name Type Length Quantity Units Description

mass double 1 Mass kg The body mass

Optional Parameters

Name Type Length Quantity Units Description

bodyToCM vector3 1 Length m The 3-vector to the body CM

from the body frame.

config = {

 'SC1' : {
 'class' : 'VehicleAssembly',
 'basename' : 'CapsuleBase',
 'bodygraph' : {
 'verts' : ['CapsuleBase0', 'CapsuleBase', 'FuelTank'],
 'edges' : {'CapsuleBase' : 'CapsuleBase0',
 'FuelTank' : 'CapsuleBase'}},
 'params' : {
 'Bodies' : bparams['SC1']['Bodies'],
 'Position' : states.Library['MSL 05-19']['Position'],
 'Attitude' : states.Library['MSL 05-19']['Attitude'],
 },

 'assemblies' : { }
 }

 }

PYTHON

Name Type Length Quantity Units Description

bodyToJoint

bodyToJointQuat cmInertia

description gearRatio

geometry

vector3 double double

string double \{}

1 4 None 1 1 None Length Quaternion

MomentsOfInertia N/A

Dimensionless N/A

m The 3-vector from the body

frame to the body hinge The

quaternion from the body

frame to the pnode for the

body hinge The 3x3 body

inertia matrix about the

body CM (do not specify

both inertia and cmInertia)

DEPRECATED: Body

description. IGNORED. Gear

ratio for PIN joints

Geometry to be loaded into

DScene.

inbToJoint inbToJointQuat

inertia jointAxes jointLimits

jointType

negativeIntegralSense

partGraphics prescribed

prescribedType subhinge

vector3 double double

vector3 double string bool \

{} bool

1 4 None * * 1 1 None * None

None

Length Quaternion

MomentsOfInertia

Dimensionless N/A N/A N/A

N/A N/A N/A N/A

m The 3-vector from the

inboard body frame to the

body hinge The quaternion

from the inboard body

frame to the body hinge The

3x3 body inertia matrix

about the body frame (do

not specify both inertia and

cmInertia) The hinge

rotation/translation axis

Limits for range of joint

generalized coordinate

[min, max] The hinge type

(string). Supported: BALL,

COMPOSITE-

TRANSLATIONAL,

FULL6DOF,

FULL6DOF_INERTIAL,

GIMBAL, LOCKED, PIN,

PLANAR, SLIDER,

TRANSLATIONAL, UJOINT,

CUSTOM Body products of

inertia values expressed in

NEGATIVE inertia integral

sense (defaults to True)

DEPRECATED: Geometry to

be loaded into DScene.

Whether the joint is

prescribed or free (scalar

boolean or array of

booleanss for each

subhinge) DEPRECATED:

Type of prescribed joint.

WARNING: Not permitted in

Ndarts Subhinge

specification for custom

hinge.

2.6.2.3.3.2.2.4. StatePosVelBaseParam
State position (and velocity) knowledge/delivery specification for the start of a simulation.

The refVertical (see ref Reference_Datums_Verticals_section) is used in the computation of initial attitude from flight-path and aero angle quantities.

Required Parameters

Name Type Length Quantity Units Description

name string 1 N/A name of instance

Optional Parameters

Name Type Length Quantity Units Description

refVertical string 1 N/A direction defining vertical

for bank angle 'RADIAL,

ELLIPSOID_VERTICAL,

ELLIPTIC_NORMAL',

(defaults to RADIAL)

2.6.2.3.3.2.2.5. NodeParam
The NodeParam class provides all parameters required to specify a single Darts node.

Required Parameters

Name Type Length Quantity Units Description

bodyToNode vector3 1 Length m The 3-vector to the node

frame from the body frame.

Optional Parameters

Name Type Length Quantity Units Description

bodyToNodeQuat double 4 Quaternion attitude of node with

respect to body frame.

2.6.2.3.3.2.2.6. SpringDamperParam
The attributes for a tether modeled by SpringDamper actuator

Required Parameters

Name Type Length Quantity Units Description

K node1 node2 double string string 1 1 1 N/A N/A N/A spring constant for the

spring The name of the node

on one end of the spring The

name of the node on the

other end of the spring

Optional Parameters

Name Type Length Quantity Units Description

C unsprung_length double double 1 1 N/A N/A damping constant for the

spring Unsprung length of

the spring

2.6.2.3.3.2.3. Model Information

2.6.2.3.3.2.3.1. GeneralGravity
Applies commanded gravity acceleration on the s/c

Keywords: "Gravity!Commanded"

Class: actuator

Author: David Henriquez / Garett Sohl (converted to flowIn/Outs) The GeneralGravity actuator model continuously applies the linear and angular acceleration on the s/c. By default, the

gravity acceleration vectors are initialized as zero vectors at model instantiation. The GeneralGravity model flowIns are lin_accel[3] and ang_accel[3], which are the commaned linear and

angular accelerations, respectively. The GeneralGravity model states are lin_accel[3] and ang_accel[3], which are used to store the commanded linear and angular accelerations,

respectively. The GeneralGravity model flowOut is the last commanded acceleration vectors. And the format of the flowOut is also lin_accel[3] and ang_accel[3].

FlowIns

Name Type Length Quantity Units Value Description

ang_accel double 3 AngularAcceleration rad/s^2 [0.0, 0.0, 0.0] ang_accel

lin_accel double 3 Acceleration m/s^2 [0.0, 0.0, 0.0] linear accel

Parameters
None

Continuous States
None

Scratch
None

States

Name Type Length Quantity Units Value Description

ang_accel double 3 AngularAcceleration rad/s^2 [0.0, 0.0, 0.0] angular accel

lin_accel double 3 Acceleration m/s^2 [0.0, 0.0, 0.0] linear accel

FlowOuts

““

Name Type Length Quantity Units Value Description

ang_accel double 3 AngularAcceleration rad/s^2 [0.0, 0.0, 0.0] angular gravitational

acceleration

lin_accel double 3 Acceleration m/s^2 [0.0, 0.0, 0.0] linear gravitational

acceleration

2.6.2.3.3.3. Related Regression Tests
2.6.2.3.3.4. VehicleAssembly tests

One vehicle and one body, no gravity, manual (1v1b)

One vehicle with three bodies, no gravity, manual (1v3b)

Two vehicles with one body each, no gravity, manual (2v1b)

2.6.2.3.3.5. VehicleAssembly2 tests
One vehicle and 3 bodies, no gravity, regular

One vehicle with three bodies, with gravity, regular

Two vehicles with 2+1 bodies, with gravity, regular

Two vehicles with 2+2 bodies, with gravity, regular

2.6.2.3.3.6. VehicleAssembly with target body tests
VehicleAssembly with 3 bodies and a planetary target body, simple gravity

2.6.2.3.3.7. VehicleAssembly with aspherical gravity tests
VehicleAssembly with 3 bodies and a planetary target body, aspherical gravity

2.6.2.3.3.8. VehicleAssembly with Spice tests
VehicleAssembly with 3 bodies and a planetary target body with spice, simple gravity

2.6.2.3.3.9. VehicleAssembly with attachment/detachment tests
VehicleAssembly with 2 bodies and a separable probe body. Detach the probe and lock it (freeze it) with respect to the inertial frame

VehicleAssembly with 2 bodies and a separable probe body. Detach the probe and let it fly with respect to the inertial frame

VehicleAssembly with 2 bodies and a separable probe body. Detach the probe and lock it to a rotating planetary body (PCR)

VehicleAssembly with 2 bodies and a separable probe body. Detach the probe and let it fly freely with respect to a rotating planetary body (PCR)

Create 2 vehicles. In the simulation one vehicle attaches to the other vehicle to roughly simulate docking a vehicle to the space station

2.6.2.3.3.10. VehicleAssembly with FSM tests
Create a vehicle with 2 attached bodies: a service module and command module. Separate the the two bodies during the simulation using a finite state machine

2.6.2.3.3.11. VehicleAssembly Class API Documentation

Note

For Doxygen documentation, please see: VehicleAssembly

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1assemblies_1_1VehicleAssembly_1_1VehicleAssembly.html)

2.6.2.4. DshellCommon API Reference - Other Assembly Classes

2.6.2.4.1. ArmAssembly

2.6.2.4.1.1. Class Documentation
An arm assembly class.

2.6.2.4.1.2. Usage Scenario
This is a simple usage of the Arm Assembly. Start with the standard imports and import the Assembly. Create the Sim with SimulationExecutive.

`ArmAssembly` test (with no external disturbances)

2.6.2.4.1.3. Usage
2.6.2.4.1.3.1. Introduction
An arm assembly class.

2.6.2.4.1.3.2. Signal Information
There are no signals in this assembly.

2.6.2.4.1.3.3. Param Class Information
2.6.2.4.1.3.3.1. BaseMotorParam

The attributes for the link assembly.

Required Parameters
None

Optional Parameters

Name Type Length Quantity Units Description

Type string 1 N/A String parameter field

2.6.2.4.1.3.3.2. UserInputIntParam
UserInputIntParam parameters.

Click to see the DshellCommon/usage/usage_ArmAssembly.py script

““

““

““

Required Parameters

Name Type Length Quantity Units Description

name int * N/A The user input real number

array

Optional Parameters
None

2.6.2.4.1.3.3.3. UserInputRealParam

UserInputRealParam parameters.

Required Parameters

Name Type Length Quantity Units Description

name double * N/A The user input real number

array

Optional Parameters
None

2.6.2.4.1.3.3.4. PyExtDistModuleNameParam

PyExtDistModuleNameParam parameters.

Required Parameters

Name Type Length Quantity Units Description

name string 1 N/A The

PyExtDistModuleNameParam

name

Optional Parameters
None

2.6.2.4.1.3.3.5. NodeParam

The NodeParam class provides all parameters required to specify a single Darts node.

Required Parameters

Name Type Length Quantity Units Description

bodyToNode vector3 1 Length m The 3-vector to the node

frame from the body frame.

Optional Parameters

Name Type Length Quantity Units Description

bodyToNodeQuat double 4 Quaternion attitude of node with

respect to body frame.

2.6.2.4.1.3.3.6. PyExtDistFunctionNameParam
PyExtDistFunctionNameParam parameters.

Required Parameters

Name Type Length Quantity Units Description

name string 1 N/A The

PyExtDistFunctionNameParam

name

Optional Parameters
None

2.6.2.4.1.3.3.7. BodyParam
The BodyParam class provides all parameters required to specify a single Darts body.

Required Parameters

Name Type Length Quantity Units Description

mass double 1 Mass kg The body mass

Optional Parameters

Name Type Length Quantity Units Description

bodyToCM vector3 1 Length m The 3-vector to the body CM

from the body frame.

Name Type Length Quantity Units Description

bodyToJoint

bodyToJointQuat cmInertia

description gearRatio

geometry

vector3 double double

string double \{}

1 4 None 1 1 None Length Quaternion

MomentsOfInertia N/A

Dimensionless N/A

m The 3-vector from the body

frame to the body hinge The

quaternion from the body

frame to the pnode for the

body hinge The 3x3 body

inertia matrix about the

body CM (do not specify

both inertia and cmInertia)

DEPRECATED: Body

description. IGNORED. Gear

ratio for PIN joints

Geometry to be loaded into

DScene.

inbToJoint inbToJointQuat

inertia jointAxes jointLimits

jointType

negativeIntegralSense

partGraphics prescribed

prescribedType subhinge

vector3 double double

vector3 double string bool \

{} bool

1 4 None * * 1 1 None * None

None

Length Quaternion

MomentsOfInertia

Dimensionless N/A N/A N/A

N/A N/A N/A N/A

m The 3-vector from the

inboard body frame to the

body hinge The quaternion

from the inboard body

frame to the body hinge The

3x3 body inertia matrix

about the body frame (do

not specify both inertia and

cmInertia) The hinge

rotation/translation axis

Limits for range of joint

generalized coordinate

[min, max] The hinge type

(string). Supported: BALL,

COMPOSITE-

TRANSLATIONAL,

FULL6DOF,

FULL6DOF_INERTIAL,

GIMBAL, LOCKED, PIN,

PLANAR, SLIDER,

TRANSLATIONAL, UJOINT,

CUSTOM Body products of

inertia values expressed in

NEGATIVE inertia integral

sense (defaults to True)

DEPRECATED: Geometry to

be loaded into DScene.

Whether the joint is

prescribed or free (scalar

boolean or array of

booleanss for each

subhinge) DEPRECATED:

Type of prescribed joint.

WARNING: Not permitted in

Ndarts Subhinge

specification for custom

hinge.

2.6.2.4.1.3.4. Model Information

2.6.2.4.1.4. Related Regression Tests
`ArmAssembly` test (with no external disturbances)

`ArmAssembly` test (with External Disturbance Python Model)

`LinkAssembly` test (with spring damper motors)

2.6.2.4.1.5. Class API Documentation

Note

For Doxygen documentation, please see: Arm Assembly<assemblies::ArmAssembly::ArmAssembly

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1assemblies_1_1ArmAssembly_1_1ArmAssembly.html)

2.6.2.4.2. AsphericalGravityActuatorAssembly

2.6.2.4.2.1. Class Documentation
An aspherical gravity force sensor model.

2.6.2.4.2.1.1. Introduction
The AsphericalGravityActuatorAssembly

2.6.2.4.2.1.2. Construction Options
config - GeneralGravityActuatorAssembly has one optional config setting. Inherited from its base class, GravityActuatorAssembly:

'node'

The name of the node that the gravity is to be applied to. Defaults to the name of the assembly if not provided.

context - GeneralGravityActuatorAssembly has one required config setting. Inherited from its base class, GravityActuatorAssembly:

'body'

The name of the body that the gravity is to be applied to.

signalTies - None

param - AsphericalGravityActuatorAssembly has two required parameters and one optional parameter, inherited from its base class, GravityActuatorAssembly:

'Node'

[Optional] This should point to a NodeParam parameter class object. This is usually stored in a file in the library of your run script such as: './library/bodies.py'. This information is

used to initialize the relative position of the node with respect to the body reference coordinates.

'Model'

This should point to a GravityBaseParam parameter class object. This is usually stored in a file in the library of your run script such as: './library/actuators.py'. This information is

used to initialize the gravity model constants.

'Target'

Click to see the DshellCommon/test/test_Ndarts/test_ArmAssembly/script_NoExtDist.py script

Click to see the DshellCommon/test/test_Ndarts/test_ArmAssembly/script_ExtPyDist.py script

Click to see the DshellCommon/test/test_Ndarts/test_ArmAssembly/script_springDampers.py script

““

““

““

This should point to a TargetAsphericalParam parameter class object. This is usually stored in a file in the library of your run script such as: './library/targets.py'. This information is

used to initialize the gravity model constants.

2.6.2.4.2.1.3. Example Construction Syntax

This configuration block would normally appear in the 'assemblies' section for a VehicleAssembly.

2.6.2.4.2.1.4. Signals
FlowIns

None.

FlowOuts

The AsphericalGravityActuatorAssembly has two flowout signals for user inspection of the applied gravity force and torque:

LinAccel - 3-vector of linear gravitational acceleration

AngAccel - 3-vector of rotational gravitational acceleration

2.6.2.4.2.2. Usage
2.6.2.4.2.2.1. Introduction

An aspherical gravity force sensor model.

2.6.2.4.2.2.2. Signal Information

Signal Name Type Length Quantity Units Description

AngAccel double 3 AngularAcceleration rad/s^2 Gravitational angular

acceleration from

GeneralGravityModel grav

LinAccel double 3 Acceleration m/s^2 Gravitational linear

acceleration from

GeneralGravityModel grav

2.6.2.4.2.2.3. Param Class Information
2.6.2.4.2.2.3.1. NodeParam

The NodeParam class provides all parameters required to specify a single Darts node.

Required Parameters

Name Type Length Quantity Units Description

bodyToNode vector3 1 Length m The 3-vector to the node

frame from the body frame.

Optional Parameters

Name Type Length Quantity Units Description

bodyToNodeQuat double 4 Quaternion attitude of node with

respect to body frame.

2.6.2.4.2.2.3.2. GravityAsphericalParam

The gravity force actuator attributes for an aspherical gravity model.

Required Parameters

Name Type Length Quantity Units Description

J2 UseGradient double int 1 1 Dimensionless N/A Unnormalized gravitational

J2 term of target gravity flag

to use gravity gradient: -

0/False no gradient, 1/True -

use gradient

Optional Parameters

config = {
 'SC1' : {
 'class' : 'VehicleAssembly',
 ...
 'assemblies' : {
 'grav' : {
 'class' : 'AsphericalGravityActuatorAssembly',
 'context' : { 'body' : 'CapsuleBase0' },
 'params' : { 'Model' : actuators.Library['Gravity']['Standard'],
 'Target' : targets.Library['Mars']
 }
 }
 }
 },
 ...
 }

PYTHON

““

Name Type Length Quantity Units DescriptionName Type Length Quantity Units Description

BodyName string 1 N/A Name of the attracting body

G J3 double double 1 1 GravitationalConstant

Dimensionless

m 2) universal gravitational

constant Unnormalized

gravitational J3 term of

target gravity

Rgrav double 1 Length m Reference radius used in

gravity model of target

2.6.2.4.2.2.3.3. TargetBaseParam

This class provides the parameters used to describe a central body or target.

This is the base class for all Target parameter classes.

Required Parameters

Name Type Length Quantity Units Description

mass name double string 1 1 Mass N/A kg Mass of target Name of the

target body

rotationRate double None AngularVelocity rad/s Rotation rate of the target.

May be a single float or

three element list of floats.

Optional Parameters

Name Type Length Quantity Units Description

eccentricity flattening double double 1 1 Dimensionless

Dimensionless

Eccentricity of the target

body ellipsoid (optional)

Ellipsoidal flattening of

target body (optional)

radiusEquator double 1 Length m Equatorial radius of target

body

radiusPole double 1 Length m Polar radius of target body

(optional)

rotationAngle double 1 Angle rad Rotation angle of the target

2.6.2.4.2.2.4. Model Information

2.6.2.4.2.2.4.1. AsphericalGravity
Keywords: "Gravity!J2 term" "Gravity!J3 term"

Class: actuator

Author: Bryan Martin The AsphericalGravity actuator is a gravity model which inherits all properties of the PointMassGravity model and adds aspherical compensation terms to it.

Currently, only the J2 and J3 zonal harmonics are supported. (See Wertz, "Spacecraft Atitude Determination and Control")

FlowIns
None

Parameters

Name Type Length Quantity Units Value Description

BodyMass BodyUuid double uint 1 1 Mass N/A kg 6.41430089366e+23 45 Mass of target body

uuid

EquatRadius double 1 Length m 3396190.0 Reference radius used

in gravity model of

target

3/(kg*s

Name Type Length Quantity Units Value Description

G J2 J3 UseGradient double double double

int

1 1 1 1 GravitationalConstant

Dimensionless

Dimensionless N/A

m 2) 6.67259e-11

0.00195639057766

3.14647623011e-05 0

universal gravitational

constant Unnormalized

gravitational J2 term of

target gravity

Unnormalized

gravitational J3 term of

target gravity flag to

use gravity gradient: -

0/False no gradient,

1/True - use gradient

Continuous States
None

Scratch

Name Type Length Quantity Units Value Description

Accel double 6 Mixed [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] acceleration due to

gravity

States

Name Type Length Quantity Units Value Description

BodyPosition double 3 Length m [0.0, 0.0, 0.0] body inertial position

vector (J2000)

BodyVelocity double 3 Velocity m/s [0.0, 0.0, 0.0] body inertial velocity

vector (J2000)

FlowOuts

Name Type Length Quantity Units Value Description

ang_accel double 3 AngularAcceleration rad/s^2 [0.0, 0.0, 0.0] angular gravitational

acceleration

lin_accel double 3 Acceleration m/s^2 [0.0, 0.0, 0.0] linear gravitational

acceleration

2.6.2.4.2.2.5. Related Regression Tests
`VehicleAssembly` class with one vehicle and three bodies (1v3b) and gravity

2.6.2.4.2.3. AsphericalGravityActuatorAssembly Class API Documentation

Note

For Doxygen documentation, please see: AsphericalGravityActuatorAssembly<AsphericalGravityActuatorAssembly::AsphericalGravityActuatorAssembly

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1assemblies_1_1gravity_1_1AsphericalGravityActuatorAssembly_1_1AsphericalGravityActuator

Assembly.html)

2.6.2.4.3. CmFrameStateSensorAssembly

2.6.2.4.3.1. Class Documentation
The CmFrameStateSensorAssembly is an assembly class for calculating the UVW or Local Vertical, Local Horizontal (LVLH) state of a vehicle. This assembly is responsible for creating and

updating the UVW or LVLH frame for the input sensed body. The frame is dynamically moved to the CM of the component or composite vehicle bodies.

2.6.2.4.3.1.1. Visual Representation of LVLH Frame

3/(kg*s

Click to see the DshellCommon/includes/test/test_Ndarts/test_VehicleAssembly_gravity/script1.py script

2.6.2.4.3.1.2. Visual Representation of UVW Frame

2.6.2.4.3.2. CmFrameStateSensorAssembly Usage
2.6.2.4.3.2.1. Introduction
The CmFrameStateSensorAssembly is an assembly class for calculating the UVW or Local Vertical, Local Horizontal (LVLH) state of a vehicle. This assembly is responsible for creating and

updating the UVW or LVLH frame for the input sensed body. The frame is dynamically moved to the CM of the component or composite vehicle bodies.

““

““

““

““

““

LIMITATIONS

Modification of assembly config inputs after assembly creation is not supported.

Modification of sensedBodyName in assembly context is not supported, however, targetName may be modified.

Creation of a UVW or LVLH state for a vehicle initialized exactly over a planetary pole may create an incorrect orientation of the UVW/LVLH frame due to the FrameHelper algorithm not

being able to use the typical Z-axis (Up direction) for its frame computations.

CONSTRUCTION OPTIONS

config - CmFrameStateSensorAssembly has one required and two optional config inputs:

'frameType'

(Required) The type of the frame that this model will create to measure the frame attitude state.

'nodeName'

The name of the node that this assembly will create to measure the frame attitude state. Defaults to the frameType parameter if not provided.

'velocityReference'

Speci�es whether to use inertial or relative velocity in creating the CM based frame. Defaults to INERTIAL if not provided.

context - CmFrameStateSensorAssembly requires two context inputs below:

'targetName'

The name of the central body the attitude state is associated with.

'sensedBodyName'

The vehicle body this frame is measuring attitude state.

signalTies - Optional.

params - CmFrameStateSensorAssembly has two optional parameters:

'frame'

This must be an instance of an CmFrameStateParam parameter class object. This information is used to initialize the center of mass type, euler

angle sequence and euler angle module for output purposes. Applies param class defaults if not provided.

'sensorLocation'

This should point to a NodeParam parameter class object. This information is used to initialize the location of the sensor to the location of the given node. Note this param is only useful

when using a FIXED node, as it will be over-ridden when using a COMPONENT or COMPOSITE center of mass type.

2.6.2.4.3.2.2. Signal Information

Signal Name Type Length Quantity Units Description

angles quat double double 3 4 Unspecified Unspecified Euler angles extracted using

desired sequence. Body

orientation relative to input

reference frame.

2.6.2.4.3.2.3. Param Class Information
2.6.2.4.3.2.3.1. NodeParam

The NodeParam class provides all parameters required to specify a single Darts node.

Required Parameters

Name Type Length Quantity Units Description

bodyToNode vector3 1 Length m The 3-vector to the node

frame from the body frame.

Optional Parameters

Name Type Length Quantity Units Description

bodyToNodeQuat double 4 Quaternion attitude of node with

respect to body frame.

2.6.2.4.3.2.3.2. CmFrameStateParam

The attributes for CM frame state.

Required Parameters
None

Optional Parameters

Name Type Length Quantity Units Description

angleModulo

centerOfMassType

eulerSequence

string string string None None None N/A N/A N/A Specify angles to be -Pi→Pi

or 0→2*Pi (use string names

'MINUS_PI_TO_PI' or

ZERO_TO_TWO_PI,

respectively) Specify either

'FIXED', 'COMPONENT' or

'COMPOSITE' for CM

location The euler sequence

to use in reporting angles

relative to the reference

frame

2.6.2.4.3.2.4. Model Information

2.6.2.4.3.2.4.1. CmFrameStateSensor
Maintains the CM based frame origin/attitude and outputs the orientation of a vehicle relative to the frame.

Keywords: "Position" "Attitude" "Idealized"

Class: sensor

Author: Scott Nemeth This sensor model uses node and frame objects to calculate the orientation of a body relative to the desired frame.

FlowIns
None

Parameters

Name Type Length Quantity Units Value Description

CM_FRAME_UUID

PCI_FRAME_UUID

PCR_FRAME_UUID

angleModulo

centerOfMassType

eulerSequence

frameType

velocityReference

int int int enum

enum

enum

enum

enum

1 1 1 1

1

1

1

1

N/A N/A N/A N/A

N/A

N/A

N/A

N/A

92 16 33

ZERO_TO_TWO_PI

COMPOSITE

YZX

LVLH

INERTIAL

Not for user input -

UUID for the Center of

Mass based frame. Not

for user input - UUID

for the planet centered

inertial frame. Not for

user input - UUID for

the planet centered

relative frame.

Specify angles to be -

Pi→Pi or 0→2*Pi (use

string names

'MINUS_PI_TO_PI' or

ZERO_TO_TWO_PI,

respectively)

Allowed keys:

MINUS_PI_TO_PI,

ZERO_TO_TWO_PI

Specify either 'FIXED',

'COMPONENT' or

'COMPOSITE' for CM

location

Allowed keys:

COMPONENT,

COMPOSITE, FIXED

The euler sequence to

use in reporting angles

relative to the

reference frame

Allowed keys: XYX, XYZ,

XZX, XZY, YXY, YXZ, YZX,

YZY, ZXY, ZXZ, ZYX, ZYZ,

_NOT_USED

The type of the frame

that this model will

create to measure the

frame attitude state.

Continuous States
None

Scratch
None

States
None

FlowOuts

Name Type Length Quantity Units Value Description

Name Type Length Quantity Units Value Description

angles double 3 Angle rad [-3.4028234663852886e+38,

-3.4028234663852886e+38,

-3.4028234663852886e+38]

Euler angles extracted

using desired sequence.

quat double 4 Quaternion

[-3.4028234663852886e+38,

-3.4028234663852886e+38,

-3.4028234663852886e+38,

-3.4028234663852886e+38]

Body orientation

relative to input

reference frame.

2.6.2.4.3.3. Related Regression Tests
Unit test for the LVLH and UVW state assembly

2.6.2.4.3.4. Class API Documentation

Note

For Doxygen documentation, please see: Center of Mass Based Frame State Sensor Assembly<CmFrameStateSensorAssembly::CmFrameStateSensorAssembly>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1assemblies_1_1CmFrameStateSensorAssembly_1_1CmFrameStateSensorAssembly.html)

For C++ API documentation, please see: Center of Mass Based Frame State Sensor Model<CmFrameStateSensor::CmFrameStateSensor>

 TBD: Fix Doxygen link for CmFrameStateSensor model

2.6.2.4.4. ExternalDisturbanceActuatorAssembly

2.6.2.4.4.1. Class Documentation
2.6.2.4.4.1.1. Introduction
The ExternalDisturbanceActuatorAssembly purpose is to apply a force / torque on a body in the specified INERTIAL or BODY reference frames. The assembly utilizes the single C++ model

ExternalDisturbance.

2.6.2.4.4.1.2. Construction Options
config

'node' - Required

The name of the node that the force/torque is to be applied to. If no node is given the node takes the name of the assembly.

context

'body' - Required

The name of the body that the force/torque is to be applied to.

signalTies - None

param

'Node' - Required

This is a NodeParam object.

'Frame' - Optional

The Frame setting is a string with the following two values:

'BODY' - apply the force / torque to the body frame. This is the default value.

'INERTIAL' - apply the force / torque to the inertial frame.

2.6.2.4.4.1.3. Example Construction Syntax

This configuration block would normally appear in the 'assemblies' section for a VehicleAssembly.

2.6.2.4.4.1.4. Signals
FlowIns

Click to see the DshellCommon/test/test/test_Ndarts/test_CmFrameStateSensor/script.py script

config = {
 'SC1' : {
 'class' : 'VehicleAssembly',
 ...
 'assemblies' : {
 ...
 'force' : {
 'class' : 'ExternalDisturbanceActuatorAssembly',
 'node' : 'VentForce',
 'context':{'body':'CapsuleBase'},
 'params' :{'Node':bodies.Library['SC1']['Nodes']['CapsuleBase']['Force'],
 'Frame':FrameParam(params={'name':'BODY'}, source=None)}
 }
 },
 ...
 }

PYTHON

Two flowin signals exist to command the desired applied force and torque.

CmdForce - Commanded force vector applied to the node

CmdTorque - Commanded torque vector applied to the node

FlowOuts - None

2.6.2.4.4.2. Usage Scenario
This is a simple usage of the External Disturance Actuator Assembly. Start with the standard import and import the Assembly. Create the Sim with SimulationExecutive.

2.6.2.4.4.3. Usage
2.6.2.4.4.3.1. Introduction
A force/torque actuator assembly class.

2.6.2.4.4.3.2. Signal Information

"""

Test the VehicleAssembly class with two instances of ExternalDisturbanceActuatorAssembly
==
(Adapted from test/test_Ndarts/test_ExtDistActuatorAssembly/script.py)

>>> from DshellCommon.utils.sphinxutils import generateRST
>>> import sys

>>> from pprint import pformat
>>> from math import fabs

>>> from Math.SOA_Py import SOAVector3

Create the simulation

>>> from DshellCommon.SimulationExecutiveNdarts import SimulationExecutiveNdarts

>>> sim = SimulationExecutiveNdarts(banner=False)

Load the parameter libraries

>>> sys.path.append('./library')

>>> import targets
>>> import bodies
>>> import states

>>> from DshellCommon.params.DisturbanceModeParam import DisturbanceModeParam

Define the simulation configuration

>>> from DshellCommon.assemblies import ExternalDisturbanceActuatorAssembly
>>> from DshellCommon.assemblies import TargetAssembly
>>> from DshellCommon.assemblies import VehicleAssembly

>>> config = {
... 'Mars': {
... 'class': 'TargetAssembly',
... 'params': { 'Target': targets.Library['Mars'],
... 'Bodies': bodies.Library['Target']['Bodies'],
... }
... },
... 'SC1': {
... 'class': 'VehicleAssembly',
... 'basename': 'CapsuleBase',
... 'bodygraph': {
... 'verts': ['CapsuleBase0', 'CapsuleBase', 'FuelTank'],
... 'edges': {'CapsuleBase': 'CapsuleBase0',
... 'FuelTank': 'CapsuleBase'}},
... 'params': {
... 'Bodies': bodies.Library['SC1']['Bodies'],
... 'Position': states.Library['MSL 05-19']['Position'],
... 'Attitude': states.Library['MSL 05-19']['Attitude'],
... },
... 'assemblies': {
... 'vforce': {
... 'class' : 'ExternalDisturbanceActuatorAssembly',
... 'node': 'VentForce2',
... 'context': {'body': 'CapsuleBase'},
... 'params' : {'Node': bodies.Library['SC1']['Nodes']['CapsuleBase']['Force']}
... },
... 'dforce': {
... 'class' : 'ExternalDisturbanceActuatorAssembly',
... 'node': 'DragForce',
... 'context':{'body':'CapsuleBase'},
... 'params' :{'Node': bodies.Library['SC1']['Nodes']['CapsuleBase']['Force'],
... 'DisturbanceMode': DisturbanceModeParam(mode='INERTIAL', source=None)}
... },
... }
... },
... }

Create all the assemblies

>>> scs = sim.createAssemblies(config)

>>> sim.bindState()

>>> sim.resetState(0.0)

>>> dforce = sim.assembly('dforce', 0, True)

PYTHON

““

““

““

Signal Name Type Length Quantity Units DescriptionSignal Name Type Length Quantity Units Description

CmdForce double 3 Force N Force input for dforce

generalized force actuator

CmdTorque double 3 Torque N*m Torque input for dforce

generalized force actuator

2.6.2.4.4.3.3. Param Class Information
2.6.2.4.4.3.3.1. NodeParam

The NodeParam class provides all parameters required to specify a single Darts node.

Required Parameters

Name Type Length Quantity Units Description

bodyToNode vector3 1 Length m The 3-vector to the node

frame from the body frame.

Optional Parameters

Name Type Length Quantity Units Description

bodyToNodeQuat double 4 Quaternion attitude of node with

respect to body frame.

2.6.2.4.4.3.3.2. FrameParam

Frame parameters.

Required Parameters

Name Type Length Quantity Units Description

name string 1 N/A The frame name

Optional Parameters
None

2.6.2.4.4.3.3.3. DisturbanceModeParam

The DisturbanceModeParam class provides a parameter for ExternalDisturbanceForce models.

Required Parameters
None

Optional Parameters

Name Type Length Quantity Units Description

mode string None N/A Whether external forces are

applied in body or inertial

coordinates

2.6.2.4.4.3.4. Model Information

2.6.2.4.4.3.4.1. ExternalDisturbance
Applies forces and torques to a node

Keywords: "Disturbance model"

Class: actuator

Author: David Henriquez / Garett Sohl (modified to use flows) The ExternalDisturbance actuator model applies forces and torques to the actuator node on which the model is attached. The

torque and force flowins are used to specify the applied force vector and the applied torque vector.

FlowIns

Name Type Length Quantity Units Value Description

force double 3 Force N [0.0, 0.0, 0.0] force

torque double 3 Torque N*m [0.0, 0.0, 0.0] torque

Parameters

Name Type Length Quantity Units Value Description

Name Type Length Quantity Units Value Description

disturbanceFrame enum 1 N/A INERTIAL Whether external

forces are

applied in body

or inertial

coordinates

Allowed keys:

BODY, INERTIAL

Continuous States
None

Scratch
None

States
None

FlowOuts
None

2.6.2.4.4.3.5. Related Regression Tests
Vehcile with external disturbance forces Create a free-flying vehicle without gravity and apply a force and torque to test ExternalDisturbanceActuatorAssembly.

2.6.2.4.4.3.6. ExternalDisturbanceActuatorAssembly Class API Documentation

Note

For Doxygen documentation for the underlying model, please see: ExternalDisturbance<Dshell::ExternalDisturbance>

The ExternalDisturbanceActuatorAssembly is specific to the ExternalDisturbance model which applies forces and torques to the actuator node on which the model is attached in the

specified Frame. The Frame can be BODY or INERTIAL with BODY as the default if no frame is specified.

2.6.2.4.5. ExternalDisturbanceMotorAssembly

2.6.2.4.5.1. Class Documentation
2.6.2.4.5.1.1. Introduction
The ExternalDisturbanceMotorAssembly purpose allows the user to specifiy the appropriate C++ model available to apply a force / acceleration to a specific joint type. Currently, only a pin

joint force is available.

2.6.2.4.5.1.2. Construction Options
config

'model' - Required The name of the C++ model to apply the force/acceleration to the appropriate joint. Currently, only the following pin joint force can be specified.

'GeneralForcePin'

context

'body' - Required::

The name of the body that the force/acceleration is to be applied to.

signalTies - None

param None

2.6.2.4.5.1.3. Example Construction Syntax

This configuration block would normally appear in the 'assemblies' section for a VehicleAssembly.

2.6.2.4.5.1.4. Signals
FlowIns

One flowin signal exists to command the desired applied force and torque.

Cmd - Commanded force/acceleration applied to the joint

FlowOuts - None

2.6.2.4.5.1.5. Related Regression Tests
Vehicle with motor disturbanceCreate a free-flying vehicle without gravity and apply a force and torque to test ExternalDisturbanceMotorAssembly.

config = {
 'SC1' : {
 'class' : 'VehicleAssembly',
 ...
 'assemblies' : {
 ...
 'pinforce' : {
 'class' : 'ExternalDisturbanceMotorAssembly',
 'model': 'GeneralForcePin',
 'context':{'body':'PinBody'},
 }
 },
 ...
 }

PYTHON

2.6.2.4.5.1.6. ExternalDisturbanceMotorAssembly Class API Documentation

Note

For Doxygen documentation for the underlying model, please see: GeneralForcePin<Dshell::GeneralForcePin>

The ExternalDisturbanceMotorAssembly allows for the 1-DOF pin force on PIN joint or a 2-DOF force on a UJOINT.

 TBD: Add the Doxygen link above

2.6.2.4.6. FuelManifoldAssembly

2.6.2.4.6.1. Introduction
A fuel manifold model.

2.6.2.4.6.2. Signal Information

Signal Name Length Type Description

FuelUsedByManifold 2 double Fuel line draws from tanks by manifold

manifold

FuelRemainingInManifold 1 double Fuel available from manifold manifold

2.6.2.4.6.3. Param Class Information
2.6.2.4.6.4. Model Information

Figure 31. Model Data Flow

2.6.2.4.6.5. FuelManifold
Models a simple fuel manifold.

Keywords:

Class: actuator

The FuelManifold model accepts two inputs which denotes the amount of fuel burned/drawn from a set of sinks and the amount of fuel avaialable from a set of sources. The inputs are

variable sized so that several thrusters/sinks and several tanks can share a single FuelManifold model. It outputs two array of doubles: fuel_burned_output, the sum of the input fuel draws

divided by the size of flowOuts()→fuel_burned, and fuel_remaining_output, the sum of input fuel avaialability replicated on all slices.

Note: when the fuel_remaining is zero on any line the draw rates for the other lines will be adjusted by their ratios to give a total flow rate of 1.0.

2.6.2.4.6.5.1. FlowIns

Name Units Length Description

fuel_burned_input 3 Total amount of fuel burned from each

input

fuel_remaining_input 2 Total amount of remaining fuel from each

input

2.6.2.4.6.5.2. Parameters

Name Units Length Description

fuel_draw_weights 2 Fuel draw weighting for the

fuel_burned_output lines

2.6.2.4.6.5.3. Continuous States
None

2.6.2.4.6.5.4. Scratch
None

2.6.2.4.6.5.5. States

Name Units Length Description

current_fuel_draw_weights 2 The current fuel draw weighting for the

fuel_burned_output lines

fuel_burned_output 1 The total amount of fuel burned for each

tank as far as this manifold knows

num_burned_inputs 1 size of flowIns()→fuel_burned_input

num_burned_outputs 1 size of flowOuts()→fuel_burned_output

Name Units Length Description

total_fuel_burned 1 total fuel burned

total_fuel_remaining 1 total remaining fuel

2.6.2.4.6.5.6. FlowOuts

Name Units Length Description

fuel_burned_output 2 Sum of thruster fuel burned divided by

num_outputs multipled by

fuel_draw_weighting

fuel_remaining_output 1 Sum of fuel remaining in tanks connected to

manifold

2.6.2.4.6.6. Related Regression Tests
Test the FuelManifoldAssembly with two tanks and four thrusters

2.6.2.4.6.7. FuelManifoldAssembly Class API Documentation

Note

For Doxygen documentation for the underlying model, please see: FuelManifold

Fuel Manifold Assembly class for DshellCommon Simulation models

 TBD: Add Doxygen link for FuelManifol model above

2.6.2.4.7. GeneralGravityActuatorAssembly

2.6.2.4.7.1. Class Documentation
2.6.2.4.7.1.1. Introduction
The GeneralGravityActuatorAssembly ?

2.6.2.4.7.1.2. Construction Options
config - GeneralGravityActuatorAssembly has one optional config setting. Inherited from its base class, GravityActuatorAssembly:

'node'

The name of the node that the gravity is to be applied to. Defaults to the name of the assembly if not provided.

context

GeneralGravityActuatorAssembly has one required config setting. Inherited from its base class, GravityActuatorAssembly:

'body'

The name of the body that the gravity is to be applied to.

signalTies - None

param

GeneralGravityActuatorAssembly has one optional parameter that it inherits from its base class, GravityActuatorAssembly:

'Node'

[Optional] This should point to a NodeParam parameter class object. This is usually stored in a file in the library of your run script such as: './library/bodies.py'. This information is

used to initialize the relative position of the node with respect to the body reference coordinates.

2.6.2.4.7.1.3. Example Construction Syntax

This configuration block would normally appear in the 'assemblies' section for a VehicleAssembly.

2.6.2.4.7.1.4. Signals
FlowIns

The GeneralGravityActuatorAssembly has two flowin signals for user to command the desired linear and angular gravitational acceleration. These are inherited from the

GravityActuatorAssembly base class.

LinAccelIn - 3-vector of desired linear gravitational acceleration

Click to see the DshellCommon/test/test_Ndarts/test_FuelManifoldAssembly/script.py script

config = {
 'SC1' : {
 'class' : 'VehicleAssembly',
 ...
 'assemblies' : {
 'grav' : {
 'class' : 'GeneralGravityActuatorAssembly',
 'context' : { 'body' : 'CapsuleBase0' }
 }
 }
 },
 ...
 }

PYTHON

AngAccelIn - 3-vector of desired rotational gravitational acceleration

FlowOuts

Inherited from base class GravityActuatorAssembly.

LinAccel - 3-vector of linear gravitational acceleration

AngAccel - 3-vector of rotational gravitational acceleration

2.6.2.4.7.1.5. Related Regression Tests
Vehicle with target body and gravity Create a vehicle with 3 bodies and a planetary target body. Set up simple gravity.

2.6.2.4.7.2. GeneralGravityActuatorAssembly Class API Documentation

Note

For Doxygen documentation, please see: GeneralGravityActuatorAssembly<GeneralGravityActuatorAssembly::GeneralGravityActuatorAssembly>

GeneralGravity Force Actuator Assembly class for EDL simulation models

This gravity assembly sets up the GeneralGravity model which takes constant linear and angular acceleration terms specified by signals by the user (or other source) and applies the gravity

to the node to which the gravity model is attached. It also includes flowouts of the linear and angular accelerations used.

2.6.2.4.8. GravityActuatorAssembly

2.6.2.4.8.1. Introduction
The GravityActuatorAssembly is the base assembly for all gravitational assemblies.

2.6.2.4.8.2. Construction Options
config - GravityActuatorAssembly has one optional config setting:

'node'

The name of the node that the gravity is to be applied to. Defaults to the name of the assembly if not provided.

context - GravityActuatorAssembly has one required config setting:

'body'

The name of the body that the gravity is to be applied to.

signalTies - None

param - GravityActuatorAssembly has one optional parameter:

'Node'

This should point to a NodeParam parameter class object. This is usually stored in a file in the library of your run script such as: './library/bodies.py'. This information is used to

initialize the relative position of the node with respect to the body reference coordinates.

2.6.2.4.8.3. Signals
2.6.2.4.8.3.1. FlowIns
None.

2.6.2.4.8.3.2. FlowOuts
The GravityActuatorAssembly has two flowout signals for user inspection of the applied gravity force and torque:

LinAccel - 3-vector of linear gravitational acceleration

AngAccel - 3-vector of rotational gravitational acceleration

2.6.2.4.8.4. Popular GravityActuatorAssembly Functions
Some of the most common functions for the GravityActuatorAssembly are:

Functions related to activating the gravity model:

Function

gravity.activate()

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1assemblies_1_1gravity_1_1GravityActuatorAssembly_1_1GravityActuatorAssembly.html#ad6c7f5a8b32bdaf9b755dba5

gravity.deactivate()

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1assemblies_1_1gravity_1_1GravityActuatorAssembly_1_1GravityActuatorAssembly.html#acd543b333f8b07246af2c60b4

gravity.gravityModel()

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1assemblies_1_1gravity_1_1GravityActuatorAssembly_1_1GravityActuatorAssembly.html#a78a4ad0356b090106b42df1e

2.6.2.4.8.5. GravityActuatorAssembly Class API Documentation

Note

For Doxygen documentation, please see: GravityActuatorAssembly<GravityActuatorAssembly::GravityActuatorAssembly>

Gravity Force Actuator Assembly base class for DshellCommon simulation models

2.6.2.4.9. LinkAssembly

2.6.2.4.9.1. Class Documentation
A single link assembly class.

2.6.2.4.9.2. Usage Scenario
This is a simple usage of the Link Assembly. Start with the standard imports and import the Assembly. Create the Sim with SimulationExecutive.

““

2.6.2.4.9.3. Usage
2.6.2.4.9.3.1. Introduction
A single link assembly class.

2.6.2.4.9.3.2. Signal Information
There are no signals in this assembly.

2.6.2.4.9.3.3. Param Class Information
2.6.2.4.9.3.3.1. BodyParam

The BodyParam class provides all parameters required to specify a single Darts body.

"""

Test the LinkAssembly (with default params)
===
(Adapted from test/test_Ndarts/test_LinkAssembly/script1.py)

>>> from DshellCommon.utils.sphinxutils import generateRST

Create the simulation (with no assemblies)
--

>>> from DshellCommon.SimulationExecutiveNdarts import SimulationExecutiveNdarts

>>> sim = SimulationExecutiveNdarts(banner=False)

Load the parameter libraries

>>> sys.path.append('./library')

>>> import actuators
>>> import bodies

Define the simulation configuration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
>>> from DshellCommon.assemblies import LinkAssembly 
>>> from DshellCommon.assemblies import VehicleAssembly 
 
>>> config = { 
...     'SC1_Alternate1' : { 
...        'class' : 'VehicleAssembly', 
...        'basename' : 'baseBody', 
...        'params' : { 
...            'Bodies' : bodies.Library['SC1_Alternate1']['Bodies'] 
...            }, 
...        'signals' : { 
...            'Segment_set_input' : { 
...                'type' : 'double',  'length' : 1, 
...                'comment' : 'Commanded joint angle', 
...                }, 
...            'Segment_actual_angle' : { 
...                'type' : 'double',  'length' : 1, 
...                'comment' : 'Actual joint angle', 
...                }, 
...            }, 
...         'signal_ties' : { 
...              'Segment_set_input' : [ 
...                  { 'child_signal_name' : 'Segment_set_input', 
...                    'child_assembly_name' : 'Segment' }, 
...                    ], 
...              'Segment_actual_angle' : [ 
...                  { 'child_signal_name' : 'Segment_angle_truth', 
...                    'child_assembly_name' : 'Segment' }, 
...                    ], 
...              }, 
...         'assemblies' : { 
...              'Segment' : { 
...                    'class' : 'LinkAssembly', 
...                    'motorType' : 'PrescribedPin', 
...                    'context' : { 'parentBody' : 'baseBody' }, 
...                    'params' : { 'Link' : actuators.Library['Link']['JointStop'], 
...                                 'Body' : bodies.Library['SC1_Alternate1']['Bodies'], 
...                    } 
...                } 
...            }, 
...       } 
...  } 
 
 
Create all the assemblies 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

>>> scs = sim.createAssemblies(config)

>>> sim.bindState()

>>> sim.resetState(0.0)

>>> link = sim.assembly('Segment', 0, True)

PYTHON

““

Required Parameters

Name Type Length Quantity Units Description

mass double 1 Mass kg The body mass

Optional Parameters

Name Type Length Quantity Units Description

bodyToCM vector3 1 Length m The 3-vector to the body CM

from the body frame.

bodyToJoint

bodyToJointQuat cmInertia

description gearRatio

geometry

vector3 double double

string double \{}

1 4 None 1 1 None Length Quaternion

MomentsOfInertia N/A

Dimensionless N/A

m The 3-vector from the body

frame to the body hinge The

quaternion from the body

frame to the pnode for the

body hinge The 3x3 body

inertia matrix about the

body CM (do not specify

both inertia and cmInertia)

DEPRECATED: Body

description. IGNORED. Gear

ratio for PIN joints

Geometry to be loaded into

DScene.

inbToJoint inbToJointQuat

inertia jointAxes jointLimits

jointType

negativeIntegralSense

partGraphics prescribed

prescribedType subhinge

vector3 double double

vector3 double string bool \

{} bool

1 4 None * * 1 1 None * None

None

Length Quaternion

MomentsOfInertia

Dimensionless N/A N/A N/A

N/A N/A N/A N/A

m The 3-vector from the

inboard body frame to the

body hinge The quaternion

from the inboard body

frame to the body hinge The

3x3 body inertia matrix

about the body frame (do

not specify both inertia and

cmInertia) The hinge

rotation/translation axis

Limits for range of joint

generalized coordinate

[min, max] The hinge type

(string). Supported: BALL,

COMPOSITE-

TRANSLATIONAL,

FULL6DOF,

FULL6DOF_INERTIAL,

GIMBAL, LOCKED, PIN,

PLANAR, SLIDER,

TRANSLATIONAL, UJOINT,

CUSTOM Body products of

inertia values expressed in

NEGATIVE inertia integral

sense (defaults to True)

DEPRECATED: Geometry to

be loaded into DScene.

Whether the joint is

prescribed or free (scalar

boolean or array of

booleanss for each

subhinge) DEPRECATED:

Type of prescribed joint.

WARNING: Not permitted in

Ndarts Subhinge

specification for custom

hinge.

2.6.2.4.9.3.3.2. ControllerParam

The attributes for the controller assembly

Required Parameters

Name Type Length Quantity Units Description

kd ki kp maxOutput double double double

double

1 1 1 1 N/A N/A N/A N/A Derivative gain Integral gain

Proportional gain Maximum

output

““

Optional Parameters
None

2.6.2.4.9.3.3.3. BaseMotorParam

The attributes for the link assembly.

Required Parameters
None

Optional Parameters

Name Type Length Quantity Units Description

Type string 1 N/A String parameter field

2.6.2.4.9.3.4. Model Information

2.6.2.4.9.3.4.1. PinEncoder
Outputs the pin joint angular displacement

Keywords: "Hinge!Pin"

Class: encoder

Author: David Henriquez The PinEncoder encoder reports the angular displacement a pin joint hinge has undergone (i.e. angle). If PinEncoder is attached to a hinge with more than one

degree of freedom, only the first degree of freedom will be reported; however, such a scenario may cause a system error (i.e. segmentation fault).

FlowIns
None

Parameters
None

Continuous States
None

Scratch
None

States

Name Type Length Quantity Units Value Description

angle double 1 Angle rad 0.0

FlowOuts

Name Type Length Quantity Units Value Description

angle double 1 Angle rad [0.0] hinge angle value

2.6.2.4.9.3.4.2. PrescribedPin
Forces a hinge pin to follow prescribed angles (via flowins) for kinematics modes

Keywords: "Hinge!Pin" "Hinge!Prescribed"

Class: motor

If the prescribed angle exceeds specified min/max angles, they will be capped appropriately.

FlowIns

Name Type Length Quantity Units Value Description

angle double 1 Angle rad [0.0] prescribed hinge angle

value (radians)

Parameters

Name Type Length Quantity Units Value Description

max_angle

max_angle_enabled

double int 1 1 Angle N/A rad 10.0 1 Joint angle limit

maximum (radians,

defaults to no limit) 1 if

min angle limit is

enabled, 0 if not

Name Type Length Quantity Units Value Description

min_angle

min_angle_enabled

double int 1 1 Angle N/A rad 0.0 1 Joint angle limit

minimum (radians,

defaults to no limit) 1 if

min angle limit is

enabled, 0 if not

Continuous States
None

Scratch

Name Type Length Quantity Units Value Description

at_max_angle

at_min_angle

int int 1 1 N/A N/A 0 0 1 if angle is at

maximum angle joint

stop (0 otherwise) 1 if

angle is at minimum

angle joint stop (0

otherwise)

States
None

FlowOuts
None

2.6.2.4.9.4. Related Regression Tests
Test the LinkAssembly with PrescribedPin prescribed hinge motors

Test the LinkAssembly with GeneralForcePin torque inputs

Test the LinkAssembly (with spring damper motors)

2.6.2.4.9.5. Class API Documentation

Note

For Doxygen documentation, please see: {DshellCommon_ LinkAssembly_class_doxygen_uri}[Link Assembly<assemblies::LinkAssembly::LinkAssembly>]

Link body assembly

2.6.2.4.10. NodePosVelAccelSensorAssembly

2.6.2.4.10.1. Introduction
A node truth sensor assembly

2.6.2.4.10.2. Signal Information

Signal Name Length Type Description

quat 4 double Truth quaternion with respect to the

inertial frame for node imu

omega 3 double gyro rates in inertial frame for node imu

(rad/sec)

bodyOmega 3 double gyro rates in body frame for node imu

(rad/sec)

alpha 3 double gyro angular accels in inertial frame for

node imu (rad/sec^2)

pos 3 double position relative to inertial frame for node

imu (meters)

vel 3 double velocity relative to inertial frame for node

imu (m/sec)

bodyVel 3 double velocity relative to body frame for node imu

(m/sec)

accel 3 double accelerations in inertial frame for node imu

(m/sec^2)

Click to see the DshellCommon/test/test_Ndarts/test_LinkAssembly/script1.py script

Click to see the DshellCommon/test/test_Ndarts/test_LinkAssembly/script2.py script

Click to see the DshellCommon/test/test_Ndarts/test_LinkAssembly/script3.py script

Signal Name Length Type Description

bodySensedAccel 3 double sensed accelerations in body frame for

node imu (m/sec^2)

2.6.2.4.10.3. Param Class Information
2.6.2.4.10.3.1. NodeParam
Single body node parameters.

2.6.2.4.10.3.2. Required Parameters

Name Units Description

bodyToNode m The 3-vector to the node frame from the body frame.

2.6.2.4.10.3.3. Optional Parameters
None

2.6.2.4.10.4. Model Information

2.6.2.4.10.5. NodePosVelAccelSensor
Model of a IMU truth sensor.

Keywords: "Inertial sensor!IMU" "Inertial sensor!Gyroscope" "Inertial sensor!Accelerometer"

Class: sensor

Returns linear and angular rates and accelerations. Linear values are given in the inertial frame, while angular values are given in the local/node frame.

Partly based on RoverDynModels/RoverTruthIMU

2.6.2.4.10.5.1. FlowIns
None

2.6.2.4.10.5.2. Parameters
None

2.6.2.4.10.5.3. Continuous States
None

2.6.2.4.10.5.4. Scratch

Name Units Length Description

accelMag m/s**2 1 Linear acceleration magnitude (with

respect to the inertial frame, m/sec^2)

Name Units Length Description

bodySensedAccelMag m/s**2 1 Linear acceleration magnitude in body axis

(with respect to the inertial frame, m/sec^2)

bodyVelMag m/s 1 Linear inertial velocity magnitude (with

respect to the body frame, m/sec)

nodeFrameAccel m/s**2 6 Total linear spatial acceleration written in

node frame

posMag quat m 1 4 Position magnitude relative to inertial

frame (m) Node attitude quaternion

velMag m/s 1 Linear inertial velocity magnitude (with

respect to the inertial frame, m/sec)

2.6.2.4.10.5.5. States
None

2.6.2.4.10.5.6. FlowOuts

Name Units Length Description

accel m/s**2 3 Linear accelerations (with respect to the

inertial frame, m/sec^2)

alpha rad/s**2 3 Angular accels (with respect to the inertial

frame, rad/sec^2)

bodyOmega rad/s 3 Angular rates (with respect to the body

frame, rad/sec)

bodySensedAccel m/s**2 3 Linear accelerations in body axis (with

respect to the inertial frame, m/sec^2)

bodyVel m/s 3 Linear inertial velocity (with respect to the

body frame, m/sec)

omega rad/s 3 Angular rates (with respect to the inertial

frame, rad/sec)

pos quat m 3 4 Position relative to inertial frame (m)

Attitude quaternion (with respect to the

inertial frame)

vel m/s 3 Linear inertial velocity (with respect to the

inertial frame, m/sec)

2.6.2.4.10.6. Related Regression Tests
VehicleAssembly class with one vehicle and a truth sensor

2.6.2.4.10.7. NodePosVelAccelSensorAssembly Class API Documentation

Note

For Doxygen documentation for the underlying model, please see: imu::NodePosVelAccelSensorAssembly

NodePosVelAccelSensor Assembly

2.6.2.4.11. SerialLinksAssembly

2.6.2.4.11.1. Class Documentation
A serial links assembly class.

2.6.2.4.11.2. Usage Scenario
This is a simple usage of the Serial Links Assembly. Start with the standard imports and import the Assembly. Create the Sim with SimulationExecutive.

2.6.2.4.11.3. Usage
2.6.2.4.11.3.1. Introduction
A serial links assembly class.

2.6.2.4.11.3.2. Signal Information
There are no signals in this assembly.

2.6.2.4.11.3.3. Param Class Information
2.6.2.4.11.3.3.1. ControllerParam
The attributes for the controller assembly

Required Parameters

Click to see the DshellCommon/test/test_Ndarts/test_node_truth/script.py script

Click to see the DshellCommon/usage/usage_SerialLinksAssembly.py script

““

““

Name Type Length Quantity Units DescriptionName Type Length Quantity Units Description

kd ki kp maxOutput double double double

double

1 1 1 1 N/A N/A N/A N/A Derivative gain Integral gain

Proportional gain Maximum

output

Optional Parameters
None

2.6.2.4.11.3.3.2. BaseMotorParam

The attributes for the link assembly.

Required Parameters
None

Optional Parameters

Name Type Length Quantity Units Description

Type string 1 N/A String parameter field

2.6.2.4.11.3.3.3. BodyParam

The BodyParam class provides all parameters required to specify a single Darts body.

Required Parameters

Name Type Length Quantity Units Description

mass double 1 Mass kg The body mass

Optional Parameters

Name Type Length Quantity Units Description

bodyToCM vector3 1 Length m The 3-vector to the body CM

from the body frame.

bodyToJoint

bodyToJointQuat cmInertia

description gearRatio

geometry

vector3 double double

string double \{}

1 4 None 1 1 None Length Quaternion

MomentsOfInertia N/A

Dimensionless N/A

m The 3-vector from the body

frame to the body hinge The

quaternion from the body

frame to the pnode for the

body hinge The 3x3 body

inertia matrix about the

body CM (do not specify

both inertia and cmInertia)

DEPRECATED: Body

description. IGNORED. Gear

ratio for PIN joints

Geometry to be loaded into

DScene.

Name Type Length Quantity Units Description

inbToJoint inbToJointQuat

inertia jointAxes jointLimits

jointType

negativeIntegralSense

partGraphics prescribed

prescribedType subhinge

vector3 double double

vector3 double string bool \

{} bool

1 4 None * * 1 1 None * None

None

Length Quaternion

MomentsOfInertia

Dimensionless N/A N/A N/A

N/A N/A N/A N/A

m The 3-vector from the

inboard body frame to the

body hinge The quaternion

from the inboard body

frame to the body hinge The

3x3 body inertia matrix

about the body frame (do

not specify both inertia and

cmInertia) The hinge

rotation/translation axis

Limits for range of joint

generalized coordinate

[min, max] The hinge type

(string). Supported: BALL,

COMPOSITE-

TRANSLATIONAL,

FULL6DOF,

FULL6DOF_INERTIAL,

GIMBAL, LOCKED, PIN,

PLANAR, SLIDER,

TRANSLATIONAL, UJOINT,

CUSTOM Body products of

inertia values expressed in

NEGATIVE inertia integral

sense (defaults to True)

DEPRECATED: Geometry to

be loaded into DScene.

Whether the joint is

prescribed or free (scalar

boolean or array of

booleanss for each

subhinge) DEPRECATED:

Type of prescribed joint.

WARNING: Not permitted in

Ndarts Subhinge

specification for custom

hinge.

2.6.2.4.11.3.4. Model Information

2.6.2.4.11.3.4.1. PinEncoder
Outputs the pin joint angular displacement

Keywords: "Hinge!Pin"

Class: encoder

Author: David Henriquez The PinEncoder encoder reports the angular displacement a pin joint hinge has undergone (i.e. angle). If PinEncoder is attached to a hinge with more than one

degree of freedom, only the first degree of freedom will be reported; however, such a scenario may cause a system error (i.e. segmentation fault).

FlowIns
None

Parameters
None

Continuous States
None

Scratch
None

States

Name Type Length Quantity Units Value Description

angle double 1 Angle rad 0.0

FlowOuts

Name Type Length Quantity Units Value Description

angle double 1 Angle rad [0.0] hinge angle value

2.6.2.4.11.3.4.2. PrescribedPin
Forces a hinge pin to follow prescribed angles (via flowins) for kinematics modes

Keywords: "Hinge!Pin" "Hinge!Prescribed"

Class: motor

If the prescribed angle exceeds specified min/max angles, they will be capped appropriately.

FlowIns

Name Type Length Quantity Units Value Description

angle double 1 Angle rad [0.0] prescribed hinge angle

value (radians)

Parameters

Name Type Length Quantity Units Value Description

max_angle

max_angle_enabled

double int 1 1 Angle N/A rad 2.0 1 Joint angle limit

maximum (radians,

defaults to no limit) 1 if

min angle limit is

enabled, 0 if not

min_angle

min_angle_enabled

double int 1 1 Angle N/A rad -0.5 1 Joint angle limit

minimum (radians,

defaults to no limit) 1 if

min angle limit is

enabled, 0 if not

Continuous States
None

Scratch

Name Type Length Quantity Units Value Description

at_max_angle

at_min_angle

int int 1 1 N/A N/A 0 0 1 if angle is at

maximum angle joint

stop (0 otherwise) 1 if

angle is at minimum

angle joint stop (0

otherwise)

States
None

FlowOuts
None

2.6.2.4.11.3.4.3. PinEncoder
Outputs the pin joint angular displacement

Keywords: "Hinge!Pin"

Class: encoder

Author: David Henriquez The PinEncoder encoder reports the angular displacement a pin joint hinge has undergone (i.e. angle). If PinEncoder is attached to a hinge with more than one

degree of freedom, only the first degree of freedom will be reported; however, such a scenario may cause a system error (i.e. segmentation fault).

FlowIns
None

Parameters
None

Continuous States
None

Scratch
None

States

Name Type Length Quantity Units Value Description

angle double 1 Angle rad 0.0

FlowOuts

Name Type Length Quantity Units Value Description

angle double 1 Angle rad [0.0] hinge angle value

2.6.2.4.11.3.4.4. PrescribedPin
Forces a hinge pin to follow prescribed angles (via flowins) for kinematics modes

Keywords: "Hinge!Pin" "Hinge!Prescribed"

Class: motor

If the prescribed angle exceeds specified min/max angles, they will be capped appropriately.

FlowIns

Name Type Length Quantity Units Value Description

angle double 1 Angle rad [0.0] prescribed hinge angle

value (radians)

Parameters

Name Type Length Quantity Units Value Description

max_angle

max_angle_enabled

double int 1 1 Angle N/A rad 2.0 1 Joint angle limit

maximum (radians,

defaults to no limit) 1 if

min angle limit is

enabled, 0 if not

min_angle

min_angle_enabled

double int 1 1 Angle N/A rad -0.5 1 Joint angle limit

minimum (radians,

defaults to no limit) 1 if

min angle limit is

enabled, 0 if not

Continuous States
None

Scratch

Name Type Length Quantity Units Value Description

at_max_angle

at_min_angle

int int 1 1 N/A N/A 0 0 1 if angle is at

maximum angle joint

stop (0 otherwise) 1 if

angle is at minimum

angle joint stop (0

otherwise)

States
None

FlowOuts
None

2.6.2.4.11.3.4.5. PinEncoder

Outputs the pin joint angular displacement

Keywords: "Hinge!Pin"

Class: encoder

Author: David Henriquez The PinEncoder encoder reports the angular displacement a pin joint hinge has undergone (i.e. angle). If PinEncoder is attached to a hinge with more than one

degree of freedom, only the first degree of freedom will be reported; however, such a scenario may cause a system error (i.e. segmentation fault).

FlowIns
None

Parameters
None

Continuous States
None

Scratch
None

States

Name Type Length Quantity Units Value Description

angle double 1 Angle rad 0.0

FlowOuts

Name Type Length Quantity Units Value Description

angle double 1 Angle rad [0.0] hinge angle value

2.6.2.4.11.3.4.6. PrescribedPin
Forces a hinge pin to follow prescribed angles (via flowins) for kinematics modes

Keywords: "Hinge!Pin" "Hinge!Prescribed"

Class: motor

If the prescribed angle exceeds specified min/max angles, they will be capped appropriately.

FlowIns

Name Type Length Quantity Units Value Description

angle double 1 Angle rad [0.0] prescribed hinge angle

value (radians)

Parameters

Name Type Length Quantity Units Value Description

max_angle

max_angle_enabled

double int 1 1 Angle N/A rad 2.0 1 Joint angle limit

maximum (radians,

defaults to no limit) 1 if

min angle limit is

enabled, 0 if not

min_angle

min_angle_enabled

double int 1 1 Angle N/A rad -0.5 1 Joint angle limit

minimum (radians,

defaults to no limit) 1 if

min angle limit is

enabled, 0 if not

Continuous States
None

Scratch

Name Type Length Quantity Units Value Description

at_max_angle

at_min_angle

int int 1 1 N/A N/A 0 0 1 if angle is at

maximum angle joint

stop (0 otherwise) 1 if

angle is at minimum

angle joint stop (0

otherwise)

States
None

FlowOuts
None

2.6.2.4.11.3.4.7. PinEncoder
Outputs the pin joint angular displacement

Keywords: "Hinge!Pin"

Class: encoder

Author: David Henriquez The PinEncoder encoder reports the angular displacement a pin joint hinge has undergone (i.e. angle). If PinEncoder is attached to a hinge with more than one

degree of freedom, only the first degree of freedom will be reported; however, such a scenario may cause a system error (i.e. segmentation fault).

FlowIns
None

Parameters
None

Continuous States
None

Scratch
None

States

Name Type Length Quantity Units Value Description

angle double 1 Angle rad 0.0

FlowOuts

Name Type Length Quantity Units Value Description

angle double 1 Angle rad [0.0] hinge angle value

2.6.2.4.11.3.4.8. PrescribedPin
Forces a hinge pin to follow prescribed angles (via flowins) for kinematics modes

Keywords: "Hinge!Pin" "Hinge!Prescribed"

Class: motor

If the prescribed angle exceeds specified min/max angles, they will be capped appropriately.

FlowIns

Name Type Length Quantity Units Value Description

angle double 1 Angle rad [0.0] prescribed hinge angle

value (radians)

Parameters

Name Type Length Quantity Units Value Description

max_angle

max_angle_enabled

double int 1 1 Angle N/A rad 2.0 1 Joint angle limit

maximum (radians,

defaults to no limit) 1 if

min angle limit is

enabled, 0 if not

min_angle

min_angle_enabled

double int 1 1 Angle N/A rad -0.5 1 Joint angle limit

minimum (radians,

defaults to no limit) 1 if

min angle limit is

enabled, 0 if not

Continuous States
None

Scratch

Name Type Length Quantity Units Value Description

at_max_angle

at_min_angle

int int 1 1 N/A N/A 0 0 1 if angle is at

maximum angle joint

stop (0 otherwise) 1 if

angle is at minimum

angle joint stop (0

otherwise)

States
None

FlowOuts

None

2.6.2.4.11.4. Related Regression Tests
Test the LinkAssembly with prescribed hinges

Test the LinkAssembly with torque inputs

Test the LinkAssembly (with spring damper motors)

2.6.2.4.11.5. Class API Documentation

Note

For Doxygen documentation, please see: Serial Links Assembly<assemblies::SerialLinksAssembly::SerialLinksAssembly

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1assemblies_1_1SerialLinksAssembly_1_1SerialLinksAssembly.html)

2.6.2.4.12. SiteAssembly

2.6.2.4.12.1. Class Documentation
2.6.2.4.12.1.1. Introduction
The SiteAssembly provides a way to specify a site location (such as a launch site) on the surface of a planetary target. The SiteAssembly acts as a frameProvider for the generated coordinate

frame located at the specified site. SiteAssembly is typically a member assembly of the associated TargetAssembly.

2.6.2.4.12.1.2. Construction Options
config - None

context

SiteAssembly has one required context setting:

'TargetAssembly'

The name of the TargetAssembly that the site is on.

signalTies - None

param

SiteAssembly has two required parameters:

'Site'

This should point to a SiteParam parameter class object.

'Target'

This should point to a TargetParam parameter class object.

2.6.2.4.12.1.3. Example Construction Syntax

2.6.2.4.12.1.4. Signals
FlowIns

None

FlowOuts

None

2.6.2.4.12.2. Visual Representation of Launch Site Frame

Click to see the DshellCommon/test/test_Ndarts/test_SerialLinksAssembly/script.py script

Click to see the DshellCommon/test/test_Ndarts/test_SerialLinksAssembly/script2.py script

Click to see the DshellCommon/test/test_Ndarts/test_SerialLinksAssembly/script3.py script

config = {
 EARTH : {
 CLASS : TargetAssembly,
 PARAMS : { TARGET : target_params },
 ASSEMBLIES : {
 Site1 : {
 CLASS : SiteAssembly,
 CONTEXT : { TARGET_ASSEMBLY : EARTH },
 PARAMS : { TARGET : target_params,
 SITE : site_params
 }, #PARAMS
 }, # Site1
 } # ASSEMBLIES
 } # EARTH

PYTHON

It should be noted that the frame associated with any site (including a Landing Site) will have the same orientation as the Launch Site Frame shown above.

2.6.2.4.12.2.1. Related Regression Tests
Unit test for the SiteAssembly Class.

Unit test for the SiteAssembly Class with launch site.

2.6.2.4.12.3. SiteAssembly Class API Documentation

Note

For Doxygen documentation, please see: SiteAssembly<SiteAssembly::SiteAssembly>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1assemblies_1_1SiteAssembly_1_1SiteAssembly.html)

2.6.2.4.13. TargetAssembly

2.6.2.4.13.1. Class Documentation
The TargetAssembly class

2.6.2.4.13.2. TargetBaseAssembly Usage
2.6.2.4.13.2.1. Introduction
The TargetAssembly class

2.6.2.4.13.2.2. Signal Information

Signal Name Type Length Quantity Units Description

MarsAngle double 1 Angle rad Truth data: rotation of

target body Mars

2.6.2.4.13.2.3. Param Class Information
StatePosVelBaseParam

State position (and velocity) knowledge/delivery specification for the start of a simulation.

The refVertical (see ref Reference_Datums_Verticals_section) is used in the computation of initial attitude from flight-path and aero angle quantities.

Required Parameters

Name Type Length Quantity Units Description

name string 1 N/A name of instance

Optional Parameters

Name Type Length Quantity Units Description

Click to see the `DshellCommon/test/test_Ndarts/test_SiteAssembly/script.py script

Click to see the `DshellCommon/test/test_Ndarts/test_SiteAssembly/script_launchSite.py script

Name Type Length Quantity Units Description

refVertical string 1 N/A direction defining vertical

for bank angle 'RADIAL,

ELLIPSOID_VERTICAL,

ELLIPTIC_NORMAL',

(defaults to RADIAL)

StateAttitudeBaseParam

State attitude knowledge/delivery specification for the start of a simulation and attitude rate. When using this parameter class in a VehicleAssembly, the inertial frame in the descriptions

for initQ and initOmega refers to the Planet-Centered Inertial (PCI) frame. When this class is used with the stateInit utility, the inertial frame refers to the frame provided by the assembly

passed in as an argument.

Required Parameters

Name Type Length Quantity Units Description

initQ double 4 Quaternion initial attitude quaternion

from body frame to inertial

frame either directly

specified or derived from

angle data

name string 1 N/A name of instance

Optional Parameters

Name Type Length Quantity Units Description

initAdjustquat double 4 Quaternion attitude quaternion

adjustment

initOmega vector3 1 AngularVelocity rad/s body angular velocity with

respect to the inertial frame

initOmegaBody vector3 1 AngularVelocity rad/s body angular velocity with

respect to the body frame

TargetBaseParam

This class provides the parameters used to describe a central body or target.

This is the base class for all Target parameter classes.

Required Parameters

Name Type Length Quantity Units Description

mass double 1 Mass kg Mass of target

name string 1 N/A Name of the target body

rotationRate double None AngularVelocity rad/s Rotation rate of the target.

May be a single float or

three element list of floats.

Optional Parameters

Name Type Length Quantity Units Description

eccentricity double 1 Dimensionless Eccentricity of the target

body ellipsoid (optional)

flattening double 1 Dimensionless Ellipsoidal flattening of

target body (optional)

radiusEquator double 1 Length m Equatorial radius of target

body

radiusPole double 1 Length m Polar radius of target body

(optional)

rotationAngle double 1 Angle rad Rotation angle of the target

BodyParam

The BodyParam class provides all parameters required to specify a single Darts body.

Required Parameters

Name Type Length Quantity Units Description

mass double 1 Mass kg The body mass

Optional Parameters

Name Type Length Quantity Units Description

bodyToCM vector3 1 Length m The 3-vector to the body CM

from the body frame.

bodyToJoint vector3 1 Length m The 3-vector from the body

frame to the body hinge

bodyToJointQuat double 4 Quaternion The quaternion from the

body frame to the pnode for

the body hinge

cmInertia double None MomentsOfInertia The 3x3 body inertia matrix

about the body CM (do not

specify both inertia and

cmInertia)

description string 1 N/A DEPRECATED: Body

description. IGNORED.

gearRatio double 1 Dimensionless Gear ratio for PIN joints

geometry {} None N/A Geometry to be loaded into

DScene.

inbToJoint vector3 1 Length m The 3-vector from the

inboard body frame to the

body hinge

inbToJointQuat double 4 Quaternion The quaternion from the

inboard body frame to the

body hinge

inertia double None MomentsOfInertia The 3x3 body inertia matrix

about the body frame (do

not specify both inertia and

cmInertia)

jointAxes vector3 * Dimensionless The hinge

rotation/translation axis

generalized coordinate

[min, max]

jointLimits double * N/A Limits for range of joint

generalized coordinate

[min, max]

jointType string 1 N/A The hinge type (string).

Supported: BALL,

COMPOSITE-

TRANSLATIONAL,

FULL6DOF,

FULL6DOF_INERTIAL,

GIMBAL, LOCKED, PIN,

PLANAR, SLIDER,

TRANSLATIONAL, UJOINT,

CUSTOM

negativeIntegralSense bool 1 N/A Body products of inertia

values expressed in

NEGATIVE inertia integral

sense (defaults to True)

Name Type Length Quantity Units Description

partGraphics {} None N/A DEPRECATED: Geometry to

be loaded into DScene.

prescribed bool * N/A Whether the joint is

prescribed or free (scalar

boolean or array of

booleanss for each

subhinge)

prescribedType None N/A DEPRECATED: Type of

prescribed joint. WARNING:

Not permitted in Ndarts

subhinge None N/A Subhinge specification for

custom hinge.

TargetAdditionalFrameParam

Parameters for additional target-centered frame specification.

Required Parameters

Name Type Length Quantity Units Description

frameTransform double None Dimensionless Frame transform of

additional target-centered

frame from the PCI frame

Optional Parameters

None

2.6.2.4.13.2.4. Model Information

PinEncoder

Outputs the pin joint angular displacement

Keywords: "Hinge!Pin"

Class: encoder

Author: David Henriquez The PinEncoder encoder reports the angular displacement a pin joint hinge has undergone (i.e. angle). If PinEncoder is attached to a hinge with more than one

degree of freedom, only the first degree of freedom will be reported; however, such a scenario may cause a system error (i.e. segmentation fault).

FlowIns

None

Parameters

None

Continuous States

None

Scratch

None

States

Name Type Length Quantity Units Value Description

angle double 1 Angle rad 0.0

FlowOuts

Name Type Length Quantity Units Value Description

““

Name Type Length Quantity Units Value Description

angle double 1 Angle rad [1,0] hinge angle value

2.6.2.4.13.3. Related Regression Tests
Create a vehicle with 3 bodies and a planetary target body. Set up simple gravity.

Simulate docking between 2 vehicles Create 2 vehicles. In the simulation one vehicle attaches to the other vehicle to roughly simulate docking a vehicle to the space station.

Vehicle with aspherical gravity Create a vehicle with 3 bodies and a planetary target body. Set up an aspherical gravity tied to the planetary body.

Vehicle with external disturbance Create a free-flying vehicle without gravity and apply a force and torque to test ExternalDisturbanceActuatorAssembly.

2.6.2.4.13.4. TargetAssembly Class API Documentation

Note

For Doxygen documentation, please see: TargetAssembly<TargetAssembly::TargetAssembly>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1assemblies_1_1TargetAssembly_1_1TargetAssembly.html)

Derives from the TargetBaseAssembly class and requires body parameters by setting the Bodies config flag to true

2.6.2.4.14. TargetBaseAssembly

2.6.2.4.14.1. Class Documentation
The TargetBaseAssembly models some target.

The TargetBaseAssembly class is derived from the Assembly and FrameProvider classes and will be the parent class of all target assemblies.

2.6.2.4.14.1.1. Construction Options
config -

‘Bodies’

context - None

signalTies - None

param

TargetBaseAssembly has one required parameter:

‘Target’

This should point to a TargetBaseParam parameter class object. This is usually stored in a file in the library of your run script such as: ‘./library/targets.py’. This information is used to

initialize basic information about the target such as the initial rotational position of the target.

TargetBaseAssembly has additional required parameters depending on config type:

‘Bodies’

This should point to a dictionary of BodyParam parameter class objects. The TargetAssembly object create a ‘PCI

TargetBaseAssembly has one optional parameter:

AdditionalFrames

This must be a dictionary with string keys starting from ‘0’ to the number of additional target-centered frames. The value associated with each string-based integer key must be an

instance of TargetAdditonalFrameParam.

2.6.2.4.14.2. Usage Scenario
This is a simple usage of the TargetBaseAssembly. Start with the standard imports and import the Assembly. Create the Sim with SimulationExecutive.

Simple TargetBaseAssembly usage regtest

2.6.2.4.14.3. Usage
2.6.2.4.14.3.1. Introduction
The TargetAssembly class

2.6.2.4.14.3.2. Signal Information

Signal Name Type Length Quantity Units Description

MarsAngle double 1 Angle rad Truth data: rotation of

target body Mars

2.6.2.4.14.3.3. Param Class Information
2.6.2.4.14.3.3.1. StatePosVelBaseParam

State position (and velocity) knowledge/delivery speci�cation for the start of a simulation.

The refVertical (see ref Reference_Datums_Verticals_section) is used in the computation of initial attitude from �ight-path and aero angle quantities.

Required Parameters

Name Type Length Quantity Units Description

name string 1 N/A name of instance

Optional Parameters

Click to see the DshellCommon/usage/usage_TargetBaseAssembly.py script

““

““

““

Name Type Length Quantity Units DescriptionName Type Length Quantity Units Description

refVertical string 1 N/A direction defining vertical

for bank angle 'RADIAL,

ELLIPSOID_VERTICAL,

ELLIPTIC_NORMAL',

(defaults to RADIAL)

2.6.2.4.14.3.3.2. StateAttitudeBaseParam

State attitude knowledge/delivery speci�cation for the start of a simulation and attitude rate. When using this parameter class in a VehicleAssembly, the

inertial frame in the descriptions for initQ and initOmega refers to the Planet-Centered Inertial (PCI) frame. When this class is used with the stateInit

utility, the inertial frame refers to the frame provided by the assembly passed in as an argument.

Required Parameters

Name Type Length Quantity Units Description

initQ name double string 4 1 Quaternion N/A initial attitude quaternion

from body frame to inertial

frame either directly

specified or derived from

angle data name of instance

Optional Parameters

Name Type Length Quantity Units Description

initAdjustquat double 4 Quaternion attitude quaternion

adjustment

initOmega vector3 1 AngularVelocity rad/s body angular velocity with

respect to the inertial frame

initOmegaBody vector3 1 AngularVelocity rad/s body angular velocity with

respect to the body frame

2.6.2.4.14.3.3.3. TargetBaseParam

This class provides the parameters used to describe a central body or target.

This is the base class for all Target parameter classes.

Required Parameters

Name Type Length Quantity Units Description

mass name double string 1 1 Mass N/A kg Mass of target Name of the

target body

rotationRate double None AngularVelocity rad/s Rotation rate of the target.

May be a single float or

three element list of floats.

Optional Parameters

Name Type Length Quantity Units Description

eccentricity flattening double double 1 1 Dimensionless

Dimensionless

Eccentricity of the target

body ellipsoid (optional)

Ellipsoidal flattening of

target body (optional)

radiusEquator double 1 Length m Equatorial radius of target

body

radiusPole double 1 Length m Polar radius of target body

(optional)

rotationAngle double 1 Angle rad Rotation angle of the target

2.6.2.4.14.3.3.4. BodyParam

The BodyParam class provides all parameters required to specify a single Darts body.

Required Parameters

Name Type Length Quantity Units Description

mass double 1 Mass kg The body mass

Optional Parameters

““

Name Type Length Quantity Units DescriptionName Type Length Quantity Units Description

bodyToCM vector3 1 Length m The 3-vector to the body CM

from the body frame.

bodyToJoint

bodyToJointQuat cmInertia

description gearRatio

geometry

vector3 double double

string double \{}

1 4 None 1 1 None Length Quaternion

MomentsOfInertia N/A

Dimensionless N/A

m The 3-vector from the body

frame to the body hinge The

quaternion from the body

frame to the pnode for the

body hinge The 3x3 body

inertia matrix about the

body CM (do not specify

both inertia and cmInertia)

DEPRECATED: Body

description. IGNORED. Gear

ratio for PIN joints

Geometry to be loaded into

DScene.

inbToJoint inbToJointQuat

inertia jointAxes jointLimits

jointType

negativeIntegralSense

partGraphics prescribed

prescribedType subhinge

vector3 double double

vector3 double string bool \

{} bool

1 4 None * * 1 1 None * None

None

Length Quaternion

MomentsOfInertia

Dimensionless N/A N/A N/A

N/A N/A N/A N/A

m The 3-vector from the

inboard body frame to the

body hinge The quaternion

from the inboard body

frame to the body hinge The

3x3 body inertia matrix

about the body frame (do

not specify both inertia and

cmInertia) The hinge

rotation/translation axis

Limits for range of joint

generalized coordinate

[min, max] The hinge type

(string). Supported: BALL,

COMPOSITE-

TRANSLATIONAL,

FULL6DOF,

FULL6DOF_INERTIAL,

GIMBAL, LOCKED, PIN,

PLANAR, SLIDER,

TRANSLATIONAL, UJOINT,

CUSTOM Body products of

inertia values expressed in

NEGATIVE inertia integral

sense (defaults to True)

DEPRECATED: Geometry to

be loaded into DScene.

Whether the joint is

prescribed or free (scalar

boolean or array of

booleanss for each

subhinge) DEPRECATED:

Type of prescribed joint.

WARNING: Not permitted in

Ndarts Subhinge

specification for custom

hinge.

2.6.2.4.14.3.3.5. TargetAdditionalFrameParam

Parameters for additional target-centered frame speci�cation.

Required Parameters

Name Type Length Quantity Units Description

frameTransform double None Dimensionless Frame transform of

additional target-centered

frame from the PCI frame

Optional Parameters
None

2.6.2.4.14.3.4. Model Information
Model data �ow

2.6.2.4.14.3.4.1. PinEncoder

Outputs the pin joint angular displacement

Keywords: "Hinge!Pin"

Class: encoder

Author: David Henriquez The PinEncoder encoder reports the angular displacement a pin joint hinge has undergone (i.e. angle). If PinEncoder is attached to a hinge with more than one

degree of freedom, only the first degree of freedom will be reported; however, such a scenario may cause a system error (i.e. segmentation fault).

FlowIns
None

Parameters
None

Continuous States
None

Scratch
None

States

Name Type Length Quantity Units Value Description

angle double 1 Angle rad 0.0

FlowOuts
========== ========== ========== ============ ========== ========== ================= Name Type Length Quantity Units Value Description ========== ========== ==========

============ ========== ========== =================

Name Type Length Quantity Units Value Description

angle double 1 Angle rad [1.0] hinge angle value

2.6.2.4.14.4. Class API Documentation

Note

For Doxygen documentation, please see: Target Base Assembly<assemblies::TargetBaseAssembly::TargetBaseAssembly>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1assemblies_1_1TargetBaseAssembly_1_1TargetBaseAssembly.html)

Target Base Assembly

This base assembly includes functions that create both topo dems and darts bodies as targets.

2.6.2.4.15. TargetSpiceAssembly

2.6.2.4.15.1. Class Documentation
2.6.2.4.15.1.1. Introduction
The TargetSpiceAssembly allows the user to create a TargetAssembly using celestial body/frame information from SPICE.

2.6.2.4.15.1.2. Construction Options
config - TargetSpiceAssembly has one optional config setting. Inherited from its base class, TargetBaseAssembly:

'inertial_frame'

The name of the frame that will be used a the reference inertial frame. Only one Target assembly can have the 'inertial_frame' config set in a simulation.

context - None

signalTies - None

param

TargetSpiceAssembly has two required parameters:

'Target'

This parameter is inherited from its base class, TargetBaseAssembly. This should point to a TargetSpiceParam parameter class object.

'Epoch'

This should point to a EpochDateParam parameter class object.

2.6.2.4.15.1.3. Example Construction Syntax

2.6.2.4.15.1.4. Signals
The TargeSpiceAssembly has a spiceTime signal that is the time value from the Spice Frame Container.

2.6.2.4.15.1.5. Related Regression Tests
Vehicles with Spice targets. Create a vehicle with 3 bodies and a planetary target body initialized with Spice. Set up simple gravity.

2.6.2.4.15.2. TargetSpiceAssembly Class API Documentation

Note

For Doxygen documentation, please see: TargetSpiceAssembly<TargetSpiceAssembly::TargetSpiceAssembly>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1assemblies_1_1TargetSpiceAssembly_1_1TargetSpiceAssembly.html)

Target body assembly using Spice data

The J2000 frame is centered at the solar system barycenter but is oriented to be parallel to Earth’s ecliptic axes at the J2000 epoch time, eg, January 1, 2000 at 12:00:00 TDB. Z-J2000 is the

spin axis of the Earth (northwards), and X-J2000 is the intersection of equatorial and ecliptic planes (called the vernal equinox), outwards from the center of the planet.

2.6.2.5. DshellCommon API Reference - Other

2.6.2.5.1. Creating an Assembly Class

All Assembly classes should be derived from BaseAssembly or a base class derived from BaseAssembly. Here is a simplified example of how an assembly should be defined.

Notice the constant 'PARAM1' defined at the top level of the module (line 5). This is used in the Assembly code in two locations (lines 9 and 22). Defining this constant at the module level

makes it easier to import and use in run scripts or library files for run scripts.

The '_param_types' class variable dictionary contains the expected parameter keys and the corresponding parameter classes for each one. All parameters that could possibly be used in the

assembly class must be defined here. As each parameter is processed, it is checked to verify that is the same type (or of a derived type) as is specified in the '_param_types' dictionary.

Depending on the signals, models, and assemblies this assembly needs to create, it will be necessary to define additional member functions such as 'addSignals()', 'addModels()', and

'addAssembies()'.

2.6.2.5.1.1. Derived Assembly Classes

'Earth' : {
 'class' : 'TargetSpiceAssembly',
 'inertial_frame' : 'PCI',
 'params' : { 'Target' : params.TargetSpiceParam(
 params={'name' : 'Earth',
 'bodyID' : 399,
 'mass' : 3.986004415e14 / 6.67259e-11,
 'rotationRate' : 7.29211514646e-5, # rad/s
 'rotationAngle' : 4.11421137, # Rotation angle from midnight to launch time
 'radiusPole' : 6356784.283104,
 'radiusEquator' : 6378166.00, # 6378140.000616, #grav 6378136.3;
 'kernels' : [
 '../common/spiceKernels/pck00009.tpc',
 '../common/spiceKernels/Gravity.tpc',
 '../common/spiceKernels/naif0009.tls',
 '../common/spiceKernels/ofDate.fk',
],
 # 'additionalFrameNames' : ['J2000', 'B1950', 'TOD_I']
 }, # Target params
 source = None),
 'Epoch' : params.EpochDateParam(
 params = {'name' :'1st Successful Run!',
 'initDate':"8/22/2012 08:01:04.184 (TDT)",})
 }, # Earth params
 }, #Earth

PYTHON

from DshellCommon.BaseAssembly import BaseAssembly
from DshellCommon.params.ExampleParam import ExampleParam

PARAM1 = 'param1'

class ExampleAssembly(BaseAssembly):
 """ExampleAssembly"""

 _param_types = { PARAM1 : ExampleParam
 }

 def __init__(self, parent_asm, name, config, context, signal_ties=None, params=None):

 BaseAssembly.__init__(self, parent_asm, name, config, context, signal_ties)

 self.requiredConfigFields([])
 self.optionalConfigFields([])

 self.requiredContextFields([])
 self.optionalContextFields([])

 self.requiredParamFields([PARAM1])
 self.optionalParamFields([])

 # Save the parameters, if given
 if params:
 self.params(params)

PYTHON

Derived classes can add additional parameters as needed. Suppose we derive a new assembly class 'NewAssembly' from the 'ExampleAssembly' Class. This excerpt would show how to do

that:

2.6.2.5.2. DshellCommonFSM

2.6.2.5.2.1. Class Documentation
2.6.2.5.2.1.1. Introduction
The DshellCommonFSM class is the primary class for finite state machine operations.

Derived from the C++ Assembly class

Provides a layer over the Python FSM class (from DshellEnv/python/Dfsm.py) for any needed additional functionality.

Etc (TBD)

2.6.2.5.2.1.2. Related Regression Tests
Standalone FSM regtest Create a finite state machine based on DshellCommonFSM and exercise its functionality in a stand-alone test (without a simulaton).

FSM within a simulation regtest Create a finite state machine based on DshellCommonFSM and exercise its functionality in a simulation. Check basic transitions and termination during

simuation.

FSM in a simulation with transitions regtest Create a finite state machine based on DshellCommonFSM and exercise its functionality in a simulation. Check basic transitions and

termination during simuation using the 'generalTrigger' trigger function from FsmUtils.py

2.6.2.5.2.1.3. DshellCommonFSM Class API Documentation

Note

For Doxygen documentation, please see: DshellCommonFSM<DshellCommonFSM::DshellCommonFSM>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommon/html/classpython_1_1fsm_1_1DshellCommonFSM_1_1DshellCommonFSM.html)

DshellCommonFSM finite state machine class

2.6.2.5.3. FsmUtils

2.6.2.5.3.1. Function and Class Documentation
2.6.2.5.3.1.1. Introduction
The FsmUtils module provides various utility functions and classes in support of finite state machine operations.

generalTrigger() is a class whose instances support FSM triggering associated with predefined thresholds (including slope of value trend).

2.6.2.5.3.1.2. DshellCommonFSM Class API Documentation
Finite State Machine utility functions

2.6.2.5.4. Knobs

2.6.2.5.4.1. Introduction
Contains specifications of input values represented by "knob" objects. For example, to represent an input value taken from the sequence 1,2,3:

knob1 = SequenceKnob('knob1_name',[1,2,3])

"knob1" is a unique id to identify the knob within the "Knobs" section.

"knob1_name" is a unique string id used to retrieve the current Knob value from within testDsends.py.

DMonteCarlo passes the current knob values as a Knobs dictionary object so, in testDsends.py, you would retrieve the current knob value using "Knobs['knob1_name']"

Knobs are usually defined in Knob configuration files. See DshellKnobsConfigFiles for more details.

2.6.2.5.4.1.1. Available Types of Knobs
Input values may be specified through a python Knob class object.

The following Knob types are available:

SequenceKnob

The SequenceKnob object returns a value from a specified list in sequence order.

Each job takes a value from the specified in sequential order. No two jobs will use the same list value. The maximum number of jobs is therefore equal to the length of the SequenceKnob

with the shortest list.

CONST1 = 'param2'

class NewAssembly(ExampleAssembly):

 _params = ExampleAssembly.addParams({

 CONST1 : ParamInfo(required = True,
 units = UNITLESS,
 description = 'const2',
 data_type = float
)
 })

 etc...

PYTHON

param name
 A unique id string to identify this Knob object

param List
 The list of values

SequenceReuseKnob

The SequenceReuse object returns a value from a specified list.

Each job will “step” through each list value in the sequential order. After the end of the list is reached, the list will restart from the beginning. The list is reused as necessary and does not

constrain the number of overall jobs executed.

param name
 A unique id string to identify this Knob object

param List
 The list of values

ListKnob

The ListKnob object returns a value from a specified list.

It will generate all possible combinations of list values so the same ListKnob value can be used in more than one job.

param name
 A unique id string to identify this Knob object

param List
 A Python list of values

GaussianKnob

The GaussainKnob object returns a random number using a gaussian distribution.

param name
 A unique id string to identify this Knob object

param mean
 Mean value (floating point)

param sigma
 Standard deviation (floating point)

param firstVal
 First value that will be returned by this Knob

param seed
 Random generator seed

RandomKnob

The RandomKnob object returns a value randomly selected from a list.

param List
 List of values

param firstVal
 First value that will be returned by this Knob

param seed
 Random generator seed

RandomGaussianVectorKnob

The RandomGaussianVectorKnob returns lists of random gaussian numbers.

param name
 A unique id string to identify this Knob object

param meanList
 Mean values of gaussian vector

param sigmaList
 Standard deviation of vector

param firstVal
 First value that will be returned by this Knob

param seed
 Random generator seed

UniformKnob

The UniformKnob object returns a random number using a uniform distribution within a specified range.

param name
 A unique id string to identify this Knob object

param rmin, rmax
 Range of values (inclusive)

param firstVal
 First value that will be returned by this Knob

param seed
 = random generator seed

CovarianceKnob

The CovarianceKnob object produces values that are part of a covariance dispersion.

param name
 A unique id string to identify this Knob object

param covarianceGroup
 Reference to the CovarianceDispersion instance that creates this knob. See CovarianceDispersion for more details.

ConstantKnob

The ConstantKnob object returns the same value for each job.

param name
 A unique id string to identify this Knob object

param value
 Constant value to that this knob returns

param firstVal
 First value that will be returned by this Knob. If firstVal != None, the first value generated
 will be firstVal, the subsequent generated values will be constantValue

2.6.2.5.4.1.2. CREATING NEW KNOB CLASSES
You may create new Knob classes by deriving a new class from the base class Knobs.

The base Knob construction (init) method requires two parameters: the name of the Knob object and a Python generator function. The Knob object calls the generator function to generate

the "next" value required by a job.

For example, here’s the source code that defines a Knob that returns a value from a list of values in sequential order:

2.6.2.5.4.1.3. Related Regression Tests
2.6.2.5.4.2. Knob API Documentation

Note

For Doxygen documentation, please see:

Knob<utils::Knobs::Knob>

MultiRun<utils::MultiRun::MultiRun>

SequenceKnob<utils::Knobs::SequenceKnob>

SequenceResuseKnob<utils::Knobs::SequenceReuseKnob>

ListKnob<utils::Knobs::ListKnob>

GaussianKnob<utils::Knobs::GaussianKnob>

RandomKnob<utils::Knobs::RandomKnob>

RandomGaussianVectorKnob<utils::Knobs::RandomGaussianVectorKnob>

UniformKnob<utils::Knobs::UniformKnob>

CovarianceKnob<utils::Knobs::CovarianceKnob>

ConstantKnob<utils::Knobs::ConstantKnob>

The following detailed API documentation includes additional information

Knob class.

2.6.2.5.5. Knob Con�guration Files

class SequenceKnob(Knob):::
 def __init__(self,name,sequence):;;
 Knob.__init__(self,name,lambda: iter(sequence))

PYTHON

2.6.2.5.5.1. Introduction
Knobs are usually defined in knob configuration files. These are 'configObj' files that define the knobs, how many runs are expected, and optionally some overrides.

2.6.2.5.5.2. How to De�ne Knobs with Knob Con�guration Files
The user’s run script would execute the following commands (where 'run_number' comes into the script from its invocation, eg, via command line argument):

where the MultiRun class helps the knobs get the correct values for a specific run when many runs are being executed as part of a parameter sweep or Monte Carlo simultion.

Then the knob values for this run can be accessed like this:

2.6.2.5.5.2.1. Example Knob Con�guration File (ParamSweep.cfg)

Note that the config-file labels or names on the left of each knob equals sign are not significant but must not be repeated. Each label must be distinct in order for the format of the

configuration file to be valid, but the actual names of the knobs are always taken from the first constructor argument. In other words, the first knob could have been defined as follows:

In this case, the knob name will be 'ListKnob1' (not 'k1').

Optional 'frozen' or 'unfrozen' sections

In some cases you would like to freeze one (or more) of the knobs to their first value. (Where the first value is defined using the 'firstVal' option in the knob definition or is the first item in

the value list if 'firstVal' is omitted). To do that, you may add an 'Override' section (where the case of the 'Override' is important) at the end of the knobs configuration file:

where frozen is a comma-separted list of names of knobs to freeze. In this case, the GaussianKnobWithSeed knob will remain frozen to its 'firstVal' but the other knobs will vary normally.

On the other hand, if you want to freeze everything except a set of knobs, you can use the unfrozen option:

In this case, the GaussianKnobWithSeed knob will vary normally, but all other knobs will be frozen. Again, unfrozen could be a comma-separated list of knobs that you want to vary while

leaving all the others frozen.

Warning

You cannot specify BOTH frozen and unfrozen sections in the knobs configuration file.

2.6.2.5.5.2.2. Related Regression Tests

2.6.2.5.6. CovarianceDispersion

2.6.2.5.6.1. Introduction
./regtests/test_MultiRun ../regtests/test_MultiRun_frozen

from DshellCommon.utils.Knobs import Knob, createKnobsFromFile
from DshellCommon.utils.MultiRun import MultiRun
listOfKnobs = createKnobsFromFile('ParamSweep.cfg')
multiRun = MultiRun(output_directory='results', run=run_number,
 config_file_name='ParamSweep.cfg')

PYTHON

print Knob.value('ListKnob1')
PYTHON

Example Parameter Sweep Configuration File

[System]

maxjobs = 16

[Knobs]

ListKnob1 = '''ListKnob(
 "ListKnob1", [18.0, 20.0, 22.0, 24.0]
)'''

GaussianKnobWithSeed = '''GaussianKnob(
 "GaussianKnobWithSeed", mean=100.0,sigma=2.0,
 firstVal = 100.0, seed = 1
)'''

CFG

...

[Knobs]

k1 = '''ListKnob(
 "ListKnob1", [18.0, 20.0, 22.0, 24.0]
)'''

CFG

... (same as above)

[Override]

frozen = ['GaussianKnobWithSeed']

CFG

[Override]

unfrozen = ['GaussianKnobWithSeed']

CFG

A utility for creating and accessing a covariance based dispersion.

2.6.2.5.6.2. Example Usage Syntax
To create a CovarianceDispersion, you could use code like this:

Here is some more information about the CovarianceDispersion class and its construction arguments:

A covariance dispersion is created by instantiating a CovarianceDispersion object.

Initializes the data members, checks for input argument errors, and creates the knobs that are used to access the values.

The object constructor takes the following arguments:

param name
 The name of the dispersion instance being created

param initial_values
 A list of variable names and their initial (undispersed) values.

param covariance_matrix
 The covariance matrix input as an upper triangle.

param distribution
 The desired distribution type, either ‘NORMAL’, ‘UNIFORM’, or ‘EXPONENTIAL’.

param seedVal
 The desired seed value. This is optional and will ensure that any given run always has the same value.

Here is an example of using a one of the dispersed variables defined in a the example CovarianceDispersion knob in a parameter library file:

To use the dispersed data in a simulation, reference it as you would a regular knob.

2.6.2.5.6.3. CovarianceDispersion Class API Documentation

Note

For Doxygen documentation, please see: CovarianceDispersion<utils::CovarianceDispersion::CovarianceDispersion>

A class for creating a covariance based dispersion.

2.6.2.5.7. ExecutionSummary

2.6.2.5.7.1. Introduction
A utility for creating an Execution Summary report file. The purpose of the Execution Summary report file is to have a record of every simulation run that can be used for debugging by both

developers and users, and to have a record for posterity of run times, etc of various simulations across various COMPASS versions and host machines.

2.6.2.5.7.2. Contents Description
2.6.2.5.7.2.1. Simulation Info
COMPASS Version: CompassPkg-R#-### Host used: host_name / CPU Utilization: ## Script used: script_name Output data location: output_directory

COMPASS Version will tie a given run to a version for debugging purposes. Host used will identify the host machine that was used in execution, and give the CPU usage level prior to

execution. Script used lists the name of the executed script. Output data location gives the directory where any output files that are generated will appear.

2.6.2.5.7.2.2. Execution Time
Sim Start: mm/dd/yyyy hh:mm:ss (clock time) Sim End: mm/dd/yyyy hh:mm:ss (clock time) Duration: hh:mm:ss (clock time) Processor time: hh:mm:ss

Execution Time Breakdown

Initialization: hh:mm:ss (clock time) Sim Object Creation: hh:mm:ss (clock time) Execution: hh:mm:ss (clock time)

Time information will measure various aspects of execution timing, for the purposes of debugging and performance analysis.

covar = CovarianceDispersion('4x4Dispersion', # name
 [['value1', 2.0], ['value2', 4.0], ['value3', 6.0], ['value4', 8.0]], # initialValues
 [[25, 15, -5, 1], # covarianceMatrix
 [18, 0, 1],
 [11, 1],
 [1]],
 'UNIFORM', # distribution
 2 # seedVal
)

PYTHON

'defaultActuator' : {
 'class' : 'BaseActuatorAssembly',
 'context' : {'bodyName':'testBody'},
 'params' : {
 'actuator' : ActuatorBaseParam({
 'actuatorType' : 'PERFECT',
 'initialDefl' : Knob.value('value3'),
 'actuatorTau' : 20,
 'dampingRatio' : 0.7,
 'naturalFrequency' : 150,
 'cycleTime' : 0.00001,
 'deflectionBias' : 0.0, }),
 } # params
 }, # actuator

PYTHON

2.6.2.5.7.2.3. Error / Warning / Phase Messages
Sim Time, Category, Message

Error, Warning, and Phase messages will be logged for debugging purposes.

2.6.2.5.7.2.4. User Inputs
A summary of user inputs to the simulation is included for debugging purposes. This section can be turned on or off, and is set to 'off' by default because most sims will have a massive

amount of input data.

Example File:

===============
SIMULATION INFO
===============

COMPASS Version: CompassPkg-R1-00q

Host Used: ndjsmsdxapp12 / CPU Utilization: 0.3%

Script Executed: /ms/ua/compass2/work/ajrobert/dev/what/src/DshellCommon/test/test_Ndarts/test_Phasing/script.py

Output Data Location:

==============
EXECUTION TIME
==============

Sim Start: 11/16/2016 15:32:17.76
Sim End: 11/16/2016 15:32:19.13
Duration: 0:00:01.37
Processor Time: 0:00:00.99

Execution Time Breakdown

 Initialization: 0:00:00.73
 Sim Object Creation: 0:00:00.38
 Execution: 0:00:00.26

===========
USER INPUTS
===========

{'ChaserVehicle': {'config': {'basename': 'ChaserBody'},
 'context': {},
 'gravity': {'config': {},
 'context': {'body': 'ChaserBody'},
 'models': {'gravity': {'flowOut': {'ang_accel': [-3.4028234663852886e+38,
 -3.4028234663852886e+38,
 -3.4028234663852886e+38],
 'lin_accel': [-3.4028234663852886e+38,
 -3.4028234663852886e+38,
 -3.4028234663852886e+38]},
 'param': {'BodyMass': 0.0,
 'BodyName': '',
 'EquatRadius': 0.0,
 'G': 6.67259e-20,
 'J2': 0.0,
 'J3': 0.0,
 'UseGradient': 0},
 'scratch': {'Accel': [0.0,
 0.0,
 0.0,
 0.0,
 0.0,
 0.0]},
 'state': {'BodyPosition': [0.0,
 0.0,
 0.0],
 'BodyVelocity': [0.0,
 0.0,
 0.0]}}},
 'param': {'Gravity': {'BodyName': '',
 'G': 6.67259e-11,
 'J2': 0.0010826260682438,
 'J3': 0.0,
 'Rgrav': 6378136.3,
 'UseGradient': 0},
 'Target': {'eccentricity': 0.08176382867096284,
 'flattening': 0.0033482672863778184,
 'mass': 5.973698990946545e+24,
 'name': 'Earth',
 'radiusEquator': 6378140.000616,
 'radiusPole': 6356784.283104,
 'rotationAngle': 3.571677927,
 'rotationRate': 7.2921151e-05}},
 'signals': {'AngAccel': [-3.4028234663852886e+38,
 -3.4028234663852886e+38,
 -3.4028234663852886e+38],
 'LinAccel': [-3.4028234663852886e+38,
 -3.4028234663852886e+38,
 -3.4028234663852886e+38]}},
 'models': {},
 'param': {'Attitude': {'initAngleAttack': 0.0,
 'initBank': 0.0,
 'initOmega': [0, 0, 0],
 'initSideslip': 0.0,
 'name': 'LVLH'},
 'Bodies': {'ChaserBody': {'bodyToCM': [0.0,
 0.0,
 0.0],
 'bodyToJoint': [0.0,
 0.0,
 0.0],
 'bodyToJointQuat': [0.0,

 0.0,
 0.0,
 1.0],
 'cmInertia': [[1,
 0,
 0],
 [0,
 1,
 0],
 [0,
 0,
 1]],
 'inbToJoint': [0.0,
 0.0,
 0.0],
 'inbToJointQuat': [0.0,
 0.0,
 0.0,
 1.0],
 'jointAxes': False,
 'jointLimits': False,
 'jointType': 'FULL6DOF_INERTIAL',
 'mass': 133.21,
 'negativeIntegralSense': True,
 'prescribed': False}},
 'Position': {'initPos_PCI': [-3900969.33545,
 2509122.52581,
 4698777.04841],
 'initVel_PCI': [-1539.89613644,
 -7234.69190295,
 2465.47711765],
 'name': 'ECI',
 'refVertical': 'RADIAL'}},
 'signals': {}},
 'Earth': {'config': {'bodies': True},
 'context': {},
 'models': {'EarthAngle': {'flowOut': {'angle': [-3.4028234663852886e+38]},
 'state': {'angle': 0.0}}},
 'param': {'Target': {'eccentricity': 0.08176382867096284,
 'flattening': 0.0033482672863778184,
 'mass': 5.973698990946545e+24,
 'name': 'Earth',
 'radiusEquator': 6378140.000616,
 'radiusPole': 6356784.283104,
 'rotationAngle': 3.571677927,
 'rotationRate': 7.2921151e-05}},
 'signals': {'EarthAngle': [-3.4028234663852886e+38]}},
 'TargetVehicle': {'config': {'basename': 'TargetBody'},
 'context': {},
 'gravity': {'config': {},
 'context': {'body': 'TargetBody'},
 'models': {'gravity': {'flowOut': {'ang_accel': [-3.4028234663852886e+38,
 -3.4028234663852886e+38,
 -3.4028234663852886e+38],
 'lin_accel': [-3.4028234663852886e+38,
 -3.4028234663852886e+38,
 -3.4028234663852886e+38]},
 'param': {'BodyMass': 0.0,
 'BodyName': '',
 'EquatRadius': 0.0,
 'G': 6.67259e-20,
 'J2': 0.0,
 'J3': 0.0,
 'UseGradient': 0},
 'scratch': {'Accel': [0.0,
 0.0,
 0.0,
 0.0,
 0.0,
 0.0]},
 'state': {'BodyPosition': [0.0,
 0.0,
 0.0],
 'BodyVelocity': [0.0,
 0.0,
 0.0]}}},
 'param': {'Gravity': {'BodyName': '',
 'G': 6.67259e-11,
 'J2': 0.0010826260682438,
 'J3': 0.0,
 'Rgrav': 6378136.3,
 'UseGradient': 0},
 'Target': {'eccentricity': 0.08176382867096284,
 'flattening': 0.0033482672863778184,
 'mass': 5.973698990946545e+24,
 'name': 'Earth',
 'radiusEquator': 6378140.000616,
 'radiusPole': 6356784.283104,
 'rotationAngle': 3.571677927,
 'rotationRate': 7.2921151e-05}},
 'signals': {'AngAccel': [-3.4028234663852886e+38,
 -3.4028234663852886e+38,
 -3.4028234663852886e+38],
 'LinAccel': [-3.4028234663852886e+38,
 -3.4028234663852886e+38,
 -3.4028234663852886e+38]}},

 'models': {},
 'param': {'Attitude': {'initAngleAttack': 0.0,
 'initBank': 0.0,
 'initOmega': [0, 0, 0],
 'initSideslip': 0.0,
 'name': 'LVLH'},
 'Bodies': {'TargetBody': {'bodyToCM': [0.0,
 0.0,
 0.0],
 'bodyToJoint': [0.0,
 0.0,
 0.0],
 'bodyToJointQuat': [0.0,
 0.0,
 0.0,
 1.0],
 'cmInertia': [[1,
 0,
 0],
 [0,
 1,
 0],
 [0,
 0,
 1]],
 'inbToJoint': [0.0,
 0.0,
 0.0],
 'inbToJointQuat': [0.0,
 0.0,
 0.0,
 1.0],
 'jointAxes': False,
 'jointLimits': False,
 'jointType': 'FULL6DOF_INERTIAL',
 'mass': 17.39,
 'negativeIntegralSense': True,
 'prescribed': False}},
 'Position': {'initPos_PCI': [3748996.1088,
 -3862101.2928000004,
 -4103766.24],
 'initVel_PCI': [2298.6744984,
 6264.8592,
 -3785.616],
 'name': 'ECI',
 'refVertical': 'RADIAL'}},
 'signals': {}},
 'config': {},
 'context': {},
 'models': {'adv_dyn': {}},
 'signals': {}}

================================
ERROR / WARNING / PHASE MESSAGES
================================

Sim Time Category Message
------------ -------- ---
536.000 PHASE Phase 1: 1st Phase, triggered with delta: -8.000000
566.000 PHASE Phase 120: Target Sequence - 1st Phase, triggered with delta: 0.000000
616.000 PHASE Phase 30: 2nd Phase, triggered with delta: 0.000000
616.000 PHASE Phase 20: 3rd Phase, triggered with delta: 0.000000
616.000 PHASE Phase 50: 4th Phase, triggered with delta: 0.000000
616.000 PHASE Phase 10: 5th Phase, triggered with delta: 0.000000
636.000 PHASE Phase 60: 6th Phase, triggered with delta: -5.000000
666.000 PHASE Phase 130: Target Sequence - 2nd Phase, triggered with delta: 0.000000
666.000 PHASE Phase 140: Target Sequence - 3rd Phase, triggered with delta: -30.000000
676.000 PHASE Phase 145: Target Sequence - Optional Triggered Phase, triggered with delta: 0.000000
1116.000 PHASE Phase 210: Floating Sequence - 1st Phase, triggered with delta: 0.000000
1146.000 PHASE Phase 200: Floating Sequence - 2nd Phase, triggered with delta: 0.000000
1166.000 PHASE Phase 220: Floating Sequence - 3rd Phase, triggered with delta: 0.000000
1266.000 PHASE Phase 230: Floating Sequence - 4th Phase, triggered with delta: 0.000000
1266.000 PHASE Phase 240: Floating Sequence - 5th Phase, triggered with delta: -50.000000
1266.000 PHASE Phase 250: Floating Sequence - 6th Phase, triggered with delta: -100.000000
1326.000 PHASE Phase 300: CID Sequence - 1st Phase, triggered with delta: 0.000000
1515.954 PHASE Phase 150: Chaser Sequence - 1st Phase, triggered with delta: 0.046054
1517.458 PHASE Phase 100: 7th Phase Regula-Falsi, triggered with delta: 0.041521
1517.458 PHASE Phase 105: 8th Phase, triggered with delta: 0.790000
1520.950 PHASE Phase 160: Chaser Sequence - 2nd Phase, triggered with delta: 0.049529
1536.712 PHASE Phase 110: 9th Phase Regula, triggered with delta: 0.037500
1566.000 PHASE Phase 2: Last Phase, triggered with delta: 0.000000

2.6.2.5.8. MultiRun Integration in DshellCommon

Goal is to minimize the complexity of running distributed monte-carlo simulations. This includes making it easy for user specification of distributed machines on the network, and reducing

the number of files and actions necessary to actually perform the monte-carlo.

The base MultiRun class only provides a framework to execute runs, but does not actually provide a means to execute the runs.

The IPythonMultiRun class is derived from the MultiRun class, but adds functionality necessary to run the simulation in two modes:

1. Monte-Carlo

Intended to distribute simulation runs across the network.

Executes a large number of simulation runs where knowledge of run results is not critical to future runs.

Currently only provides basic introspection to running engines. Future improvement could provide full introspection but need to be able to restart engines (since we currently can’t

re-create a simulation instance within one python interpreter). This would be useful to investigate why certain runs have failed or have become stalled.

2. (Future) Targeting/Optimization

Used to execute a smaller number of runs specifically for targeting or optimization.

Provides high degree of introspection with executing engines, i.e. input of controls, and output of desired result metrics.

Basic functionality created, but needs more work.

2.6.2.5.8.1. Typical inputs
User specifies --multirun=IPython in command line args.

User specifies multirun_config_file (typically named MonteCarlo.cfg) in constructor.

MonteCarlo.cfg file specifies Knobs used in simulation, max number of jobs to be run, and the machine / # of nodes where runs are to be executed.

The MultiRun Class processes the knobs, instead of having the user perform this function.

Currently two distribution approaches are available via the IPythonMultiRun input for launcher_class:

Local where the IPython engines are started on the local machine where the script is being run from.

SSH where the IPython engines are started on remote machines specified in the multirun config file.

2.6.2.5.8.2. Monte-Carlo Execution
Upon construction, IPythonMultiRun creates an IPython cluster on the machines specified. The cluster creates an IPython controller on local host, along with all the IPython engines. The

engines are created on the local host if the launcher_config option is set to Local, or on each of the specified machines if the SSH option is used. If a cluster is already executing for that set of

monte-carlo runs, it is re-used.

A load balanced view is created for the IPython controller. All the monte-carlo keys are executed via the view. Basically, for a given set of engines across the cluster, monte-carlo runs are

automatically dispatched to available engines. The load balanced view continues running these jobs on the engines until they are all completed.

2.6.2.5.8.3. Targeting/Optimization Execution
Not implemented yet.

2.6.2.5.8.4. Limitations
The current implmentation using SSH launchers requires all controllers, engines and views to be hosted on a system that has common NFS access to all files used for execution.

Also, since ssh is used to launch all IPython engines, proper automatic ssh login keys must be available and the hosts specified must be in the ssh known hosts file.

2.6.2.5.8.5. Discussion
1. TBD ???Add multirun and run inputs to script_args in argparser.py???

2. Should we have tighter integration of MultiRun with SimulationExecutive::: * If multirun in script.args, have sim create an instance of MultiRun. * Removes need to add configuration

code to run script. * Would need to add MonteCarlo.cfg file arg to SimulationExecutive.

3. Some legacy code in DshellCommon.SimulationExecutive (are these still used?)

TODO: Add to code (depricated), factor out or replace DCOW env vars.

2.6.2.5.9. Utils

2.6.2.5.9.1. Function and Class Documentation
2.6.2.5.9.1.1. Introduction
The Utils modules provide various utility functions and classes in support of finite state machine operations, docstring, state initialization, etc.

2.6.2.5.9.1.2. Utils Class API Documentation
2.6.2.5.9.2. phasing.py
This module is similar to the FSM that controls events called phases. The types of phases currently implemented are Fixed, Free, Floating, and Optional phases. Phases are used to control

simulation input. When a phase triggers based on user-specified criteria, user-specified commands are executed.

2.6.2.5.9.3. cubicspline.py
Provides a CubicSpline class for interpolation.

2.6.2.5.9.4. doctestutils.py
Utility functions for regtests

2.6.2.5.9.5. stateInit.py
Provides the user the capability to initialize the states of vehicles in a particular simulation using information from the simulation assemblies.

2.6.2.5.9.6. spiceUtils.py

dwatch logging related code

def resultSpecs(self, specs=None):::
 "Result specifications for sim run" if specs: self._result_specs =
 specs return self._result_specs

batch job related code @staticmethod def batchJob(): "Batch id number
if applicable" # the env var is defined in DshellEnv/DMonteCarlo.py
return os.getenv('DCOW_JOBID')

@staticmethod def resultsDir(): "Directory where overall results go"
return os.getenv('DCOW_RESULTS_DIR', os.getenv('PWD'))

@staticmethod def runDir(pdir=None):

PYTHON

Provides the user the capability to access certain SPICE functions directly from Python.

2.6.2.5.10. Simulation De�nition Block BNF Grammar De�nition

A DshellCommon Simulation Definition Block is simply an Assembly Definition which describes the assemblies to be created for the top-level simulation assembly. In the rest of this page,

we define the exact grammar for simulation definition blocks using Backus–Naur Form for defining grammars (typically used for computer languages):

<assembly-definition-block> ::=
 '{' <assembly-definition> [, <assembly-definition>] '}'

<assembly-definition> ::=
 <assembly-name> : <assembly-definition-dict>

<assembly-definition-dict> ::=
 '{' <required-assembly-items> [, <optional-assembly-item>] '}'

 <required-assembly-definition-items> := <assembly-class>

 <optional-assembly-item> ::= <params> | <context> | <subassemblies> |
 <signals> | <signal-ties> | <config-items>

 <assembly-class> ::= 'class' : <assembly-class-name>

 <params> ::= 'params' : (<param-object> | <param-dict>)

 <param-dict> ::= '{' <param-spec> [, <param-spec>] '}'

 <param-spec> ::= <param-name> : <param-object>

 <context> ::= 'context' : <context-spec>

 <subassemblies> ::= 'assemblies' : '{' <assembly-definition-list> '}'

 <signals> ::= 'signals' : '{' <signal-definition> [, <signal-definition>] '}'

 <signal-definition> ::= <signal-name> : <signal-definition-dict>

 <signal-definition-dict> ::=
 '{' <signal-definition-item> [, <signal-definition-item>] '}'

 <signal-definition-item> ::=
 <signal-type> | <signal-length> | <signal-nature> | <signal-comment>

 <signal-type> ::= 'type' : ('double' | 'int' | 'bool' | 'string')

 <signal-length> ::= 'length' : <non-zero unsigned integer>

 <signal-nature> ::=
 'physicalType' : ('POSITION' | 'LINEAR VELOCITY' | 'LINEAR ACCELERATION' |
 'ATTITUDE QUATERNION' | 'ANGULAR VELOCITY' |
 'ANGLE', 'UNKNOWN')

 <signal-comment> ::= 'comment' : <arbitrary quoted python string>

 <signal-ties> ::= '{' <signal-ties-definition> [, <signal-ties-definition>] '}'

 <signal-ties-definition> ::=
 <parent-signal-name> : '[' <signal-ties-items-list> ']'

 <signal-ties-items-list> ::=
 <required-signal-ties-item-list> [, <optional-signal-ties-item-list>]

 <required-signal-ties-item-list> ::= <child-signal-name>

 <optional-signal-ties-item-list> ::=
 <child-assembly-name> | <child-assembly-class> | <parent-slice>

 <child-signal-name> ::= 'child-signal-name' : <signal-name>

 <child-assembly-name> ::= 'child-assembly-name' : <assembly-name>

 <child-assembly-class> ::= 'child-assembly-class' : <assembly-class-name>

 <parent-slice> ::= 'parent-slice' : '[' <unsigned int> ',' <unsigned int> ']'

Notes:

This grammar description uses regular Backus-Naur Form (BNF) notation with a few helpfule syntax extensions from Extended Backus-Naur Form:

Optional items enclosed in square brackets (without quotes) can appear zero or more times. Note that brackets (and other characters) in quotes represent characters that would

actually be in the python script (for instance delimiting a python list).

Exactly one item should appear from a list of items enclosed in parentheses and separated by vertical bars.

For example, the following specification can represents various expressions as shown on the right (separated by 'or'):

1 [, (2 | 3)] ==> 1 or 1, 3 or 1, 2 or 1, 3, 2 or ...

<assembly-class-name> : A quoted python string for the exact name of the assembly class.

<param-obj> : A parameter type object/instance derived from BaseParam

<context-spec> : The value of the 'context' input dictionary needed for the assembly being defined. Since this is assembly-specific, listing all the the possiblities here was impractical.

This should appear in exactly the form that the Assembly constructor requires.

<config-items> : All items that are not <params>, <context>, <signals>, <signal-ties>, or <subassemblies>, are lumped together into a new 'config' dictionary and given as the 'config'

dictionary for the assembly being created.

physicalType : The value of 'physicalType' is primarily for documentation purposes: any string can given. The only case where it affects program operation is for

physicalType='ATTITUDE QUATERNION' (where it enables appropriate operation of quaternion signal initialization via the setToNominalValue() function call.

2.6.2.5.11. Sharing Frames in Models and Assemblies

2.6.2.5.11.1. Introduction
This section will descibe the approach of using Frame UUIDs to share frames between models and assemblies.

This approach was developed by the JSC MOD team.

2.6.2.5.11.1.1. Assembly code
In the following description, we will deal with two assemblies:

an assembly that is providing a frame, and

an assembly that is using the frame in one of its models.

In some cases, an assembly may perform both roles.

Some functionality that simplifies dealing with frames has been aggregated in the FrameProvider class. In order to use it, the assembly should inherit from the FrameProvider class. First

import FrameProvider near the top of the Python assembly code:

from DshellCommon.assemblies.FrameProvider import FrameProvider

In the class definition for the assembly class, add the additional parent class (this example is from TargetAssembly in DshellCommon):

class TargetAssembly(BaseAssembly, FrameProvider):

In the initialization method of the assembly class, right before the BaseAssemby class is initialized, initalize the FrameProvider class:

FrameProvider.__init__(self)

Assembly code for the frame provider

The basic idea of the frame provider assembly is that it will create the nodes and frames necessary to provide to other assemblies. For example, in the case of TargetAssembly, it would

provide PCI and PCR frames.

In the assembly’s addModels() method, use the FrameProvider method addFrame() function to add the frames that are created:

self.addFrame('MYFRAME', self._my_frame)

Assembly code for the frame user

In the assembly that needs the frame, the basic idea is that we get the frame from the frame provider assembly and then use it to initialize the UUID model parameter of one of the models

created by the frame user assembly.

Since we need flexibilty in naming a frame provider, normally the frame user assembly will define two required config variables in the initializer function:

self.requiredContextFields(['frameProviderAssembly', 'myFrameName'])

In the bindParams() method of the assembly code, we need to get a handle for the frame provider assembly assembly with some like this:

Get the assembly from the simulation assemblies that will provide the trajectory frame.
fp_assembly = self.findAssembly(self.context()['frameProviderAssembly'])

Next we need to get a handle for the frame itself:

frame_name = self.context()['myFrameName']
try:
 self._my_frame = fp_assembly.getFrame(frame_name)
except AttributeError:
 raise AttributeError('Failed to obtain frame called %s' % frame_name)

Finally, we can get the UUID and set the necessary model parameter:

Set required parameters
self.modelParamSet(self.name(), 'FRAME_UUID', self._my_frame.uuidInt())

2.6.2.5.11.2. Model Code
In order to share frames via UUIDs, several additions are needed for the model code.

2.6.2.5.11.2.1. Model .mdl code
The frame UUID is passed into a model using a special parameter. For example, a model needs a frame "X". First the parameter for this frame needs to be defined in the model definition

(.mdl) file:

class parameters
[params]
[[FRAMEX_UUID]]
Type = int
Length = -
Brief description = """**Not for user input** - UUID for the frame."""
Long description = """**Not for user input** - UUID for the frame."""

Note that the parameter is not set by the user in the normal config script. In general, bodies, frames, and models are created during the addModels() assembly calls. The assembly will set

the frame parameter during bindParams() . Since bindParams() is called after all addModels() functions have been called, the code to define the UUID parameter can be confident of

having real frames and UUIDs to deal with.

Don’t forget to delete the auto directory and rebuild the model C++ auto code.

2.6.2.5.11.2.2. Model .h code
Since the goal in the model code is to retrieve a frame from some other assembly, the user should set up a variable to hold the frame.

Either include "DFrame/Frame.h" or forward declare the frame class in the model’s header file:

// Forward declarations
class DFrame::Frame;

Define a variable to hold the frame (normally in a private or protected section):

const DFrame::Frame *frame;

2.6.2.5.11.2.3. Model .cc code
The model code should include the following Frame-related header files:

#include "DFrame/FrameContainer.h"
#include "DFrame/Frame.h"

In the model’s constructor in the C++ code, the UUID parameter should be initialized:

params()->FRAME_UUID = 0;

The frame is retrieved in the model’s setup() function. At this point, the initial model bindParams() call has been done and the frame UUID is known and available. The code would look

something like this:

frame = &(simulation().frameContainer().getFrame(static_cast<UUIDTYPE>(params()->FRAME_UUID)));

It would also be a good idea to add the following checks to make sure the frame object is valid:

// Check the dynamic cast converted the NdartsBaseObject to a Frame
if (frame == 0L)
{
 ss << "FrameHelper::getFrame() --> Failed cast for frame UUID =" << id << " !\n";
 throw std::runtime_error(ss.str());
}

// Verify the frame is registered
if (frame->isRegistered() != true)
{
 ss << "FrameHelper::getFrame() --> " << frame->name() << " not registered!\n";
 throw std::runtime_error(ss.str());
}

Once the frame is obtained, Frame2Frame objects can be created and saved as necessary.

3. DIntegrator

3.1. Background

3.1.1. Reference & Source material

DIntegrator Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DIntegrator/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

3.2. Design

3.3. Usage

 TBD: Add Doxygen link for FuelManifol model above

3.4. Software

3.5. Raw documents

3.6. Sphinx documentation

DIntegrator is a set of classes that implement or interface to different integration schemes.

The base class is the DIntegrator class. This is an abstract class from which different instance integrator classes are derived. Current integration schemes are the DIntegrator_euler,

DIntegrator_rk4, DIntegrator_rkf4, the DIntegrator_CVode and the DIntegrator_noop.

DIntegrator_euler is a first order simple Euler integration scheme

DIntegrator_rk4 is the 4th order Runge-Kutta scheme.

DIntegrator_rkf4 is the Runge-Kutta-Fehlberg 4-5 scheme with the correction step.

DIntegrator_CVode is an interface to use the LLNL CVODES package for variable step integration.

DIntegrator_noop is a no-operation or dummy class that does not integrate, but provides the interface to create a dummy integrator

Each integration class has the following functions:

integrate : This is the function call to solve the ODE. This function takes a function pointer for calculating the RHS of the equation y_dot = RHS. In our case, this function call is the Darts++

solve equations of motion call. It also takes as arguments number of states, arrays for the state and the state derivative, the desired integration time step, minimum integration time step

and the star time.

reset_states : This is a function call that sets the "reset_requested" flag. This flag is used internally in the ref integrate function to regenerate the states. An example of this is when

Darts++ states are changed run time due to change in the values of the states or a change in the number of states.

There are several functions to set and get the different tolerances, i.e. the relative and absolute error tolerance, as well as for printing information about the integrator statistics and

states.

There are functions to create and delete instances of these objects.

3.6.1. Reference

 MISSING DOXYGEN LINK: DIntegrator module doxygen documentation

Note

For doxygen module documentation for DIntegrator, see: DIntegrator Module<index.html>

3.6.1.1. DIntegrator

3.6.1.1.1. Introduction

Add some intro material to DIntegrator ref doc?

3.6.1.1.2. DIntegrator Class API Documentation

Note

For Doxygen documentation, please see: DIntegrator (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DIntegrator/html)

4. CVode

4.1. Background

4.1.1. Reference & Source material

CVode Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/CVode/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

4.2. Design

4.3. Usage

 TBD: CVode documentation TBD.

4.4. Software

4.5. Raw documents

4.5.1. Sphinx documentation

4.5.1.1. Introduction

The CVode module houses the CVODES package from LLNL as well as interface code to tie the integrators into the DIntegrator format for use with ROAMS. CVode is a variable step

integrator that is adapted from the package CVODES. Documentation regarding the CVODES package can be found in the section Other CVode/CVODES Documentation.

There is a single class, DIntegrator_cvode, defined in DIntegrator_cvode.cc and DIntegrator_cvode.h in this module, which exposes the CVODES package to the Darts/Dshell environment.

This class sets up the CVODE integrator object, exposes functions to set the tolerances, weights and other settings, as well as to print debugging information. The DIntegrator_cvode class is

derived from the generic DIntegrator base class which mananges the different integrators used by Darts/Dshell.

Here is an extract from the CVODES manual:

CVODES is part of a software family called sundials: SUite of Nonlinear and
DIfferential/ALgebraic equation Solvers. This suite consists of cvode, kinsol,
and ida, and variants of these. CVODES is a solver for stiff and nonstiff
initial value problems for systems of ordinary differential equation
(ODEs). In addition to solving stiff and nonstiff ODE systems, CVODES has
sensitivity analysis capabilities, using either the forward or the adjoint
methods.

Here is an extract from the title block of the cvodes.c source code:

File : cvodes.c
Programmers : Scott D. Cohen, Alan C. Hindmarsh, Radu Serban
 and Dan Shumaker @ LLNL
Version of : 27 June 2002

Copyright (c) 2002, The Regents of the University of California
Produced at the Lawrence Livermore National Laboratory
All rights reserved
For details, see sundials/cvodes/LICENSE

This is the implementation file for the main CVODES integrator
with sensitivity analysis capabilities.

4.5.1.2. Other CVode/CVODES Documentation

See https://computing.llnl.gov/sites/default/files/cvs_guide.pdf for the latest CVODES documentation. A copy of this document is in the module 'doc' directory.

See https://computing.llnl.gov/projects/sundials for more information on SUNDIALS, the "SUite of Nonlinear and DIfferentail/ALgebraic equation Solvers" from Lawrence Livermore

Laboratories. CVODES is part of that library.

4.5.1.3. CVode Doxygen Documentation

Note

For doxygen module documentation for CVode, see: CVode Module (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/CVode/html)

5. DshellEnv

5.1. Background

5.1.1. Reference & Source material

DshellEnv Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

5.2. Design

5.2.1. Dclick option handling

5.2.1.1. DClick option handling requirements

Should be able load options from a config file

Should have support for multiple config file types, e.g., YAML, INI, etc. The file type should be inferred from its extension.

Should be able to save current set of options to a config file

Option handling should support all combinations environment variables, config files, command line option values and built in defaults

command line values take precendence (per run)

which take precedence over environment variables (per user)

which take precedence over over config files (project use cases)

which take precedence over built-in defaults (software)

Should be able to support sub-commands (eg. for adding a rover group of options, adding a topo)

Should be able to specify same sub-command multiple times (to add multiple rovers or topos)

Should be able to specify multiple different sub-commands (to add rovers and topos)

Each subcommand should have its own set of options (rover options are different from ones for topos)

Should be able to tailor options handling to specific context choices (eg. allowed config values for a rover depend on the rover class chosen,)

5.2.1.2. Dclick validation

Dclick uses the pydantic module to validate input from config files.

The validator is created by parsing through the Dclick.cli group’s commands and their associated options. pydantic allows nesting validators, so a validator is created for each

command. For each command, the associated option’s information is extracted, and used to dynaimcally create a pydantic validator via the create_model function. The validator checks

the type of each option, and adds extra validation functions if needed. For example, if the type is a FloatRange or IntRange , validation functions are added that check the input is within

the associated min/max values. pydantic supports complex types, e.g., Tuple[Tuple[str, float], int] , but min/max values are not checked when FloatRange or IntRange is nested.

For example, if the type was Tuple[FloatRange, IntRange] the validator would check that the incoming type was Tuple[float, int] , but it would not check the min/max values of the

incoming float and int. It should be noted here that the functions for checking min/max are not built into pydantic , but rather are added via custom functions that use the validation

decorator. If such sophisticated checking is required in the future, we can create custom functions for this. However, since there is not a use case for it currently, it has not yet been added.

In addition, pydantic validators are used to prep values for output. For example, in Dclick.OutputValidator , variables of type DclickPath have their values compressed, so rather than

seeing the full file path for YAM_ROOT , one will simply see $YAM_ROOT , e.g., /home/leake/Documents/roamsPkg/etc/ becomes $YAM_ROOT/etc .

5.2.1.3. Dclick modes

Oftentimes there are cases where one is interested in displaying different sets of commands/options: let’s call these different sets of options "modes". For example, consider a development

vs. delivery mode where a full set of options/commands is wanted/needed during development, but a smaller set of options/commands is desired for delivery. This scenario can be

implemented in Dclick with the use of the mode keyword in both Dclick.option and Dclick.cli.command .

The following script shows an example of a mode option used for development vs. delivery.

If the "developer" mode is chosen, then the "development-only" command is added, and the help message of the "opt1" option of the "different-help" command is set accordingly. If the

"delivery" mode is chosen, then the "development-only" command is not added, and the help message of the "opt1" option of the "different-help" command is set accordingly.

Suppose we have this in a script called test. Then, here is the help message when we run everything with default settings, i.e., in delivery mode using srun ./test -h . Note the addition of

the option --mode :

Here is the help message when we run using development mode, i.e., using srun ./test --mode developer -h ,

#!/usr/bin/env python

from Dutils import Dclick
import click

@Dclick.cli.command()
@click.pass_context
@click.option("--opt1", type=float, default=1, show_default=True, help="")
def command_all(ctx, **kwargs):
 """
 This command is used by the development and delivery audiences and should appear the same for both.
 """
 Dclick.add_options("command-all", Dclick.cli.commands["command-all"], kwargs)

@Dclick.cli.command()
@click.pass_context
@Dclick.option("--opt1",
 type=float,
 default=1,
 show_default=True,
 help="This is a help message intended to be used by the delivery audience.",
 mode="delivery",
)
@Dclick.option("--opt1",
 type=float,
 default=1,
 show_default=True,
 help="This is a help message intended to be used by the developer audience.",
 mode="developer",
)
def different_help(ctx, **kwargs):
 """
 Some options.
 """
 Dclick.add_options("different-help", Dclick.cli.commands["different-help"], kwargs)

@Dclick.cli.command(mode="developer")
@click.pass_context
@click.option("--opt1", type=float, default=1, show_default=True, help="Option 1")
def development_only(ctx, **kwargs):
 """
 Command that appears only when in development mode.
 """
 Dclick.add_options("development-only", Dclick.cli.commands["devlopment-only"], kwargs)

Dclick.set_default_mode("delivery")

try:
 cfgobj, ctxobj = Dclick.cli(standalone_mode=False)
 print(cfgobj)
except:
 # help was called so exit
 import sys
 sys.exit(1)

PYTHON

Usage: test [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

 A command line interface tool for Dshell simulations.

Options:
 --in-cfg TEXT Full or partial input config file.
 --full-out-cfg PATH Full output config file.
 --delta-out-cfg PATH Delta output config file.
 --write-default-cfg Flag to write a default config file
 (config.ini) using the master configspec.
 --write-configspec Flag to output a default master configspec file
 (master_configspec.ini).
 --delta-options Flag to output command line options
 corresponding the current options.
 --file-exec PATH A file to execute after simulation is locked
 and ready to go.
 --version Show the version and exit.
 --mode [developer|delivery] Dclick mode. [default: delivery]
 -h, --help Show this message and exit.

Commands:
 command-all This command is used by the development and delivery...
 different-help Some options.

As the help message shows, enabling developer mode adds in the "development-only" command. Moreover, if we look at the help messages for the "opt1" option of the "different-help"

command, we can see the help message has changed as desired. For delivery mode, srun ./test different-help -h ,

and for developer mode, srun ./test --mode developer different-help -h ,

Note that an arbitrary number of modes are supported. For example, we may have "delivery", "delivery-advanced", and "developer". If we want to activate an option/command for more

than one mode, we can set the mode keyword to be a tuple of the valid modes:

5.2.1.4. Dclick version

Each Dclick application comes with a version number. By default, this version number is set to 1.0. The version number can be updated using

where versionNumber is new version number. Behind the scenes, Dclick uses a hidden command to ensure that the version number is printed to each output config file, which will look like

this

However, this command will not be visible or directly modifiable to users: it is only indirectly modifiable via the update_version method shown above. If an input config file has a version

number that is different than the Dclick application’s, this will trigger an error.

The top-level --version option can be used on the command line to display the version and exit, e.g., srun ./my-dclick-app --version .

5.2.1.5. Filtering dictionaries with Dclick

Dclick includes a filter_dict function, which can be used to filter a nested dictionary. The filters are functions of type Callable[[Any, Any], bool] , which take in the a key-value pair

(the [Any, Any] inputs) from the dictionary and return a bool. If the return value is True, then the key-value pair should be kept. If the return value is False, then it should be removed. The

filter functions are passed to the filter_dict in a dictionary whose keys are integers, which specify the layer of the dictionary that the corresponding filter functions should be used on,

Usage: test [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

 A command line interface tool for Dshell simulations.

Options:
 --in-cfg TEXT Full or partial input config file.
 --full-out-cfg PATH Full output config file.
 --delta-out-cfg PATH Delta output config file.
 --write-default-cfg Flag to write a default config file
 (config.ini) using the master configspec.
 --write-configspec Flag to output a default master configspec file
 (master_configspec.ini).
 --delta-options Flag to output command line options
 corresponding the current options.
 --file-exec PATH A file to execute after simulation is locked
 and ready to go.
 --version Show the version and exit.
 --mode [developer|delivery] Dclick mode. [default: delivery]
 -h, --help Show this message and exit.

Commands:
 command-all This command is used by the development and delivery...
 development-only Command that appears only when in development mode.
 different-help Some options.

Usage: test different-help [OPTIONS]

 Some options.

Options:
 --opt1 FLOAT This is a help message intended to be used by the delivery
 audience. [default: 1.0]
 -h, --help Show this message and exit.

Usage: test different-help [OPTIONS]

 Some options.

Options:
 --opt1 FLOAT This is a help message intended to be used by the developer
 audience. [default: 1.0]
 -h, --help Show this message and exit.

@Dclick.cli.command(mode=("delivery-advanced", "developer"))
@click.pass_context
@click.option("--opt1", type=float, default=1, show_default=True, help="Option 1")
def advanced_and_dev(ctx, **kwargs):
 """
 Command that appears only when in delivery-advanced or developer mode.
 """
 Dclick.add_options("advanced-and-dev", Dclick.cli.commands["advanced-and-dev"], kwargs)

PYTHON

Dclick.update_version(versionNumber)
PYTHON

[version]
version = 1.0

and the values are the filter functions themselves. The values can be either a single filter function, or a list of filter functions. In addition, a keyword argument, in_place , specifies whether

filter_dict should filter the dictionary in-place, or whether is should modify and return a copy of the input dictionary. For more details on this function, see the cooresponding usage

section.

5.2.1.6. modelParams.* commands

 TBD: Fill in this section once modelParams.* API has been fleshed out.

Dclick has a helper function called getModelParamsDict , which can be used to get all modelParams. command information from the Dclick dictionary, or all modelParams.

command information that regex matches a given ID. For more information, see the cooresponding usage section.

5.2.1.7. Tab-based completion

5.2.1.7.1. Background on shell tab-completion

Various shells, e.g., bash, zsh, etc., have tab-based completion systems built in. Each completion system is slightly different, but they do have some similarites. One important similarity, that

will be leverated here, is the ability to register a completion function that completes the tab-completion suggestions for a given command. In general, we can use this concept to generate

shell functions that will provide the tab-completion suggests for out Dclick applications.

5.2.1.7.2. Python click tab-completion

The click Python package has tab-completion built in: see here (https://click.palletsprojects.com/en/8.1.x/shell-completion/). The scheme provided click can be used to generate shell scripts with

the tab-completion functions and registration calls. For example, in bash for a click application foo-bar one can use

to create a script called foo-bar-complete.sh that creates a registers a tab-completion function for the foo-bar command. In DARTS, we have a make target called

dclick_complete_files-module that runs these commands for all Dclick application scripts in the DCLICK_SOURCE variable, and adds them to the <YAM_ROOT>/etc/Dclick_complete

folder.

5.2.1.7.3. DARTS tab-completion

Once the tab-completion functions for the Dclick applications have been created, all that is left to do is source them and call them. To do this, the srun tab-completion function is used. In

the DshellEnv , there are two scripts, srun-complete.bash and srun-complete.zsh , that contain the tab-completion for the srun command in bash and zsh respectively. The srun

tab-completion will source the appropriate file for the incoming command, and then call the associated tab-completion function. Source the tab-completion code is custom code written by

us, and calling the associated tab-completion function follows from the functions used by the xargs command to accomplish a similar feat.

The srun tab-completion functions are bit complicated, since they also need to set up system enviornment variables, e.g., PATH , LD_LIBRARY_PATH , etc. For more details, please see the

code for srun tab-completion functions in DshellEnv .

5.2.1.8. Exporting Dclick application help to Markdown

Oftentimes, it is convenient to include Dclick application help strings in the appendix of customer documentation. This provides a place for the customer to easily reference all of the Dclick

application options. The Dclick module comes with a exportHelpToMarkdown function that can be used for this purpose.

This function works by modifying sys.argv (sys.argv is modified within a context that ensures its original state is returned once fininshed) and running the Dclick application with --

help specified for the top-level and for all commands of the application. During this time, stdout is redirected via a context manager to capture the help output in strings or files. This

function also contains the ability to optinally write the command-level help strings into collapsible sections using markdown extensions.

5.3. Usage

5.3.1. Dclick Usage

5.3.1.1. Multi-command defaults

Sometimes, we want to have a default instance of a multicommand invoked if no instances have been invoked by the user. One can think of this as a multi-command default: a default

instance of the multi-command that gets used if no other instances have been specified. If a user wants this default instance, they can create it using the Dclick.add_multi_cmd_default

function. This function accepts the following:

cmd (Dclick multi-command) - The Dclick multi-command to add the default to.

name (str) - This argument specifies the name to give the default instance of the multi-command.

kwargs - Any extra keywords arguments are used to modify the defaults of the default multi-command instance.

Reg tests that utilize this functionality can be found in DshellEnv/test/test_Dclick/test_multi_cmd_default .

5.3.1.2. Filtering dictionaries

Dclick has the ability to filter dictionaries via the filter_dict function. This function accepts the following inputs: * d_orig (dict) - Dictionary to be filtered. This can be a nested dictionary. *

filters (Dict[int, Union[Callable]]) - A dictionary of filter functions. The key, an integer, specifies the layer (level of nesting) of the dictionary that the filter will be applied to. Each layer can

have one or more filter funtcions. The filter functions, of type Callable[[Any, Any], bool] , take in the a key-value pair from the dictionary and return a bool. If the return value is True,

then the key-value pair should be kept. If the return value is False, then it should be removed. * in_place (bool, optional) - This keyword argument specifies whether the dictionary will be

modified in place or not. (default = False)

Reg tests that utilize this functionality (indirectly) can be found in DshellEnv/test/test_Dclick/test_dict_filter .

5.3.1.3. getModelParamsDict

_FOO_BAR_COMPLETE=bash_source foo-bar > foo-bar-complete.bash
BASH

Dclick has a helper function called getModelParamsDict that utilizes the dictionary filtering functions to extract all of the modelParams. command information for all IDs that regex

match a user-specified string; if no string is supplied, then it returns all modelParams. command information. The function acceps the following inputs: * idFilter (str, optional) - This

string will be used as a filter, by regex matching it, on level 1 of the dictionary. For example, if one used "roverA.*", then the function will only return IDs that start with roverA. (default =

None) * d (dict, optional) - This is the dictionary that will be filtered. If None, then the output of Dclick.cli is used. (default = None)

Reg tests that utilize this functionality can be found in DshellEnv/test/test_Dclick/test_dict_filter .

5.3.1.4. Tab-based autocompletion

If you are on a DLAB machine, use the following steps to setup tab-completion for your Dclick application; note, this will only work if you are using either the bash or zsh shells. 1. Add

the scripts you care about to the DCLICK_SOURCE variable in the associated module’s Makefile 2. Run make dclick_complete_files-module. You should now see an associated completion file

in the YAM_ROOT/etc/Dclick_complete folder.

If you are on a personal machine, you will also need to source the associated srun-complete file (either srun-complete.bash or srun-complete.zsh) from the DshellEnv module.

5.3.2. Typing

5.3.2.1. Quick links

Follow the links if you want to…

learn the basics about typing in python (A, B) and using Dutils.typing (C).

enforce type checking in a function or code you are writing (A).

find an appropriate type hint for a specific input (A).

write advanced (DARTS-flavored) checks (A, B).

learn about built-in FieldCheck (A).

learn about built-in advanced (DARTS-flavored) types (A).

5.3.2.2. Basics of python typing

Typing (or type hinting) is a > 3.5 python feature that allows developers to annotate their code with the type that a variable / attribute / function argument should be at runtime. This does

not have any effects at runtime: a developer may annotate a value as a type yet be a completely different type at runtime.

The purpose of type hinting thus is not safety, but documenting. When we annotate the types in a function signature, we make its usage clearer:

As we can see in the snippet above, we are declaring that name should be a string and reps an integer, and that the function will return a list of strings.

Similarly, we can annotate classes so specify the types of its attribues:

In this way, users of the class Dog will now that they can expect the attributes name and age to be of the types str and int .

Finally, we can annotate simple variables. This is useful when a variable is used in a long piece of code where it is easy to lose control on what each variable represented:

In the case above, we see that we are specifying that names is a list of strings, which might not be obvious from its initialization value (an empty list).

See more on typing on the python docs: https://docs.python.org/3/library/typing.html.

5.3.2.3. Dutils typing

In the above snippets you may have noticed that type annotations can be made both with regular types (str , int …) and other special notation (for example, List[str]). This special

notation can be used to represent complex typing patterns. For example, the List[str] annotation not only says that the type must be a list, but also that all its elements must be strings.

In order to use this special syntax, developers must import the relevant annotations from the typing module:

However, the typing module does not always remain consistent across versions. For example, python 3.9 saw the deprecation (and eventual removal) of the List[…] notation in favor of

list[…] . If we were to write DARTS code with List[…] (which is necessary to support python < 3.9), we would find that when List gets removed we would need to fix all our type

annotations. To prevent this, we have the Dutils.typing module, which acts as a version-agnostic drop-in replacement for typing :

def my_list_generator(name: str, reps: int) -> List[str]:
 return [name] * reps

PYTHON

class Dog:
 name: str
 age: int

 ...

PYTHON

def print_names():
 names: List[str] = []
 ...

PYTHON

from typing import List

def test(foo: List[int]):
 ...

PYTHON

Additionally, Dutils.typing also backports all typing functionality implemented in newer versions of python. For example, Annotated was included in typing in 3.9, but it is available in

Dutils.typing for earlier versions.

5.3.2.4. Typing examples

There are many useful typing constructs in python. In this section, we show an example of a function that takes in arguments of many different types, and we explain what values would

be acceptable for each type:

Brief description on what is acceptable for each of the fields:

a_type: when you specify a python class (including built-ins like str or int) the value must be an instance of the type. This takes subclassing into account: if Child is a subclass of

Parent , then any Child object will be acceptable in a Parent -type field. The opposite is not true. Note that int are always acceptable where float are accepted.

b_union: the notation Union[X, Y] means that a value is valid if it is either a X or a Y . An arbitrary number of types is supported: Union[X, Y, Z] is also valid. For Union[str,

bool] , both "bar" and False will be valid options, for example.

c_optional: Optional[X] means that the value can be either X or None .

d_literal: Literal[X, Y] means that the value can be exactly X or Y . Instead of types, Literal takes instances of str , int , bool or enum and uses the equality operator == to

determine whether a value is acceptable. Much like Union , Literal takes an arbitrary number of arguments. For Literal["foo", True, 42] , for example, we can only use "foo" ,

True , or 42 , but not any other value.

e_list: List[X] means that the value must be a list and that every element of the list must of type X . For List[str] , ["foo", "bar"] would be accepted, but not ("foo", "bar") or

["foo", 42] .

f_tuple: Tuple[X, …] acts like List[X] , except that the value must be tuple instead of a list. For Tuple[int, …] , (1, 42) would be accepted, but not [1, 42] .

g_tuple_fixed: Tuple[X, Y, Z] means that the input must be a tuple with exactly three values, and that the first one must be of type X , the second one of type Y , etc. An arbitrary

number of required inputs is allowed. For Tuple[int, str, float] , the value (32, "test", 4.3) would be valid.

h_set: Set[X] requires that the input be a python set with only types X . For Set[str] , the value {"foo", "bar"} would be permitted.

i_dict: Dict[X, Y] requires that the input be a dictionary, that every key in the dictionary be of type X , and that every value be of type Y . For Dict[str, int] , the value {"foo": 1,

"bar": 2} would be valid, but not {"foo": 1.5, "bar": 2} or {"foo": 1, 42: 2} .

j_sequence: Sequence[X] means that any value that inherits from the abstract class Sequence is valid as long as all its members are of type X . Classes that inherit from Sequence

support accessing its elements as an array. Most notably, this includes both tuples and lists. For Sequence[float] , both (1, 2.3, 4) and [1, 2.3, 4] would be acceptable, but not

{1, 2.3, 4} as one cannot access the elements of a set.

k_iterable: Iterable[X] allows any value that is iterable and whose values are all of type X . This means that they support something like: for i in my_iterable: … . This supports

lists and tuples, but also sets and dictionaries, as they are all iterable.

from Dutils.typing import List

def test(foo: List[int]):
 ...

PYTHON

Using pyright (VSCode, pylance)

from Dutils.typing import (
 Optional,
 Union,
 Literal,
 List,
 Tuple,
 Set,
 Dict,
 Sequence,
 Iterable,
 Mapping,
 Any,
)

class MyType:
 ...

ListOfAgencies = List[Literal["NASA", "ESA", "JAXA", "Roscosmos"]]

def my_complex_function(
 a_type: MyType
 b_union: Union[str, bool]
 c_optional: Optional[str]
 d_literal: Literal["foo", True, 42]
 e_list: List[str]
 f_tuple: Tuple[int, ...]
 g_tuple_fixed: Tuple[int, str, float]
 h_set: Set[str]
 i_dict: Dict[str, int]
 j_sequence: Sequence[float]
 k_iterable: Iterable[int]
 l_mapping: Mapping[str, int]
 m_combinations: Union[List[Union[str, float]], Optional[Set[int]]]
 n_alias: ListOfAgencies
 o_any: Any
):
 ...

PYTHON

l_mapping: Mapping[X, Y] requires that the input be any object that inherits from the abstract collection class Mapping , that every key (my_mapping.keys()) be of type X , and that

every value (my_mapping.values()) be of type Y . Of course, this allows regular dictionaries, but also other dict-like classes such as OrderedDict or even InputDict .

m_combinations: arbitrary combinations of the previously mentioned types are possible. In the provided example (Union[List[Union[str, float]], Optional[Set[int]]]), the

value may be of two types: either a list of strings or float, or an "optional" set of integers. Since the set of integers is "optional", it means that None is also an accepted value

n_alias: given that type definitions can be arbitrarily complex (as we saw in m_combinations), sometimes it is useful to creat a type alias. In n_alias we use ListOfAgencies , which

we previously defined to be List[Literal["NASA", "ESA", "JAXA", "Roscosmos"]] . Using the alias or the value has the same effect. Aliases are useful because they improve

reusability of complex types and improve clarity.

o_any: finally, the special word Any means that any value is accepted. Users should avoid using this type as an easy and lazy catch-all, and restrict its usage to instances where truly any

value is acceptable.

5.3.2.5. Type checkers

While type annotations do not have any effects at runtime, there are certain 3rd party tools that can process the information in type annotations and notify users when they are violating

these annotations.

For example, by using Intellisense in VSCode (install the Python extension pack in VSCode), and changing "Type checking mode" to "basic", we will be notified when we are using a function,

class or variable incorrectly:

(IMAGES)

These types of hints allow you to catch errors before even running python and encourage you to consider all edge cases.

5.3.2.6. Runtime type checking

While python typing was designed to have no impact at runtime, sometimes we would prefer to enforce the types we annotated in order to increase the safety of our program.

Note that "there ain’t no such thing as a free lunch": when you perform runtime type checking you are paying a cost in performance. Type checking is better suited for public functions that

users will interact with during set-up, while using type checking on private functions that must be run many times is probably a bad idea.

Currently, we can enforce type annotations in three ways: with Dutils.typing.utils.type_check , Dutils.typing.utils.type_check_fn , and

DshellCommon.input_dict.input_dict.InputDict .

These docs will cover the first two ways, while InputDict has a separate doc entry.

5.3.2.6.1. Dutils.typing.utils.type_check

type_check is a function that takes in two arguments, a value and its expected type. This function will raise a TypeError if the value does not correspond to the type. Otherwise, it will

return the input value unchanged:

The type_check function also supports the greater part of the typing constructs (all the examples shown in Typing examples can be type checked at runtime):

This function acts similar to typing.cast : it will narrow down the type of the given value to the given type (or it will raise an error in the attempt).

type_check can also return a boolean instead of raising an exception if raises=False is passed to the function:

For regular types (int , str , MyObject), isinstance is prefered as it is faster. For generics (List[int] , Dict[str, int] , …) is required, as these are not supported by isinstance .

5.3.2.6.2. Dutils.typing.utils.type_check_fn

type_check_fn is a function decorator that automatically type checks the inputs to a function according to the type hints in its signature:

from Dutils.typing.utils import type_check

value = "test"
value = type_check(value, str) # ok

value = type_check(value, int) # raises TypeError

PYTHON

from Dutils.typing import List
from Dutils.typing.utils import type_check

value = ["foo", "bar"]
value = type_check(value, List[str]) # ok

value = type_check(value, List[int]) # raises TypeError

PYTHON

from Dutils.typing import List
from Dutils.typing.utils import type_check

value = ["foo", "bar"]

if type_check(value, List[str], raises=False):
 print(", ".join(value))

else:
 print(", ".join(str(v) for v in value))

PYTHON

The above function definition is equivalent to:

Note that default values are not type checked. To exclude certain inputs from type checking, specify exclude in the decorator:

5.3.2.6.3. Extending runtime checking: FieldCheck

Sometimes, we have have constraints for inputs that go beyond their type. For example, we might need that an input be a positive integer. In this case, type checking that the input is an

integer is a necessary step, but we also need to check that the value is greater than zero.

In this case, we need to "extend" a type to include additional checks. We use the Dutils.typing.Annotated and Dutils.typing.field_check.FieldCheck classes to do this:

In the previous snippet, we are creating a subclass of FieldCheck and defining the method check to return True only if the value is acceptable. Then, we are annotating the regular "core"

type int with an instance of PositiveCheck .

In essence, by using Annotated with FieldCheck , we are telling the type checker to not only ensure the value is of the correct "core" type, but also that it should meet all the annotating

FieldCheck to be considered a valid type. We extend the definition of a type to include custom checks through FieldCheck . This is particularly powerful when we combine it with type

alias, as it allows us to easily create custom types and hide the implementation details:

The function definition in the above snippet is equivalent to the previous definition, but it is cleaner and more readable.

We might also perform several improvents to the PositiveCheck class by defining the fail_message method and thus specifying a clearer error message:

from Dutils.typing import List
from Dutils.typing.utils import type_check_fn

@type_check_fn
def my_fun(foo: int, bar: List[str], *args: str, **kargs: float):
 ...

my_fun(1, ["J","P","L"], "test", "test2", key_test_1=1, key_test_2=2) # ok

my_fun("invalid", ["J","P","L"], "test", "test2", key_test_1=1, key_test_2=2) # TypeError because `foo` is not `int`

my_fun(1, ["J","P","L"], "test", 42, key_test_1=1, key_test_2=2) # TypeError because the second variadic argument is not `str`

my_fun(1, ["J","P","L"], "test", "test2", key_test_1=1, key_test_2="2") # TypeError because the keyword argument `key_test_2` is not `float`

PYTHON

from Dutils.typing import List
from Dutils.typing.utils import type_check

def my_fun(foo: int, bar: List[str], *args: str, **kargs: float):

 type_check(foo, int)
 type_check(bar, List[str])
 for arg in args:
 type_check(arg, str)
 for karg in kargs.values():
 type_check(karg, float)

 ...

PYTHON

from Dutils.typing import List
from Dutils.typing.utils import type_check_fn

@type_check_fn(exclude={"bar", "args"})
def my_fun(foo: int, bar: List[str], *args: str, **kargs: float):
 ...

my_fun(1, "INVALID", 42, keyword=4.0) # ok

PYTHON

from Dutils.typing.field_check import FieldCheck
from Dutils.typing import Annotated
from Dutils.typing.utils import type_check_fn

class PositiveCheck(FieldCheck):

 def check(self, value):
 return 0 < value

@type_check_fn
def print_age(age: Annotated[int, PositiveCheck()]):
 print(age)

print_age(42) # ok

print_age(-1)
TypeError: Incorrect type for argument 'age' in function 'print_age': Value -1 failed check PositiveCheck

PYTHON

PositiveInt = Annotated[int, PositiveCheck()]

@type_check_fn
def print_age(age: PositiveInt):
 print(age)

PYTHON

We could also make PositiveCheck more reusable by allowing users to specify the minimum value, instead of hardcoding it to 0:

5.3.2.6.3.1. Notes on Annotated
We can provide multiple FieldCheck in a single annotation (e.g. Annotated[X, MyFieldCheck(), MyOtherFieldCheck()]) and all of them will need to pass for the type to be considered

correct. Annotations can also be nested, and are equivalent to providing all annotations in the same object: Annotated[X, MyFieldCheck(), MyOtherFieldCheck()] is the same as

Annotated[Annotated[X, MyFieldCheck()], MyOtherFieldCheck()] .

Annotated types can also be used in complex types: List[PositiveInt] , for example, will check that the value is a list and that every element in the list be an integer that meets the

GreaterThanCheck(0) check. Annotating Union acts as annotating each of the elements in the union. Annotated[Union[X, Y], MyFieldCheck()] is equivalent to Union[Annotated[X,

MyFieldCheck()], Annotated[Y, MyFieldCheck()]] .

Whenever we type check a value, we checker will first check that the "core" type is correct. Then, it will check each FieldCheck from "left" to "right". For example, when we type check

Annotated[int, MyFieldCheck(), MyOtherFieldCheck()] , we first check that the value is an int , then we call MyFieldCheck().check , and finaly MyOtherFieldCheck().check .

This means that you can always assume that the previous checks have passed before reaching the next check function. This allows us to design faster and shorter FieldCheck classes. For

example, we can design a PositiveCheck that assumes that the value supports the > operator because we expect this PositiveCheck to be used only with numerics.

5.3.2.6.3.2. Boolean operators with FieldCheck
It is possible to manipulate FieldCheck using the operators & , | , and ^ , which will generate a new FieldCheck:

& : the "and" operator. Combines two FieldCheck into a single FieldCheck that passes only of both FieldCheck pass independently. Note that usage of this operator is discourged over

simply providing both checks separately. validators=[MyFieldCheck(), MyOtherFieldCheck()] , or Annotated[X, MyFieldCheck(), MyOtherFieldCheck()] is preferrable over

validators=[MyFieldCheck() & MyOtherFieldCheck()] , or Annotated[X, MyFieldCheck() & MyOtherFieldCheck()] . Both syntax are equivalent when type checking, but keeping

the checks separated facilitates analysis of the types and is necessary for certain systems to work.

| : the "or" operator. Combines two FieldCheck into a single FieldCheck that passes if at least one of the FieldCheck passes (MyFieldCheck() | MyOtherFieldCheck()).

^ : the "inversion" operator. Modifies a single FieldCheck (^MyFieldCheck()). The generated FieldCheck will only pass if the original check would not have passed.

Combinations of these operators are possible, e.g. ^(check_a & (check_b | check_c)) .

5.3.2.6.3.3. Built-in FieldCheck
There are several FieldCheck already defined in "Dutils.typing.field_check" that cover most use cases. For a detailed description on each of them, the user is encouraged to read the

extensive documentation written in "Dutils.typing.field_check". In this section, we will briefly cover them:

class PositiveCheck(FieldCheck):

 def check(self, value):
 return 0 < value

 def fail_message(self, value):
 return f"{value} is not positive"

PositiveInt = Annotated[int, PositiveCheck()]

@type_check_fn
def print_age(age: PositiveInt):
 print(age)

print_age(-1)
TypeError: Incorrect type for argument 'age' in function 'print_age': -1 is not positive

PYTHON

from Dutils.typing.field_check import FieldCheck
from Dutils.typing import Annotated
from Dutils.typing.utils import type_check_fn

class GreaterThanCheck(FieldCheck):

 def __init__(self, minimum):
 self.minimum = minimum

 def check(self, value):
 return self.minimum < value

 def fail_message(self, value):
 return f"{value} is not greater than {self.minimum}"

PositiveInt = Annotated[int, GreaterThanCheck(0)]

@type_check_fn
def print_age(age: PositiveInt):
 print(age)

@type_check_fn
def print_adult_age(age: Annotated[int, GreaterThanCheck(17)]):
 print(age)

print_age(-1)
TypeError: Incorrect type for argument 'age' in function 'print_age': Value -1 failed check PositiveCheck

print_adult_age(16)
TypeError: Incorrect type for argument 'age' in function 'print_adult_age': 16 is not greater than 17

print_adult_age(21) # ok

PYTHON

SizeCheck: A FieldCheck that passes if the given iterable has the correct size. For example, SizeCheck(7) will check that the given value is a vector of size 7. Similarly, SizeCheck(3,

4) will check that the value is a matrix with shape 3x4. In place of an integer, None can be specified to denote that any length is acceptable. SizeCheck(3, None) will check that the

value is a matrix with with 3 rows, but any number of columns. SizeCheck(None) will check that the value is a vector (is 1-dimensional), while SizeCheck(None, None) will check that

the value is a matrix (2D). A correctly formatted string can also be used to define inequality checks:

SizeCheck("<7") ensures size is less than 7

SizeCheck("2<=") ensures size is greater/equal than 2

SizeCheck("1< <5") ensures size is between 1 and 5

QuantityCheck: A FieldCheck that passes if the value has the correct quantity. For example, QuantityCheck("Length") will check that the given value has units of length (meters,

feet…). It is possible to specify whether values without units (i.e. regular floats) are acceptable. By default, this is True, as most DARTS code accepts unitless values by assuming the

system default units. To forbid unitless values use QuantityCheck(… , unspecified_ok=False) .

RangeCheck: A FieldCheck that passes if the input is within a range. For example, RangeCheck(gt=0, le=1) will check that the value is greater than zero and lower or equal than 1.

RangeCheck(ge=0, lt=1) will check that the value is greater or equal than zero and lower than 1. Omitting one of the bounds is possible: RangeCheck(gt=0) will only check that the

value is greater than zero. Mathematical interval notation is supported: RangeCheck(gt=0, lt=1) is equivalent to RangeCheck((0,1)) . RangeCheck(ge=0, le=1) is equivalent to

RangeCheck([0,1]) . Units are supported in RangeCheck , but the quantity must be provided explicitely: RangeCheck([1*ft, 5*ft], quantity="Length") will first check that the

value has units of quantity "Length". Then, it will ensure that the value is between one and five feet. If the given value has no units, then the system default are used in the comparison.

RangeCheck can also validate (nested) collections of values: if a list is provided, for example, it will only pass if every element is within the range.

ChoicesCheck: Forces the value to be in the given container. For example, ChoicesCheck([1, 2]) and ChoicesCheck({1, 2}) are equivalent and will only allow the values 1 or 2.

ChoicesCheck has two built-in subclasses, ModelEnumCheck and KnownTopoCheck . ModelEnumCheck will check that the value is a valid enum defined in a Model, for example

ModelEnumCheck("GeneralModels.ExternalDisturbance", "DisturbanceMode") will only accept the values "BODY" or "INERTIAL" . KnownTopoCheck() , on the other hand, will only

accept the names of known topos, for example 'SphericalSun' or 'EarthWGS84' . All ChoicesCheck classes can also validate (nested) collections of values: if a list is provided, for

example, it will only pass if every element is a valid choice.

RealCheck: used to check floats or collections of floats (lists, numpy arrays, nested lists…) and forbid the special values "NaN", "+inf", and "-inf". However, these values may be permitted

by using special keywords. RealCheck(pos_inf_ok=True) will fail for "NaN" and "-inf", but not for "+inf".

PathCheck: Performs certain checks to strings or collections of strings to ensure they are valid paths. Existance can be checked, as well as whether the path points to a file or a directory,

and whether these are writable or readable.

NDArrayTypeCheck: checks that a numpy array has the correct type: NDArrayTypeCheck(int) will fail for np.array([1.2, 3.4]) but pass for np.array([1, 3]) and

np.array([True, False]) (as bool are subclasses of int).

Math-related: performs certain checks on vectors or matrices. There are: MonotonicCheck , NormCheck , SymmetricCheck , DeterminantCheck , DefinitenessCheck .

5.3.2.6.3.4. Built-in type alias
"Dutils.typing.Dtyping" provides a series of built-in type alias that cover most use cases in DARTS. Inspecting the definition of these types is a great exercise to understand how typing and

FieldCheck work. In this section we provide a brief look at some of these types:

Real: A float that cannot be "NaN", "+inf", or "-inf". Should be used over float for most use cases.

Array[T]: A list or tuple of unknown size whose elements should be of type T . T is a TypeVar , which means that it can be substituted for an actual type. For example, the type

Array[str] will permit tuples and lists of strings.

FloatArray, RealArray, IntArray, BoolArray: A list, tuple, or numpy array of float, real (float not "NaN", "+inf", or "-inf"), integers, or boolean types. The numpy arrays have additional

FieldCheck that forces them to be one dimensional. These can be used with SizeCheck to request arrays of specific sizes. For example, Annotated[FloatArray, SizeCheck(3),

RangeCheck([0,1])] could represent a color specification where the R, G, B values are given as floats beween 0 and 1. Moreover, SOA_Py.SOAVectorBase is accepted for FloatArray and

RealArray.

Matrix[T]: Similar to Array[T], except that this accepts lists of lists, lists of tuples, tuples of lists, and tuples of tuples. For example, Matrix[MyObject] would require nested sequences

of MyObject . Note that the nested lists/tuples must all have the same length.

FloatMatrix, RealMatrix, IntMatrix, BoolMatrix: matrix (as defined above) or numpy arrays of float, real, integers or boolean types. Similarly to their array equivalents, these are

commonly used along side SizeCheck . For example, "Dtyping" includes a RotationMatrix type that is defined as Annotated[RealMatrix, SizeCheck(3,3), DeterminantCheck(1)] .

Moreover, SOA_Py.SOAMatrixBase is accepted for FloatMatrix and RealMatrix.

PositiveFloat, NegativeFloat, NonPositiveFloat, NonNegativeFloat, PositiveReal… : floats, reals, and integers types that must be greater/lower/lower or equal/greater or equal to

zero.

FilePath, DirPath: strings that must represent valid paths to an existing file or directory.

Quaternion: Either a 4-length array with norm 1 or a SOA_Py.SOAQuaternion .

Time, Mass, Length… : reals that may optionally have units of quantity "Time", "Mass", "Length"… For example, 1.32 and 1.32 * ft are acceptable values for the type Length , but not

1.32 * s .

TimeArray, MassArray, LengthArray… : real arrays that may optionally have units of quantity "Time", "Mass", "Length"… For example, [1.32, 2.3] and [1.32, 23] * ft are

acceptable values for the type LengthArray , but not [1.32, 2.3] * s . Much like RealArray , these types are usually annotated with SizeCheck . For example, we might define

Position = Annotated[LengthArray, SizeCheck(3)] to create a position vector type.

TimeMatrix, MassMatrix, LengthMatrix… : real matrix that may optionally have units of quantity "Time", "Mass", "Length"… For example, [[1.32, 2.3], [4, 5]] and [[1.32,

2.3], [4, 5]] * ft are acceptable values for the type LengthMatrix , but not [[1.32, 2.3], [4, 5]] * s .

StrictTime, StrictTimeArray, StrictTimeMatrix, StrictMass… : Like their non-strict equivalents, except that the values must have units. For example, 1.32 * ft is an acceptable

value for the type StrictLength , but not 1.32 or 1.32 * s .

5.3.2.7. Type hint decision tree

This section will help you find an appropriate type hint for any input you need. A decision tree will present you with questions about said input, and you can traverse it through your

answers until you arrive at a square box, which contains the type hint you need.

If the type hint you find through the tree is not restricting enough, you can add additional constraints through FieldChecks, either custom-built to your needs or using one of the many built-

in ones (which should cover most use cases).

Before using the tree, you might consider this list of commonly used types which are not present in the tree:

Figure 32. The decision tree

The decision tree (continued)

List of built-in commonly used types

Note that:

The recommended type hints can be imported from Dutils.typing or Dutils.typing.Dtyping .

To decide what the type hint for the placeholders X , Y , Z , K , V should be, go back to the start of the tree.

Literal , Union , and Tuple can take as many arguments as you need: Union[X, Y] , Union[X, Y, Z] , Union[X, Y, Z, W] … To find what should

In Mapping , MutableMapping , and Dict , K refers to the type of the keys and V to the type of the values.

Literal should only take instances of string, integers, None, or enums. For example: Literal["a", None, 3, 5, Color.RED] .

5.4. Software

5.5. Raw documentation

 TBD: Need scrubbing before integration.

5.5.1. Handling di�erent versions of typing and typing_extension Python modules

TBD: Needs scrubbing. Notes brought over from issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellcommon/-/issues/29#note_9371).

While this particular issue has been solved, it is possible that similar errors might appear in the future. These issues happen because typing is a relatively recent development of the

python standard (as of 2022) and is continuously improving.

Failed to generate image: dot failed: Error: <stdin>: syntax error in line 2 near 'star_2'

 star_2 [label=<***>]

 dictish [label="Does have to resemble a 'dict'? (it has keys and values)"]
 keys_apriori [label="Are the keys strings and\nyou know the keys a priori?"]
 input_dict [shape=square, label="InputDict"]
 change_keys [label="Are you going to change the values stored?\n('my_map[\"test\"] = 2')"]
 mapping [shape=square, label="Mapping[K,V]"]
 mapping_dict [label="Does it necessarily have to be a 'dict'?"]
 dict [shape=square, label="Dict[K,V]"]
 mutable_mapping [shape=square, label="MUtableMapping[K,V]"]
 repeated [label="Can it have repeated values?"]
 set [shape=square, label="Set[X]"]
 by_index [label="Do you need to access the\nelements by index ('obj[1]')?"]
 iterable [shape=square, label="Iterable[X]"]
 list_or_tuple [label="Does it necessarily have\nto be a list or tuple?"]
 sequence [shape=square, label="Sequence[X]"]
 maybe_list [label="Can it be a list?"]
 can_tuple [label="Can it be a tuple?"]
 array [shape=square, label="Array[X]"]
 list [shape=square, label="List[X]"]
 specific_tuple [label="Must the tuple have specific\ntypes at each index?"]
 tuple_dddot [shape=square, label="Tuple[X,...]"]
 tuple [shape=square, label="Tuple[X,Y,Z]"]

 star_2 -> dictish

 dictish -> keys_apriori [label="yes"]
 dictish -> repeated [label="no"]

 keys_apriori -> input_dict [label="yes"]
 keys_apriori -> change_keys [label="no"]

 change_keys -> mapping_dict [label="yes"]
 change_keys -> mapping [label="no"]

 mapping_dict -> dict [label="yes"]
 mapping_dict -> mutable_mapping [label="no"]

 repeated -> by_index [label="yes"]
 repeated -> set [label="no"]

 by_index -> list_or_tuple [label="yes"]
 by_index -> iterable [label="no"]

 list_or_tuple -> maybe_list [label="yes"]
 list_or_tuple -> sequence [label="no"]

 maybe_list -> can_tuple [label="yes"]
 maybe_list -> specific_tuple [label="no"]

 can_tuple -> array [label="yes"]
 can_tuple -> list [label="no"]

 specific_tuple -> tuple [label="yes"]
 specific_tuple -> tuple_dddot [label="no"]

It is best if we are able to use the latest features of the typing system, as they are handy and facilitate development. However, we need to keep backward compatibility. This compatibility

should be maintained through the Dutils.typing module. Internally, the Dutils.typing module tries to import type annotation constructs from the standard typing module, but if it

cannot do so it will use the typing_extensions library. This library backports new typing features to older python versions (so even if Annotated is only available in 3.8, one can access it

from typing_extensions in 3.7).

If a type hint is failing in a machine but not in another:

If the type hint construct is being imported from Dutils.typing : check that the typing_extensions library is updated. If typing_extensions is updated to the latest version, then

Dutils.typing may not be able to ensure backward compatibility in this particular case yet. You will need to update Dutils.typing so that the versions are handled appropriately.

If the type hint construct is being imported from a module other than Dutils.typing : you will have to manually introduce a backward compatibility mechanism (see below for a

possible solution).

If the type hint is only being used as an annotation (i.e. is not being used at runtime to type check, like with InputDict or the @type_check_fn decorator), then you can do:

this will make your IDE believe that the MyProblematicAnnotation is coming from my_module (so that you get appropriate hints), but at runtime, it will actually be Any , which is always

available.

5.6. Sphinx documentation

5.6.1. Introduction

5.6.2. DshellEnv Classes

5.6.2.1. Mathematical Constants

The file mathConstants.h provides a set of predefined values for common mathematical constants. These constants are defined to allow code to be more portable since the values of some of

these numbers varies based on a number of factors such as machine precision, etc. Using these predefined constants reduce the impact of such variations and should make our code more

roboust and portable.

The following math constants are available from C++ as defined in the DshellEnv/mathConstants.h header file. These constants are also available via python by importing them:

>>> from Math import MathConstants_Py

and using the same constants via python.

Note that the use of these constants is entirely optional. All these constants are in the DMath namespace.

Source for the DshellEnv/mathConstants.h header file

5.6.2.1.1. Related Regression Tests

MathConstants unit tests

5.6.2.2. Math Functions

5.6.2.2.1. Introduction

Add mathFunctions introduction.

5.6.2.2.2. mathFunctions API Documentation

Note

For Doxygen documentation of the DMath namespace, including functions in mathFunctions, please see: DMath

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/namespaceDMath.html) namespace Doxygen documentation.

The following math functions are available from C++ as defined in the DshellEnv/mathFunctions.h header file. These functions are also available via python by importing them:

>>> from Math import MathFunctions_Py

and using the same functions via python.

5.6.2.2.2.1. This is the source code of the DshellEnv/mathFunctions.h header �le
Source for the DshellEnv/mathFunctions.h header file

5.6.2.2.3. Related Regression Tests

MathFunctions unit tests

from Dutils.typing import TYPE_CHECKING, Any

if TYPE_CHECKING:
 from my_module import MyProblematicAnnotation
else:
 MyProblematicAnnotation = Any

Click to see the DshellEnv/mathConstants.h script

Click to see the DshellEnv/test/test_MathFunctions/script.py script

Click to see the DshellEnv/mathFunctions.h script

5.6.2.3. DataAccessUtils

5.6.2.3.1. Introduction

Add DataAccessUtils introduction.

5.6.2.3.2. Related Regression Tests

Test DAO Constants

DAO unit test

5.6.2.3.3. DoubleDAO API Documentation

Note

For Doxygen documentation of the module, please see: DoubleDAO <DataAccessUtils_Py::DoubleDAO>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classDataAccessUtils__Py_1_1DoubleDAO.html)

The DoubleDAO class provides for creation of DAO objects based upon a constant double value.

This class is intended as a concrete implementation that will be extended via Python.

C++ includes: DoubleDAO.h

Typical constructor that accepts a double value to return as the DAO result.

val

is a double data value to return for this DAO.

noindex

5.6.2.3.4. DvarDoubleDAO API Documentation

Note

For Doxygen documentation of the module, please see: DvarDoubleDAO <DataAccessUtils_Py::DvarDoubleDAO>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classDataAccessUtils__Py_1_1DvarDoubleDAO.html)

The DvarDoubleDAO class provides for creation of DAO objects based upon a Dvar string.

This capability is especially useful for providing interpolation tables with DAO objects that obtain their value from a Dvar object. Note at this time only double data types are supported.

C++ includes: DvarDAO.h

Typical constructor that accepts a Dvar specification string and assigns the result to the class held dvar variable.

spec_string

is the valid Dvar specification for a double data type parameter

noindex

5.6.2.3.5. DvarDoubleVectorDAO API Documentation

Note

For Doxygen documentation of the module, please see: DvarDoubleVectorDAO <DataAccessUtils_Py::DvarDoubleVectorDAO>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classDataAccessUtils__Py_1_1DvarDoubleVectorDAO.html)

The DvarDoubleVectorDAO class provides for creation of DAO objects based upon a Dvar string.

This capability is especially useful for providing interpolation tables with DAO objects that obtain their value from a Dvar object. Note at this time only double data types are supported.

Click to see the DshellEnv/test/test_MathFunctions/script.py script

Click to see the DshellEnv/test/test_DataAccessUtils/test_DoubleDAO.py script

Click to see the DshellEnv/test/test_DataAccessUtils/unitTest.py script

class Dshell.DataAccessUtils_Py.DoubleDAO(DoubleDAO self) → DoubleDAO
class Dshell.DataAccessUtils_Py.DoubleDAO(DoubleDAO self, double val) → DoubleDAO

PYTHON

class Dshell.DataAccessUtils_Py.DvarDoubleDAO(DvarDoubleDAO self) → DvarDoubleDAO
class Dshell.DataAccessUtils_Py.DvarDoubleDAO(DvarDoubleDAO self, std::string in_string) → DvarDoubleDAO
class Dshell.DataAccessUtils_Py.DvarDoubleDAO(DvarDoubleDAO self, DVar::DoubleLeaf * dvar) → DvarDoubleDAO

PYTHON

class Dshell.DataAccessUtils_Py.DvarDoubleVectorDAO(DvarDoubleVectorDAO self) → DvarDoubleVectorDAO
class Dshell.DataAccessUtils_Py.DvarDoubleVectorDAO(DvarDoubleVectorDAO self, std::string spec_string) → DvarDoubleVectorDAO
class Dshell.DataAccessUtils_Py.DvarDoubleVectorDAO(DvarDoubleVectorDAO self, DVar::DoubleVectorLeaf * dvar) → DvarDoubleVectorDAO
class Dshell.DataAccessUtils_Py.DvarDoubleVectorDAO(DvarDoubleVectorDAO self, std::string in_string, long inSlice) → DvarDoubleVectorDAO

PYTHON

C++ includes: DvarVectorDAO.h

Typical constructor that accepts a Dvar specification string and assigns the result to the class held dvar variable.

spec_string

is the valid Dvar specification for a double vector data type parameter

noindex

5.6.2.3.6. iDataAccessObjectDouble API Documentation

Note

For Doxygen documentation of the module, please see: iDataAccessObject <DataAccessUtils_Py::iDataAccessObjectDouble>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classDataAccessUtils__Py_1_1iDataAccessObjectDouble.html)

C++ includes: iDataAccessObject.h

noindex

5.6.2.3.7. IndependentArray API Documentation

Note

For Doxygen documentation of the module, please see: IndependentArray <DataAccessUtils_Py::IndependentArray>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classDataAccessUtils__Py_1_1IndependentArray.html)

This class defines an independent data array used for interpolating a dimension of an interpolation table.

The class owns the array memory that is operated on and will copy data into the memory as required.

C++ includes: IndependentArray.h

Constructor that allocates memory for the data array and copies data from the input vector.

data

is data container to copy data from for this independent array instance.

noindex

5.6.2.3.8. IntegrationTimeDAO API Documentation

Note

For Doxygen documentation of the module, please see: IntegrationTimeDAO <DataAccessUtils_Py::IntegrationTimeDAO>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classDataAccessUtils__Py_1_1IntegrationTimeDAO.html)

C++ includes: IntegrationTimeDAO.h

Constructor that accepts the Dvar object.

dvar

is the valid Dvar object for sim time

noindex

5.6.2.3.9. InterpolationTable API Documentation

Note

For Doxygen documentation of the module, please see: InterpolationTable <DataAccessUtils_Py::InterpolationTable>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classDataAccessUtils__Py_1_1InterpolationTable.html)

Purpose: This is the class that does all of the number crunching for N-dimensional interpolation tables.

class Dshell.DataAccessUtils_Py.iDataAccessObjectDouble(*args, **kwargs)
PYTHON

class Dshell.DataAccessUtils_Py.IndependentArray(IndependentArray self) → IndependentArray
class Dshell.DataAccessUtils_Py.IndependentArray(IndependentArray self, DoubleVector arg2) → IndependentArray
class Dshell.DataAccessUtils_Py.IndependentArray(IndependentArray self, int arg2, double * arg3) → IndependentArray
class Dshell.DataAccessUtils_Py.IndependentArray(IndependentArray self, IndependentArray arg2) → IndependentArray

PYTHON

class Dshell.DataAccessUtils_Py.IntegrationTimeDAO(IntegrationTimeDAO self) → IntegrationTimeDAO[source]
class Dshell.DataAccessUtils_Py.IntegrationTimeDAO(IntegrationTimeDAO self, DVar::DoubleLeaf * dvar) → IntegrationTimeDAO

PYTHON

class Dshell.DataAccessUtils_Py.InterpolationTable(InterpolationTable self, int arg2) → InterpolationTable
class Dshell.DataAccessUtils_Py.InterpolationTable(InterpolationTable self, InterpolationTable arg2) → InterpolationTable

PYTHON

Assumptions and Limitations: The data in the dependent variable array(s) should be structured so that the order of the independent variable(s) in the table matches the order of the indices

in the array. The data in the independent variable array must be ordered in ascending magnitude. The only way to get a value returned from this table is to supply the value of the

independent variable used to index into the table.

Description: The approach used is to recursively solve the equation.

 (i - i[j])
 d = (d[j+1] - d[j]) * ----------------- + d[j]
 (i[j+1] - i[j])

Where i represents a value for the independent variable and d represents a value for the dependent variable. j represents the index in the independent variable array such that i[j] ⇐ i <

i[j+1] except for the special cases of i < i[0] or i> i[n] where n is the largest index in the array.

The problem is solved in two pars. The first part is to determine the value of j and to compute the value of the i factor in the equation for each independent variable. The second part is to

recursively compute the values of d for each independent variable.

An additional complexity arises because the dependent variable table must be treated as a linear array. A multiplicative offset scheme is used to navigate through the array. As the i values

are being determined for each independent variable, an offset multiplier, whose initial value is 1, is multiplied by the size of the independent variable array. To move to the correct point in

the table while solving for the values of d, the index is multiplied by the multiplier. As the recursive interpolator moves down through each independent variable, the multiplier is divided

by the size of the array for that independent variable.

History: The logic and source code for this class was derived from interp.c used in STAMPS, and later used in ANTARES. Originally the logic was programmed in C, and has since been

converted to C++ for use in COMPASS. More C → C++ refactoring could certainly be performed, but was not accomplished due to schedule constraints.

C++ includes: InterpolationTable.h

Constructor used for interpolation tables that requires the dimension or number of independent variables to be specified at construction.

numIndVars

is the number of independent variables or dimensions of the interpolation table.

req COMPASS-05.02-REQ-00001

noindex

5.6.2.3.10. InterpolationTableError API Documentation

Note

For Doxygen documentation of the module, please see: InterpolationTableError <DataAccessUtils_Py::InterpolationTableError>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classDataAccessUtils__Py_1_1InterpolationTableError.html)

C++ includes: InterpolationTable.h

noindex

5.6.2.3.11. InvalidDimensionError API Documentation

Note

For Doxygen documentation of the module, please see: InvalidDimensionError <DataAccessUtils_Py::InvalidDimensionError>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classDataAccessUtils__Py_1_1InvalidDimensionError.html)

C++ includes: InterpolationTable.h

noindex

5.6.2.3.12. Table API Documentation

Note

For Doxygen documentation of the module, please see: Table <DataAccessUtils_Py::Table>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/namespaceDataAccessUtils__Py.html)

Purpose: The Table class is used primarily as a base for InterpolationTables and independent_arrays, and provides core functionality needed by all tables.

While this class is mostly used as a base class, it can be instantiated directly to represent constant value tables. All tables will implement the iDataAccessObject interface, and hence can be

used directly as a DataAccessObject.

Assumptions and Limitations: None

class Dshell.DataAccessUtils_Py.InterpolationTableError(InterpolationTableError self, std::string const & func="", std::string const & msg="") → InterpolationTableError
PYTHON

class Dshell.DataAccessUtils_Py.InvalidDimensionError(InvalidDimensionError self, size_t const used_dimension, size_t const table_dimension) → InvalidDimensionError
PYTHON

class Dshell.DataAccessUtils_Py.Table(Table self) → Table
class Dshell.DataAccessUtils_Py.Table(Table self, double Value) → Table

PYTHON

C++ includes: Table.h

This constructor is for a table that only consists of a constant value.

noindex

5.6.2.4. Interpolation Tables

5.6.2.4.1. Class Documentation

5.6.2.4.1.1. Introduction
The InterpolationTable class provides the capability to define and use 10-dimensional interpolation tables.

5.6.2.4.1.2. Related Regression Tests

Note

Test cases are TBD

5.6.2.4.2. Interpolation Table API Documentation

Note

For Doxygen documentation, please see: InterpolationTable<utils_Py::InterpolationTable>

For C++ API documentation, please see: Interpolation Table Component<InterpolationTable>

Purpose: This is the class that does all of the number crunching for N-dimensional interpolation tables.

Assumptions and Limitations: The data in the dependent variable array(s) should be structured so that the order of the independent variable(s) in the table matches the order of the indices

in the array. The data in the independent variable array must be ordered in ascending magnitude. The only way to get a value returned from this table is to supply the value of the

independent variable used to index into the table.

Description: The approach used is to recursively solve the equation.

 (i - i[j])
 d = (d[j+1] - d[j]) * ----------------- + d[j]
 (i[j+1] - i[j])

Where i represents a value for the independent variable and d represents a value for the dependent variable. j represents the index in the independent variable array such that i[j] ⇐ i <

i[j+1] except for the special cases of i < i[0] or i> i[n] where n is the largest index in the array.

The problem is solved in two pars. The first part is to determine the value of j and to compute the value of the i factor in the equation for each independent variable. The second part is to

recursively compute the values of d for each independent variable.

An additional complexity arises because the dependent variable table must be treated as a linear array. A multiplicative offset scheme is used to navigate through the array. As the i values

are being determined for each independent variable, an offset multiplier, whose initial value is 1, is multiplied by the size of the independent variable array. To move to the correct point in

the table while solving for the values of d, the index is multiplied by the multiplier. As the recursive interpolator moves down through each independent variable, the multiplier is divided

by the size of the array for that independent variable.

History: The logic and source code for this class was derived from interp.c used in STAMPS, and later used in ANTARES. Originally the logic was programmed in C, and has since been

converted to C++ for use in COMPASS. More C → C++ refactoring could certainly be performed, but was not accomplished due to schedule constraints.

C++ includes: InterpolationTable.h

Constructor used for interpolation tables that requires the dimension or number of independent variables to be specified at construction.

numIndVars is the number of independent variables or dimensions of the interpolation table.

req COMPASS-05.02-REQ-00001

noindex

5.6.2.5. Dvar Data Access Objects (DAO)

5.6.2.5.1. Class Documentation

5.6.2.5.1.1. Introduction
The DvarDoubleDAO class provides for creation of DAO objects based upon a Dvar string. This capability is especially useful for providing interpolation tables with DAO objects that obtain

their value from a Dvar object. Note at this time only double data types are supported.

5.6.2.5.1.2. Example Construction Syntax

5.6.2.5.1.3. Related Regression Tests

class Dshell.DataAccessUtils_Py.InterpolationTable(InterpolationTable self, int arg2) → InterpolationTable
class Dshell.DataAccessUtils_Py.InterpolationTable(InterpolationTable self, InterpolationTable arg2) → InterpolationTable

PYTHON

from Dshell.DataAccessUtils_Py import DvarDoubleDAO

myDAO = DvarDoubleDAO('some.valid.spec.string')

myDAO()

PYTHON

Note

Test cases are TBD

5.6.2.5.2. Dvar Data Access Object API Documentation

Note

For Doxygen documentation of the module, please see: DvarDoubleDAO<utils_Py::DvarDoubleDAO>

The DvarDoubleDAO class provides for creation of DAO objects based upon a Dvar string.

This capability is especially useful for providing interpolation tables with DAO objects that obtain their value from a Dvar object. Note at this time only double data types are supported.

C++ includes: DvarDAO.h

Typical constructor that accepts a Dvar specification string and assigns the result to the class held dvar variable.

spec_string

is the valid Dvar specification for a double data type parameter

noindex

5.6.2.6. Dwatch

5.6.2.6.1. Introduction

Add introductory material for DwatchLegacy

5.6.2.6.2. Related Regression Tests

DwatchLegacy usage

5.6.2.6.3. Dwatch Class API Documentation

Note

For Doxygen documentation, please see: DwatchLegacy <DwatchLegacy::DwatchLegacy>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classDwatchLegacy_1_1DwatchLegacy.html)

File: DwatchLegacy.py Author: C. Lim (June 7, 2005)

This module contains classes to log simulation data. The main class is DwatchLegacy which manages groups (class DwatchLegacyGroup) of data items (class DwatchLegacyItem).

DwatchLegacy reads its input parameters from a ConfigObj file. See test-DwatchLegacy for an example.

5.6.2.7. FSM

5.6.2.7.1. Introduction

Add introductory material for FSM

5.6.2.7.2. Related Regression Tests

fsm usage

5.6.2.7.3. FSM Class API Documentation

Note

For Doxygen documentation, please see: FSM <Dfsm::FSM>

This module implements a Finite State Machine (FSM).

5.6.2.7.3.1. Example Usage:

class Dshell.DataAccessUtils_Py.DvarDoubleDAO(DvarDoubleDAO self) → DvarDoubleDAO
class Dshell.DataAccessUtils_Py.DvarDoubleDAO(DvarDoubleDAO self, std::string in_string) → DvarDoubleDAO
class Dshell.DataAccessUtils_Py.DvarDoubleDAO(DvarDoubleDAO self, DVar::DoubleLeaf * dvar) → DvarDoubleDAO

PYTHON

Click to see the DshellEnv/test/test/test_Dwatch/script.py script

Click to see the DshellEnv/test/test/test_fsm/script.py. script

5.6.2.8. TrajectoryUtils

5.6.2.8.1. Introduction

Add TrajectoryUtils introduction.

5.6.2.8.2. Related Regression Tests

TrajectoryUtils Invariant unit tests

TrajectoryUtils PlanetRelativeState unit tests

5.6.2.8.3. Invariant API Documentation

Note

For Doxygen documentation of the module, please see: Invariant <TrajectoryUtils_Py::Invariant>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classTrajectoryUtils__Py_1_1Invariant.html)

C++ includes: Invariant.h

Constructor that is defined using the Invariant Gravity Terms.

Copyright (c) 2013 National Aeronautics and Space Administration (NASA).

g

The Invariant Gravity Terms.

All rights reserved. This software is owned by NASA.

Invariant.cc – C++ source file

PURPOSE: To convert between Osculating and Invariant orbital elements.

REFERENCE: Adapted from STAMPS 26 ‘models/invariant/invariant.c’

noindex

5.6.2.8.4. InvariantGravityTerms API Documentation

Note

For Doxygen documentation of the module, please see: InvariantGravityTerms <TrajectoryUtils_Py::InvariantGravityTerms>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classTrajectoryUtils__Py_1_1InvariantGravityTerms.html)

C++ includes: InvariantGravityTerms.h

Constructor that is defined using the gravitational parameter, orbital rate, radius values and gravity terms.

gravitational_parameter

The ‘mu’ value for the planet.

omega

The orbital rate.

radius

>>> import Dfsm
>>> fs = Dfsm.FSM()
>>> fs.addState('init',None,None,None)
>>> fs.addState('s1',None,None,None)
>>> fs.addTransition(True,'init',None,'s1')
>>> fs.setCurrentState('init')
>>> fs.step()
performing actions for state init
performing exit actions for state init
performing transition action: init -> s1
performing entry actions for state s1
>>> print(fs)
Current state = ['s1']
Event table = {'init': 0, 's1': 1}
>>> fs.getCurrentStateNames()

Click to see the DshellEnv/test/test/test_Invariant/script.py script

Click to see the DshellEnv/test/test/test_PlanetRelativeState/script.py script

class Dutils.TrajectoryUtils_Py.Invariant(Invariant self, InvariantGravityTerms g) → Invariant
PYTHON

class Dutils.TrajectoryUtils_Py.InvariantGravityTerms(InvariantGravityTerms self) → InvariantGravityTerms
class Dutils.TrajectoryUtils_Py.InvariantGravityTerms(InvariantGravityTerms self, double mu, double omega, double radius, double radius_eq, double [5][5] cnm, double [5][5] snm) →
InvariantGravityTerms

PYTHON

The planet’s radius.

radius_eq

The planet’s equatoria radius.

cnm

C gravity coefficients (5x5 array).

snm

S gravity coefficients (5x5 array).

noindex

5.6.2.8.5. OrbitalElements API Documentation

Note

For Doxygen documentation of the module, please see: OrbitalElements <TrajectoryUtils_Py::OrbitalElements>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classTrajectoryUtils__Py_1_1OrbitalElements.html)

C++ includes: OrbitalElements.h

Constructor that is defined using the gravitational parameter and the planet radius.

gravitational_parameter

The ‘mu’ value for the planet.

radius_planet

The planet’s radius.

noindex

5.6.2.8.6. PlanetRelativeState API Documentation

Note

For Doxygen documentation of the module, please see: PlanetRelativeState <TrajectoryUtils_Py::PlanetRelativeState>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classTrajectoryUtils__Py_1_1PlanetRelativeState.html)

C++ includes: PlanetRelativeState.h

noindex

5.6.2.8.7. RelativeState API Documentation

Note

For Doxygen documentation of the module, please see: RelativeState <TrajectoryUtils_Py::RelativeState>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classTrajectoryUtils__Py_1_1RelativeState.html)

C++ includes: RelativeState.h

Default constructor.

Copyright (c) 2013 National Aeronautics and Space Administration (NASA).

Initializes an internal flag to track if the frames were initialized.

All rights reserved. This software is owned by NASA.

RelativeState.cpp – C++ source file

PURPOSE: The RelativeState class is a container object that holds the variables corresponding to the relative relationship between a primary/target and secondary/chaser object in space.

The relative calculations are based primarily on the inertial positions of the two objects and their associated attitude and body attitude rates.

This class is used by both the VehicleRelativeStateSensor and the generic RelativeStateSensor models.

COMMENTS: 1) Suggestion to update ‘quat’ and ‘htran’ variables to use naming convention was considered but rejected because of the effect on the readability of the current code.

noindex

class Dutils.TrajectoryUtils_Py.OrbitalElements(OrbitalElements self) → OrbitalElements
class Dutils.TrajectoryUtils_Py.OrbitalElements(OrbitalElements self, double gravitational_parameter, double radius_planet) → OrbitalElements

PYTHON

class Dutils.TrajectoryUtils_Py.PlanetRelativeState(PlanetRelativeState self) → PlanetRelativeState
class Dutils.TrajectoryUtils_Py.PlanetRelativeState(PlanetRelativeState self, double radiusEq, double radiusPol) → PlanetRelativeState

PYTHON

class Dutils.TrajectoryUtils_Py.RelativeState(RelativeState self) → RelativeState[source]
PYTHON

5.6.2.8.8. VacuumImpactState API Documentation

Note

For Doxygen documentation of the module, please see: VacuumImpactState <TrajectoryUtils_Py::VacuumImpactState>

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellEnv/html/classTrajectoryUtils__Py_1_1VacuumImpactState.html)

C++ includes: VacuumImpactState.h

noindex

5.6.3. DshellEnv Reference

5.6.3.1. DshellEnv Regression Tests

class Dutils.TrajectoryUtils_Py.VacuumImpactState(VacuumImpactState self) → VacuumImpactState
class Dutils.TrajectoryUtils_Py.VacuumImpactState(VacuumImpactState self, double rad_eq, double rad_pol, double w, double mu) → VacuumImpactState

PYTHON

6. Ndarts

6.1. Background

6.1.1. The multibody dynamics problem

6.1.1.1. Requirements

Speed

ODE

Reconfiguration

Extend to closed chain, contact and flex body problem

6.1.1.2. Minimal coordinate dynamics

6.1.1.3. Solving the equations of motion

Using my substution for Ndarts https://ndarts

6.1.2. Reference & Source material

Release notes appendices

DARTS paper (https://dartslab/References/pdf/2019-Darts.pdf)

SOA algorithms papers (https://dartslab/References/index.php)

SOA book (https://dartslab.jpl.nasa.gov/SOABook/)

SOA lecture series slides (https://dartslab.jpl.nasa.gov/soagroup/meetings.html)

Model/assemblies style guide (https://dartslab.jpl.nasa.gov/technotes/Modeling/DshellModeling.pdf)

Ndarts Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Ndarts/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

6.2. Design

6.2.1. Architecture overview

6.2.1.1. Dependencies

Frames layer, spec nodes, SOA classes, spatial inertia related content needed by this module.

NdartsConstraints, NdartsContact, NdartsFlex, Dshell++, NdartsContactModels etc modules that depend on this module.

6.2.1.2. Structural overview

An overview of the various classes and how they fit together

The Ndarts implementation of DARTS (???) can model a wide range of multibody mechanisms. DARTS/Dshell simulations generally involve at least a single rigid body (for the a spacecraft,

for exampe) or potentially a complex, multiply connected multibody system.

For more detailed background information, please see:

Robot and Multibody Dynamics, Analysis and Algorithms. Abhi Jain. Springer. 2011.

Darts Manual 1997.

6.2.1.3. DARTS Multibody Modeling Concepts

Tree Topology Systems.

Tree-topology systems are multibody systems with no closed-chains.

In many cases, the multibody physics of the system can be modeled as a "Tree Topology System". Ndarts can handle closed-chain systems, but often a Tree topology system is adequate.

"Closed-chain" means that a set of bodies are connected to each other in a loop, or "closed chain".

In Tree Topology Systems:

there is one and only one path from one body to another

each body has only a single parent

each body can have multiple child bodies.

Flexible Body.

A Flexible Body has deformation degrees-of-freedom (dofs) in addition to rigid-body articulation dofs.

Spatial Vectors.

These are 6-dimensional vectors that simplify many dynamics related expressions.

A spatial velocity vector for a coordinate frame is the 6-dimensional vector formed by the concatenation of the angular velocity and linear velocity vectors for the frame.

The spatial force vector associated with a frame is the 6-dimensional vector formed by the concatenation of the moment and force vectors associated with the frame.

The SOA vector/matrix math library<index.html> implements spatial vector math (as well as other vector/matrix math used in Darts).

Nodes.

Set of discrete points in the body:

Figure 33. Body Frame and Nodes

Nodes:

can be defined by the user

are associated with hinges interconnecting bodies

can arise from modeling flexible modes: the structural model of a flexible body involves a spatial discretization of the body into a collection of nodal elements

Node Frames

each node has its own reference frame.

for a rigid body, all the node frames are aligned with the body frame.

for a flexible body, the deformation of the body causes relative motion between the node and the body frames.

Actuator Nodes

Point of application for applying external forces and moments on the body that can arise from actuators, environmental effects or other sources.

Sensor Nodes

Point at which body information is obtained e.g. body attitude, rates

Hinges/Joints. The kinematic constraints on the relative motion between adjacent bodies are modeled by hinges coupling the bodies.

hinges can be translational, ball, full-6dof, slider, etc.

each hinge has an associated pair of hinge nodes

inboard hinge node (Onode) located on the inboard body

outboard hinge node (Pnode) located on the outboard body.

Figure 34. Multibody Hinges and Nodes

the generalized coordinates for the hinge parameterizes the relative configuration of the hinge frames

the generalized velocity for hinge parameterizes the relative spatial velocity between the frames.

when the generalized coordinates of a hinge are the zero element, the Onode and Pnode frames coincide

Historical note: the the "O" and "P" nodes are in alphabetical order going from the base towards the leaf bodies. The "O" and "P" terminology goes back to the early days of Darts and

uses the same nomenclature as the old multibody simulation software DISCOS. DISCOS (Dynamic Interaction Simulation Of Controls and Structure) was developed by H.P. Firsch at

Goddard Space Flight Center. For further information about DISCOS, search for DISCOS in http://naca.larc.nasa.gov/search.jsp.

Zero Configuration. Multibody configuration where all the generalized coordinates are the zero element.

used to define all the kinematic and dynamics model information for the system in the model file e.g. vectors from the body frames to the joint node frame.

Figure 35. Multibody Zero Con�guration

In the zero configuration, the following terms are used to describe the geometry of the joint connecting a body to its parent body. Any of these terms may be zero.

inbToJoint

The vector from the parent body reference frame to the joint, expressed in the parent body frame.

Note that the rotation be be set with the inbToJointQuat and the full transform can be set with inbToJointTransform.

bodyToJoint

The vector from the child body reference frame to the joint, expressed in the child body frame.

Note that the rotation be be set with the bodyToJointQuat and the full transform can be set with bodyToJointTransform.

bodyToCM

The vector from the body reference frame to the center of mass for the body (in the body’s reference frame).

Note that all reference coordinate systems are parallel in the "Zero" configuration (unless intToJointQuat or bodyToJointQuat are not the identity matrix).

System Generalized Coordinates and Velocities

The state vector for a multibody system consists of a combination of:

the generalized coordinates vector, denoted Q consisting of

hinge coordinates of hinges connecting bodies to each other

modal coordinates related to the flexibility of a body

the corresponding generalized velocities vector, denoted U

The time derivative dQ/dt of Q, denoted Qdot, is obtained by a simple kinematic transformation of the generalized velocities vector U. For a joint with full rotational freedom, Q is

modeled as a quaternion.

The combination of all the hinge generalized forces is designated as Tjoint

The combination of all the external forces acting on the multibody nodes is denoted as Fext

Darts computes dU/dt denoted as Udot which is then used by the Dshell integrator to compute U.

Kinematic Maps

mapping from U to Qdot is usually a trivial identity map

exception: attitude dof generalized coordinates are the 4 elements of the attitude quaternion, while the 3 elements of the angular velocity vector are used for the generalized velocity

coordinates. In this case, the mapping from the generalized velocities to the generalized coordinate rates is a non-linear, configuration dependent kinematic map.

Darts Prescribed and Non-Prescribed Hinges

The Multibody hinge generalized coordinates state can belong to one of two categories:

Figure 36. Multibody Prescribed and Nonprescribed States

Non-Prescribed Hinges. The coordinates (Q) associated with these hinges evolve in response to user or model specified generalized forces at the hinges connecting the bodies

as well as input forces (and torques) on the multi-body system.

Represents the Forward Dynamics of the multi-body system.

Prescribed Hinges. The coordinates (Q) associated with these hinges evolve in response to user or model specified kinematic profiles at the hinges connecting the bodies

as well as the input forces (and torques) on the bodies in the multi-body system.

Represents the Inverse Dynamics of the multi-body system.

Prescribed motion hinges are often used to freeze articulated dofs, or when there are tight control loops governing the motion of the hinge dofs.

There is a related concept called "masking". For more detail about presribing and masking, please see prescribing .

Forward and Inverse Dynamics.

Forward Dynamics is solving for output accelerations (dv/dt) given input forces (f)

Inverse Dynamics is solving for output forces (f) given input accelerations (a) by using Newtons Law suitably generalized for articulated/flexible body dynamics.

Figure 37. Forward and Inverse Dynamics

In Darts Forward Dynamics involves computing the unknown hinge accelerations Udot from the generalized forces Fext and generalized hinge forces Tjoint

In Darts Inverse Dynamics involves computing the generalized hinge force Tjoint from a prescribed motion of the generalized hinge Udot and the external generalized forces Fext

Figure 38. Darts Dynamics Engine

Darts solves the general mixed forward/inverse dynamics problem i.e. where the hinges are a mix (respectively) of Non-Prescribed/Prescribed

6.2.1.4. Overview of DARTS Framework Objects

The DartsMbody object

FREE

PRESCRIBED

Figure 39. A Darts Mbody ("multibody") object consists of DartsBody objects.

Continued:

The DartsBody object

The DartsNode object

The DartsHinge object

The DartsSubhingeBase object

6.2.1.5. Introduction

In Darts, hinges (or joints) are used to attach nodes to one another and provide degrees of freedom between attached nodes.

The Darts Hinge class is derived from the ChainedFrame2Frame class. Hinges are responsible for connecting two bodies together and have varying degrees of freedom depending on the

type of hinge used.

Because nodes are implemented as frame objects, it is intuitive to implement the hinges that connect the nodes as Frame2Frame objects.

6.2.1.5.1. Hinge Types (Joint Types)

There are two main categories of hinges (or joints). Hinges are the actual objects that connect nodes together, whereas Subhinges are subparts from which hinges are built. All of the main

hinge types can be broken down into "pin" and "slider" subhinge types, however there are several other three degree of freedom subhinge types for more complex hinges.

Here are a list of the basic hinge types with brief descriptions:

PIN - a one axis rotational/revolute hinge (1 DOF)

UJOINT - a universal (or Cardan) joint (2 DOF). See https://en.wikipedia.org/wiki/Universal_joint

GIMBAL - 1 gimbal with 3 rotational axes such as is typically used to mount a gyroscope (3 DOF). https://en.wikipedia.org/wiki/Gimbal

BALL - a rotational joint with 3 degrees of freedom (3 DOF). The rotation is represented by a quaternion.

SLIDER - a translational joint with one axis of translational freedom (1 DOF). Does not support any rotation. Sometimes called a prismatic joint.

PLANAR - - a translational joint with two axes of translational freedom (2 DOF). Does not support any rotation.

TRANSLATIONAL - a translational joint with three axes of translational freedom (3 DOF). Does not support any rotation.

COMPOSITE_TRANSLATIONAL - a translational joint with three translational degrees of freedom. However, the three axes of translation are assumed to be the x-y-z axes (3 DOF). Does

not support any rotation. In some situations a joint with both full translational and rotational degrees of freedom canb e represented by a COMPOSITE_TRANSLATIONAL joint followed

by a BALL joint.

FULL6DOF - a joint with full translational and rotational freedom (6 DOF). Joint rotations are represented by quaternions, but joint rates are represented by vectors of 3 values. In

FULL6DOF joints, the attitude and velocity is represented in the child body frame.

FULL6DOF_INERTIAL - a joint with full translational and rotational freedom (6 DOF). Like in FULL6DOF joints, joint rotations are represented by quaternions, but joint rates are

represented by 3-vectors. In FULL6DOF_INERTIAL joints, the attitude and velocity is represented in the parent body frame (which is often the inertial frame, hence the name).

Other types joints can be made up of combinations of these types of joints. For instance a cylidrical joint, which as 1 translational DOF and 1 rotational DOF could be constructed by

combining a SLIDER and a PIN joint.

Ndarts Prescribing and Masking Joints

6.2.2. Ndarts Prescribing and Masking Joints

In Ndarts, prescribing and masking a joint are completely independent concepts:

Prescribing a joint controls how the Ndarts dynamics algorithms compute the torques and accelerations for the joint.

Masking a joint hides (masks) selected hinge states for the joint from the Dshell integrator (e.g., for overriding). Usually Dshell models (and not the integrator) manage the values in these

masked states. Masking controls whether joint position/velocity states come from the integrator (which is the normal case) or are a set directly via a “deus ex machina” mechanism by the

model (or user).

Note

Note that masking is related to the integrator and is not an Ndarts concept at all, but is covered together with prescribing because of their similarities.

For details about when to prescribe a joint and when to mask a joint, please see Ndarts_Prescribing_Masking_Choice .

Prescribing Joints in Ndarts

6.2.2.1. Prescribing Joints in Ndarts

In Ndarts, prescribing a joint controls how the dynamics engine computes the joint torques and accelerations.

6.2.2.1.1. Unprescribed Joints

In normal operation when a joint is not prescribed, typically models will inject forces into the joint and Ndarts will compute the corresponding joint accelerations as shown in this figure:

Figure 40. Normal operation of joint (NOT prescribed)

In summary, if a joint is not prescribed:

Joint forces/torques determine joint acceleration (using Ndarts)

Joint velocity/position come from integration of joint acceleration (Udot)

6.2.2.1.2. Prescribed Joints

If a joint is prescribed, some model (or the user) sets the joint acceleration and Ndarts will compute the necessary joint toqure to achieve the prescribed acceleration as shown in this figure:

Figure 41. E�ect of prescribing a joint

In summary, if a joint is prescribed:

Joint acceleration determines joint forces/torques (using Ndarts)

Joint velocity/position come from integration of joint acceleration (Udot)

6.2.2.1.3. Setting the Joint Kinematics for a Prescribed Joint

The intent of prescribing a joint is for the models (or the user) to specify the joint acceleration and let the Ndarts dynamics compute the necessary joint torques. There is also an expectation

that the integrator will integrate the given joint acceleration to compute joint velocities and joint positions. Note that the integration of the joint coordinates also depends on initial joint

velocity and acceleration (which are usually set during initialization). There are several options for dealing with prescribed joints:

Specify joint acceleration at run-time. Based on the initial joint velocity and position, the integrator will behave normally and produce smooth and consistent dynamics for the joint

motion. The models or user can set the joint acceleration of a prescribed joint at any time during integration, including in the middle of integration steps using preDeriv() calls (in the

same way that models can set joint torques at any time).

The code to set the joint acceleration looks like this in the C++ model code (note that setGenAccel() is a function of the C++ Model class, not the subhinge):

setGenAccel(hinge().subhinge(0), accel);

where the joint’s velocity and position are initialized elsewhere.

Warning

Never set the joint acceleration directly through the joint subhinge API at run-time in models. Always use the model code call shown above since it checks the

correctness of the call.

Specify the initial joint velocity and set the joint acceleration to zero. In order to produce a prescribed motion that is constant velocity, the joint acceleration should be set to zero

and the joint velocity should be initialized to the desired value. This might be useful for a model that sets up a constant-velocity ejection of one body from another. For example this code

might be called in a model’s init code:

setGenCoord(hinge().subhinge(0), initial_joint_position);
setGenVel(hinge().subhinge(0), desired_joint_velocity);
setGenAccel(hinge().subhinge(0), zero);

Warning

It is important to note that the setGenVel() function cannot be called in the middle of integration steps since it modifies the integrator state (the integrator must be

reset). So updating the joint velocity cannot be done in preDeriv() calls. It may be called in the startIntegrationStep() or endIntegrationStep() functions.

Specify the initial joint position and set the joint velocity and acceleration to zero. This might be useful to fix the position of a body with respect to its parent and determine the

torques necessary to accomplish this. For example this code might be called in a model’s initialization function:

setGenCoord(hinge().subhinge(0), initial_joint_position);
setGenVel(hinge().subhinge(0), zero);
setGenAccel(hinge().subhinge(0), zero);

6.2.2.1.4. Other Notes about Prescribing a Joint

Prescribing a joint applies only to subhinges. Although a joint may be composed of several subhinges, prescribing occurs only at the subhinge level. There are some convenience

functions in the body parameter code that allows setting a 'prescribed' for a composite joint to a single value (e.g., True), but the underlying code applies this same setting to all of the

composite joint’s subhinges.

Setting the joint acceleration via setGenAccel() function calls in the model code can be done at any time with little computational impact. It is as efficient as setting the joint torque (for

non-prescribed joints).

Changing whether a joint is prescribed has very little overhead in Ndarts since the size of the state vector is not changed and no unlocking/locking is necessary.

6.2.2.2. Masking Joints

In some cases, we want the joint to behave in a specific kinematic fashion irrespective of the integrator. In these cases, we can 'mask' the joint from the integrator, essentially overriding the

integrator for these joint states as necessary to get the desired behavior.

There are two forms of masking:

Joint masking in U (joint velocity)

Joint masking in Q (joint position)

It is important to understand that masking is essentially a method of overriding the integrator and is not part of the dynamics model at all. This is why masking cannot be set while

initializing the Darts body parameters.

Note that there is nothing exclusive to Narts about the this concept. Masking also applies to Darts++.

6.2.2.2.1. Masking a Joint in Velocity (U)

When a joint is masked in joint velocity (U), some model in the simulation will override the joint velocity (U) state during normal execution. Here is what happens:

The integrator ignores the joint acceleration (Udot)

The joint acceleration (Udot) is as computed by Ndarts.

Note that the overridden U and the Udot from Ndarts are not generally consistent. The joint position comes from the regular integration of joint velocity Qdot.

This figure illustrates the basic concept:

Figure 42. The e�ect of masking joint velocity (U)

Note that the model overrides the joint velocity. Therefore the joint acceleration (Udot) and joint velocity (U) will not generally be consistent. But the joint velocity specified by the masking

process is integrated normally, therefore the joint velocity and position will be consistent with each other.

The function calls to set masking data for masking in joint velocity (U) looks something like this in the C++ model code:

coordMaskData(hinge().subhinge(0), joint_velocity, NULL);

The NULL argument above can be replaced with the desired joint acceleration (Udot) if it is known.

Note that coordMaskData() function calls are not part of the Darts hinge API and must be called via the C++ model API as shown.

6.2.2.2.2. Masking a Joint in Position (Q)

When a joint is masked in joint position (Q), some model in the simulation will override the joint position (Q) during normal execution. Here is what happens:

The integrator ignores the joint velocity (Qdot)

The joint acceleration is as computed by the Ndarts.

Note that the overridden Q and the Qdot are not necessarily consistent unless the model has used consistent values.

This figure illustrates the basic concept:

Figure 43. The e�ect of masking joint position (Q)

Note that the model overrides joint position. Therefore the joint velocity (Qdot), and the joint position (Q) will not generally be consistent and compatible.

The function calls to set masking data for masking in joint position (Q) looks something like this in the C++ model code:

coordMaskData(hinge().subhinge(0), joint_position, NULL);

The NULL argument above can be replaced with the desired joint acceleration (Udot) if it is known.

6.2.2.2.3. Masking a Joint in Position and Velocity (Q and U)

When a joint is masked in joint position and the joint velocity (Q and U), some model in the simulation will override the joint position (Q) and the joint velocity (U) during normal execution.

Here is what happens:

The integrator ignores the joint acceleration (Udot) and velocity (Qdot)

The joint acceleration is as computed by the Ndarts.

Note that U and the Udot from Ndarts are not consistent. Similarly, the Q and the Qdot are not necessarily consistent unless the model has used consistent values.

This figure illustrates the basic concept:

Figure 44. The e�ect of masking joint position and velocity (Q and U)

Note that the model overrides both the the joint velocity and position. Therefore the joint acceleration (Udot), the joint velocity (U), and the joint position (Q) will not generally be consistent

and compatible.

The function calls to set masking data for masking in joint position (Q) and joint velocity (U) looks something like this in the C++ model code:

coordMaskData(hinge().subhinge(0), joint_position, joint_velocity, NULL);

The NULL argument above can be replaced with the desired joint acceleration (Udot) if it is known.

6.2.2.2.4. The Masking Interface

Since masking is tied to integration, the API for changing joint masking is also tied to the integrator. There is a masking interface object that can be obtained from the simulation and

masking in Q can be set up for a subhinge (in python) like this:

from Dshell.DartsCommon import DartsBody, DshellStateMaskingIF
sim.dynCoordMaskingInterface().coordMaskType(subhinge, DshellStateMaskingIF.MASK_Q)

where sim is the simulation object.

In C++ model code, comparable code should be put into the model’s setup() function and might look like this:

coordMaskType(hinge().subhinge(0), DartsIF::MASK_Q);

6.2.2.2.5. Other Notes about Masking a Joint

All masking is done at the subhinge level.

Changing the coordinate data for a masked joint is an efficient operation and can be done by models during normal execution without significant run-time penalty. This is normally done

using a models ‘coordMaskData()’ function.

Note that changing the coordinate mask data should only be done at integration sub-step boundaries and not in preDeriv() calls. The reason is that coordMaskData() calls essentially

change the integrator state without the knowledge of the integrator. Typically, the coordMaskData() calls would be done in the model’s startIoStep() or updateFlowOuts() functions.

Changes in the masking state are actually requests that are accumulated and implemented right before the next integration sub-step. So calls to the coordMaskType() function can be

done at any time, but will only take effect at the next integration sub-step.

Changing the masking state of a joint involves more overhead and should not be done during normal integration since it requires that the integrator be reset and the state size changed

after it is done.

Currently the setting up the masking states of joints is done outside the model (e.g., in the assembly). But it makes sense to move this into the model code since the model is the only place

where the masked joints can be updated.

6.2.2.3. When to Prescribe a Joint and When To Mask a Joint

In a certain sense, both prescribing and masking a joint produce similar effects: they make the joint move like we want it to. When should you prescribe a joint and when should you mask

it?

If all the following conditions apply, use 'prescribing':

Smooth dynamics are desired

Consistent joint kinematics (position, velocity, acceleration)

Consistent dynamics and kinematics

Only joint accelerations change during integration

Otherwise, use masking.

Here are some example scenarios:

Body Separation - At some point a child body is detached from its parent body and a desired constant separation velocity is desired. Use prescribing. At the instant of separation,

disconnect the bodies, set the desired separation velocity (via setGenVel() in model code) and set the desired joint acceleration to zero.

Trim control - In many cases it is necessary to specify the trim angle for a body during flight to match some desired trim history (or via some state-dependent way). Since the only

concern is the body attitude and not the necessary torques to produce it, there is no need for the dynamics and kinematics for the body attitude to be consistent. Therefor masking is a

appropriate.

Acceleration Specified - If the desired joint acceleration is given and there are no other limitations, then prescribing should be used.

6.2.2.4. Creating shapes for your Ndarts bodies

It is straight-forward to add graphics to your simulations by added PartGeometry data in the 'geometry' definition of your body parameters.

When you define body parameters using the BodyParam class, you can add in a series of geometrical shapes by specifying a 'geometry' section:

where some parts have been omitted for brevity. Notice that multiple geometrical parts can be given. The name of the graphical object is its key (eg, body or body2 here). Each graphics

object is a fixed distance and rotation from the body reference frame (as specified in the translation and quaternion parameters).

Example 1. Danger

If you set one of the below parameters and you don’t set the associated parameters, the program segfaults for some reason. For example, this happens when cylinder is set, but

height and radius is not set.

THe types of common shapes that can be specified (including their required parameters) are:

sphere

radius

cylinder

radius (x and z)

height (y)

cone

radius (x and z)

height (y)

cube

length (x)

width (y)

height (z)

file

from DshellCommon.params.BodyParam import BodyParam

...

'SC' : BodyParam(
 mass = 23.0,
 ...
 geometry = {
 'body' : {
 'shape' : 'cylinder',
 'radius' : 1.0,
 'height' : 3.0,
 'scale' : (1, 1, 1),
 'translation' : (0, 0, 0),
 'quaternion' : (0, 0, 0, 1),
 'diffusivity' : (0.6, 0.1, 0.1)
 },
 'body2': {
 'shape': 'cube',
 'length': 0.2,
 'width': 0.15,
 'height': 0.15,
 'diffusivity': [0.35, 0.30, 0.50],
 'scale': (1, 1, 1),
 'translation': (0, 0, 0),
 'quaternion': (0, 0, 0, 1)
 },
 'body3': {
 'file': 'foo.mesh',
 'scale': (1, 1, 1),
 'translation': (0, 0, 0),
 'quaternion': (0, 0, 0, 1)
 }
 }
)

PYTHON

To specify a mesh file instead of a primitive shape, use the file parameter instead of the shape parameter (as shown for body3 above). The file parameter takes a mesh filename as

its value. When using file , you may not be able to modify the color of the object as that is usually embedded in the mesh file. See Ndarts_ShapeMeshFileFormats below for more

details about the supported file formats.

All of these graphics objects accept the following optional parameters:

scale - a tuple/list of 3 values describing how to scale the:: object in the x, y, and z directions (body reference frame).

translation - a tuple/list of 3 values (dx, dy, dz) of the:: offset between the body reference frame and the center of the graphics object.

quaternion - a tuple/list of 4 values of the quaternion for the:: rotation between the body reference frame and the graphics object.

diffusivity - a tuple/list of three values (0 to 1.0) for the:: Red, Green, and Blue color of the object. Note that this does not apply for meshes (which must provide their own coloring).

specularity - a tuple/list of three values (0 to 1.0) for the:: Red, Green, and Blue specularity (shininess) of the object. Note that this does not apply for meshes (which must provide their

own coloring).

emissivity - a tuple/list of three values (0 to 1.0) for the:: Red, Green, and Blue emissive color of the object. Note that this does not apply for meshes (which must provide their own

coloring).

transparency - a single value (0 to 1.0) describing the:: transparency of the graphics object (1.0 is completely transparent, 0 is not transparent at all).

visibility - a single value (0 or 1) indicating whether this:: graphics object should be visible initially.

6.2.2.4.1. Mesh File Formats

The file parameters can be an OGRE .mesh file or a Wavefront .obj file. If you want other types, use a Python file to point to them. For example example.py :

{'wavefront': 'foo.obj',
 'ogre': 'foo.mesh}

Then you would set file to example.py .

Part geometries support a few other 3D graphics file formats by using the assimp library to load the 3D graphics data from mesh files. (See

http://www.assimp.org/main_features_formats.html). The currently supported files are:

OGRE, use:

'ogre': '<filename>.mesh'

Collada, use:

'collada': '<filename>.dae' or

'collada': '<filename>.xml'

Wavefront Object, use:

'wavefront': '<filename>.obj'

3ds Max 3DS, use:

'3ds': '<filename>.3ds'

If you have other file formats, the assimp tool can be used to convert to one of these supported formats. See http://www.assimp.org for more information.

6.2.2.5. Manipulating a graphical object at runtime

You may manipulate graphical objects at run time. First get its handle. Suppose sc is the body object that these graphics objects are attached to.

This rescales the size of the graphics object to be half what it normally is (with scale=(1,1,1)).

Most of the other properties outlined above may be modified (the names may be a bit different; browse a live object to find what you need).

You may also active the axes for a graphical object:

6.2.2.6. Other documentation

For Doxygen documentation, see: PartGeometry .

6.2.3. Multibody Modeling with Ndarts - Design

The Ndarts library provides classes and algorithms for the kinematics and dynamics of rigid multibody systems for use within the Dshell simulation framework. It is a successor to the

Darts++ module.

6.2.3.1. Background

from Math.SOA_Py import SOAVector3

...

cyl = sc.getPartGeometry('body')

cyl.scale(SOAVector3(0.5, 0.5, 0.5))

PYTHON

cyl.showAxes(True)
PYTHON

The objective of this new multibody kinematics/dynamics implementation is motivated by several issues with the current "Darts++" implementation, as well as a need and desire to add

several new advanced capabilities. The limitations in the current capabilities includes:

Inverse kinematics, Constraints

A need to support new wheel geometries and contact in rover sims (broader wheels, toroidal shape, etc.)

The IK implementation with IKGraph is complex (eg. uses Euler coordinates). The NRSolve code is dense and hard to use in its current form.

Hard to debug cause when inverse kinematics failed - and so hard to fix issues. Lots of struggles with Chariot wishbone kinematics. Have been tossing around ad-hoc and

unsatisfactory work around solultions - weights, staged IK, etc.

Need to be able to expand configuration kinematics to allow new constraints on motion (eg. Athlete cases)

Ability to handle constraints between multiple vehicles (eg. coordinated motion, docking)

Lack of general way to handle constrained/closed-chain dynamics

Questions about proper handling of hinge/constraint duality to simplify addition of new constraint types.

Unable to do IK on subgraphs within multibody.

Hard to bring in contact and collision detection physics.

Challenging to "generalize" constraint embedding to handle arbitrary "gearing" and "loop" type cosntraints (limited to four bar linkage currently)

Functionality Limitations

Accumulation of narrow/ad-hoc algorithmic implementations that are hard to generalize (eg. special handling of full 6dof hinges, topology changes, handling constraints)

Hard to add new hinge tyeps (eg. locked, algernate 6dof) hinges - lots of switches and if/thens in code.

More complex than necessary multibody creation process - split between Python and C++.

Not possible to make arbitrary frame to frame relative transformation, velocity, acceleration queries within multibody system (needed more generally but especially for constraints)

Hard to bring in PyCraft like ideas into regular dynamics functionality

Architectural and Design Integrity

Increased entropy in the Darts++ software implementation from changes/hacks that have been made over the years.

While the test coverage has improved, the coverage is uneven, making it harder to add and test new changes.

While code "works", it is hard to add in new features without endagering existing capabilities.

User level methods and internal code Documentation quality is poor.

Method naming conventions are uneven.

Body and node methods have parallel methods which are named and/or do something differently.

Darts++ code split across DartsBase module for backwards compatilibity with Darts

The goal is to rethink, redesign, and streamline the current implementation to have a more agile architecture that will address the above, enabling some of the mroe advanced following

capabilities:

Advanced mbody algorithms (PyCraft ideas)

Allow the implementation fo new algorithms (eg. innovations, velocity coordinates transformations, and inverse)

Support recursions on sub-trees for embedded constraints and augmented bodies, onboard models, ODCA/parallel implementation

Support recurstions involving different types of propagation operators (eg. rigid bodies, flex bodies)

Support multiple operations/recursions on a fragment, and have means to store and keep access to data products so they can be reused in subsequent recurstions (eg. correction

recursions in augmented constraints implementation, momentum matching, ODCA decomposition and correction, ATBI recursions)

Support recursions for state initialization for momentum matching after impact; or for CM drift nulling for MD simulations

Support Pycraft algorithms for sensitivities, Coriolis, etc.

Constraint/collision/contact handling

Support configuration changes in the multibody system, i.e. constraints coming and going (eg. for humanoid application, docking, walking)

Support addition of body geometry and surface contact constraints

Support use in iteractive computations for inverse kinematics; closed-chain state projection

Miscellany

Support "internal model control (IMC)" type algorithms for computations within onboard control software.

Support body reordering and reversal of bodies (for optimization of closure cuts)

Support using alternative integration variables such as for diagonalized dynamics. May need to generalize Qdot to U and converse functions (already doing this for CK?)

Support being able to switch between different frame of integration (eg. inter-planetary trajectory, to EDL trajectory, to rover trajectory)

Support use of different frame (body, inertial, internally referenced) for equations of motion.

6.2.3.2. Ndarts Design Details

Figure 45. Links and hinges in a multibody system

6.2.3.2.1. Key Requirements

Code structuring

Streamline higher level algorithms by moving out lower level computations into lower level classes so can bring in new algorithms.

Keep user level API changes to a minimum.

Give low priority to allowing Dshell to work with Darts++ and Ndarts at the same time to avoid constraining design space.

Kinematics

Use the SOAFrames "Frames" class from the "SOA" module to simplify the kinematics computations.

Allow automatic queries for relative transformations, velocities, and accelerations across arbitrary points of interest.

Avoid unnecessary kinematics computations and overhead.

Hinges

Add support for locked hinge types.

Simplify addition of new hinge types.

Support run-time user defined hinge types.

Constraints

Support constraint embedding.

Support handling of closure constraints.

Support handling of surface contact constraints.

Generalize inverse kinematics to handle much broader class of requirements.

Support working with system subgraphics.

6.2.3.2.2. Obsolete Modules

IKGraph

DartsBase

TerrainSurface

SurfaceContact

6.2.3.2.3. API and Functionatlity Changes

SOA

Changed and renamed all SOAHomTran phi methods

Added support for 0 size matrices and vectors

Now Frame and Frame2Frame classes are derived from DartsBaseObject

Reworked Frame2Frame cache management to allow transform/velocity and acceleration level cache staleness settings

Fixed up the matrix SVD and orthogonal complement methods

Removed and renamed other node, body, hinge methods.

Moved DartsBaseObject class code to DshellEnv

Class refactoring

Stopped using most base classes from DartsBase

Added hinge classes.

Derive subhinge and higne classes from Frame2Frame.

New 6dof hinge.

Derive Node class from Frame.

DartsBody is now derived from DartsNode class

Hence no longer have parallel set of methods for position/velocity of nodes and frames

DartsHinge only requires frame pair - not node pair to allow use with constraints

Kinematics

evalKinematics, evalActuatorKinematics, evalSensorKinematics methods etc. have been removed.

Now do lazy evaluation with caching for transforms, velocities, and accelerations within Frame classes.

Extensive reliance on Frames classes.

Consolidate DartsBody and DartsNode methods to get position, velocities, etc. In the process some of the methods have been renamed.

Changing prescrbied flag of a subhinge should only be done when system is unlocked (open to discussion) since constraint related buffer sizes are effected.

Added notion of minGenCoord to hinges.

Added new DShape class for body geometry

Cosntraints

Complete reworking of constraint handling and inverse kinematics.

Obsoleted use of IKGraph. Changed IK scheme to more robust rechnique.

Added FramePair constraint class to handle any hinge based constraint.

Added support for closure and surface shape to surface shape contact constraints.

Now surface to Dem constraints is handled same way.

Activating/deactivating constraints can only be done when system is unlocked.

Inverse kinematics now leaves prescribed motion hinges unchanged.

Jacobians and Gradients

Now can get Jacobian between any frame pair

Transform gradient methods to complement Jacobian ones.

Now Jacobian methods take extra arguments for skipping prescribed subhinges, and for being maps from generalized velocities of Qdot.

Concept of min gen coords for gradients.

Stricter use of locks

Now need to unlock to change prescribed status as well as active status of constraints.

Global vector offsets are tracked for subhinges and constraint hinges.

Added DartsSubGraph class for a subset of connected bodies.

6.2.3.2.4. Class Hierarchy

Derive Frame and Frame2Frame from DartsBaseObject class

Derive DartsNode from Frame class

DartsHingePnode (new)

DartsHingeOnode (new)

DartsActuatorNode (new)

DartsSensorNode (new)

etc.

Derive DartsBody from DartsNode class

Figure 46. DartsNode classes

Derive DartsSubhinge frmo Frame2FrameEdge class

DartsLockedSubhinge (new)

DartsPinSubhinge

DartsLinearSubhinge

DartsSphericalSubhinge

DartsLinear3Subhinge

etc.

Derive DartsHinge from Frame2FrameChain class

DartsPinHinge (new)

DartsSliderHinge (new)

DartsBallHinge (new)

DartsTranslationalHinge (new)

DartsFull6DofHinge (new)

DartsCustomHinge (new)

Figure 47. Hinge and subhinge classes

6.2.3.2.5. Body Creation Process

The root body’s frame is connected to the global root frame

The steps for the creation of a body include

Create the body and body frame. Temporarily make the body frame the child of the root frame

Create a pnode for the body and (temporarily) make the pnode frame a child of the body frame. Delete the body frame to pnode frame edge and make the body frame a child of the

pnode frame. The pnode frame at this point is dangling and not attached to the frames tree.

Create a 6dof hinge connecting the root body to the new body.

Detach the pnode frame from the body frame if it is attached to the tree (so it can be used as a pframe for the sub-hinges).

Detach the body frame from its current parent frame if the current parent is not the pnode frame since it needs to be a child of the pnode frame.

Create an onode for the body in the root body. Its frame is a child of the root body’s frame.

Create a sequence of sub-hinges that go from the onode and end at the pnode. At this point, the pnode frame is connected back to the frames tree.

Connect the body frame as a child of the pnode frame. Now the body frame is connected to the frames tree.

Now create the proper joint type by deleting the existing hinge and creating one specified by the joint type and connected to correct inboard body.

Delete the existing hinge by deleting all the subhinges and the onode. The subhinge deletion will delete all the frame edges and intermediate oframes. It will leave the pnode frame

unattached to the frame tree.

Create a new hinge of the correct type between the new parent and the body.

6.2.3.3. Body Shape Classes

Each DShape shape represents a parameterized geometry object. Can add a number of geometry objects to a DartsBody instance. Each shape can have its own SOAHomTran offset

transform. Usage of DShape classes include:

Contact kinematics and constraints

partGraphics

DBullet interface

TopoDem terrain vehicle placement, configuration kinematics.

Imposing task space motion constraints (manipulator, vehicle)

General mesh surface (eg. rocks, VRML parts) contact.

Non-penetrating contact bewteen shapes requires that the tangent planes at the points of contact be parallel. The dimentionality of a DShape instance is defined by the number of

parameters needed to specify the contact point on the surface. The following shape classes are currently defined:

DShapePoint : 0-dimensional point.

DShape1D : 1-dimensional surfaces

DShapeStraightLine : Linear straight line.

DShape1DCircle : Thin circular disc.

DShape1DEllipse : Thin ellipse

DShape2D : 2-dimensional surfaces

DShape2DPlane : 2D plane

DShape2DSphere : Spherical surface

DShape2DEllipsoid : A general ellipsoid

DShape2DTorus : A torus

DShapeDem : TopoDem surface

DShapeMesh : General mesh surface (BD)

DShape3D : 3-dimensional surfaces with overhangs (TBD)

DShape classes have a DShape::partGraphics Python method to return a part graphics dictionary appropriate for the shape type.

Figure 48. DShape body geometry classes

6.2.3.4. Constraints

Constraint classes are used to enforce kinematics and dynamics constraints on the articulation and motion of the multibody system. The current family of constraint classes is as follows:

DartsFramePairConstraint : Base class for frame to frame constraints.

DartsClosureConstraint : Limits motion between a pair of frame defined by a DartsHinge type.

Single Node to Frame constraint between a multibody node and an arbitrary Frame (moving or fixed).

Node pair constraint between a pair of multibody nodes.

DartsContactConstraint : Constraint between a multibody node and a DShape surface.

Vehicle configuration kinematics for system level constraints on vehicle/manipulator placement and motion

Place rover

KDriver constraint

Driving Athlete with level hex

Driving Athlete to come to dock

Driving 2 Athletes in docked configuration

Constraint embedding

General loop constraints

Four bar linkage/wishbone constraint

GenCoordsConstraint - algebraic constraint between arbitrary gen coord values (TBD)

For local constraints (gearing, differential), use constraint embedding

More generally need to handle this

Treat prescribed motion as a special case of this constraint on a single hinge

Examples

Prescribed motion constraint (or joint locking)

ATRV driven wheels constraint

Differential constraint

Gearing constraint

Figure 49. Constraint classes

6.2.3.4.1. Node to Fixed frame Constraint

SingleNode constraint - one node is on a multibody system and the other Frame is not on a multibody (but could be a moving frame). The constraint is expressed as a hinge specifying the

allowable motion in the constraint. Enforces constraint relations such as:

ITee(θ) ∗
eeTc(θ) ∗ Toffsets = ITtgt

This constraint takes a node, frame, and hinge as arguments.

It is simpler than the NodePair constraint in that the Jacobian of only one node needs to be computed.

Examples

Articulate antenna to be pointing towards a moving s/x or the sun

Arm inverse kinematics

Move arm so the end effector meets a distance/attitude constraint to a desired task frame.

6.2.3.4.2. Node to Node Constraint (dual arm)

NodePair constraints - where both nodes are on multibody systems and there is a hinge specifying the constraint between them. Enforces constraint relations such as:

ITee(θ) ∗
eeTc(θ) ∗ Toffsets = ITtgt(θ)

This constraint takes a node pair and a higne as arguments

Examples

Place/move rovers in formation offset by a fixed transform

Move arm so its end-effector is a certain distance from a wheel

Figure 50. Example of a node to node constraint on dual-arm end-e�ectors

6.2.3.4.3. Contact constraints

Constraints between a DShape (0, 1, or 2D) and a DShape2D 2D surface

For a 0d surface, the constraint is that the distance between the surfaces is zero.

For a 1d surface, the constraint is that the distance between the surfaces be zero, and at a point of contact, the 1d tangent be orthogonal to the 2D surface normal.

For a 2d surface, the constraint is that the distance between the surfaces be zero, and at the point of contact, the tangent planes for both surfaces be parallel.

The following describes examples of different surface to surface contact constraint

6.2.3.4.3.1. Point 0d contact

Figure 51. Example of a point contact constraint between the end-e�ector and a spherical surface

6.2.3.4.3.2. Circle 1d contact

Figure 52. Example of a 1D circle contact constraint between the end-e�ector and a spherical surface

6.2.3.4.3.3. Ellipse 1d contact

Figure 53. Example of a 1D ellipse contact constraint between the end-e�ector and a spherical surface

6.2.3.4.3.4. Planar 2d contact

Figure 54. Example of a 2D plane contact constraint between the end-e�ector and a spherical surface.

6.2.3.4.3.5. Spherical 2d contact

Figure 55. Example of a 2D spherical contact constraint between the end-e�ector and a spherical surface.

6.2.3.4.3.6. Cylindrical 2d contact

Figure 56. Example of a 2D cylindrical contact constraint between the end-e�ector and a spherical surface.

6.2.3.4.3.7. Ellipsoidal 2d contact

Figure 57. Example of a 2D ellipsoidal contact constraint between the end-e�ector and a spherical surface.

6.2.3.4.3.8. Toroidal 2d contact

Figure 58. Example of a 2D torus contact constraint between the end-e�ector and a spherical surface (incorrect torus graphics - needs to be �xed).

6.2.3.4.3.9. TopoDem 2D contact

Figure 59. Example of a topodem contact constraint between the end-e�ector and a spherical surface.]

6.2.3.5. Constraint Embedding

Constraint embedding

Four bar linkage/wishbone constraint

Gearing constraint

Differential constraint

6.2.3.5.1. Four Bar Linkages

TBD

6.2.3.5.2. Geared Pin Joints

TBD

6.2.3.5.3. Joint-Level Constraints

Algebraic constraint between arbitrary gen coord values. Example usage:

For local constraints (gearing, differential), use constraint embedding

More generally need to handle this

Treat prescribed motion as a special case of this constraint on a single hinge

Examples:

Prescribed motion constraint (or joint locking)

ATRV locked wheels constraint

Differential constraint

Gearing constraint

6.2.3.5.4. Vehicle Con�guration Kinematics

Example usage of vehicle configuration kinematics:

Place rover

KDriver constraint

Driving Athlete with level hex

Driving Athlete to come to dock

Driving 2 Athletes in docked configuration

6.2.4. Algorithms available

6.2.4.1. Forward kinematics, frame transformations

6.2.4.2. Inverse kinematics

6.2.4.3. Jacobians

6.2.4.4. Inverse dynamics

6.2.4.5. ATBI Forward dynamics

6.2.4.6. Hybrid dynamics - prescribed motion

6.2.4.7. CRB algorihtms

6.2.4.8. DCA algorithm

6.2.4.9. Interbody forces

6.2.5. Additional concepts

6.2.5.1. Subgraph level computations

6.2.5.2. Use of data caches and dependencies

6.2.5.3. Introspection

6.3. Usage

6.3.1. Creating a multibody model

6.3.1.1. Via a model �le

6.3.1.2. Procedurally

6.3.1.3. Serial, tree systems

6.3.2. Using the model

6.3.2.1. Computing mass properties

6.3.2.2. Simulation (forward dynamics)

6.3.2.3. Control (inverse dynamics)

6.3.2.4. Computing state (with constraints)

6.3.3. Changing model con�guration

6.3.3.1. Attaching/detaching

6.3.3.2. Adding/removing bodies

6.3.3.3. Changing root body

6.3.4. Troubleshooting and FAQ

Common usage questions, and troubleshooting tips

6.4. Software

An overview of the classes and functions and how they relate to each other.

6.4.1. DartsMbody

6.4.2. DartsBody

6.4.3. DartsHinge

6.4.4. DartsSubinge

 TBD: Flesh out this subhinges section

Link to SOA module. Reference to SOA.

Link to SOAVector section and SOAHomTran section. Reference examples SOAVector and SOAQuaternion.

6.4.4.1. Resetting the coordinates chart

The updateCoordOffset() subhinge method can be used to change the offset coordinate value for the coordinates chart in order to recenter/reset it.

Its purpose is to do whatever is needed, eg. change the chart for Rodrigues params, change Euler angles method when near singularity, and reguest a soft reset for the integrator. In fact

this method would be needed for any 3-coordinate version of a 3-dof subhinge since this representation inherently has a singularity problem. This method should only be called when

not in the midst of an integration step.

Should there be a corresponding method at the hinge level, since a subhinge may not know when to update the offset. The specific example for this is the gimbal hinge whose individual

subhinges do not have the singularity problem, but the overall hinge does have the problem.

The solution would be for the dyn solver to loop through the updateCoordOffset() calls for the hinges in its subgraph. The default implementation of this method would be to call the

corresponding updateCoordOffset method for each of the subhinges. The only problem with this approach is that the dyn solver leaves it to the subhingeData instance to handle the

unmarhsalling of the state vector, and the subhingeData only knows about subhinges, and not hinges.

Actual implementation of this modifies the offset and input coordinates, sets them in hinge. The return value is a bool indicating a change has happened. The integrator soft reset is not

done here, but is the responsibility of the calling program.

The SUBHINGE_RODRIGUES_SPHERICAL subhinge type uses the minimal SOARodriguesParam coordinate values for its generalized coordinates. However these coordinates have singularity

at multiples of 2*pi . Hence its coordinates chart needs to be recentered in the vicinity of a singularity. For this case the chart offset is defined by a SOAQuaternion value and the

generalized coordinate Rodrigues param defines the offset to the actuall attidute value.

6.4.5. DartsNode

6.4.6. DartsSubGraph

6.4.6.1. Internal details

 TBD: update and clean up this section

The DartsSubGraph class caches structural data in several container members as described below. Some of these are kept around for performance reasons as algorithms traverse the

subgraph topology. We refer to subgraphs that create compound boundies as constraint embedding (CE) subgraphs since their bodies are not a subset of the parent graph, while regular

subgraphs whose bodies are a subset of those of the parent are referred to as non-CE subgraphs.

bool _has_parent_bodies : true for non-CE graphs and false for CE graphs.

DartsSubGraph* _graph : the parent/owner subgraph for the subgraph

DartsSubGraphList _child_subgraphs : list of all subgraphs of this subgraph

DartsBodyBaseList _owned_bodies : list of bodies owned by this subgraph - only these bodies will be destroyed by the subgraph destructor. Physical bodies are owned by the

multibody subgraph. Compound bodies are owned by the subgraph creating them.

DartsBody* _virtualRoot : the virtual root parent body for the subgraph. Note that a compound body cannot be a virtual root for a subgraph. This member is updated when locking by

the _updateSubGraphBodies() which is called by the constructor and add/removeBody methods as well as when locking by the _lockObject() method.

DartsBodyBaseList ordered_bodies : this contains a list of all _rigid and compound bodies owned by the subgraph. Is order important? This list does not include the virtual root body.

For a CE-subgraph, the compound body’s constructor calls updateAggregatedBodies(agg_sg, cb_bd) to update this list so that all the aggregated bodies are removed, and replaced by

the single compound body. This list is updated when locking by the _updateSubGraphBodies() which is called by the constructor and add/removeBody methods as well as when locking

by the _lockObject() method.

DartsBodyBaseList _base_bodies : list of base bodies for the subgraph, i.e. the bodies in the subgraph that are the immediate children of the virtual root body. Note that in general that

the virtual root body may have additional children bodies that do not belong this subgraph. This list is updated when locking by the _updateSubGraphBodies() which is called by the

constructor and add/removeBody methods as well as when locking by the _lockObject() method.

DartsChildBodiesMap _child_bodies_map : map defining the children bodies for a body for this subgraph. This map is initialized as a copy of the parent subgraph’s own

_child_bodies_map (why - perhaps so CE subgraphs have a starting point since lockObject does not set this map for them), it is possible initially for this map to have additional key

entries for bodies that may not belong to this subgraph. The _topologicalChildBodies(bd) method uses this map to return the result for non-multibody subgraphs. The

dumpChildBodiesMap() method can be used to dump the contents of this map.

For a non-CE subgraph, this map contain key entries for each subgraph body with the value being the child bodies (per the parent subgraph) filtered down to those that belong to the

subgraph. The subgraph’s _lockObject method calls _setupChildBodiesMap() to populate this for non-CE subgraphs.

For an aggregation subgraph, this map has entries for each of its bodies, and the value for each body is the list of bodies in the parent subgraph that are immediate children but are also

not within the aggregation subgraph. The compound body’s constructor calls updateAggregatedBodies(agg_sg, cb_bd) which in turn calls

updateAggregatedChildBodiesMap(agg_sg) to update this map for the aggregation subgraph with key entries for each aggregated body, and value being the non-aggregated children

for the body.

For a CE-subgraph, there are entries related to compound bodies. For each compound body, there is a key entry for its virtual root - or possibly instead the subgraph’s compound body

that contains the virtual root - with the compound body and other child bodies in its values list. Also there is an entry for each compound body as a key with values being its immediate

children. The compound body’s constructor calls updateAggregatedBodies(agg_sg, cb_bd) to update this map with the new info for the compound body.

undoAggregateBodies(ag_sg, cb_bd) does the reverse updates when a compound body is being deleted.

DartsParentBodiesMap _parent_bodies_map : map defining the parent body for a body for this subgraph. This map is initialized by the corresponding map for the parent subgraph. If

there is no entry for a body, then the parent body for the body is its physical parent body. This map is used by the topologicalInbBody(bd) method. The dumpParentBodiesMap()

method can be used to dump the contents of this map.

This map is empty for non-CE and aggregation subgraphs

For a CE-subgraph, there are entries related to compound bodies. For each compound body, there is a key entry with value being the virtual root - or possibly instead the subgraph’s

compound body that contains the virtual root. Also, for each child body of a compound body, there is a key value for the child with the compound body as the value. The compound body’s

constructor calls updateAggregatedBodies(agg_sg, cb_bd) to update this map with the new info for the compound body. undoAggregateBodies(ag_sg, cb_bd) does the reverse

updates when a compound body is being deleted.

_descendant_bodies : map defining the list of outboard descendant bodies for each body owned by the subgraph. This is updated by the _lockObject() method. his list is updated by

_computeTerminalBodies() which in turn calls _updateDescendantBodies() when locking via the _lockObject() method.

std::map<size_t, const DartsBodyBase*> _body_anc_map : map to keep track of the ancestor body for each pair of bodies (used for OSC computations). This is updated by the

_lockObject() method.

DartsChildBodiesMap _terminal_bodies_map : map defining the downstream terminal bodies for the base bodies for this subgraph. There are only entries for base bodies, i.e. one for

each sub-tree in the system. This map is updated by _computeTerminalBodies() when locking by the _lockObject() method.

DartsBodyBaseList _terminal_bodies : list of terminal bodies (i.e. bodies with no children) for the subgraph. This list is updated by _computeTerminalBodies() when locking by the

_lockObject() method.

6.4.7. DartsTreeDynamicsSolver

 TBD: Flesh out this dyn solver section

6.4.7.1. Solving the dynamics equations

This class calls updateCoordOffsets() for each subhinge before calling integrate (or the first thing in the integrate) method. This allows the subhinges to change charts etc. to fix up the

coords so that we do not have any ill behavior.

6.4.8. CM frame

6.4.9. General Functions

6.4.9.1. visualizeSpatialForces

The visualizeSpatialForces function is used to visualize the external spatial forces of the bodies in the simulation. It takes the following parameters:

sg (DartsSubGraph) - SubGraph whose bodies' spatial forces will be displayed.

scene (DartsFacadeScene) - The scene the forces will be drawn in.

sgForExternalSpatialForces (DartsSubGraph, optional) - The SubGraph used when calling body.externalSpatialForces. If None, then the SubGraph supplied via the first argument will be

used. For example, these two SubGraphs might be different if compound bodies are used. In that case, sg may be sim.mbody() and sgForExternalSpatialForces may be

sim.dynSolver().sg(). (Default = None)

enable (bool, optional) - Used to enable/disable visualization of the spatial forces. (Default = True)

scale (float, optional) - Used to scale the external force vectors. (Default = 0.1)

6.5. Raw documentation

 TBD: Need scrubbing before integration.

6.5.1. Ndarts: Switch DartsBody.setBodyParams() to use createPartGeometries() instead of load() for geometries

 TBD: Needs scrubbing. Notes brought over from issue (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/dynamics/ndart/-/issues/5#note_8613).

This approach tries to minimize the amount of code changes. The main change to the existing part geometry classes is to

extend the load() method to handle the case where AssimpImporter is used to first generate a \DMesh::MeshGroup with a list of DMesh::Mesh` instances (instead of just a single

one previously),

and to provide an API for manipulating the material properties of the individual DMesh::Mesh .

Everything else can stay as is, including

the current handling of primitive geometry shapes and their methods

the load method for specialized file types

the CS level dmesh() method for creating a geometry

Proposed changes

extend the CS part geometry/scene object to have a CS level MeshGroup instead of single mesh. This is to hold the MeshGroup coming from assimp obj importers. This will impact

DspaceScene and DOptixScene which are currently designed to create a single 'C' level dsGraphicsObject and DOptixRenderable instances respectively for the single mesh - they

will need to be extended to loop through and create these instances for each mesh in the mesh group. BulletScene and DMeshScene already support lists of C level meshes for each

part geometry - but again would need to be extended to loop through and do so for each mesh group mesh.

Extend AssimpImporter to return a MeshGroup instance instead of list of meshes

each CS part geometry will have a list of DMesh::MeshGroup instance for the meshes created by the AssimpImporter

Add API for retrieving individual such DMesh::Mesh instances to overwrite its material properties. DMesh::MeshBuild already provides an API for retrieving its individual Mesh

instances which can be used for this.

For collision world CS , add collision filters between Mesh instances for the same scene object.

Extend the SceneObject::visibility , SceneObject::scale etc methods to apply this to all component meshes.

For singleton meshes (eg. primitive shapes, dmesh shapes) we will continue to have the current support. We should have only of the singleton C instance of the MeshGroup pointer be

non-null.

When deleting a scene object, all the C meshes corresponding to the MeshGroup should be deleted.

6.6. Sphinx documentation

6.6.1. DARTS Multibody Modelings Basics

The Ndarts implementation of DARTS (???) can model a wide range of multibody mechanisms. DARTS/Dshell simulations generally involve at least a single rigid body (for the a spacecraft,

for exampe) or potentially a complex, multiply connected multibody system.

For more detailed background information, please see:

Robot and Multibody Dynamics, Analysis and Algorithms. Abhi Jain. Springer. 2011.

Darts Manual 1997.

6.6.1.1. DARTS Multibody Modeling Concepts

Tree Topology Systems.

Tree-topology systems are multibody systems with no closed-chains.

In many cases, the multibody physics of the system can be modeled as a "Tree Topology System". Ndarts can handle closed-chain systems, but often a Tree topology system is adequate.

"Closed-chain" means that a set of bodies are connected to each other in a loop, or "closed chain".

In Tree Topology Systems:

there is one and only one path from one body to another

each body has only a single parent

each body can have multiple child bodies.

Flexible Body.

A Flexible Body has deformation degrees-of-freedom (dofs) in addition to rigid-body articulation dofs.

Spatial Vectors.

These are 6-dimensional vectors that simplify many dynamics related expressions.

A spatial velocity vector for a coordinate frame is the 6-dimensional vector formed by the concatenation of the angular velocity and linear velocity vectors for the frame.

The spatial force vector associated with a frame is the 6-dimensional vector formed by the concatenation of the moment and force vectors associated with the frame.

The SOA vector/matrix math library<index.html> implements spatial vector math (as well as other vector/matrix math used in Darts).

Nodes.

Set of discrete points in the body:

Figure 60. Body Frame and Nodes

Nodes:

can be defined by the user

are associated with hinges interconnecting bodies

can arise from modeling flexible modes: the structural model of a flexible body involves a spatial discretization of the body into a collection of nodal elements

Node Frames

each node has its own reference frame.

for a rigid body, all the node frames are aligned with the body frame.

for a flexible body, the deformation of the body causes relative motion between the node and the body frames.

Actuator Nodes

Point of application for applying external forces and moments on the body that can arise from actuators, environmental effects or other sources.

Sensor Nodes

Point at which body information is obtained e.g. body attitude, rates

Hinges/Joints. The kinematic constraints on the relative motion between adjacent bodies are modeled by hinges coupling the bodies.

hinges can be translational, ball, full-6dof, slider, etc.

each hinge has an associated pair of hinge nodes

inboard hinge node (Onode) located on the inboard body

outboard hinge node (Pnode) located on the outboard body.

Figure 61. Multibody Hinges and Nodes

the generalized coordinates for the hinge parameterizes the relative configuration of the hinge frames

the generalized velocity for hinge parameterizes the relative spatial velocity between the frames.

when the generalized coordinates of a hinge are the zero element, the Onode and Pnode frames coincide

Historical note: the the "O" and "P" nodes are in alphabetical order going from the base towards the leaf bodies. The "O" and "P" terminology goes back to the early days of Darts and

uses the same nomenclature as the old multibody simulation software DISCOS. DISCOS (Dynamic Interaction Simulation Of Controls and Structure) was developed by H.P. Firsch at

Goddard Space Flight Center. For further information about DISCOS, search for DISCOS in http://naca.larc.nasa.gov/search.jsp.

Zero Configuration. Multibody configuration where all the generalized coordinates are the zero element.

used to define all the kinematic and dynamics model information for the system in the model file e.g. vectors from the body frames to the joint node frame.

Figure 62. Multibody Zero Con�guration

In the zero configuration, the following terms are used to describe the geometry of the joint connecting a body to its parent body. Any of these terms may be zero.

inbToJoint

The vector from the parent body reference frame to the joint, expressed in the parent body frame.

Note that the rotation be be set with the inbToJointQuat and the full transform can be set with inbToJointTransform.

bodyToJoint

The vector from the child body reference frame to the joint, expressed in the child body frame.

Note that the rotation be be set with the bodyToJointQuat and the full transform can be set with bodyToJointTransform.

bodyToCM

The vector from the body reference frame to the center of mass for the body (in the body’s reference frame).

Note that all reference coordinate systems are parallel in the "Zero" configuration (unless intToJointQuat or bodyToJointQuat are not the identity matrix).

System Generalized Coordinates and Velocities

The state vector for a multibody system consists of a combination of:

the generalized coordinates vector, denoted Q consisting of

hinge coordinates of hinges connecting bodies to each other

modal coordinates related to the flexibility of a body

the corresponding generalized velocities vector, denoted U

The time derivative dQ/dt of Q, denoted Qdot, is obtained by a simple kinematic transformation of the generalized velocities vector U. For a joint with full rotational freedom, Q is

modeled as a quaternion.

The combination of all the hinge generalized forces is designated as Tjoint

The combination of all the external forces acting on the multibody nodes is denoted as Fext

Darts computes dU/dt denoted as Udot which is then used by the Dshell integrator to compute U.

Kinematic Maps

mapping from U to Qdot is usually a trivial identity map

exception: attitude dof generalized coordinates are the 4 elements of the attitude quaternion, while the 3 elements of the angular velocity vector are used for the generalized velocity

coordinates. In this case, the mapping from the generalized velocities to the generalized coordinate rates is a non-linear, configuration dependent kinematic map.

Darts Prescribed and Non-Prescribed Hinges

The Multibody hinge generalized coordinates state can belong to one of two categories:

Figure 63. Multibody Prescribed and Nonprescribed States

Non-Prescribed Hinges. The coordinates (Q) associated with these hinges evolve in response to user or model specified generalized forces at the hinges connecting the bodies

as well as input forces (and torques) on the multi-body system.

Represents the Forward Dynamics of the multi-body system.

Prescribed Hinges. The coordinates (Q) associated with these hinges evolve in response to user or model specified kinematic profiles at the hinges connecting the bodies

as well as the input forces (and torques) on the bodies in the multi-body system.

Represents the Inverse Dynamics of the multi-body system.

Prescribed motion hinges are often used to freeze articulated dofs, or when there are tight control loops governing the motion of the hinge dofs.

There is a related concept called "masking". For more detail about presribing and masking, please see prescribing .

Forward and Inverse Dynamics.

Forward Dynamics is solving for output accelerations (dv/dt) given input forces (f)

Inverse Dynamics is solving for output forces (f) given input accelerations (a) by using Newtons Law suitably generalized for articulated/flexible body dynamics.

Figure 64. Forward and Inverse Dynamics

In Darts Forward Dynamics involves computing the unknown hinge accelerations Udot from the generalized forces Fext and generalized hinge forces Tjoint

In Darts Inverse Dynamics involves computing the generalized hinge force Tjoint from a prescribed motion of the generalized hinge Udot and the external generalized forces Fext

FREE

PRESCRIBED

Figure 65. Darts Dynamics Engine

Darts solves the general mixed forward/inverse dynamics problem i.e. where the hinges are a mix (respectively) of Non-Prescribed/Prescribed

6.6.1.2. Overview of DARTS Framework Objects

The DartsMbody object

Figure 66. A Darts Mbody ("multibody") object consists of DartsBody objects.

Continued:

The DartsBody object

The DartsNode object

The DartsHinge object

The DartsSubhingeBase object

6.6.2. Ndarts Hinges

6.6.2.1. Introduction

In Darts, hinges (or joints) are used to attach nodes to one another and provide degrees of freedom between attached nodes.

The Darts Hinge class is derived from the ChainedFrame2Frame class. Hinges are responsible for connecting two bodies together and have varying degrees of freedom depending on the

type of hinge used.

Because nodes are implemented as frame objects, it is intuitive to implement the hinges that connect the nodes as Frame2Frame objects.

6.6.2.1.1. Hinge Types (Joint Types)

There are two main categories of hinges (or joints). Hinges are the actual objects that connect nodes together, whereas Subhinges are subparts from which hinges are built. All of the main

hinge types can be broken down into "pin" and "slider" subhinge types, however there are several other three degree of freedom subhinge types for more complex hinges.

Here are a list of the basic hinge types with brief descriptions:

PIN - a one axis rotational/revolute hinge (1 DOF)

UJOINT - a universal (or Cardan) joint (2 DOF). See https://en.wikipedia.org/wiki/Universal_joint

GIMBAL - 1 gimbal with 3 rotational axes such as is typically used to mount a gyroscope (3 DOF). https://en.wikipedia.org/wiki/Gimbal

BALL - a rotational joint with 3 degrees of freedom (3 DOF). The rotation is represented by a quaternion.

SLIDER - a translational joint with one axis of translational freedom (1 DOF). Does not support any rotation. Sometimes called a prismatic joint.

PLANAR - - a translational joint with two axes of translational freedom (2 DOF). Does not support any rotation.

TRANSLATIONAL - a translational joint with three axes of translational freedom (3 DOF). Does not support any rotation.

COMPOSITE_TRANSLATIONAL - a translational joint with three translational degrees of freedom. However, the three axes of translation are assumed to be the x-y-z axes (3 DOF). Does

not support any rotation. In some situations a joint with both full translational and rotational degrees of freedom canb e represented by a COMPOSITE_TRANSLATIONAL joint followed

by a BALL joint.

FULL6DOF - a joint with full translational and rotational freedom (6 DOF). Joint rotations are represented by quaternions, but joint rates are represented by vectors of 3 values. In

FULL6DOF joints, the attitude and velocity is represented in the child body frame.

FULL6DOF_INERTIAL - a joint with full translational and rotational freedom (6 DOF). Like in FULL6DOF joints, joint rotations are represented by quaternions, but joint rates are

represented by 3-vectors. In FULL6DOF_INERTIAL joints, the attitude and velocity is represented in the parent body frame (which is often the inertial frame, hence the name).

Other types joints can be made up of combinations of these types of joints. For instance a cylidrical joint, which as 1 translational DOF and 1 rotational DOF could be constructed by

combining a SLIDER and a PIN joint.

Ndarts Prescribing and Masking Joints

6.6.3. Ndarts Prescribing and Masking Joints

In Ndarts, prescribing and masking a joint are completely independent concepts:

Prescribing a joint controls how the Ndarts dynamics algorithms compute the torques and accelerations for the joint.

Masking a joint hides (masks) selected hinge states for the joint from the Dshell integrator (e.g., for overriding). Usually Dshell models (and not the integrator) manage the values in these

masked states. Masking controls whether joint position/velocity states come from the integrator (which is the normal case) or are a set directly via a “deus ex machina” mechanism by the

model (or user).

Note

Note that masking is related to the integrator and is not an Ndarts concept at all, but is covered together with prescribing because of their similarities.

For details about when to prescribe a joint and when to mask a joint, please see Ndarts_Prescribing_Masking_Choice .

Prescribing Joints in Ndarts

6.6.3.1. Prescribing Joints in Ndarts

In Ndarts, prescribing a joint controls how the dynamics engine computes the joint torques and accelerations.

6.6.3.1.1. Unprescribed Joints

In normal operation when a joint is not prescribed, typically models will inject forces into the joint and Ndarts will compute the corresponding joint accelerations as shown in this figure:

Figure 67. Normal operation of joint (NOT prescribed)

In summary, if a joint is not prescribed:

Joint forces/torques determine joint acceleration (using Ndarts)

Joint velocity/position come from integration of joint acceleration (Udot)

6.6.3.1.2. Prescribed Joints

If a joint is prescribed, some model (or the user) sets the joint acceleration and Ndarts will compute the necessary joint toqure to achieve the prescribed acceleration as shown in this figure:

Figure 68. E�ect of prescribing a joint

In summary, if a joint is prescribed:

Joint acceleration determines joint forces/torques (using Ndarts)

Joint velocity/position come from integration of joint acceleration (Udot)

6.6.3.1.3. Setting the Joint Kinematics for a Prescribed Joint

The intent of prescribing a joint is for the models (or the user) to specify the joint acceleration and let the Ndarts dynamics compute the necessary joint torques. There is also an expectation

that the integrator will integrate the given joint acceleration to compute joint velocities and joint positions. Note that the integration of the joint coordinates also depends on initial joint

velocity and acceleration (which are usually set during initialization). There are several options for dealing with prescribed joints:

Specify joint acceleration at run-time. Based on the initial joint velocity and position, the integrator will behave normally and produce smooth and consistent dynamics for the joint

motion. The models or user can set the joint acceleration of a prescribed joint at any time during integration, including in the middle of integration steps using preDeriv() calls (in the

same way that models can set joint torques at any time).

The code to set the joint acceleration looks like this in the C++ model code (note that setGenAccel() is a function of the C++ Model class, not the subhinge):

setGenAccel(hinge().subhinge(0), accel);

where the joint’s velocity and position are initialized elsewhere.

Warning

Never set the joint acceleration directly through the joint subhinge API at run-time in models. Always use the model code call shown above since it checks the

correctness of the call.

Specify the initial joint velocity and set the joint acceleration to zero. In order to produce a prescribed motion that is constant velocity, the joint acceleration should be set to zero

and the joint velocity should be initialized to the desired value. This might be useful for a model that sets up a constant-velocity ejection of one body from another. For example this code

might be called in a model’s init code:

setGenCoord(hinge().subhinge(0), initial_joint_position);
setGenVel(hinge().subhinge(0), desired_joint_velocity);
setGenAccel(hinge().subhinge(0), zero);

Warning

It is important to note that the setGenVel() function cannot be called in the middle of integration steps since it modifies the integrator state (the integrator must be

reset). So updating the joint velocity cannot be done in preDeriv() calls. It may be called in the startIntegrationStep() or endIntegrationStep() functions.

Specify the initial joint position and set the joint velocity and acceleration to zero. This might be useful to fix the position of a body with respect to its parent and determine the

torques necessary to accomplish this. For example this code might be called in a model’s initialization function:

setGenCoord(hinge().subhinge(0), initial_joint_position);
setGenVel(hinge().subhinge(0), zero);
setGenAccel(hinge().subhinge(0), zero);

6.6.3.1.4. Other Notes about Prescribing a Joint

Prescribing a joint applies only to subhinges. Although a joint may be composed of several subhinges, prescribing occurs only at the subhinge level. There are some convenience

functions in the body parameter code that allows setting a 'prescribed' for a composite joint to a single value (e.g., True), but the underlying code applies this same setting to all of the

composite joint’s subhinges.

Setting the joint acceleration via setGenAccel() function calls in the model code can be done at any time with little computational impact. It is as efficient as setting the joint torque (for

non-prescribed joints).

Changing whether a joint is prescribed has very little overhead in Ndarts since the size of the state vector is not changed and no unlocking/locking is necessary.

6.6.3.2. Masking Joints

In some cases, we want the joint to behave in a specific kinematic fashion irrespective of the integrator. In these cases, we can 'mask' the joint from the integrator, essentially overriding the

integrator for these joint states as necessary to get the desired behavior.

There are two forms of masking:

Joint masking in U (joint velocity)

Joint masking in Q (joint position)

It is important to understand that masking is essentially a method of overriding the integrator and is not part of the dynamics model at all. This is why masking cannot be set while

initializing the Darts body parameters.

Note that there is nothing exclusive to Narts about the this concept. Masking also applies to Darts++.

6.6.3.2.1. Masking a Joint in Velocity (U)

When a joint is masked in joint velocity (U), some model in the simulation will override the joint velocity (U) state during normal execution. Here is what happens:

The integrator ignores the joint acceleration (Udot)

The joint acceleration (Udot) is as computed by Ndarts.

Note that the overridden U and the Udot from Ndarts are not generally consistent. The joint position comes from the regular integration of joint velocity Qdot.

This figure illustrates the basic concept:

Figure 69. The e�ect of masking joint velocity (U)

Note that the model overrides the joint velocity. Therefore the joint acceleration (Udot) and joint velocity (U) will not generally be consistent. But the joint velocity specified by the masking

process is integrated normally, therefore the joint velocity and position will be consistent with each other.

The function calls to set masking data for masking in joint velocity (U) looks something like this in the C++ model code:

coordMaskData(hinge().subhinge(0), joint_velocity, NULL);

The NULL argument above can be replaced with the desired joint acceleration (Udot) if it is known.

Note that coordMaskData() function calls are not part of the Darts hinge API and must be called via the C++ model API as shown.

6.6.3.2.2. Masking a Joint in Position (Q)

When a joint is masked in joint position (Q), some model in the simulation will override the joint position (Q) during normal execution. Here is what happens:

The integrator ignores the joint velocity (Qdot)

The joint acceleration is as computed by the Ndarts.

Note that the overridden Q and the Qdot are not necessarily consistent unless the model has used consistent values.

This figure illustrates the basic concept:

Figure 70. The e�ect of masking joint position (Q)

Note that the model overrides joint position. Therefore the joint velocity (Qdot), and the joint position (Q) will not generally be consistent and compatible.

The function calls to set masking data for masking in joint position (Q) looks something like this in the C++ model code:

coordMaskData(hinge().subhinge(0), joint_position, NULL);

The NULL argument above can be replaced with the desired joint acceleration (Udot) if it is known.

6.6.3.2.3. Masking a Joint in Position and Velocity (Q and U)

When a joint is masked in joint position and the joint velocity (Q and U), some model in the simulation will override the joint position (Q) and the joint velocity (U) during normal execution.

Here is what happens:

The integrator ignores the joint acceleration (Udot) and velocity (Qdot)

The joint acceleration is as computed by the Ndarts.

Note that U and the Udot from Ndarts are not consistent. Similarly, the Q and the Qdot are not necessarily consistent unless the model has used consistent values.

This figure illustrates the basic concept:

Figure 71. The e�ect of masking joint position and velocity (Q and U)

Note that the model overrides both the the joint velocity and position. Therefore the joint acceleration (Udot), the joint velocity (U), and the joint position (Q) will not generally be consistent

and compatible.

The function calls to set masking data for masking in joint position (Q) and joint velocity (U) looks something like this in the C++ model code:

coordMaskData(hinge().subhinge(0), joint_position, joint_velocity, NULL);

The NULL argument above can be replaced with the desired joint acceleration (Udot) if it is known.

6.6.3.2.4. The Masking Interface

Since masking is tied to integration, the API for changing joint masking is also tied to the integrator. There is a masking interface object that can be obtained from the simulation and

masking in Q can be set up for a subhinge (in python) like this:

from Dshell.DartsCommon import DartsBody, DshellStateMaskingIF
sim.dynCoordMaskingInterface().coordMaskType(subhinge, DshellStateMaskingIF.MASK_Q)

where sim is the simulation object.

In C++ model code, comparable code should be put into the model’s setup() function and might look like this:

coordMaskType(hinge().subhinge(0), DartsIF::MASK_Q);

6.6.3.2.5. Other Notes about Masking a Joint

All masking is done at the subhinge level.

Changing the coordinate data for a masked joint is an efficient operation and can be done by models during normal execution without significant run-time penalty. This is normally done

using a models ‘coordMaskData()’ function.

Note that changing the coordinate mask data should only be done at integration sub-step boundaries and not in preDeriv() calls. The reason is that coordMaskData() calls essentially

change the integrator state without the knowledge of the integrator. Typically, the coordMaskData() calls would be done in the model’s startIoStep() or updateFlowOuts() functions.

Changes in the masking state are actually requests that are accumulated and implemented right before the next integration sub-step. So calls to the coordMaskType() function can be

done at any time, but will only take effect at the next integration sub-step.

Changing the masking state of a joint involves more overhead and should not be done during normal integration since it requires that the integrator be reset and the state size changed

after it is done.

Currently the setting up the masking states of joints is done outside the model (e.g., in the assembly). But it makes sense to move this into the model code since the model is the only place

where the masked joints can be updated.

6.6.3.3. When to Prescribe a Joint and When To Mask a Joint

In a certain sense, both prescribing and masking a joint produce similar effects: they make the joint move like we want it to. When should you prescribe a joint and when should you mask

it?

If all the following conditions apply, use 'prescribing':

Smooth dynamics are desired

Consistent joint kinematics (position, velocity, acceleration)

Consistent dynamics and kinematics

Only joint accelerations change during integration

Otherwise, use masking.

Here are some example scenarios:

Body Separation - At some point a child body is detached from its parent body and a desired constant separation velocity is desired. Use prescribing. At the instant of separation,

disconnect the bodies, set the desired separation velocity (via setGenVel() in model code) and set the desired joint acceleration to zero.

Trim control - In many cases it is necessary to specify the trim angle for a body during flight to match some desired trim history (or via some state-dependent way). Since the only

concern is the body attitude and not the necessary torques to produce it, there is no need for the dynamics and kinematics for the body attitude to be consistent. Therefor masking is a

appropriate.

Acceleration Specified - If the desired joint acceleration is given and there are no other limitations, then prescribing should be used.

6.6.4. Geometric Shapes for Bodies

6.6.4.1. Creating shapes for your Ndarts bodies

It is straight-forward to add graphics to your simulations by added PartGeometry data in the 'geometry' definition of your body parameters.

When you define body parameters using the BodyParam class, you can add in a series of geometrical shapes by specifying a 'geometry' section:

where some parts have been omitted for brevity. Notice that multiple geometrical parts can be given. The name of the graphical object is its key (eg, body or body2 here). Each graphics

object is a fixed distance and rotation from the body reference frame (as specified in the translation and quaternion parameters).

Example 2. Danger

If you set one of the below parameters and you don’t set the associated parameters, the program segfaults for some reason. For example, this happens when cylinder is set, but

height and radius is not set.

THe types of common shapes that can be specified (including their required parameters) are:

sphere

radius

cylinder

radius (x and z)

height (y)

cone

radius (x and z)

height (y)

cube

length (x)

width (y)

height (z)

file

from DshellCommon.params.BodyParam import BodyParam

...

'SC' : BodyParam(
 mass = 23.0,
 ...
 geometry = {
 'body' : {
 'shape' : 'cylinder',
 'radius' : 1.0,
 'height' : 3.0,
 'scale' : (1, 1, 1),
 'translation' : (0, 0, 0),
 'quaternion' : (0, 0, 0, 1),
 'diffusivity' : (0.6, 0.1, 0.1)
 },
 'body2': {
 'shape': 'cube',
 'length': 0.2,
 'width': 0.15,
 'height': 0.15,
 'diffusivity': [0.35, 0.30, 0.50],
 'scale': (1, 1, 1),
 'translation': (0, 0, 0),
 'quaternion': (0, 0, 0, 1)
 },
 'body3': {
 'file': 'foo.mesh',
 'scale': (1, 1, 1),
 'translation': (0, 0, 0),
 'quaternion': (0, 0, 0, 1)
 }
 }
)

PYTHON

To specify a mesh file instead of a primitive shape, use the file parameter instead of the shape parameter (as shown for body3 above). The file parameter takes a mesh filename as

its value. When using file , you may not be able to modify the color of the object as that is usually embedded in the mesh file. See Ndarts_ShapeMeshFileFormats below for more

details about the supported file formats.

All of these graphics objects accept the following optional parameters:

scale - a tuple/list of 3 values describing how to scale the:: object in the x, y, and z directions (body reference frame).

translation - a tuple/list of 3 values (dx, dy, dz) of the:: offset between the body reference frame and the center of the graphics object.

quaternion - a tuple/list of 4 values of the quaternion for the:: rotation between the body reference frame and the graphics object.

diffusivity - a tuple/list of three values (0 to 1.0) for the:: Red, Green, and Blue color of the object. Note that this does not apply for meshes (which must provide their own coloring).

specularity - a tuple/list of three values (0 to 1.0) for the:: Red, Green, and Blue specularity (shininess) of the object. Note that this does not apply for meshes (which must provide their

own coloring).

emissivity - a tuple/list of three values (0 to 1.0) for the:: Red, Green, and Blue emissive color of the object. Note that this does not apply for meshes (which must provide their own

coloring).

transparency - a single value (0 to 1.0) describing the:: transparency of the graphics object (1.0 is completely transparent, 0 is not transparent at all).

visibility - a single value (0 or 1) indicating whether this:: graphics object should be visible initially.

6.6.4.1.1. Mesh File Formats

The file parameters can be an OGRE .mesh file or a Wavefront .obj file. If you want other types, use a Python file to point to them. For example example.py :

{'wavefront': 'foo.obj',
 'ogre': 'foo.mesh}

Then you would set file to example.py .

Part geometries support a few other 3D graphics file formats by using the assimp library to load the 3D graphics data from mesh files. (See

http://www.assimp.org/main_features_formats.html). The currently supported files are:

OGRE, use:

'ogre': '<filename>.mesh'

Collada, use:

'collada': '<filename>.dae' or

'collada': '<filename>.xml'

Wavefront Object, use:

'wavefront': '<filename>.obj'

3ds Max 3DS, use:

'3ds': '<filename>.3ds'

If you have other file formats, the assimp tool can be used to convert to one of these supported formats. See http://www.assimp.org for more information.

6.6.4.2. Manipulating a graphical object at runtime

You may manipulate graphical objects at run time. First get its handle. Suppose sc is the body object that these graphics objects are attached to.

This rescales the size of the graphics object to be half what it normally is (with scale=(1,1,1)).

Most of the other properties outlined above may be modified (the names may be a bit different; browse a live object to find what you need).

You may also active the axes for a graphical object:

6.6.4.3. Other documentation

For Doxygen documentation, see: PartGeometry .

6.6.5. Multibody Modeling with Ndarts - Design

The Ndarts library provides classes and algorithms for the kinematics and dynamics of rigid multibody systems for use within the Dshell simulation framework. It is a successor to the

Darts++ module.

6.6.5.1. Background

from Math.SOA_Py import SOAVector3

...

cyl = sc.getPartGeometry('body')

cyl.scale(SOAVector3(0.5, 0.5, 0.5))

PYTHON

cyl.showAxes(True)
PYTHON

The objective of this new multibody kinematics/dynamics implementation is motivated by several issues with the current "Darts++" implementation, as well as a need and desire to add

several new advanced capabilities. The limitations in the current capabilities includes:

Inverse kinematics, Constraints

A need to support new wheel geometries and contact in rover sims (broader wheels, toroidal shape, etc.)

The IK implementation with IKGraph is complex (eg. uses Euler coordinates). The NRSolve code is dense and hard to use in its current form.

Hard to debug cause when inverse kinematics failed - and so hard to fix issues. Lots of struggles with Chariot wishbone kinematics. Have been tossing around ad-hoc and

unsatisfactory work around solultions - weights, staged IK, etc.

Need to be able to expand configuration kinematics to allow new constraints on motion (eg. Athlete cases)

Ability to handle constraints between multiple vehicles (eg. coordinated motion, docking)

Lack of general way to handle constrained/closed-chain dynamics

Questions about proper handling of hinge/constraint duality to simplify addition of new constraint types.

Unable to do IK on subgraphs within multibody.

Hard to bring in contact and collision detection physics.

Challenging to "generalize" constraint embedding to handle arbitrary "gearing" and "loop" type cosntraints (limited to four bar linkage currently)

Functionality Limitations

Accumulation of narrow/ad-hoc algorithmic implementations that are hard to generalize (eg. special handling of full 6dof hinges, topology changes, handling constraints)

Hard to add new hinge tyeps (eg. locked, algernate 6dof) hinges - lots of switches and if/thens in code.

More complex than necessary multibody creation process - split between Python and C++.

Not possible to make arbitrary frame to frame relative transformation, velocity, acceleration queries within multibody system (needed more generally but especially for constraints)

Hard to bring in PyCraft like ideas into regular dynamics functionality

Architectural and Design Integrity

Increased entropy in the Darts++ software implementation from changes/hacks that have been made over the years.

While the test coverage has improved, the coverage is uneven, making it harder to add and test new changes.

While code "works", it is hard to add in new features without endagering existing capabilities.

User level methods and internal code Documentation quality is poor.

Method naming conventions are uneven.

Body and node methods have parallel methods which are named and/or do something differently.

Darts++ code split across DartsBase module for backwards compatilibity with Darts

The goal is to rethink, redesign, and streamline the current implementation to have a more agile architecture that will address the above, enabling some of the mroe advanced following

capabilities:

Advanced mbody algorithms (PyCraft ideas)

Allow the implementation fo new algorithms (eg. innovations, velocity coordinates transformations, and inverse)

Support recursions on sub-trees for embedded constraints and augmented bodies, onboard models, ODCA/parallel implementation

Support recurstions involving different types of propagation operators (eg. rigid bodies, flex bodies)

Support multiple operations/recursions on a fragment, and have means to store and keep access to data products so they can be reused in subsequent recurstions (eg. correction

recursions in augmented constraints implementation, momentum matching, ODCA decomposition and correction, ATBI recursions)

Support recursions for state initialization for momentum matching after impact; or for CM drift nulling for MD simulations

Support Pycraft algorithms for sensitivities, Coriolis, etc.

Constraint/collision/contact handling

Support configuration changes in the multibody system, i.e. constraints coming and going (eg. for humanoid application, docking, walking)

Support addition of body geometry and surface contact constraints

Support use in iteractive computations for inverse kinematics; closed-chain state projection

Miscellany

Support "internal model control (IMC)" type algorithms for computations within onboard control software.

Support body reordering and reversal of bodies (for optimization of closure cuts)

Support using alternative integration variables such as for diagonalized dynamics. May need to generalize Qdot to U and converse functions (already doing this for CK?)

Support being able to switch between different frame of integration (eg. inter-planetary trajectory, to EDL trajectory, to rover trajectory)

Support use of different frame (body, inertial, internally referenced) for equations of motion.

6.6.5.2. Ndarts Design Details

Figure 72. Links and hinges in a multibody system

6.6.5.2.1. Key Requirements

Code structuring

Streamline higher level algorithms by moving out lower level computations into lower level classes so can bring in new algorithms.

Keep user level API changes to a minimum.

Give low priority to allowing Dshell to work with Darts++ and Ndarts at the same time to avoid constraining design space.

Kinematics

Use the SOAFrames "Frames" class from the "SOA" module to simplify the kinematics computations.

Allow automatic queries for relative transformations, velocities, and accelerations across arbitrary points of interest.

Avoid unnecessary kinematics computations and overhead.

Hinges

Add support for locked hinge types.

Simplify addition of new hinge types.

Support run-time user defined hinge types.

Constraints

Support constraint embedding.

Support handling of closure constraints.

Support handling of surface contact constraints.

Generalize inverse kinematics to handle much broader class of requirements.

Support working with system subgraphics.

6.6.5.2.2. Obsolete Modules

IKGraph

DartsBase

TerrainSurface

SurfaceContact

6.6.5.2.3. API and Functionatlity Changes

SOA

Changed and renamed all SOAHomTran phi methods

Added support for 0 size matrices and vectors

Now Frame and Frame2Frame classes are derived from DartsBaseObject

Reworked Frame2Frame cache management to allow transform/velocity and acceleration level cache staleness settings

Fixed up the matrix SVD and orthogonal complement methods

Removed and renamed other node, body, hinge methods.

Moved DartsBaseObject class code to DshellEnv

Class refactoring

Stopped using most base classes from DartsBase

Added hinge classes.

Derive subhinge and higne classes from Frame2Frame.

New 6dof hinge.

Derive Node class from Frame.

DartsBody is now derived from DartsNode class

Hence no longer have parallel set of methods for position/velocity of nodes and frames

DartsHinge only requires frame pair - not node pair to allow use with constraints

Kinematics

evalKinematics, evalActuatorKinematics, evalSensorKinematics methods etc. have been removed.

Now do lazy evaluation with caching for transforms, velocities, and accelerations within Frame classes.

Extensive reliance on Frames classes.

Consolidate DartsBody and DartsNode methods to get position, velocities, etc. In the process some of the methods have been renamed.

Changing prescrbied flag of a subhinge should only be done when system is unlocked (open to discussion) since constraint related buffer sizes are effected.

Added notion of minGenCoord to hinges.

Added new DShape class for body geometry

Cosntraints

Complete reworking of constraint handling and inverse kinematics.

Obsoleted use of IKGraph. Changed IK scheme to more robust rechnique.

Added FramePair constraint class to handle any hinge based constraint.

Added support for closure and surface shape to surface shape contact constraints.

Now surface to Dem constraints is handled same way.

Activating/deactivating constraints can only be done when system is unlocked.

Inverse kinematics now leaves prescribed motion hinges unchanged.

Jacobians and Gradients

Now can get Jacobian between any frame pair

Transform gradient methods to complement Jacobian ones.

Now Jacobian methods take extra arguments for skipping prescribed subhinges, and for being maps from generalized velocities of Qdot.

Concept of min gen coords for gradients.

Stricter use of locks

Now need to unlock to change prescribed status as well as active status of constraints.

Global vector offsets are tracked for subhinges and constraint hinges.

Added DartsSubGraph class for a subset of connected bodies.

6.6.5.2.4. Class Hierarchy

Derive Frame and Frame2Frame from DartsBaseObject class

Derive DartsNode from Frame class

DartsHingePnode (new)

DartsHingeOnode (new)

DartsActuatorNode (new)

DartsSensorNode (new)

etc.

Derive DartsBody from DartsNode class

Figure 73. DartsNode classes

Derive DartsSubhinge frmo Frame2FrameEdge class

DartsLockedSubhinge (new)

DartsPinSubhinge

DartsLinearSubhinge

DartsSphericalSubhinge

DartsLinear3Subhinge

etc.

Derive DartsHinge from Frame2FrameChain class

DartsPinHinge (new)

DartsSliderHinge (new)

DartsBallHinge (new)

DartsTranslationalHinge (new)

DartsFull6DofHinge (new)

DartsCustomHinge (new)

Figure 74. Hinge and subhinge classes

6.6.5.2.5. Body Creation Process

The root body’s frame is connected to the global root frame

The steps for the creation of a body include

Create the body and body frame. Temporarily make the body frame the child of the root frame

Create a pnode for the body and (temporarily) make the pnode frame a child of the body frame. Delete the body frame to pnode frame edge and make the body frame a child of the

pnode frame. The pnode frame at this point is dangling and not attached to the frames tree.

Create a 6dof hinge connecting the root body to the new body.

Detach the pnode frame from the body frame if it is attached to the tree (so it can be used as a pframe for the sub-hinges).

Detach the body frame from its current parent frame if the current parent is not the pnode frame since it needs to be a child of the pnode frame.

Create an onode for the body in the root body. Its frame is a child of the root body’s frame.

Create a sequence of sub-hinges that go from the onode and end at the pnode. At this point, the pnode frame is connected back to the frames tree.

Connect the body frame as a child of the pnode frame. Now the body frame is connected to the frames tree.

Now create the proper joint type by deleting the existing hinge and creating one specified by the joint type and connected to correct inboard body.

Delete the existing hinge by deleting all the subhinges and the onode. The subhinge deletion will delete all the frame edges and intermediate oframes. It will leave the pnode frame

unattached to the frame tree.

Create a new hinge of the correct type between the new parent and the body.

6.6.5.3. Body Shape Classes

Each DShape shape represents a parameterized geometry object. Can add a number of geometry objects to a DartsBody instance. Each shape can have its own SOAHomTran offset

transform. Usage of DShape classes include:

Contact kinematics and constraints

partGraphics

DBullet interface

TopoDem terrain vehicle placement, configuration kinematics.

Imposing task space motion constraints (manipulator, vehicle)

General mesh surface (eg. rocks, VRML parts) contact.

Non-penetrating contact bewteen shapes requires that the tangent planes at the points of contact be parallel. The dimentionality of a DShape instance is defined by the number of

parameters needed to specify the contact point on the surface. The following shape classes are currently defined:

DShapePoint : 0-dimensional point.

DShape1D : 1-dimensional surfaces

DShapeStraightLine : Linear straight line.

DShape1DCircle : Thin circular disc.

DShape1DEllipse : Thin ellipse

DShape2D : 2-dimensional surfaces

DShape2DPlane : 2D plane

DShape2DSphere : Spherical surface

DShape2DEllipsoid : A general ellipsoid

DShape2DTorus : A torus

DShapeDem : TopoDem surface

DShapeMesh : General mesh surface (BD)

DShape3D : 3-dimensional surfaces with overhangs (TBD)

DShape classes have a DShape::partGraphics Python method to return a part graphics dictionary appropriate for the shape type.

Figure 75. DShape body geometry classes

6.6.5.4. Constraints

Constraint classes are used to enforce kinematics and dynamics constraints on the articulation and motion of the multibody system. The current family of constraint classes is as follows:

DartsFramePairConstraint : Base class for frame to frame constraints.

DartsClosureConstraint : Limits motion between a pair of frame defined by a DartsHinge type.

Single Node to Frame constraint between a multibody node and an arbitrary Frame (moving or fixed).

Node pair constraint between a pair of multibody nodes.

DartsContactConstraint : Constraint between a multibody node and a DShape surface.

Vehicle configuration kinematics for system level constraints on vehicle/manipulator placement and motion

Place rover

KDriver constraint

Driving Athlete with level hex

Driving Athlete to come to dock

Driving 2 Athletes in docked configuration

Constraint embedding

General loop constraints

Four bar linkage/wishbone constraint

GenCoordsConstraint - algebraic constraint between arbitrary gen coord values (TBD)

For local constraints (gearing, differential), use constraint embedding

More generally need to handle this

Treat prescribed motion as a special case of this constraint on a single hinge

Examples

Prescribed motion constraint (or joint locking)

ATRV driven wheels constraint

Differential constraint

Gearing constraint

Figure 76. Constraint classes

6.6.5.4.1. Node to Fixed frame Constraint

SingleNode constraint - one node is on a multibody system and the other Frame is not on a multibody (but could be a moving frame). The constraint is expressed as a hinge specifying the

allowable motion in the constraint. Enforces constraint relations such as:

ITee(θ) ∗
eeTc(θ) ∗ Toffsets = ITtgt

This constraint takes a node, frame, and hinge as arguments.

It is simpler than the NodePair constraint in that the Jacobian of only one node needs to be computed.

Examples

Articulate antenna to be pointing towards a moving s/x or the sun

Arm inverse kinematics

Move arm so the end effector meets a distance/attitude constraint to a desired task frame.

6.6.5.4.2. Node to Node Constraint (dual arm)

NodePair constraints - where both nodes are on multibody systems and there is a hinge specifying the constraint between them. Enforces constraint relations such as:

ITee(θ) ∗
eeTc(θ) ∗ Toffsets = ITtgt(θ)

This constraint takes a node pair and a higne as arguments

Examples

Place/move rovers in formation offset by a fixed transform

Move arm so its end-effector is a certain distance from a wheel

Figure 77. Example of a node to node constraint on dual-arm end-e�ectors

6.6.5.4.3. Contact constraints

Constraints between a DShape (0, 1, or 2D) and a DShape2D 2D surface

For a 0d surface, the constraint is that the distance between the surfaces is zero.

For a 1d surface, the constraint is that the distance between the surfaces be zero, and at a point of contact, the 1d tangent be orthogonal to the 2D surface normal.

For a 2d surface, the constraint is that the distance between the surfaces be zero, and at the point of contact, the tangent planes for both surfaces be parallel.

The following describes examples of different surface to surface contact constraint

6.6.5.4.3.1. Point 0d contact

Figure 78. Example of a point contact constraint between the end-e�ector and a spherical surface

6.6.5.4.3.2. Circle 1d contact

Figure 79. Example of a 1D circle contact constraint between the end-e�ector and a spherical surface

6.6.5.4.3.3. Ellipse 1d contact

Figure 80. Example of a 1D ellipse contact constraint between the end-e�ector and a spherical surface

6.6.5.4.3.4. Planar 2d contact

Figure 81. Example of a 2D plane contact constraint between the end-e�ector and a spherical surface.

6.6.5.4.3.5. Spherical 2d contact

Figure 82. Example of a 2D spherical contact constraint between the end-e�ector and a spherical surface.

6.6.5.4.3.6. Cylindrical 2d contact

Figure 83. Example of a 2D cylindrical contact constraint between the end-e�ector and a spherical surface.

6.6.5.4.3.7. Ellipsoidal 2d contact

Figure 84. Example of a 2D ellipsoidal contact constraint between the end-e�ector and a spherical surface.

6.6.5.4.3.8. Toroidal 2d contact

Figure 85. Example of a 2D torus contact constraint between the end-e�ector and a spherical surface (incorrect torus graphics - needs to be �xed).

6.6.5.4.3.9. TopoDem 2D contact

Figure 86. Example of a topodem contact constraint between the end-e�ector and a spherical surface.]

6.6.5.5. Constraint Embedding

Constraint embedding

Four bar linkage/wishbone constraint

Gearing constraint

Differential constraint

6.6.5.5.1. Four Bar Linkages

TBD

6.6.5.5.2. Geared Pin Joints

TBD

6.6.5.5.3. Joint-Level Constraints

Algebraic constraint between arbitrary gen coord values. Example usage:

For local constraints (gearing, differential), use constraint embedding

More generally need to handle this

Treat prescribed motion as a special case of this constraint on a single hinge

Examples:

Prescribed motion constraint (or joint locking)

ATRV locked wheels constraint

Differential constraint

Gearing constraint

6.6.5.5.4. Vehicle Con�guration Kinematics

Example usage of vehicle configuration kinematics:

Place rover

KDriver constraint

Driving Athlete with level hex

Driving Athlete to come to dock

Driving 2 Athletes in docked configuration

6.6.6. Ndarts Primary Object Classes API Reference

6.6.6.1. DartsBody API Reference

6.6.6.1.1. Introduction

DartsBody class is inherited from the DartsNode (which in turn is inherited from a DFrame). Bodies can be assembled into larger multibody or subgraph structures using hinges to connect

bodies to one another.

6.6.6.1.2. Inter-body forces

In order to get the forces between two bodies (which are joint by a joint of some type), do this:

This gives you the total force, f, across the joint between 'body' and its parent body, including constrant forces/torques in the non-articulated degrees of freedom as well as joint

forces/torques in the articulated degrees of freedom. By default the result is given in the child body’s frame.

Note that this function takes a second optional argument: the frame you would like the results in. For instance, if you want the results in the parent body frame, you could do this:

where 'pbf' is the parent body frame.

Although these examples are in Python, the C++ code is almost identical.

6.6.6.1.3. DartsBody Class API Documentation

Note

For Doxygen documentation, please see: DartsBody

The Ndarts body class.

C++ includes: DartsBody.h

Creates a DartsBody with the specified name.

If rootBody is true, then the virtual root body is created.

6.6.6.1.4. Related Regression Tests

Ndarts regtest: Jacobians

Ndarts regtest: Jacobian Derivatives

Ndarts regtest: Change Model Params

Ndarts regtest: Procedural serial chain

Ndarts regtest: Procedural tree system

Ndarts regtest: Integration

Ndarts regtest: Inverse Dynamics

from Math.SOA_Py import SOASpatialVector
f = SOASpatialVector()
body.parentHinge().getInterBodyForce(f)

PYTHON

from Math.SOA_Py import SOASpatialVector
f = SOASpatialVector()
body.parentHinge().getInterBodyForce(f, pbf)

PYTHON

class Dshell.Ndarts_Py.DartsBody(DartsBody self, DartsMbody mb, std::string const & _name, bool rootBody=False) → DartsBody
class Dshell.Ndarts_Py.DartsBody(DartsBody self, DartsBody body, DartsMbody other_mb, DartsBody other_parent_body=None) → DartsBody

PYTHON

Click to see the NdartsTest/test/test_Python/test_basic/test_jacobians/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_jacobdot/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_changeModel/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_automated/test_serialChain/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_automated/test_treeSystem/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_integrate/script.py script

Ndarts regtest: Data Cache Forward Dynamics

Ndarts regtest: Data Cache Inverse Dynamics

Ndarts regtest: Operational Space Inertias

Ndarts regtest: Algorithmic multibody

Ndarts regtest: Tumbling Rigid Body

Ndarts regtest: Tumbling Rigid Body (Semi Implicit Euler integrator)

6.6.6.2. DartsSpatialInertia API Reference

6.6.6.2.1. Introduction

DartsSpatialInertia class.

6.6.6.2.2. DartsSpatialInertia Class API Documentation

Note

For Doxygen documentation, please see: DartsSpatialInertia

6.6.6.2.3. Related Regression Tests

Ndarts regtest: Puma General

Ndarts regtest: Puma General Dump

6.6.6.3. DartsConstraint API Reference

6.6.6.3.1. Introduction

DartsConstraint class.

6.6.6.3.2. DartsConstraint Class API Documentation

Note

For Doxygen documentation, please see: DartsBaseConstraint

Note

| For Doxygen documentation for specific constraints, please see: | DartsFramePairConstraint | DartsClosureConstraint

6.6.6.3.3. Related Regression Tests

Ndarts regtest: Ball joint Constraint

Ndarts regtest: Ball joint Constraint

Ndarts regtest: Custom Constraint

Ndarts regtest: UJoint Constraint (Custom)

Ndarts regtest: Locked joint Constraint

Ndarts regtest: Pin joint Constraint

Click to see the NdartsTest/test/test_Python/test_basic/test_inv_dyn/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_dataCaching/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_dataCaching/scriptInverseDyn.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_osi/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_algmbody/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_rigidbody/test_tumbling/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_rigidbody/test_tumbling/scriptEulerSemiImplicit.py script

Click to see the NdartsTest/test/test_Python/test_constraints/test_BallConstraint/script.py script

Click to see the NdartsTest/test/test_Python/test_constraints/test_BallConstraint/script1.py script

Click to see the NdartsTest/test/test_Python/test_constraints/test_CustomConstraint/script.py script

Click to see the NdartsTest/test_Python/test_constraints/test_CustomConstraint/script_u_joint.py script

Click to see the NdartsTest/test/test_Python/test_constraints/test_LockedConstraint/script.py script

Click to see the NdartsTest/test/test_Python/test_constraints/test_PinConstraint/script.py script

Ndarts regtest: Pin joint Constraint

Ndarts regtest: UJoint Constraint

Ndarts regtest: dualArm system

Ndarts regtest: dualArm system

6.6.6.4. DartsMbody API Reference

6.6.6.4.1. Introduction

DartsMbody class is a collection of bodies connected using hinges that form a system. Ideally each simulation should have one multibody that contains all bodies in a scene. Once made, the

multibody can be split into smaller subgraphs (DartsSubGraph’s) for individual analysis.

6.6.6.4.2. DartsMbody Class API Documentation

Note

For Doxygen documentation, please see: DartsMbody

This is the multibody object in Ndarts and derived from the Darts base class.

C++ includes: DartsMbody.h

default constructor

6.6.6.4.3. Related Regression Tests

Ndarts regtest: Jacobians

Ndarts regtest: Jacobian Derivatives

Ndarts regtest: Change Model Params

Ndarts regtest: Procedural serial chain

Ndarts regtest: Procedural tree system

Ndarts regtest: Integration

Ndarts regtest: Inverse Dynamics

Ndarts regtest: Data Cache Forward Dynamics

Ndarts regtest: Data Cache Inverse Dynamics

Ndarts regtest: Operational Space Inertias

Ndarts regtest: Algorithmic multibody

6.6.6.5. DartsSubGraph API Reference

6.6.6.5.1. Introduction

DartsSubGraph class is a collection of connected bodies. Any subgraph can be used for the same type of calculations that a full DartsMbody object supports but restricted to the set of

connected bodies that form the subgraph.

A subgraph is connected to a single parent body (or virtual body in case of the root body).

All the bodies in a subgraph must be connected!

 The DartsMbody class is derived from DartsSubGraph.

6.6.6.5.2. Normal use

If you wish to use a subgraph for multibody calculations, you need to do the following steps:

1. Save the previously active subgraph (usually the main mbody object)

2. Tell mbody to use the subraph for its computations

Click to see the NdartsTest/test/test_Python/test_constraints/test_PinConstraint/script7.py script

Click to see the NdartsTest/test/test_Python/test_constraints/test_UjointConstraint/script.py script

Click to see the NdartsTest/test/test_Python/test_constraints/test_dualArm/script.py script

Click to see the NdartsTest/test/test_Python/test_constraints/test_dualArm/script_old.py script

class Dshell.Ndarts_Py.DartsMbody(DartsMbody self, std::string const & name, Frame frame) → DartsMbody

PYTHON

3. Perform the desired calculations

4. Restore the original previously active subgraph

Here is an example in C++:

Note

Due to recent improvements in Ndarts, temporarily swapping in the subgraph is not necessary to access the position of the subgraph CM. Every subgraph has a CM frame

that is updated automatically— even when the mass of one of the subgraph bodies changes.

However, accesing any of the subgraph inertia properties (including mass) will need the temporary subgraph swap outlined above.

6.6.6.5.3. Issues

One issue that can complicate using a subgraph is if any of the bodies in the subgraph become disconnnected. Since all the bodies in subgraph must be connected, if one body in the

subgraph is detached, it is no longer connected to the other bodies in the subgraph---and the subgraph becomes invalid. Any attempt to lock the mbody object (via lockObject()) will fail.

Since it is not possible to delete a body from a subgraph, the subgraph must be deleted and re-created without the offending body so that it becomes a valid subgraph---then lockObject()

should work.

See the Ndarts-subgraph-topology-regtest-detach regtest for an example of dealing with a subgraph with a detached body (in python).

6.6.6.5.4. DartsSubGraph Class API Documentation

Note

For Doxygen documentation, please see: DartsSubGraph

The multibody subgraph class.

C++ includes: DartsSubGraph.h

Constructor for a subgraph of a graph defined from its list of bodies.

The smallest spanning tree for the input list of bodies is used to define the subgraph’s bodies. If aggregationMode is true, then the spanning tree’s root is used as the virtual root for the

subgraph, and is not included in the subgraph’s internal bodies. If aggregationMode is false, the full spanning tree makes up the bodies in the subgraph, and its ancestor is used for the

virtual root.

When the input list of bodies does not have a common ancestor body, then the multibody virtual root is the subgraph’s virtual root as well, and the spanning forest bodies make up the

subgraph’s bodies.

6.6.6.5.5. Related Regression Tests

Ndarts regtest: Ndarts subgraphs

Ndarts regtest: Ndarts dynamics simulation on a subgraph

Ndarts regtest: Ndarts subgraph properties

Ndarts regtest: Ndarts subgraph summation of forces and torques

6.6.6.6. DartsHinge API Reference

6.6.6.6.1. DartsHinge Class API Documentation

// Get a pointer to the main mbody object
Ndarts::DartsMbody *mbody_sg = static_cast<Ndarts::DartsMbody *>(simulation().mbody());

// 1. Save the previously active subgraph (usually the main mbody object)
Ndarts::DartsSubGraph &previous_sweeps_sg = mbody_sg->sweepsSubGraph();

// 2. Tell mbody to use the subraph for its computations
mbody_sg->sweepsSubGraph(*_computational_sg);

// 3. Perform the desired calculations
const Ndarts::DartsSpatialInertia isp = _computational_sg->inertialFrameCompositeSpatialInertia();
SOAVector3 pbPositionOfCmWrtPb = isp.B2CM();
mass = isp.mass();

// 4. Restore the original previously active subgraph
mbody_sg->sweepsSubGraph(previous_sweeps_sg);

PYTHON

class Dshell.Ndarts_Py.DartsSubGraph(DartsSubGraph self, std::string const & name, DartsSubGraph graph, DartsBodyBaseList1 bodyList, bool aggregationMode) → DartsSubGraph

PYTHON

Click to see the NdartsTest/test/test_Python/test_basic/test_subgraphs/test_subgraph_topology/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_subgraphs/test_subgraph_topology/scriptDyn.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_subgraphs/test_subgraph_properties/scriptDirect.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_subgraphs/test_subgraph_forces/script.py script

Note

For Doxygen documentation about hinges, please see: DartsHinge

Note

| For Doxygen documentation of specific hinge types, please see: | DartsLockedHinge | DartsPinHinge | DartsUjointHinge | DartsGimbalHinge | DartsBallHinge

| DartsSliderHinge | DartsPlanarHinge | DartsTranslationalHinge | DartsCompositeTranslationalHinge | DartsFull6DofHinge |

DartsInertialFull6DofHinge | DartsFull6DofEulerHinge | DartsFull6DofGimbalHinge | DartsCustomHinge

The hinge class. This is a container class of the sub-hinges.

C++ includes: DartsHinge.h

Constructor - registers nodes as well.

6.6.6.6.2. Related Regression Tests

Ndarts regtest: Custom Hinges comparison with Puma

Ndarts regtest: Custom Hinges comparison with Puma (general hinges)

Ndarts regtest: Custom Ujoint Hinge

Ndarts regtest: Custom Ujoint Hinge

Ndarts regtest: Generic Hinges

Ndarts regtest: Puma

Ndarts regtest: Puma Ball Joint

Ndarts regtest: Puma Ball Joint Dump

Ndarts regtest: Puma Free Flying 6DoF

Ndarts regtest: Puma Free Flying 6DoF Dump

Ndarts regtest: Puma Free Flying 6DoF Inertial

Ndarts regtest: Puma General

Ndarts regtest: Puma General Dump

Ndarts regtest: Puma with Internal 6dof hinge

Ndarts regtest: Puma with Internal 6dof hinge (inertial)

class Dshell.Ndarts_Py.DartsHinge(DartsHinge self, DartsMbody mb, Frame oframe, Frame pframe, std::string const & nm="") → DartsHinge

PYTHON

Click to see the NdartsTest/test/test_Python/test_basic/test_customhinge/test_multihinge_compare/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_customhinge/test_multihinge_compare/script_genhinges.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_customhinge/test_ujoint_compare/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_customhinge/test_ujoint_compare/script_u_joint.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_genhinges/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_puma/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_puma_balljt/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_puma_balljt/script1.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_puma_fflying/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_puma_fflying/script1.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_puma_fflying/scriptInertial.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_puma_general/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_puma_general/script1.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_puma_internal6dof/script.py script

Ndarts regtest: Puma with Locked hinge

Ndarts regtest: Puma with Prescribed hinge

6.6.6.7. DartsSubhinge API Reference

6.6.6.7.1. Introduction

DartsSubhinge class is derived from the EdgeFrame2Frame. Subhinges are used as building blocks to make the complete hinges.

6.6.6.7.2. DartsSubhinge Class API Documentation

Note

For Doxygen documentation, please see: DartsSubhingePhysical and DartsSubhingeFixed

Note

| For Doxygen documentation for specific subhinges, please see: | DartsLockedSubhinge | DartsPinSubhinge | DartsLinearSubhinge | DartsSphericalSubhinge |

DartsEulerSphericalSubhinge | DartsLinear3Subhinge

6.6.6.7.3. Related Regression Tests

Ndarts regtest: Custom Hinges comparison with Puma

Custom Hinges comparison with Puma (general hinges)

Ndarts regtest: Custom Ujoint Hinge

Ndarts regtest: Custom Ujoint Hing

Ndarts regtest: Generic Hinges

Ndarts regtest: Puma

Ndarts regtest: Puma Ball Joint

Ndarts regtest: Puma Ball Joint Dump

Ndarts regtest: Puma Free Flying 6DoF

Ndarts regtest: Puma Free Flying 6DoF Dump

Ndarts regtest: Puma Free Flying 6DoF Inertial

Ndarts regtest: Puma General

Ndarts regtest: Puma General Dump

Ndarts regtest: Puma with Internal 6dof hinge

Ndarts regtest: Puma with Internal 6dof hinge (inertial)

Ndarts regtest: Puma with Locked hinge

Ndarts regtest: Puma with Prescribed hinge

/regtests/test_basic/test_puma_prescribed/script.rst

6.6.6.8. DartsNode API Reference

6.6.6.8.1. Introduction

DartsNode class is inherited from the DFrame. Nodes are simply points that are attached to the body. There are many different types of nodes, each with its own particular purpose and

function. For example, the pnode and onode are connection points between hinges and bodies.

6.6.6.8.2. DartsNode Class API Documentation

Note

For Doxygen documentation, please see: DartsNode

Note

| For Doxygen documentation for specific nodes, please see: | DartsSensorNode | DartsActuatorNode | DartsConstraintNode | DartsHingeNode |

DartsHingePnode | DartsHingeOnode

This is the Ndarts Node class, derived from the DartsBaseNode which models the Darts++ node object.

C++ includes: DartsNode.h

Click to see the NdartsTest/test/test_Python/test_basic/test_puma_internal6dof/scriptInertial.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_puma_locked/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_puma_prescribed/script.py script

class Dshell.Ndarts_Py.DartsNode(DartsNode self, DartsBody body, std::string const & name, Ndarts::DartsNode::NodeType node_type) → DartsNode

PYTHON

Constructor for a body node.

6.6.6.8.3. Related Regression Tests

Ndarts regtest: Jacobians

Ndarts regtest: Jacobian Derivatives

Ndarts regtest: Change Model Params

Ndarts regtest: Procedural serial chain

Ndarts regtest: Procedural tree system

Ndarts regtest: Integration

Ndarts regtest: Inverse Dynamics

Ndarts regtest: Data Cache Forward Dynamics

Ndarts regtest: Data Cache Inverse Dynamics

Ndarts regtest: Operational Space Inertias

Ndarts regtest: Algorithmic multibody

6.6.6.9. DartsBStar API Reference

6.6.6.9.1. Introduction

DartsBStar class.

6.6.6.9.2. DartsBStar Class API Documentation

Note

For Doxygen documentation, please see: DartsBStar

6.6.6.9.3. Related Regression Tests

Ndarts regtest: BStar

Ndarts regtest: BStar Body2Joint

Ndarts regtest: BStar Tree

6.6.6.10. DartsInverseKinematicsSolver API Reference

6.6.6.10.1. Introduction

DartsInverseKinematicsSolver class.

6.6.6.10.2. DartsInverseKinematicsSolver Class API Documentation

Note

For Doxygen documentation, please see: DartsInverseKinematicsSolver

6.6.6.10.3. Related Regression Tests

Ndarts regtest: Custom Constraint

Ndarts regtest: UJoint Constraint (Custom)

Ndarts regtest: UJoint Constraint

6.6.6.11. DartsTreeDynamicsSolver API Reference

6.6.6.11.1. Introduction

DartsTreeDynamicsSolver class.

6.6.6.11.2. DartsTreeDynamicsSolver Class API Documentation

Note

For Doxygen documentation, please see: DartsTreeDynamicsSolver

6.6.6.11.3. Related Regression Tests

Ndarts regtest: Puma

Ndarts regtest: Puma General

Click to see the NdartsTest/test/test_Python/test_basic/test_BStar/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_BStar/scriptBodyToJoint.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_BStar/scriptTree.py script

Ndarts regtest: Granular n-Particles

Ndarts regtest: Granular n-Particles Sim

Ndarts regtest: Tumbling Rigid Body

Ndarts regtest: Tumbling Rigid Body (Semi Implicit Euler integrator)

6.6.6.12. DartsSubhingeData API Reference

6.6.6.12.1. Introduction

DartsSubhingeData class.

6.6.6.12.2. DartsSubhingeData Class API Documentation

Note

For Doxygen documentation, please see: DartsSubhingeData

6.6.6.12.3. Related Regression Tests

TBD

6.6.6.13. DShape API Reference

6.6.6.13.1. Introduction

DShape class is for shape models used by Ndarts for analytical shapes used for constraints (eg, a ball rolling on a surface).

6.6.6.13.2. DShape Class API Documentation

Note

For Doxygen documentation, please see: DShape

Note

For Doxygen documentation for specific shapes, please see:

DShapePoint

DShape1D

DShape1DStraightLine

DShape1DCircle

DShape1DEllipse

DShape2D

DShape2DPlane

DShape2DSphere

DShape2DCylinder

DShape2DTorus

DShape2DTorus2

DShape2DEllipsoid

The base class for shapes.

C++ includes: DShape.h

Constructor.

6.6.6.13.3. Related Regression Tests

Ndarts regtest: 2D Cylinder shape

Click to see the NdartsTest/test/test_Python/test_basic/test_granular/test_ngranular/script.py script

Click to see the NdartsTest/test/test_Python/test_basic/test_granular/test_ngranular_sim/script.py script

class Dshell.Ndarts_Py.DShape(DShape self, FrameContainer fc, std::string const & name, size_t dims) → DShape

PYTHON

Ndarts regtest: 2D Ellipsoid shape

Ndarts regtest: 2D Plane shape

Ndarts regtest: Rolling contact kinematics between a plane and a sphere

Ndarts regtest: 2D Sphere shape

Ndarts regtest: 2D Torus shape

Click to see the NdartsTest/test/test_Python/test_shapes/test_cylinder2D/script.py script

Click to see the NdartsTest/test/test_Python/test_shapes/test_ellipsoid2D/script.py script

Click to see the NdartsTest/test/test_Python/test_shapes/test_plane2D/script.py script

Click to see the NdartsTest/test/test_Python/test_shapes/test_roll/script.py script

Click to see the NdartsTest/test/test_Python/test_shapes/test_sphere2D/script.py script

Click to see the NdartsTest/test/test_Python/test_shapes/test_torus2D/script.py script

7. DFrame

7.1. Background

7.1.1. Reference & Source material

DFrame Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

/home/dlab/repo/www/DLabDocs

7.2. Design

7.2.1. DartsFacadeScene

7.2.1.1. Redraw and close registries

DartsFacadeScene comes equipped with an registry and a close registry. Each of these registries is implemented as a DScene::CallbackRegistry , which has a dictionary-like storage

scheme where the keys are strings and the values are callback functions, which take no arguments and return nothing. Whenever the updateSceneFrameTransform method is called, every

callback from the update registry is also called. Whenever the FacadeScene is closed, every callback in the close registry is called; note, callbacks in the close registry are called in the

opposite order they were registered in.

The close registry is designed to remove objects that are created by or needed for the update callbacks. Hence, close callbacks can only be registered when registering an update callback,

and likewise, can only be unregistered when unregistering an update callback.

7.3. Usage

7.3.1. DartsFacadeScene

7.3.1.1. Redraw and close registries

DartsFacadeScene has the following functions that can be used to modify the update and close registries:

registerUpdateCallack - used to register a callback function that will run each time the updateSceneFrameTransforms is called. Optionally, a close callback can be registered as well.

unregisterUpdateCallback - used to remove a callback function from the update registry and from the close registry if applicable.

updateCallbackExists - returns True if the name matches the name of an update callback. Returns False otherwise.

getUpdateCallback - returns the update callback associated with the given name.

For more information on how these registries work, see the DartsFacadeScene design.

7.4. Software

7.5. Raw documentation

 TBD: Need scrubbing before integration.

7.5.1. DFrame: Add method to look up frame from a partial frame names path

 TBD: Needs scrubbing. Notes brought over from issue (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/numerics/dframe/-/issues/3).

There are times when we want to look up a frame by name, but the frame name may not be unique. One way to do this would be to narrow down the look up context to make the search

unique. One way to do this would be to use the names of ancestor frames to define a partial path this is sufficient to find the desire frame. The path does not need to contain all the frames

in the path, but just enough to make the result unique. For instance to find the imu frame on rvr3 , we could look up via the rvr3.imu path.

This can be done by adding 2 methods:

Frame::frameFromPartialPath(const std::string& path) : this would return the downstream frame identified by the partial path. It’s implementation woudl be to recursively look

up the frame from the head of the partial path, and call this method again on the remainder path until the unique frame is found. The method such throw an exception if a unique frame

is not found.

FrameContainer:frameFromPartialPath(const std::string& path) : this would return call the root frame’s method to find the frame.

7.5.1.1. Solution

Added Frame.frameFromPath() method to do this. Skipping the FrameContainer method since it can call the Frame level method on the rootFrame() .

7.5.2. Dshell++: Support calling updateSceneFrameTransform() at the granularity required by individual models

TBD: Needs scrubbing. Notes brought over from issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellpp/-/issues/15#note_9058).

I believe this item is done and ready to close. The final solution also required issues raised in issues https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-

access/development/scene-geometry/dscene/-/issues/21 and https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/licensed/licensed-modules/cadre/-/issues/184. The refactoring

summary is as follows:

models that depend on scenes now need to call updateSFT at the appropriate time with a time stamp

added the public Simulation::_updateSceneFrameTransforms() method that models can call for this. They just need to call the updateSceneFrameTransforms() directly whenever

they are making a scene related call. This can be done by adding code such as

added a Scene::resetTime(time) for such special situations where we need to reset the clock? For example, the EELS placement algorithm can run for up to 10 seconds, and then the

time gets reset to 0.0.

overhauled how scene managers send updated transform info to client scenes to better support client scenes that do not intrinsically support scene graph hierarchies for frames and

objects, and instead assume a flat list

now client scenes can set a flag to indicate that they do not support scene graphs, so that their scene frames do not have children scene frames, and the scene manager sends absolute

pose info for the scene frames.

updated OptixScene , DBullet and DMeshScene to set the non-scene-graph flag

with this done, streamlined and simplified OptixScene interface so that updates happen properly

the Cadre/test/test-ScoutNG2/test_cfg_gnc_zeroimunoise test case verifies that this is working

7.6. Sphinx documentation

7.6.1. Darts/Dshell Frames

7.6.1.1. Frame System Basics

Frames are a convenient way to locate, view and transform Cartesian vector quantities across different entities (possibly in motion) within a simulation. * entities have a physical location

and orientation * entities implicitly or explicitly have frames associated with them

Examples of such entities include:

Celestial bodies (eg. Sun, Earth, Moon)

Spacecraft (eg. ascent vehicles, orbiters, landers)

Spacecraft elements (eg. antennas, sensors)

Topography elements (eg. launch sites, landing sites, DEM patches)

User specified frames of interest (eg. goals, markers for line-of-sight analysis)

3D graphics elements (eg. light location, viewing camera location for chase views)

7.6.1.1.1. Design Goals

Key design goals for the Frame system are to:

Represent Cartesian vector quantities. Other types of coordinate systems (eg, polar/spherical coordinates) must be handled in other ways.

Decouple the frame information from the individual physical object classes, so that all physical objects work with the frames in the same way and with the same API.

Manage the frames family as its own global backbone layer that physical objects are bound to. Thus all transform relations between any pair of objects reduces to queries on the frames

they are attached to.

Build in methods into the frame classes to make it easy to get/set transform relationships among frames so that the simulation objects can make use of this lower level capabilities.

Make it easy to trigger callbacks when the relative transforms between frame pairs change.

7.6.1.1.2. Key Requirements

Some of the key requirements on the Frame classes are:

Be able to get relative transform information of any frame with respect to another frame.

Support different modalities for propagating the parent/child frame relative data.

Be able to use frames uniformly across all simulation elements including multibody components, terrain data, visualization elements etc.

Only recompute data when necessary for better performance.

Be able to change parent/child frame relationships.

7.6.1.2. Frame Object and Trees

Frame objects are attached to physical objects or locations in the world. A tree of Frame object instances defines the (potentially time varying) relationship between the frames.

The Figure illustrates a tree of frames that is typical of a DSENDS simulation setup, with the frames being represented by the circular nodes and the edges denote the parent/child

Frame2Frame transformations.

 DFrame::DartsFacadeSceneFrame* sf = simulation().frameContainer().rootFrame().sceneFrame();
 sf->scene().updateSceneFrameTransforms(t);

7.6.1.2.1. Example Frame Tree

Frame Tree with Darts and Non-Darts Propagated Frames

image::images/Frames_Spice_and_Darts.*[Frame Tree with Darts and Non-Darts Propagated Frames]

See the table in the next section for the acronyms in this figure

7.6.1.2.1.1. Example Frame Tree Objects

Frame Type Notes

SSBC Spice Frame Solar System Barycenter

Target Body Spice Frame Target centered, Mean Equator and Prime Meridian

Target Body Unrotated Spice Frame Aligned with solar system barycenter

INERTIAL Frame Root of the Darts dynamics,

PCI Frame of Body Object Target centered, Mean Equator and Prime Meridian of

epoch

PCR Frame of Body Rotated by Darts a using prescribed kinematics

Target Shape Model Frame of Terrain Object A SimScape TopoPlanet that encodes the topography of the

target

DEM Frame of Terrain Object A high-resolution Digital Elevation Map

Target Location Frame of Node Object Target location specified in TargetLocation param instance

CapsuleBase0 Frame of Body Object The canonical top-most body of the spacecraft with zero

mass and inertial

CapsuleBase Frame of a Body Object Child of the CapsuleBase with non-zero mass and inertia

Ideal IMU node Frame of Node Object A node on the CapsuleBase used to affix an IMU

7.6.1.2.1.2. Example Frame Tree Object Access in Dsends
Each frame may be accessed in the simulation by the following calls at the DSENDS Python prompt:

Frame Python access

SSBC DsendsSim._ssbcFrame

Target Body DsendsSim._targetpcrFrame

Target Body Unrotated DsendsSim._targetJ2000pciFrame

INERTIAL DsendsSim._targetpciFrame

PCI DsendsSim.dsendsassembly._asmTARGET.pci.refNode().frame()

PCR DsendsSim.dsendsassembly._asmTARGET.pcr.refNode().frame()

Target Shape Model DsendsSim.simparams['Target']._topoPlanetglobalDrm.coordInfo().frame()

DEM DsendsSim.simparams['Target']._localDem.coordInfo().frame()

Target Location DsendsSim.dsendsassembly._asmTARGET._asmSiteSensor.nodeFrame

CapsuleBase0 DsendsSim.dsendsassembly._asmSC.topbody.refNode().frame()

CapsuleBase DsendsSim.mbody().body('CapsuleBase',0,True).refNode().frame()

Ideal IMU DsendsSim.mbody().body('CapsuleBase',0,True).sensorNode('IdealIMU').frame().name()

Only a subset of the frame relationships are managed by the Darts dynamics engine with other relationships managed by other software. In DSENDS:

Frames associated with the target body and spacecraft are managed by Darts

Frames associated with other celestial bodies (if present) are managed by the NAIF Spice facility (Note that the target body frame could have been managed by Spice but the DSENDS

implementation uses the dynamics engine so as to provide a more sophisticated control of its time evolution)

7.6.1.2.2. Frame Class

Frame Class Doxygen documentation (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1Frame.html)

Frames and Frame2Frames Doxygen page (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/DFrameFrames.html)

7.6.1.3. The Frame-To-Frame Relationship

A Frame-To-Frame relationship encapsulates the following relative

information between frames

spatial position

attitude

linear velocity

angular velocity

linear acceleration

angular acceleration

In a Frame-to-Frame relationship the convention is to designate:

the first frame has an "o" prefix

the second frame has "p" prefix.

This is an alphabetical convention that the joint node on the inboard body is labelled "o" and the joint node on the outboard body is labeled "p" (since "O" is before "P" alphabetically).

For examples of Frame2Frame uses, see the regression tests in DFrame, DshellCommon, and EduSims.

7.6.1.3.1. Frame2Frame Class

Frame2Frame Class Doxygen documentation (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1Frame2Frame.html)

Frames and Frame2Frames Doxygen page (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/DFrameFrames.html)

7.6.1.3.2. Specialization

When the two Frames in tree have a direct parent-child relationship then a edge relationship exists (In the Figure the CapsuleBase0 and CapsuleBase frames have this relationship).

Further specialization is possible depending on whether the relationship is:

fixed

prescribed using Darts kinematics

defined by non-Darts entities such as Spice.

EdgeFrame2Frame Class Doxygen documentation (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1EdgeFrame2Frame.html)

Frame2Frame Classes Doxygen page (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/DFrame_Frame2Frame_Class_page.html)

When the two frames are arbitrarily located in a Frame tree then a chain relationship exists (In the Figure the CapsuleBase and Target Location have this relationship).

The chain is defined by the sequence of edge relationships obtained from the minimal traversal of the Frame tree between the two frames.

ChainedFrame2Frame Class Doxygen documentation (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1ChainedFrame2Frame.html)

Frame2Frame Classes Doxygen page (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/DFrame_Frame2Frame_Class_page.html)

7.6.1.4. Frame Implementation Issues

7.6.1.4.1. Computational E�ciencies

A number of techniques are used to minimize the re-computation of quantities when a frame or inter-frame quantity is requested. A detailed discussion of the caching, lazy computing,

data freshness and related issues in the implementation may be found at the links:

Data caching notes (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/DataCaching.html)

Frame implementation notes (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/DFrame_Frame_Implementation_Notes_page.html)

7.6.1.5. Frame Tutorial

xref:Sphinx_DFrame_oldframes_regtest[Test for Frame2Frame objects}

7.6.1.5.1. How to get vehicle-relative information

To get the relative position and attitude between any two bodies (or nodes) in the system, follow these steps:

Get the frame for each of the two bodies or nodes, simply use the node or body. In Ndarts, both nodes and bodies are frames. The 'frame' of a body corresponds to the reference

coordinate system for the body.

for example, assume we want to get the relative transform between body1 and node2 (which could be on some other body).

Construct a Frame2Frame object between the two frames

this is the frame2Frame of body2 (frame2) with respect to body1 (frame1).

Retrieve the relative transformation between the two frames:

frame1 = body1.refNode().frame()

frame2 = node2.frame()

PYTHON

f2f = frame1.frame2Frame(frame2)
PYTHON

reltrans = f2f.relTransform()
PYTHON

'reltrans' now contains a SOAHomTran object for the position and attitude of node2 with respect to body1 (in the coordinates of body1).

WARNING

While the Frame2Frame object 'f2f' is a live object that is updated when the multibody system changes, the 'reltrans' object that is obtained with the function call

'relTransform()' is not. 'reltrans' is a static value that is not updated when the multibody system changes. Therefore, it is up to the user to get a new value of the

relative transform each time they need it to guarantee that it is current.

To retrieve the position and attitude of node2 with respect to body1 :

To retrieve the velocity of node2 with respect to body1 (in coordinates of the body1 reference frame):

This returns a SOASpatialVector vector object. Its first three values are the relative rotational angular velocity and its last three values are its relative velocity.

Similarly, the relative acceleration can be obtained:

This also returns a SOASpatialVector vector object. Its first three values are the relative rotational angular acceleration and its last three values are its relative acceleration.

7.6.1.6. Frame-related API Overview

DFrame::Frame (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1Frame.html) API Highlights (selected functions)

DFrame::Frame::isSpiceFrame() (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1Frame.html#a43be400bca005158d1c198bdb1e02e59)

Returns True if the frame is a Spice frame

DFrame::Frame::getParentSpiceFrame() (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1Frame.html#ac0e1379d6230f59100869f20f23daa92)

Return the first ancestor frame that is a SpiceFrame instance

DFrame::Frame::getParentFrame() (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1Frame.html#af766�03d864a480452fce1730775338)

Return the parent frame for this frame

DFrame::Frame::getEdgeFrame2Frame() (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1Frame.html#a24f8de3e70b536e5daed888751e3bdd6)

Return the Frame2Frame object from the immediate parent to this frame

DFrame::Frame::childFrames() (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1Frame.html#a42e0cfd2cec26b799fea1b5fcad34316)

Returns a list of child frames

DFrame::Frame::dumpTree() (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1Frame.html#a9f6bb27a79405090a01f123d9d9da175)

Prints out frames tree starting with the specified base frame

DFrame::Frame2Frame` API Highlights (selected functions) (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1Frame2Frame.html)

DFrame::Frame2Frame::isEdge() (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1Frame2Frame.html#aefc0efc2131d56a17ed67d1a4fcb9dd1)

Returns True if the there is a direct frame to frame connection between the frames involved.

DFrame::Frame2Frame::relTransform()

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DFrame/html/classDFrame_1_1Frame2Frame.html#a3524b7d48f31bfb0f90d5bf94bc22c8e)

Returns the homogeneous transform SOAHomTran . This allows you to determine the relative position and orientation between two frames.

7.6.2. Regression tests

Test for the FrameContainer class

Test for Frame2Frame objects

rpos = reltrans.getTranslation()

quat = reltrans.getQuaternion()

PYTHON

rvel = f2f.oframeDerivRelSpVel()
PYTHON

racc = f2f.oframeDerivRelSpAcc()
PYTHON

Click to see the DFrame/test/test_FrameContainer/script.py script

Click to see the DFrame/test/test_old/script.py script

8. DVar

8.1. Background

8.1.1. Reference & Source material

DVar Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DVar/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

8.2. Design

8.3. Usage

TBD: Needs scrubbing. Notes brought over from issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/simulation-framework/dshellpp/-/issues/15#note_9058).

8.4. Software

8.5. Raw documents

8.6. Sphinx documentation

8.6.1. Darts/Dshell Data Inspection and Updating with Dvar

8.6.1.1. Motivation for DVar

What is DVar?

The DVar C class provides functions to peek/poke C variables. Here’s an example how DVar works: +

+
You can also access the C/C++ variable through python:
+

What DVar is used for

Access to all exposed data products

Peek and poke values

Consistent interface for all simulation data

Connection for data-related call-backs

8.6.1.2. Basics of data inspection using DVar

DVar Leaf Objects

DVar Leaf objects encapsulate most C basic types.

BoolLeaf - boolean

LongLongLeaf - long integer

IntLeaf - integer

PointerLeaf - void pointer

EnumLeaf - maps a string to/from an integer value

UIntLeaf - unsigned integer

DoubleLeaf - double

StringLeaf - fixed length string

StdStringLeaf - C++ string

// This is C++ code
// Register a C/C++ variable with DVar
static double mass;
DvarDoubleLeaf dvar_mass(“mass”, "any description here", &mass);

this is python code
from Dutils import DVar_Py
dvar_mass = DVar_Py.getDvar('.mass') # the leading period is important
dvar_mass(10.0) # set the mass
print dvar_mass() # display the mass value

PYTHON

BoolVectorLeaf - array of boolean

IntVectorLeaf - array of integers

LongVectorLeaf - array of long integers

UIntVectorLeaf - array of unsigned integers

DoubleVectorLeaf - array of doubles

FloatVectorLeaf - array of floats

StringVectorLeaf - array of fixed length strings

DVar Branch Objects

A Branch object is a container (a tree) of Leaf and Branch objects and is useful for representing C structures. + For example this C structure: +

 +
 can be be represented by a DVar Branch object containing a DvarIntLeaf
 and a DvarDoubleVectorLeaf.
* DVar call-back functions

+ Leaf objects allow some optional callback functions to be invoked when their data values are changed. The following types of callbacks are supported:

+

watch

A 'watch' callback will be invoked immediately after a DVar Leaf’s value is changed.

preGet

A 'preGet' callback is invoked before the DVar Leaf’s value is changed and has the opportunity to change the value that is for the new value of the DVar Leaf.

For examples of these two types of callbacks, see the DVar tutorial in the following section.

Other types of callbacks are available at the C++ level but only 'watch' and 'preGet' are available via Python. * DVar Tutorial

+

DVar basics tutorial

Tips on using DVar + The DVar Branch class should be used to hold structures. + The DvarPointerLeaf class can be used to represent binary data (such as an array of terrain pixels). + If

you need to create a new DVar class, it should be subclassed from the DVar Leaf base class. See how the DVar IntLeaf class (in src/DVar/IntLeaf.h) is implemented for an example.

struct {
int flag;
double quaternion[4];
}

Click to see the DshellEnv/test/test_DVar/script2.py script

9. DataRecorder

9.1. Background

9.1.1. Reference & Source material

DataRecorder Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DataRecorder/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

9.2. Design

9.2.1. PlotJugglerRecorder

The PlotJugglerRecorder uses the 3rd party library PlotJuggler to save and view data; see their documentation (https://www.plotjuggler.io/) for more details on how to use PlotJuggler. The

PlotJugglerRecorder is created with a set of parameters that can be used to modify its behavior, these are:

port (int, optional) - Used to modify the PlotJuggler’s default UDP port. (Default = 9870)

launch (bool, optional) - Indicates whether to launch PlotJuggler or not. (Default = true)

layout (str, optional) - If specified, indicates which PlotJuggler layout file to use. (Default = "")

time_dvar (DVar pointer, optional) - If specified, indicates which DVar to use for time (the x-axis in PlotJuggler). (Default = nullptr)

All of these parameters can be modified when creating the recording by specifying them as key-value pairs to DataRecorder_Py.createRecorder . Similarly, they can passed as key-value

pairs to sim.record . Note that while these are the defaults as specified in PlotJugglerRecorder.h, if invoked via sim.record, the time_dvar will be automatically be modified to point to

sim.specNode()["time"] .

9.3. Usage

9.3.1. PlotJugglerRecorder

It is easiest to create an instance of PlotJugglerRecorder via the sim.record method. It can be created using the following,

where kwargs are key-value pairs to pass on to the recorder itself: see the PlotJugglerRecorder design for more details. Once the PlotJugglerRecorder is created, you will receive a message

that states: "Launching plotjuggler. Start the UDP stream then press enter to continue… " This message indicates that you must manually start the UDP stream on PlotJuggler, and then

return to the terminal and press any button to continue the simulation: for a visual example of how to do so, see this recording

(https://dartslab.jpl.nasa.gov/technotes/Talks/2021-12-02-PlotJuggler-leake.mp4).

The data passed to plot juggler can be one of two types: 1. A list of DVar’s 2. A dictionary whose keys are strings and values are lists of DVars. If using the first option, then the name keyword

argument to sim.record can be used to name the list. If using the second option, then the keys specify the name of the associated list of DVars.

9.4. Software

9.5. Raw Documents

9.6. Sphinx Documentation

Note

For doxygen module documentation for DataRecorder, see: DataRecorder Module<index.html>

DataRecorder Logging

9.6.1. DataRecorder Logging

9.6.1.1. Goals

DataRecorder is meant to support HDF5 and perform better than the Dwatch and Dstore.

C++ solution for speed

Save Dvar items and Python callables

HDF5 output for post-analysis

Save-as-you-go to avoid memory limitations

Dwatch-style interface for user-friendly setup

Partially implemented (basic functionality, some limitations)

9.6.1.2. Specifying Variables to Log

DataRecorder uses ONLY DVar spec strings (because logging is done in C++)

sim.record(data, "plotjuggler", **kwargs)
PYTHON

““

Full DVar spec strings, eg:

.mbody.darts.bodies.Base.hinge.Q

Strings that can be evaluated to produce DVar spec strings (ending in ‘.specString()’:

body.parentHinge().subhinge(0).[‘relVel’].specString()

Python objects using Py*Leaf objects (doubles, vectors of doubles,

strings, etc)

PyDoubleLeaf , PyDoubleVectorLeaf , PyStringLeaf , etc

 MISSING DOXYGEN LINK: `PyDoubleLeaf`, `PyDoubleVectorLeaf`, `PyStringLeaf` doxygen links

* In future DataRecorder will support other python callables by converting to spec strings behind the scenes

9.6.1.3. HDF5 Data Structure

Each Dwatch-style .cfg file will create a group. For each group, DataRecorder stores the data in HDF5 Tables

Each table contains:

DATA (for data, one row per instant of time)

Column headers are short names (from .cfg files or created from the end of the specstring).

DATA_ATTRIBUTES

Data type, number of elements, units, spec-string

Name (from Dwatch config files or from spec strings)

Data recording is optimized using the HDF5 Packet Table API. * Assumes same data type is to be written again and again; ideal for data logging applications. * Avoids redundant open/close

calls that normal appending HDF5 API does behind the scenes. * Each packet is composed of a compound data type that encapsulates the data types we plan to record. * At each logging step,

we pack the row of data into contiguous memory and then write it as a packet. * This improves performance by a factor of five compared to the basic HDF5 API.

9.6.1.4. Dwatch-style interface

DataRecorder currently supports a Dwatch-style interface, DwatchHDF5 (which uses the parametersFromDwatchHDF5 function).

Reads Dwatch-style config data and fields to construct HDF5 file, group, and, fields

Uses simulation to control writing output to DataRecorder HDF5

For an example of this, please see the test_Dwatch regtest DataRecorder_regtest_Dwatch .

9.6.2. DataRecorder Logging Example

9.6.2.1. Dwatch-style .cfg �le

Note that most of these examples directly parallel the code in the DataRecorder_regtest_Dwatch regtest. If you have any problems implenting the following items, check the actual

regtest script to get the latest, working version.

If you want to log a variable which is associated with a DVar object, by inserting lines like the following in a .cfg file (and handling the .cfg file as will be described below):

example.cfg

This will be processed later to create DataRecorder objects to log the specified items. A few notes:

time , Q , and vel are straightforward spec strings

[state]

time = ['.Dshell.time', "sec"]

state = """{
'type' : 'string',

 'maxLength': 20,
'function' : 'getCurrentState',

 'description' : 'current fsm state',
'units': '',

}"""

Q = ['.mbody.darts.bodies.CannonballBase.hinge.Q', 'm, rad']

xy = ['.mbody.darts.bodies.CannonballBase.hinge.Q(0-1)', 'm']

x = ['.mbody.darts.bodies.CannonballBase.hinge.Q(0)', 'm']

pos = ["cbbase.parentHinge().subhinge(0).specNode()['translation'].specString()", "m"]

vel = ['.mbody.darts.bodies.CannonballBase.hinge.U(0-2)', "m/s, rad/sec"]

INI

““

state uses a user-de�ned python function that returns the current FSM state. For example, the function might look like this:

The xy spec string includes slicing syntax: Only the �rst two elements will be logged. A single index can be speci�ed like: '(1)' to get only the second

element.

Since getting the full specstring for pos could be tricky in some cases, here we get the 'cbbase' body object and query it as shown to get the desired

DVar object, then we invoke '.specString()' at the end to return the actual spec string.

The trailing empty string means that this data has no units.

9.6.2.2. Supported Conversions

However, if we want to log something that is not a direct DVar object, we will need to construct a 'Py*Leaf' object to create DVar object which will evaluate the underlying function as

necessary for logging. The DataRecorder DwatchHDF5 has conversion mechanisms to do the unerlying DVar work from a simple specification, as shown for the time variable above.

It is still possible to create DVar object in the script and pass its spec string in the .cfg variable definitions (as we did for time above). Once a DVar object is defined, the spec string can be

obtained by using its '.specString()' function.

The general form of the conversion specification is:

where <type> is 'string', 'double', 'doubleVector', 'doubleNewUnits', or 'split'.

For these specifications, the information about the data item is in a simple dictionary. The definition is included in triple-quotes as shown in order to be split on separate lines in the .cfg file.

If you use single quotes, the definition must be one one line.

9.6.2.2.1. Handling a python callable

Examples of the supported conversion mechanims:

String functions

Where '<name of function>' is the string name of the function or callable object (without parentheses). The function or callable cannot take arguments.

'maxLength' is the maximum expected length that the function will return. The underlying DVar object cannot be created without this length.

Double functions

If you have a function that returns a single double value, use this speci�cation:

Where '<name of function>' is the string name of the function or callable object (without parentheses) that returns the double. The function or callable

cannot take arguments.

Double vector functions

If you have a function that returns a vector or array of doubles, use this speci�cation:

def getCurrentState():
 if len(fsm.current_state) > 0:
 state = fsm.current_state[0].name()
 else:
 state = ''
 return state

PYTHON

varname = """{
 'type': '<type>',
 <other arguments>,
 'description': '<description, optional>',
 'units': '<units, optional>',
}"""

PYTHON

strname = """{
 'type': 'strung',
 'maxLength': 20,
 'function': '<name of function that returns a string>',
 'description': '<description, optional>'
}"""

PYTHON

dname = """{
 'type': 'double',
 'function': '<name of function that returns a double>',
 'description': '<description, optional>',
 'units': '<name of units for the returned value, optional>'
}"""

PYTHON

““

““

Where '<name of function>' is the string name of the function or callable object (without parentheses) that returns the double. The function or callable

cannot take arguments.

The 'length' of the resulting vector of doubles must be speci�ed.

9.6.2.2.2. Handling unit conversion on the �y

If you need to log data with unit conversion, this can be accomplished using the following syntax in your .cfg file:

A few notes

All arguments shown are required

'specString' can be either for a single double or a vector of doubles.

'specString' supports the '.specString()' syntax or slicing as described above.

'new_units' is the string name of the new units

'scaleFactor' is the conversion factor to be used. It is up to the user to specify the conversion constant. Note that this may be made optional in the future by using the builtin quantity

info.

converted_value = scaleFactor * old_value

9.6.2.2.3. Splitting a vector into scalar components

If you need to log data and split a vector into several scalar components, this can be accomplished using the following syntax in your .cfg file:

The 'suffixes' will be appended on the name of the original DVar item to make the names of the separate components. In this example, the 'state' vector will be split into 3 scalars named:

'state_x', 'state_y', 'state_z'.

A few notes

'specString' must be for a vector of doubles (or ints)

'specString' supports the '.specString()' syntax or slicing as described above.

the number of suffixes given must match the length of the vector/slice.

If 'new_units' is given, the data must be a vector of doubles. If omitted, no unit conversion occurs.

It is up to the user to specify the conversion constant.

9.6.2.3. Creating the DataRecorder logging objects

In order to use this .cfg file to set up logging in the run script, we add lines like this to the run script:

dvname = """{
 'type': 'doubleVector',
 'length' : 3,
 'function': '<name of function that returns the vector of doubles>',
 'description': '<description, optional>',
 'units': '<name of units for the returned values, optional>'
}"""

PYTHON

state = """{
 'type' : 'doubleNewUnits',
 'specString':
'.dot.separated.dvar.specstring',
 'new_units': 'm',
 'scaleFactor': 1000.0
}"""

PYTHON

state = """{
 'type' : 'split',
 'specString': '.dot.separated.dvar.specstring',
 'new_units': 'km', # OPTIONAL
 'scaleFactor': 1/1000.0, # ONLY needed if 'new_units' is
given
 'suffixes': ('_x', '_y', '_z')
}"""

PYTHON

where namespace is a namespace for objects that will be accessed by the Dwatch specs. For instance, based on the example at the top of this page, namespace might be defined like this:

Each dw created in the loop above will create one HDF5 file, as specified by the top-level .cfg file 'filename' setting.

Note that these loggers are invoked a the end of every IO step (in the EndIOStep phase).

9.6.2.3.1. FSM Controlled Logging

You may also create loggers that are invoked by FSMs. For example, add this to your run script:

The line sim.resultSpects([dw2]) lets the simulation object take control of the DataRecorder objects so that it can do logging after each step.

The FSM will do the invoke the dw2 DataRecorder logging object when the FSM requests. For instance, if the watchAllOnExitStateAction FSM action function from

DshellCommon/fsm/FSMUtils.py is used in the state table, then it will invoke the function onState() from DataRecorder/python/DwatchHDF5.py which then calls the logger’s update()

function on all of the loggers that the simulation has had registred using the sim.resultsSpecs() call.

Alternately, your FSM functions can call the logger’s .update() functions directly as needed.

9.6.2.4. Running the simulation with logging

Later when the simulation is ready to run, simply step the simulation and logging will occur at the end of each IOStep (for the regular logging). FSM logging will occur as FSMs dictate.

9.6.2.5. Logging the intial state

Normally the logging happens at the end of every IO step. However, run scripts can force immediate logging at any point like this:

9.6.2.6. Recording Simulation-Level Meta Data

In the HDF5 files produced by DataRecorder objects, the meta data for a column of data (from the DATA data set) is defined in the DATA_ATTRIBUTES data set. Each item in the

DATA_ATTRIBUTES data set that correspond to data item 'xyz' will the fieldName attribute 'xyz', then attribute name and value. Items that are applicable to the entire run can be saved in

the DATA_ATTRIBUTES data set by using a blank fieldName name. For instance, in order to embed the start time and a few other attributes of the simulation in the HDF5 file, we can add

the following lines to the run script:

from DataRecorder.parametersFromDwatchHDF5Cfg import setupDwatchHDF5
from Dshell.Dshell_Py import CallbackLoggingHandler

dw_objects = []

Set up regular logging
for cfg in ['dwatch/trajSpecs_withpython.cfg']:

dw = setupDwatchHDF5(cfg, sim.dvarContainer(), namespace)
 drlogger = CallbackLoggingHandler()

drlogger.addLogger(dw.logger())
 drlogger.registerLoggers(sim)

dw_objects.append(dw)

PYTHON

namespace = {
 'sim' : sim,

'cbbase' : sim.mbody().body('CannonballBase', 0, True),
 'getCurrentState' : getCurrentState

}

PYTHON

Set up the FSM-based recorder
(These Dwatch items will only be logged as FSMs decide)
dw2 = setupDwatchHDF5('dwatch/eventSpecs.cfg', sim.dvarContainer(), namespace)
sim.resultSpecs([dw2])
dw_objects.append(dw2)

PYTHON

sim.reset() # initializes state machine and time
fsm.step()

Run the sim
for i in range(10000):

sim.step():
 if sim.isTerminated():

break

Close all loggers
for dwobj in dw_objects

dwobj.close()

PYTHON

for dwobj in dw_objects
 dwobj.logger().update()

PYTHON

Write attributes to the HDF5 DATA_ATTRIBUTES table
The attributes are passed through a dictoinary of key/value pairs.
attribute_dict = {}
attribute_dict['start_time'] = time.strftime("%d/%m/%Y %H:%M:%S")
attribute_dict['host_name'] = socket.gethostname()
attribute_dict['script_filename'] = sys.argv[0]

from DataRecorder.parametersFromDwatchHDF5Cfg import writeDwatchHDF5Attributes
writeDwatchHDF5Attributes(dw_objects, attribute_dict)

PYTHON

A similar operation can be done at the end of the simulation to embed the ending time of the simulation.

DataRecorder Module Regtests

9.6.3. DataRecorder Regression Tests

9.6.3.1. test_Dwatch

Example Dwatch usage script

The corresponding Dwatch config file

Click to see the test/test_Dwatch/script_withpython.py script

Click to see the test/test_Dwatch/dwatch/state_withpython.cfg script

10. Dshell++Scripts

10.1. Background

10.1.1. Reference & Source material

Dshell++Scripts Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++Scripts/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

10.2. Design

10.3. Usage

 TBD: Dshell++Scripts documentation TBD.

10.4. Software

10.5. Raw documents

10.6. Sphinx documentation

10.6.1. Logging with DebugLog

Our DebugLog system is based on the Boost Log library. See:

http://boost-log.sourceforge.net (http://boost-log.sourceforge.net/libs/log/doc/html/index.html)

The DebugLog (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++Scripts/html//namespaceDebugLog.html) logging library is in C. We use

{DshellppScripts_DebugLog_namespace_doxygen_ref} in C as well as in Python (via SWIG wrapping).

10.6.1.1. Logging in C++

10.6.1.2. Logging in Python

10.6.1.3. Changing Verbosity

By default the {DshellppScripts_DebugLog_Source_debugLogSource_method_doxygen_uri[DebugLog::Source::debugLogSource] is connected to standard out. The verbosity of the source is

by default at level ERROR. This means only messages higher than ERROR will be sent to the log sink. The verbosity of the standard out sink is by default also at level ERROR. This means the

sink will only print out error messages higher than ERROR.

The available levels in increasing order of severity are defined by the DebugLog::Verbosity

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++Scripts/html//namespaceDebugLog.html#a8ac9951d612c31fb3eafda006fd4035d) enum and are as follows:

DebugLog::Verbosity::ALL - All DebugLog (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++Scripts/html//namespaceDebugLog.html) messages are enabled.

// Get the global Source. We could also create our own instance if we wanted.
DebugLog::Source &dsrc = DebugLog::Source::debugLogSource()

// Instead of printf("My debug message.")
dsrc.debug("My debug message.")

// Instead of printf("My trace message.")
dsrc.trace("My trace message.")

// Instead of printf("My deprecated message.")
dsrc.deprecated("My deprecated message.")

// Instead of printf("My info message.")
dsrc.info("My info message.")

// Instead of printf("My warning message.")
dsrc.warning("My warning message.")

// Instead of printf("My error message.")
dsrc.error("My error message.")

C++

from Dshell import DebugLog_Py
dsrc = DebugLog_Py.Source.debugLogSource()

dsrc.debug('debug message')
dsrc.trace('trace message')
dsrc.deprecated('deprecated message')
dsrc.info('info message')
dsrc.warning('warning message')
dsrc.error('error message')

PYTHON

DebugLog::Verbosity::DEBUG - All debug level messages are generated. Used for verbose output to support debugging needs.

DebugLog::Verbosity::TRACE - All messages to trace program execution are generated. Typically used to trace assemblies creation, SWIG module loading etc.

DebugLog::Verbosity::DEPRECATED - All messages about deprecated usage are generated. Used to warn out the use of deprecated methods that may go way in the near future.

DebugLog::Verbosity::INFO - All 'info' messages about usage are generated. Used to provide non-warning information to users.

DebugLog::Verbosity::WARNING - All warning messages are generated. This is the default setting for normal development use.

DebugLog::Verbosity::ERROR - All error messages are generated.

DebugLog::Verbosity::NONE - All DebugLog (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++Scripts/html//namespaceDebugLog.html) messages are disabled.

Choosing severity levels lower in the list result in less messages being outputted. For example, WARNING will allow warning(), deprecated(), and error() messages to be outputted. Messages

from trace() and debug() will not be outputted.

To change the verbosity of the logging source do the following.

To change the verbosity of the standard out sink do the following.

10.6.1.4. DebugLog Tutorials

The following tutorial demonstrates using DebugLog (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dshell++Scripts/html//namespaceDebugLog.html) with Python. The zipfile download

shown at the top of the tutorial includes a C test program that demonstrates using DebugLog from C.

{

10.6.2. Regression tests

Basic DebugLog regtest

Basic DebugLog regtest with DVar

Dshell++ Model auto-generator regtest

from Dshell import DebugLog_Py
dsrc = DebugLog_Py.Source.debugLogSource()
dsrc.verbosity(DebugLog_Py.WARNING)

PYTHON

from Dshell import DebugLog_Py
sink = DebugLog_Py.StdOutSink.singleton()
sink.verbosity(DebugLog_Py.ALL)

PYTHON

Click to see the Dshell++ScriptsTest/test/test_debug_log/script.py script

Click to see the Dshell++ScriptsTest/test/test_debug_log_dvar/script.py script

Click to see the Dshell++ScriptsTest/test/test_dshell_auto_gen/script.py script

11. SOA

11.1. Background

11.1.1. Reference & Source material

SOA Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SOA/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

Release notes appendices

11.2. Design

The key classes supported are described below:

11.2.1. SOAVector vector class

 MISSING: Add description of SOAVector class

See the SOAVector Doxygen documentation (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SOA/html/classSOAVector.html) for the C++ documentation of this class.

11.2.1.1. SOAVector3 vector class

 MISSING: Add description of SOAVector3 class

11.2.1.2. SOASpatialVector vector class

 MISSING: Add description of SOASpatialVector class

11.2.2. SOAMatrix matrix class

 MISSING: Add description of SOAMatrix class

11.2.2.1. SOAMatrix33 matrix class

 MISSING: Add description of SOAMatrix33 class

11.2.2.2. SOARotationMatrix matrix class

 MISSING: Add description of SOARotationMatrix class

11.2.3. SOAQuaternion unit quaternion class

 MISSING: Add description of SOAQuaternion class

11.2.4. SOAHomTran homogeneous transform class

 MISSING: Add description of SOAHomTran class

See the SOAHomTran Doxygen documentation (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SOA/html/classSOAHomTran.html) for the C++ documentation of this class.

11.2.5. SOASpatialInertia spatial inertia class

 MISSING: Add description of SOASpatialInertia class

See the SOASpatialInertia Doxygen documentation (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SOA/html/classSOASpatialInertia.html) for the C++ documentation of this class.

11.3. Usage

THE FOLLOWING IS TO BE DISCARED (TESTING)

First reference is Simulation time stepping

sedond reference is Multi-rate models

11.4. Software

11.4.1. SOARodriguesParam

11.4.1.1. Can we limit SOARodriguesParam angle to +/i pi range?

 TBD: Flesh out this section on SOARodriguesParam

The magnitude of the coords give us the angle. One would think that there is no physical reason to allow angles outside the [-pi, pi] range. Keeping the angle limited also allows us to avoid

the singularity near the 2*pi multiples. Previously we only worked with +ive angles and unlimited values. This would need to change to allow + and - values. We still would need to use an

epsilon near angle of 0 since the velocity formulas need to behave properly. This change will also mean that there is no reason to change charts. We will always be centered around 0.

NOT SO FAST: There is a problem with this. Even though the transform value does not change with 2*pi changes, the omega to udot value does depend on the value of u(=n\theta). For whle

the SE3 for theta or (theta+2*pi) is the same, the value of {\dot u} is different for u(n, \theta) and u(n, \theta+2*pi)!. Why this matter in our usage is that if the integrator is free-running with

arbitrary \theta, while we are restricting \theta to +/- pi range, then the computed value of {\dot u} with the restricted \theta value will be wrong for the unrestricted \theta, and the

integration will be incorrect. So we cannot internally restrict the range of \theta within the SOARodriguesParam implementation. The integrator values and the SOARodriguesParam

values and usage have to be consistent. Currently the integrator supplies the u to the hinge via setGenCoord, and the hinge gives back the udot to the integrator. So if the hinge internally

does the 2*pi wrapping, then it will be giving back the wrong {\dot u} to the integrator.

OPTIONS: We have two different use cases where this is an issue.

Integration: For this we need to avoid singularities to keep the {\dot u} computation working. This has to be balanced against the need for soft resets required when charts are

changed.

Iteration: This is needed when implicit integrators and their iterators or inverse kinematics are used. Here we cannot be switching charts since the iterator wants to sample the

coordinate space and do what it needs to do in an unconstrained way. The good news here is that there is no need for {\dot u}, and so it does not matter if we are at singularities.

Resolution: Chart switching can only be done in between integration steps and nowhere else. So if can tell the hinge that it is free mode (i.e. in between steps) and make a function

call to allow the hinge to switch charts and signal a soft reset, and lock down the chart for the rest of the time we should be OK. So we should

add a sanitizeCoords() method to subhinges that is typically a noop, but whose job is to santize the coords by switching charts for Rodrigues params, or Euler method for Euler

angles.

before takig a step, add a stateFromIntegrator call, then a call to sanitizeCoords() for all subhinges for them to check and change charts if necessary, and request a soft reset.

and after this make the regular integrate call.

11.5. Raw documentation

 TBD: Need scrubbing before integration.

11.5.1. SOA: Implement default object value printouts using pydump()

 TBD: Needs scrubbing. Notes brought over from issue (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/numerics/soa/-/issues/2).

This is a feature proposal to implement default object value printouts using pydump() with the str() and repr() methods.

E.g.

would produce:

and

would produce:

The reason for proposing to use pydump() as opposed to dumpString() is because Python string dumps gracefully handle large arrays by default, so, e.g.

import SOA_Py
foo = SOA_Py.SOAVector((1, 2, 3))
foo

PYTHON

<SOA_Py.SOAVector; proxy of <Swig Object of type 'SOAVector *' at 0x7f5188b0eb10> >

array([1., 2., 3.])

PYTHON

import SOA_Py
foo = SOA_Py.SOAVector((1, 2, 3))
print(foo)

PYTHON

[1. 2. 3.]
PYTHON

would produce something like:

and

would produce something like:

This could be implemented by adding default str() and repr() methods to SOABase as follows:

11.5.1.1. Implementation

 This has now been implemented.

The main additions in SOA/swig/SOA.i :

Line 66:

import SOA_Py
foo = SOA_Py.SOAMatrix(100, 100)
foo

PYTHON

<SOA_Py.SOAMatrix; proxy of <Swig Object of type 'SOAMatrix *' at 0x7f518a8954e0> >

array([[2.50185949872382e-316, 6.91633697090979e-310,
6.91633653521029e-310, ..., 6.91633653496207e-310,

 6.91633653495575e-310, 6.91633653513914e-310],
[6.91633653494626e-310, 6.91633653330912e-310,

 6.91633653492096e-310, ..., 6.91633699547078e-310,
6.91633653366880e-310, 6.91633698004644e-310],

 [6.91633653320636e-310, 6.91633653320241e-310,
6.91633698005119e-310, ..., 6.91633653304272e-310,

 6.91633653303640e-310, 6.91633653312336e-310],
...,

 [0.00000000000000e+000, 0.00000000000000e+000,
0.00000000000000e+000, ..., 0.00000000000000e+000,

 0.00000000000000e+000, 0.00000000000000e+000],
[0.00000000000000e+000, 0.00000000000000e+000,

 0.00000000000000e+000, ..., 0.00000000000000e+000,
0.00000000000000e+000, 0.00000000000000e+000],

 [0.00000000000000e+000, 0.00000000000000e+000,
0.00000000000000e+000, ..., 0.00000000000000e+000,

 0.00000000000000e+000, 0.00000000000000e+000]])

PYTHON

import SOA_Py
foo = SOA_Py.SOAMatrix(100, 100)
print(foo)

PYTHON

[[2.50185949872382e-316 6.91633697090979e-310 6.91633653521029e-310 ...
6.91633653496207e-310 6.91633653495575e-310 6.91633653513914e-310]

 [6.91633653494626e-310 6.91633653330912e-310 6.91633653492096e-310 ...
6.91633699547078e-310 6.91633653366880e-310 6.91633698004644e-310]

 [6.91633653320636e-310 6.91633653320241e-310 6.91633698005119e-310 ...
6.91633653304272e-310 6.91633653303640e-310 6.91633653312336e-310]

 ...
[0.00000000000000e+000 0.00000000000000e+000 0.00000000000000e+000 ...
 0.00000000000000e+000 0.00000000000000e+000 0.00000000000000e+000]
[0.00000000000000e+000 0.00000000000000e+000 0.00000000000000e+000 ...
 0.00000000000000e+000 0.00000000000000e+000 0.00000000000000e+000]
[0.00000000000000e+000 0.00000000000000e+000 0.00000000000000e+000 ...
 0.00000000000000e+000 0.00000000000000e+000 0.00000000000000e+000]]

PYTHON

import abc
.
.
.
 @abc.abstractmethod

def pydump(self):
 """Abstract pydump() method."""

return "Default object value dump unavailable: pydump() method unimplemented."

def __str__(self):
 return str(self.pydump())

 def __repr__(self):
return "\n\n".join((_swig_repr(self), repr(self.pydump())))

PYTHON

%pythonbegin %{
from __future__ import print_function

 # from __future__ import absolute_import
from __future__ import division

 import re
import abc

 import Dshell.DebugLog_Py, numpy; numpy.set_printoptions(precision=16)
%}

PYTHON

Line 77:

Line 236:

Line 277:

The main additions in SOA/swig/SOAHomTran.i :

Line 66:

%pythoncode %{
def _swig_repr(self):
 """This overrides the SWIG-generated _swig_repr() method in order to
 provide custom default object value outputs using pydump()."""
 name = self.__module__ + "." + self.__class__.__qualname__
 value = repr(self.pydump())
 value = re.sub("^array\(", name + "(\n" + (len("array(") * " "), value)
 return value
 %}

PYTHON

 %pythoncode %{

def pydump(self, indent=''):
 result = {}
 result['mass'] = self.mass()
 result['b2cm'] = self.B2CM().pydump(indent)
 result['mp'] = self.mp().pydump(indent)
 result['cmInertia'] = self.cm_inertia().pydump(indent)
 result['inertia'] = self.inertia().pydump(indent)
 return result

def __repr__(self):
 name = self.__module__ + "." + self.__class__.__qualname__
 cm_inertia_name = self.cm_inertia().__module__ + "." + self.cm_inertia().__class__.__qualname__
 inertia_name = self.inertia().__module__ + "." + self.inertia().__class__.__qualname__
 cm_inertia_offset = len("'cmInertia': " + cm_inertia_name + "([")
 inertia_offset = len("'inertia': " + inertia_name + "([")
 return (name + "(\n {" +
 (",\n" + " " * 5).join((
 "'mass': " + str(self.mass()),
 "'b2cm': " + re.sub("\n\s*", "", self.B2CM().__repr__()),
 "'mp': " + re.sub("\n\s*", "", self.mp().__repr__()),
 "'cmInertia': " + re.sub("\n\s*", "\n" + (" " * (5 + cm_inertia_offset)),
 re.sub("\n\s*", "", self.cm_inertia().__repr__(), 1)),
 "'inertia': " + re.sub("\n\s*", "\n" + (" " * (5 + inertia_offset)),
 re.sub("\n\s*", "", self.inertia().__repr__(), 1)))) + "})")

def __str__(self):
 return "(" + ",\n ".join((str(self.mass()),
 self.B2CM().__str__(),
 self.mp().__str__(),
 self.cm_inertia().__str__().replace("\n", "\n "),
 self.inertia().__str__().replace("\n", "\n "))) + ")"

 %}

PYTHON

@abc.abstractmethod
def pydump(self):
 """Abstract pydump() method."""
 return "Default object value dump unavailable: pydump() method unimplemented."

def __repr__(self):
 try:
 strthis = "proxy of " + self.this.__repr__()
 except __builtin__.Exception:
 strthis = ""
 value = repr(self.pydump())
 return "<%s.%s; %s >\n\n%s" % (self.__class__.__module__, self.__class__.__name__, strthis, value)

def __str__(self):
 return str(self.pydump())

 %}

PYTHON

11.6. Sphinx documentation

Go to active rot spot. The key classes supported are described below:

11.6.1. SOAVector vector class

 MISSING: Add description of SOAVector class

See the SOAVector Doxygen documentation (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SOA/html/classSOAVector.html) for the C++ documentation of this class.

11.6.1.1. SOAVector3 vector class

 MISSING: Add description of SOAVector3 class

11.6.1.2. SOASpatialVector vector class

 MISSING: Add description of SOASpatialVector class

11.6.2. SOAMatrix matrix class

 MISSING: Add description of SOAMatrix class

11.6.2.1. SOAMatrix33 matrix class

 MISSING: Add description of SOAMatrix33 class

11.6.2.2. SOARotationMatrix matrix class

 MISSING: Add description of SOARotationMatrix class

11.6.3. SOAQuaternion unit quaternion class

 MISSING: Add description of SOAQuaternion class

11.6.4. SOAHomTran homogeneous transform class

 MISSING: Add description of SOAHomTran class

See the SOAHomTran Doxygen documentation (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SOA/html/classSOAHomTran.html) for the C++ documentation of this class.

11.6.5. SOASpatialInertia spatial inertia class

 MISSING: Add description of SOASpatialInertia class

See the SOASpatialInertia Doxygen documentation (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SOA/html/classSOASpatialInertia.html) for the C++ documentation of this class.

11.6.6. Rotational Conventions

The Darts/Dshell framework assumes specific rotational conventions. In the analysis of rotations, there are several issues:

def __repr__(self):
 name = self.__module__ + "." + self.__class__.__qualname__
 if self.getTranslation().isZero() and self.getQuaternion().isIdentity():
 return name + "(())"
 elif self.getTranslation().isZero():
 return name + "(\n" + (" " * 4) + "(" + re.sub("\n\s*", "", self.getQuaternion().__repr__()) + ",))"
 elif self.getQuaternion().isIdentity():
 return name + "(\n" + (" " * 4) + "(" + re.sub("\n\s*", "", self.getTranslation().__repr__()) + ",))"
 return (name + "(\n" + (" " * 4) + "("+
 (",\n" + (" " * 5)).join((re.sub("\n\s*", "", self.getQuaternion().__repr__()),
 re.sub("\n\s*", "", self.getTranslation().__repr__()))) + "))")

def __str__(self):
 if self.getTranslation().isZero() and self.getQuaternion().isIdentity():
 return "()"
 elif self.getTranslation().isZero():
 return "(" + self.getQuaternion().__str__() + ",)"
 elif self.getQuaternion().isIdentity():
 return "(" + self.getTranslation().__str__() + ",)"
 return "(" + ",\n ".join((self.getQuaternion().__str__(),
 self.getTranslation().__str__())) + ")"

PYTHON

Whether rotations are "passive" or "active"

Which element of a quaternion is the scalar part

11.6.6.1. Active vs Passive Rotations

In active rotations, the new coordinate system is assumed to be the same as the old coordinate system but the rotation matrix describes how the points in the old coordinate system are

transformed in the new coordinate system. Active rotations are often used in graphics computations.

In passive rotations, the point remains in the same place (conceptually) but the rotation defines how its coordinate representation changes. This is the approach that is often used in robotics

and is also used in the Dartslab code (particularly the Dartslab SOA library).

For a good reference on active and passive rotations, please see this Wikipedia article on active and passive transformations:

Wikipedia article on active and passive transformations (http://en.wikipedia.org/wiki/Active_and_passive_transformation)

11.6.6.2. Quaternion Scalar

The other issue is which element of the quaternion 4-vector is the scalar part. In the SOAQuaternion class, the 3-vector part of the quaternion is actually stored in a separate member

variable from the scalar part. However, SOAQuaternion does support some vector-like operations such as array-access operations. In these operations, in the Dvar representation of

quaternions, and the conversions of a quaternion to a vector for output, the scalar part is assumed to be the last entry in the vector.

11.6.6.3. Rotation Conventions Reference

For a complete description of how rotations are defined and used in Darts/Dshell, please consult the Attitude Representations appendix from Abhi Jain’s book on Robot and Multibody

Dynamics: Analysis and Algorithms (Springer, 2011):

Robot and Multibody Dynamics: Analysis and Algorithms (http://www.amazon.com/Robot-Multibody-Dynamics-Analysis-Algorithms/dp/1441972668)

Appendix B - Attitude Representations <attitude-representations-jain.pdf> (⇐= click to download)

11.6.6.4. Quaternion Operations

To see how to do basic quaternion operations (in python), see this tutorial:

SOAQuaternion regtest

11.6.7. Inertia Tensor

See the following for information concerning the inertia tensor, products of inertia integral sense, and inputs/outputs to SOASpatialInertia:

Inertia tensor negative/positive sense

11.7. Inertia Tensor and Products of Inertia Integral Sense

11.7.1. Inertia Tensor

The inertia tensor (J) is like the effective "rotational mass" of a rigid body and relates the angular momentum (L) to the angular velocity of the body (ω) — all about the center of mass:

L = Jω

In the book Robot and Multibody Dynamics: Analysis and Algorithms (http://www.amazon.com/Robot-Multibody-Dynamics-Analysis-Algorithms/dp/1441972668) [1], the inertia tensor about a point k is

defined as:

J(k) = − ∫Ωℓ̃(k, x)ℓ̃(k, x)ρ(x)dΩ(x)

where

x = the location of a point on the bodyΩ

and [2]

ℓ = ℓ(k, x) = position of point x with respect to point k =

x

y

z

ℓ̃ =

0 −z y

z 0 −x

−y x 0

and

ρ(x) = density at point x

dΩ(x) = a differential mass at point x on the body Ω

Therfore,

Click to see the SOA/test/test_SOAQuaternion/quaternion_tutorial.py script

[]

()

ℓ̃ℓ̃ = ℓℓ∗ − ℓ∗ℓI =

−y2 − z2 xy xz

xy −x2 − z2 yz

xz yz −x2 − y2

Replacing ρ(x)dΩ(x) with dm,

J(k) =

∫ (y2 + z2)dm −∫xydm −∫xzdm

−∫xydm ∫ (x2 + z2)dm −∫yzdm

−∫xzdm −∫yzdm ∫ (x2 + y2)dm

Thus, the inertia tensor is a symmetric tensor that depends on the mass distribution of the body and on the choice of origin for the coordinate system.

11.7.2. Products of Inertia - Negative Integral Sense

The inertia tensor is commonly represented as follows [3]:

J =

Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

Where

Jxx = ∫ (y2 + z2)dm

Jxy = − ∫xydm

etc.

The off-diagonal elements (Jxy, Jxz, etc.) of the inertia tensor are often referred to as the products of inertia. Since these products of inertia include the negative sign, they are referred to as

being in "negative integral sense". This is the sense for [SOA_inertia_tensor_eq_ref].

11.7.3. Products of Inertia - Positive Integral Sense

Another common representation of the inertia tensor I is [4]:

I =

Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

Where,

Ixx = ∫ (y2 + z2)dm = Jxx

Ixy = + ∫xydm = − Jxy

etc.

The off-diagonal elements (Ixy, Ixz, etc.) of the inertia tensor are the products of inertia. Since the products of inertia terms do not include the negative sign, they are referred to as being in

the "positive integral sense". Note that the products of inertia, given in positive integral sense, must be negated when creating the inertia tensor. The resulting inertia tensor is exactly the

same as that for the products of inertia given in negative integral sense.

11.7.4. Simulations

Mass properties reference documents provide products of inertia in either positive or negative integral sense. The sense is important when generating the inertia tensor since the products

of inertia must be negated when given in the positive integral sense.

Some simulations have a flag that designates the products of inertia integral sense. This allows the simulation to properly handle the products of inertia when creating the inertia tensor.

Other simulations do not utilize an integral sense flag but expect the products of inertia to be input in a specific integral sense. This may require a user to modify the products of inertia

prior to entering the data to the simulation in order to match the expected integral sense.

Therefore, it is important for the simulation to designate the expected sense of the input data especially when the product of inertia integral sense is not explicit i.e. no integral sense flag is

used, default case, etc.

11.7.5. SOASpatialInertia

SOASpatialInertia expects the inertia tensor to be input with the products of inertia in negative integral sense (see setSpatialInertia and setCMSpatialInertia methods).

Users must convert products of inertia from positive to negative integral sense prior to input

SOASpatialInertia outputs the inertia tensor with the products of inertia in negative integral sense (see inertia and cm_inertia methods).

11.7.6. Additional Information

()

[]

[]

[]

Regardless of the products of inertia integral sense,

Evaluation of the products of inertia integral may result in a positive or negative value depending on the mass distribution of the body and choice of origin.

The coordinate system in which the inertia tensor was derived may not align with the coordinate system of the environment in which it is used. For example, the mass property data may

be computed in coordinates with the x-axis pointed aft, whereas the simulation coordinate system may define the x-axis as pointed forward. In this case, a frame transformation is

required to properly utilize the inertia tensor. [5]

11.7.7. Footnotes

[1] Jain, Abhinandan. Robot and Multibody Dynamics: Analysis and Algorithms (http://www.amazon.com/Robot-Multibody-Dynamics-Analysis-Algorithms/dp/1441972668). Springer, 2010.

[2] ℓ is defined by A. Jain as ℓ =

a

b

c
. For convenience, ℓ =

x

y

z
 in this computation.

[3] For example, see https://en.wikipedia.org/wiki/Moment_of_inertia.

[4] Ginsberg, Jerry H., and Joseph Genin. Statics ; And, Dynamics: Combined Version (2nd ed.). New York: Wiley, 1984.

[5] The 'bodyToJointQuat' may be used to align a body with the parent.

[] []

12. Spice

12.1. Background

The Spice module provides an interface to JPL’s Spice/NAIF ephemeredes toolkit for obtaining the poses of planetary bodies and spacecraft. The classes in this module are specializations

of the frames classes in the DFrame module.

12.1.1. Bodies and Frames in NAIF

In the NAIF toolkit, NAIF bodies represent objects with a position and velocity and NAIF frames represent orientations. NAIF bodies can represent many types of objects: the solar system

barycenter, planets, moons, asteroids, spacecraft, locations on the surface of the Earth… Each NAIF body is identified by a single numeric ID (e.g. 0) and by at least one name (e.g. SOLAR

SYSTEM BARYCENTER , SSB , …). NAIF bodies may be associated with a default frame that defines the orientation for said body. For example, for the planets, these are usually the IAU frames

(e.g. for Earth , the default frame IAU_EARTH is set). However, it is also possible for objects to have no default frame associated with them.

Similarly, NAIF frames can represent different kinds of orientations: inertial frames, rotation of a planet, orientation of a spacecraft bus, of an instrument… NAIF frames are identified by a

single numeric ID and a single name. Moreover, NAIF frames are always associated with a single body, which is termed its center.

12.1.2. SpiceFrameContainer

A specialization of the DFrame::FrameContainer class to hold body regular and Spice aware frames.

12.1.3. SpiceFrame

The SpiceFrame class is a specialization of the DFrame::Frame class. Much like other DFrame::Frame classes, SpiceFrame has the responsibility of holding enough information for a

DFrame::EdgeFrame2Frame class (in this case SpiceFrame2Frame) to obtain the position, velocity, orientation, and angular rate of the frame with respect to another frame (which we can

assume will be another SpiceFrame).

As discussed in Bodies and Frames in NAIF, within the NAIF toolkit, position and velocities are obtained between two NAIF bodies, while orientations and angular rates are obtained

between NAIF frames. Thus, for a SpiceFrame to provide all the necessary information of a DFrame::Frame , it must know the appropriate NAIF ID of a NAIF body and of a NAIF frame.

SpiceFrames can also be built as "unrotated". This means that they will use the same orientation as the parent frame, i.e. the frame is regarded as being parallel to its parent frame.

12.1.4. SpiceFrame2Frame

This class is a specialization of the DFrame::EdgeFrame2Frame class, and can be used to provide the relative pose between the oframe/pframe SpiceFrame pair. The transform and spatial

velocity values are automatically obtained from the Spice library using the current epoch value.

12.1.5. Reference & Source material

NAIF Spice Webpage (https://naif.jpl.nasa.gov/naif/)

Spice Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Spice/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

12.2. Design

12.2.1. Spice Kernel Loading

This section is based on https://docs.google.com/document/d/1y_ZP88FT7SsuM0xAKQr9Kvj_AqCfbrPO/edit#

We discussed an approach to address the Spice kernel loading issue that Scott Nemeth brought up (in 4/27/20 email) and we discussed the following design:

Add an additional argument default_spice_kernels to:

SpiceFrameContainer::SpiceFrameContainer

SpiceFrameContainer::createSpiceFrameContainer

The default_spice_kernels argument would be a list of strings for the names/paths of the Spice kernels to load by default. Note that this could be a single string or a STL vector of

strings (we have the capability for that via SWIG).

The default value for default_spice_kernels (in the C++ .h file) would be the current list of paths (or updated ones): de418/de418.bsp , cook_01.tls , pck00007.tpc

The behavior in SpiceFrameContainer::SpiceFrameContainer would change:

If default_kernel_path is not empty, then the full paths for default_spice_kernels would be constructed by combining the path with the name.

If default_kernel_path is empty AND default_spice_kernels is NOT empty, then treat each of the items in default_spice_kernels as a full/absolute path and load them.

If both default_kernel_path and default_spice_kernels are empty, not kernels will be loaded; it will be up to the user to load their own kernels.

Update SimulationExecutiveNdarts and SimulationExecutive to support the additional default_spice_kernels argument.

Continue to support the SPICE_KERNELS_PATH environment variable (for backwards compatibility). If the default_kernel_path is empty, then set its value to SPICE_KERNELS_PATH if

it is defined. if both are empty then assume that the paths for the kernels are valid and use as is.

Do not change the current kernel loading behavior in TargetSpiceAssembly . We need it for backwards compatibility and since it makes sense to have the kernels for a specific planetary

body defined close to the rest of the definitions for that body.

Finally, we should regularly update our current list of default kernels and get the latest versions of the leap-seconds file, etc. This should be on the checklist of items to be done for major

releases. NOTE: This should be done and regression tests should be updated before doing the updates above.

The goals for this design are to:

Allow existing simulations run scripts to work without changes

Support the option of loading ALL spice kernels when the SimulationExective is created (in this case you would not specify any kernels in the parameters for TargeSpiceAssembly

objects).

Support loading a user-specified set of default kernels when the simulation is created and then load other kernels later as desired (eg, via TargetSpiceAssembly).

12.3. Usage

12.3.1. Using SpiceFrames in your simulation

12.3.1.1. SpiceFrameContainer

When a simulation needs to use Spice, it will usually use the use_spice=True option when creating the simulation executive:

This will automatically set up the simulation’s frame container as a SpiceFrameContainer , which is capable of generating and handling `SpiceFrame`s.

12.3.1.2. Creating new SpiceFrames

As discussed in the Background section, a SpiceFrame must ultimately always refer to a NAIF body (for its position and velocity) and to a NAIF frame (for its orientation and velocity). We

have three ways of providing this information:

12.3.1.2.1. Providing the NAIF body and the NAIF frame

This is the most explicit method. It allows you the freedom to create any combination of NAIF bodies and NAIF frames. For example, you may create an Earth-centered frame that uses the

inertial J2000 reference frame. For example:

12.3.1.2.2. Providing the NAIF body

The frame used will be the default frame associated with the body. For example, for planets this is usually the IAU reference frame (e.g. for Earth , the IAU_EARTH reference frame).

However, not all bodies have a default reference frame. Sometimes, kernel writers decide not to set a default frame so that users have to be explicit in what frame they want to use. This

is especially true for spacecraft bodies. For example:

12.3.1.2.3. Providing the NAIF frame

The body used will be the center of the provided frame. All NAIF frames have exactly one center associated with them. For example:

12.3.1.2.4. Numeric IDs or names?

You may always use either numeric IDs or names interchangeably. Moreover, names are case insensitive. The following two snippets are exactly equivalent:

12.3.1.3. Creating unrotated SpiceFrames

As mentioned in the Background section, sometimes it is useful to define SpiceFrame s that are oriented parallel to their parent frames. A SpiceFrame of this nature can be obtained with:

12.3.1.4. Creating Planet-Centered Inertial (PCI) frames

Sometimes, we want to create inertial frames from existing, rotating SpiceFrame . This can be done through getPCIFrame :

The Frame earth_PCI will be inertial (has a fixed rotation with respect to the inertial root frame), centered at the Earth, and its rotation is such that it corresponds to the rotation of earth

at the epoch when getPCIFrame was called.

It is also possible to specify an epoch, instead of using the current epoch of the SpiceFrameContainer :

sim = SimulationExecutiveNdarts(..., use_spice=True)

earth = frame_container.getSpiceFrame(399, "IAU_Earth") # body, frame

earth = frame_container.getSpiceFrame(399) # body

earth = frame_container.getSpiceFrameFromNaifFrame("IAU_Earth") # frame

sun = frame_container.getSpiceFrame(10)
mars = frame_container.getSpiceFrame(499, "iau_MaRs")
earth = frame_container.getSpiceFrameFromNaifFrame("IAU_Earth")

sun = frame_container.getSpiceFrame("SUN")
mars = frame_container.getSpiceFrame("mars", 10014)
earth = frame_container.getSpiceFrameFromNaifFrame(10013)

earth = frame_container.getSpiceFrameUsingParentOrientation("Earth")

earth = frame_container.getSpiceFrameFromNaifFrame("IAU_EARTH")
earth_PCI = earth.getPCIFrame()

earth_PCI_2 's orientation will coincide with earth 's rotation at epoch 2000 not at 1000 .

Finally, it is also possible to create a PCI frame that corresponds to a different NAIF frame to that of the PCR frame. For example:

In this case, earth_PCI_3 will not have the same orientation as earth at the current epoch. Instead, it will have the same orientation as earth_ITRF93 (which is created here only for

illustrative purposes). Note that None can be replaced by a specific epoch in getPCIFrame(None, "ITRF93") .

12.3.1.5. Connecting SpiceFrames

Once you have two SpiceFrame s, you may connect them through a SpiceFrame2Frame . In the example below, we are connecting the root inertial frame (J2000) to the Earth, which is then

connected to the moon:

12.3.1.6. Notes

The appropriate Spice kernels must be loaded that support the Spice IDs before trying to create SpiceFrame s.

While the Solar System Barycenter NAIF body (ID 0) doesn’t have a default frame in SPICE, we always use the J2000 (aka EME2000) frame by default for this body.

Spice reserves ids 1400000 through 4000000 for user defined frames (see page 44 in tutorial

(http://www.astronomia.edu.uy/cospar07/material/5%20-%20Jose%20Luis%20Vazquez%20-%20Spice/tutorial/spice.pdf)). These frames are usually defined in FK kernels such as in /misc/ofDate.fk

which must be loaded during initialization.

12.3.2. Spice Utils

The SpiceFrame_Py module has a series of utility functions that might help you operate with Spice bodies and frames:

SpiceFrame_Py.getBodyId: Returns the numeric ID associated with a body name in SPICE.

SpiceFrame_Py.getBodyName: Returns a name associated with the numeric ID of a body in SPICE. Note that bodies can have more than one name. This function will always return the

last name specified for a numeric ID.

SpiceFrame_Py.getFrameId: Returns the numeric ID associated with a frame name in SPICE.

SpiceFrame_Py.getFrameName: Returns the name associated with the numeric ID of a frame in SPICE.

SpiceFrame_Py.getStandardBodyName: Returns always the same name given any of the valid names of a body in SPICE. For example, getStandardBodyName("SSB") ,

getStandardBodyName(" SSB ") , getStandardBodyName("SOLAR_SYSTEM_BARYCENTER") , and getStandardBodyName("Solar System Barycenter") will all return

"SOLAR_SYSTEM_BARYCENTER" .

SpiceFrame_Py.bodyvcd: Get the body parameter value specified. Note: Only is valid for single-valued parameters (eg, mass, GM, R, etc)

SpiceFrame_Py.getDefaultFrameIdOfBody: Returns the ID of the default NAIF frame declared for a NAIF body. Not all bodies have a default frame. If this function is called for a body

without a default frame, an error is raised.

SpiceFrame_Py.getCenterIdOfFrame: Returns the ID of the NAIF body used as the center of a NAIF frame.

SpiceFrame_Py.getPossibleFrameIdsOfBody: Returns a vector containing the numeric IDs of all NAIF frames that have the input NAIF body set as their center. This function is useful

to discover what frames are available for a body.

SpiceFrame_Py.getPositionVelocity: Uses Spice to compute the position and velocity of one NAIF body with respect to another NAIF body at a specified epoch in the given NAIF

reference frame.

SpiceFrame_Py.getRotationAngularRate: Uses Spice to compute the orientation and angular velocity of one NAIF frame with respect to another NAIF frame at a specified epoch.

12.3.3. spkcheck

The command-line tool spkcheck has been designed to assist engineers in visualizing SPICE SPK files and understanding connections between objects defined by these files.

With this tool, one can answer the following questions: * Can the state of object A with respect to B be retrieved at time T? * What is the path of state transformations that SPICE is following

between objects A and B at time T? * What SPK file(s) are enabling retrieving these states?

12.3.3.1. Quick usage guide

The following command will display all distinct time periods in a kernel file FILE and whether the state of target can be retrieved w.r.t center . Note that more than one FILE can be

specified, and each of these can be either an SPK file or a meta-kernel with SPK files. Information on the individual transformations between the two bodies and the file(s) that enable each

transformation is also displayed.

srun spkcheck.py [FILE...] --target [target] --center [center]

Alternatively, all connections in FILE can be displayed with:

frame_container.setEpoch(1000)
earth_PCI_2 = earth.getPCIFrame(2000)

earth_PCI_3 = earth.getPCIFrame(None, "ITRF93")
earth_ITRF93 = frame_container.getSpiceFrameFromNaifFrame("ITRF93")

j2000 = frame_container.rootFrame()
earth = frame_container.getSpiceFrame("EARTH")
moon = frame_container.getSpiceFrame("MOON")

j2earth = SpiceFrame_Py.SpiceFrame2Frame(j2000, earth, True)
earth2moon = SpiceFrame_Py.SpiceFrame2Frame(earth, moon, True)

srun spkcheck.py [FILE...] --file-graphs

A more detailed explanation is provided below.

12.3.3.2. Brief introduction to SPK

SPICE’s tutorial slides (https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/18_spk.pdf) on SPK files are highly recommended. Alternatively, the SPK Required Reading

(https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/spk.html) contains a more detailed explanation of the inner working of the SPK system. This section provides an extremely brief introduction.

Each SPK file contains the state of one or more objects for specific time periods. Each of these states is written with respect to another ephemeris object. The following graph illustrates

these connections (graph modified from SPICE (https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/spk.html#Loading%20Files)):

 Jupiter_Barycenter --- Europa
 / \
 / Spacecraft
 /
 SSB
 \
 \
 \
 Earth-Moon_Barycenter --- Earth

 Mars_Barycenter --- Phobos

SSB is the Solar System Barycenter.

The previous graph can be interpreted as three one-directional paths: * Spacecraft is given w.r.t Europa, which is given w.r.t the Jupiter Barycenter, which is given w.r.t the Solar System

Barycenter. * Earth is given w.r.t the Earth-Moon barycenter, which is given w.r.t the Solar System Barycenter. * Phobos is given w.r.t the Mars Barycenter.

If one wants to retrieve the state of Spacecraft w.r.t the Jupiter Barycenter, SPK will follow the first path backward, chaining through Europa and performing all relevant state

transformations. Alternatively, if one wants the state of Spacecraft w.r.t the Earth, SPK will iterate the first path backward until it reaches the Solar System Barycenter, at which point it will

iterate forward the second path until reaching the Earth. Finally, if one wants to retrieve the state of Spacecraft w.r.t Phobos, SPICE will throw an error. This is because the first and third

paths are completely disconnected.

spkcheck parses SPK files to reconstruct the state transformation chains that SPICE would use (i.e. the graph shown above). From this data, it is capable of finding whether two bodies are

connected at a specific moment.

12.3.3.3. Example use case

The script is available under:

/src/Spice/python/spkcheck.py

One wants to retrieve the state of Neptune’s moon Proteus (NAIF ID: 808) with respect to the Earth (NAIF ID: 399) in 1850 and 2022. To do this, we have a set of kernels and meta-kernels

from the previous project we were working on:

kpool0.tm
/home/simscape/SimScape/NEO/Bennu/bennu_refdrmc_v1.bsp
kpool1.tm

where the contents of kpool0.tm and kpool1.tm are:

KPL/MK

 File name: kpool0.tm

 The SPICE kernels that allow us to get information
 on Neptune's moons.

 \begindata

 PATH_VALUES = ('/home/dlab/pkgs/src/spice/KERNELS')

 PATH_SYMBOLS = ('A')

 KERNELS_TO_LOAD = ('$A/misc/de440s.bsp',
 '$A/misc/nep095/nep095.bsp')

KPL/MK

 File name: kpool1.tm

 The SPICE kernels that allow us to get information
 on Bennu.

 \begindata

 PATH_VALUES = ('/home/dlab/pkgs/src/spice/KERNELS')

 PATH_SYMBOLS = ('B')

 KERNELS_TO_LOAD = ('$B/misc/de440s.bsp',
 '$B/misc/sb-101955-118.bsp',
 '$B/core/cook_01.tls')

These files are available under:

/src/Spice/test/test_spkcheck

12.3.3.3.1. Finding the priority of the �les

We know that the order in which we load the kernels is important, so we would like to get an idea of the priority that each kernel file would have if we were to load each kernel to SPICE in

the following order

kpool0.tm
/home/simscape/SimScape/NEO/Bennu/bennu_refdrmc_v1.bsp
kpool1.tm

To do so, we can run the command

srun spkcheck.py kpool0.tm /home/simscape/SimScape/NEO/Bennu/bennu_refdrmc_v1.bsp kpool1.tm

while will print:

Loaded the following kernels:
 kpool0.tm : $A/misc/de440s.bsp │ Less priority
 kpool0.tm : $A/misc/nep095/nep095.bsp │
 - : ...Scape/NEO/Bennu/bennu_refdrmc_v1.bsp │
 kpool1.tm : $B/misc/de440s.bsp │
 kpool1.tm : $B/misc/sb-101955-118.bsp ▼ More priority

As we can see, the priority with which SPK will use each file corresponds to the order in which they were input in the command and with the order in which the kernels were specified

within each meta-kernel.

Now that we have a breakdown of all the possible files, we realize that we are not interested in those files that give the state of the Bennu asteroid. Therefore, we do not need to load

bennu_refdrmc_v1.bsp or sb-101955-118.bsp . Moreover, we see that de440s.bsp is being loaded twice, which is unnecessary. Thus, for the rest of the examples, we will focus only on

kpool0.tm .

12.3.3.3.2. Determining valid intervals between target and center of motion

We can check whether file kpool0.tm provides sufficient data to compute the state of Proteus w.r.t the Earth with the command:

srun spkcheck.py kpool0.tm --target proteus --center earth

which will output data for three different time intervals. The first one, which covers from 1849 to 1900, is of interest since we want to compute the states in 1850:

1 ==
2 1849 DEC 26 00:00:00.000 - 1900 JAN 01 00:00:41.183 ***NOT VALID***
3 ==
4 Target Body w.r.t Center of Motion C From file...
5 --
6 Position of PROTEUS is not defined
7 --
8 EARTH w.r.t EARTH BARYCENTER $A/misc/de440s.bsp
9 EARTH BARYCENTER w.r.t SOLAR SYSTEM BARYCENTER $A/misc/de440s.bsp
A ==

Note that the line indexes have been added for clarity. Line 2 shows the start and end dates of the interval in Gregorian Calendar format. Moreover, the flag NOT VALID shows that the state

of Proteus cannot be retrieved w.r.t. the Earth for this interval. Details on why this is are contained in the following lines.

Line 6 reveals that, for this time period, the state of Proteus is not specified w.r.t any other body. The chain that defines the state of the Earth, on the other hand, is given by lines 8-9. As we

can see, the file de440s.bsp defines the state of the Earth w.r.t the Earth Barycenter, and the Earth Barycenter w.r.t the Solar System Barycenter. This means that, for example, the state of

the Earth w.r.t the Solar System Barycenter could be retrieved.

Maybe we are luckier for the second year of interest: 2022. In this case, the second interval is of interest, since it covers from 1900 to 2050:

1 ==
2 1900 JAN 01 00:00:41.183 - 2050 JAN 01 00:01:09.183 VALID
3 ==
4 Target Body w.r.t Center of Motion C From file...
5 --
6 PROTEUS w.r.t NEPTUNE BARYCENTER ...c/nep095/nep095.bsp
7 NEPTUNE BARYCENTER w.r.t SOLAR SYSTEM BARYCENTER * ...c/nep095/nep095.bsp
8 --
9 EARTH w.r.t EARTH BARYCENTER ...c/nep095/nep095.bsp
A EARTH BARYCENTER w.r.t SOLAR SYSTEM BARYCENTER * ...c/nep095/nep095.bsp
B ==

In this case, line 2 shows the flag VALID , which means that the state of Proteus can be retrieved w.r.t. the Earth for this interval.

Lines 6-7 reveal that Proteus is defined for this period. In particular, the chain of definitions is Proteus ← Neptune Barycenter ← Solar System Barycenter. Even though the Earth is not

contained in this chain, a common node between the two chains is present (the Solar System Barycenter), and therefore the state can be retrieved. The marker * in the column labeled C

reveals the lines where the `C`ommon node appears.

Interestingly, we see that nep095.bsp is providing both Earth and Proteus state w.r.t the Solar System Barycenter. In the previous interval, however, we saw that the state of the Earth was

given by de440s.bsp . This change happened because the file de440s.bsp was specified in the meta-kernel before nep095.bsp , which means that the latter’s data should replace the

former’s. In this case, if only Proteus’ state is of interest, it would be advantageous to not load de440s.bsp , as it provides no required information.

The previous commands output tables for the three unique periods defined in the SPK kernels. However, we were only interested in two intervals: from 1849 to 1900 and from 1900 to 2050.

We could have used the option --time to avoid printing data for the third interval:

srun spkcheck.py kpool0.tm --target proteus --center earth --time 1875_JAN_01 --time 2000_JAN_01

Here, we are specifying two "instants" of interest (January 01, 1875 and January 01, 2000), so that spkcheck only prints information pertaining to those intervals that contain these dates.

12.3.3.3.3. Visualizing the connections

If one is interested in getting a more complete picture of a (set of) kernels, the --graph option can be used to visualize the tree of connections that SPICE would see if it were to load the

file(s).

Using the file kpool0.tm as defined above, the following command:

srun spkcheck.py kpool0.tm --graphs

produces the following output:

[1849 DEC 26 00:00:00.000 - 1900 JAN 01 00:00:41.183]
 0
 │
 ├───┬───┬───────┬───┬───┬───┬───┬───┬───┐
 │ │ │ │ │ │ │ │ │ │
 ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
 1 2 3 4 5 6 7 8 9 10
 │ │ │
 │ │ ├───┐
 │ │ │ │
 ▼ ▼ ▼ ▼
199 299 301 399

[1900 JAN 01 00:00:41.183 - 2050 JAN 01 00:01:09.183]
 0
 │
 ├───┬───┬───────┬───┬───┬───┬───┬───────────────────────────────────────┬───┐
 │ │ │ │ │ │ │ │ │ │
 ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
 1 2 3 4 5 6 7 8 9 10
 │ │ │ │
 │ │ ├───┐ ├───┬───┬───┬───┬───┬───┬───┬───┬───┐
 │ │ │ │ │ │ │ │ │ │ │ │ │ │
 ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
199 299 301 399 801 802 803 804 805 806 807 808 814 899

[2050 JAN 01 00:01:09.183 - 2150 JAN 22 00:00:00.000]
...

Graph Body Legend
 0 : SOLAR SYSTEM BARYCENTER 1 : MERCURY BARYCENTER
 2 : VENUS BARYCENTER 3 : EARTH BARYCENTER
 4 : MARS BARYCENTER 5 : JUPITER BARYCENTER
 6 : SATURN BARYCENTER 7 : URANUS BARYCENTER
 8 : NEPTUNE BARYCENTER 9 : PLUTO BARYCENTER
 10 : SUN 899 : NEPTUNE
399 : EARTH 801 : TRITON
802 : NEREID 803 : NAIAD
804 : THALASSA 805 : DESPINA
806 : GALATEA 807 : LARISSA
808 : PROTEUS 299 : VENUS
301 : MOON 814 : 814
199 : MERCURY

These graphs represent the connections available in each interval. For the first graph, for example, we can see how 0 flows to 3 and then to 399. Making use of the Graph Body Legend, we

see that this translates to SOLAR SYSTEM BARYCENTER → EARTH BARYCENTER → EARTH. Therefore, the state of the Earth w.r.t the Solar System Barycenter could be obtained, just as the

interval tables showed. Note that Proteus (NAIF ID: 808) does not appear in the graph, thus revealing that no data is available for the body.

For the second graph, we see how Neptune’s Barycenter (8) is now connected to its moons, including Proteus (808). We can also see that the Earth and Proteus are connected in this graph,

which means that the state of one can be obtained with respect to the other. Again, this coincides with the information shown in the tables.

Finally, a more complete graph can be obtained using the --file-graph . This will add the source file where the relation was obtained to each arrow in the graph:

srun spkcheck.py kpool0.tm --file-graphs

which produces:

[1849 DEC 26 00:00:00.000 - 1900 JAN 01 00:00:41.183]
 0
 │
 ├───┬───┬───────┬───┬───┬───┬───┬───┬───┐
 │ │ │ │ │ │ │ │ │ │
F01 F01 F01 F01 F01 F01 F01 F01 F01 F01
 │ │ │ │ │ │ │ │ │ │
 ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
 1 2 3 4 5 6 7 8 9 10
 │ │ │
 │ │ ├───┐
 │ │ │ │
F01 F01 F01 F01
 │ │ │ │
 ▼ ▼ ▼ ▼
199 299 301 399

[1900 JAN 01 00:00:41.183 - 2050 JAN 01 00:01:09.183]
 0
 │
 ├───┬───┬───────┬───┬───┬───┬───┬───────────────────────────────────────┬───┐
 │ │ │ │ │ │ │ │ │ │
F01 F01 F02 F01 F01 F01 F01 F02 F01 F02
 │ │ │ │ │ │ │ │ │ │
 ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
 1 2 3 4 5 6 7 8 9 10
 │ │ │ │
 │ │ ├───┐ ├───┬───┬───┬───┬───┬───┬───┬───┬───┐
 │ │ │ │ │ │ │ │ │ │ │ │ │ │
F01 F01 F01 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02
 │ │ │ │ │ │ │ │ │ │ │ │ │ │
 ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
199 299 301 399 801 802 803 804 805 806 807 808 814 899

[2050 JAN 01 00:01:09.183 - 2150 JAN 22 00:00:00.000]
...

Graph Body Legend
 0 : SOLAR SYSTEM BARYCENTER 1 : MERCURY BARYCENTER
 2 : VENUS BARYCENTER 3 : EARTH BARYCENTER
 4 : MARS BARYCENTER 5 : JUPITER BARYCENTER
 6 : SATURN BARYCENTER 7 : URANUS BARYCENTER
 8 : NEPTUNE BARYCENTER 9 : PLUTO BARYCENTER
 10 : SUN 899 : NEPTUNE
399 : EARTH 801 : TRITON
802 : NEREID 803 : NAIAD
804 : THALASSA 805 : DESPINA
806 : GALATEA 807 : LARISSA
808 : PROTEUS 299 : VENUS
301 : MOON 814 : 814
199 : MERCURY

Graph File Legend
F00 : $A/misc/de440s.bsp F01 : $A/misc/nep095/nep095.bsp

As we can see, each arrow is now labeled with either F00 or F01 . These labels are the alias for the two files de440s.bsp and nep095.bsp , as shown in the Graph File Legend.

The first graph reveals that all relations are given by de440s.bsp (F00), thus loading nep095.bsp would be useless if this were the only interval of interest. The second graph shows how

nep095.bsp (F01) defines new connections. Not only that, but it replaces definitions previously given by de440s.bsp (F00).

Note that, just like in the case of the connection tables, one can use the --time option to limit for which intervals these graphs should be printed.

12.3.3.3.4. Exporting graphs to .dot

If you are using a graphical interface, it may be interesting to export the previous plots to the .dot format. These can then be rendered using Graphviz drawing software. Each graph will be

exported as a unique file in a folder of your choosing:

srun spkcheck.py kpool0.tm --graphs-output kpool_0_graphs

The above command will create the folder kpool_0_graphs , if it does not exist, and will populate it with three files:

corresponding to the three unique intervals defined by kpool0.tm . One can use the --time option to limit for which intervals these files should be generated.

Additionally, if the --target and --center options are set, the the graph will be colored to illustrate the path between target and center in the graph:

srun spkcheck.py kpool0.tm --graphs-output kpool_0_graphs --target proteus --center earth

By default, the .dot and corresponding .pdf files will be generated. You can turn off rendering to .pdf by using the --graphs-output-no-render flag.

The following is an example of a graph generated through this method (does not correspond to the previous examples): dot_graph_example

1849_DEC_25_23:59:18.816_-_1900_JAN_01_00:00:00.000.dot
2050_JAN_01_00:00:00.000_-_2150_JAN_21_23:58:50.816.dot
1900_JAN_01_00:00:00.000_-_2050_JAN_01_00:00:00.000.dot

12.3.3.4. Notes

This script has not been extensively tested, use with care. Hic sunt dracones

It is possible that this script shows that a connection is valid, yet SPICE is unable to retrieve it. Barring bugs in the script, this is because there are missing frame definitions:

If the desired frame for the state is J2000'', then the issue is likely that some of the ephemeris specified by the SPK files are given in a frame other than J2000'' for

which no data is available. This error is uncommon for ss bodies, as their ephemeris is usually expressed in ``J2000''.

If the desired frame for the state is other than ``J2000'', then likely the desired frame is not correctly defined.

An extension to this tool that can detect frame-related failures might be interesting.

12.4. Software

12.5. Raw documents

13. DMesh

13.1. Background

13.1.1. Reference & Source material

DMesh Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DMesh/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

13.2. Design

13.2.1. Mesh class design

 TBD: This section is mostly unfinished and should include information on the design of DMesh as a module, and the design of its various classes and functions.

13.2.1.1. Perturb mesh

The Mesh class has a perturbMesh method that can be used to perturb the vertices of the mesh. For the C++ inteface, this method takes in a

std::function<Eigen::Vector3d(Eigen::Vector3d)> , while in the Python interface the method takes in a Python function of the form Callable . This interface allows users to easily

modify the vertices of a mesh, regardless of whether they are in C++ or Python.

Internally, the Python interface version is implemented by wrapping the Python function within a C++ function of the form std::function<Eigen::Vector3d(Eigen::Vector3d)> and

calling the C++ version of perturbMesh .

13.2.1.2. Embree

 TBD: This section is mostly unfinished and should include information on the design of DMesh as a module, and the design of its various classes and functions.

13.2.1.2.1. Computing closest object to a target point

All of the computeClosestX functions (where X is a point, face, or vertex) utilize the Embree point query function. This function traverses the BVH and for each primitive (mesh face) that

intersects the query domain and calls a user-defined callback. The user-defined callback can perform operations using the primitive, and can modify the size of the query domain.

In general, the computeClosestX callbacks follow the following flowchart:

13.2.1.2.1.1. Closest vertex query
The closest vertex query calculates the distance from the user-defined target point to the vertices associated with the face. If the minimum of these distances is lower than the current

minimum distance, then the minimum distance is updated, the vertex index is saved, and the Embree callback radius is updated.

13.2.1.2.1.2. Closest point query
The closest point query callback is a little more complex than the vertex callback, since we need to find the closest vertex on a face rather than checking a finite number of points. Therefore,

an algorithm is used to find the closest point on a triangle (a face of the mesh) to the user’s target point. This algorithm is described here

(https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf) and an implementation of it can be found in the DistPointTriangle.h header file of GTEngine 6.4

(https://www.geometrictools.com/Downloads/Downloads.html).

/'
 Define a macro that stores the PlantUML theme.

 To use, in your asciidoc wiki page write:

 include::_auto_global/plantUmlTheme.asciidoc[]

 For example,
 ```plantuml 
    include::_auto_global/plantUmlTheme.asciidoc[] 
 @startuml 
 ... 
 @enduml 
 ``` 
'/

!theme spacelab
skinparam ArrowFontColor #446e9b
@startuml
start
:Receive face from Embree;
:Compute new distance for X for this face;
if (Distance is closer than current closest distance?) then (yes)
 :Store X and associated distance.
 Update Embree callback radius.
 Return updated_radius = true;
else (no)
 :Return updated_radius = false;
endif
end

PLANTUML

If the distance of this closest point to the target point is lower than the current minimum distance, then the point location and face ID are saved and the Embree callback radius is updated.

13.2.1.2.1.3. Closest face query
The closest face query uses the same callback as the closest point query: see the closest point query section for details. Since the closest point and closest face do the same computation,

there is also a computeClosestPointAndFace function that does the computation once and returns the value of both the closest point and the closest face.

Note, the closest face can not be found reliably using the closest vertex callback for the reasons described here

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dmesh/-/issues/55).

13.2.2. Mesh Utilities

 TBD: This section is mostly unfinished and should include information on the design of DMesh as a module, and the design of its various classes and functions.

13.2.2.1. Construct mesh from function

The mesh utilities includes constructMeshFromFunction method that can be used to construct a mesh given a user-defined function. This is done as follows: 1. Create a planar mesh. 2.

Perturb that planar mesh using the user-defined function. 3. Return the new mesh

In C++ the user-defined function should be of type std::function<Eigen::Vector3d(Eigen::Vector3d)> , while in Python it should be of type Callable[[float, float, float],

Tuple[float, float, float]] .

13.2.2.2. Simplex noise

The applySimplexNoise function can be used to apply simplex noise to a given mesh. The function perturbs the vertices of the mesh using a simplex noise function. The simplex noise itself

is controlled user defined parameters to the function: see the function doc string for more details.

13.2.3. DMeshObject

DMeshObject is designed to store a DMesh and all of its properties, including:

the faces and vertices, i.e., the geometry of the DMesh

all of the DMesh attributes

the DMesh material

the convex hull file for the DMesh if applicable

This data is stored using the following structure

where a solid arrow indicates a parent/child relationship, and a dashed arrow indicates a potential parent/child relationship. The dashed arrows are used because more than one object can

point to the same FileRef . In that case, one of the objects pointing to the FileRef is a parent, and the other objects pointing to the FileRef merely retain object references to the file.

Note, there can be, and oftentimes are, more than one DMeshAttributeObject and more than one FileRef . However, there will always only be one DMeshObject and one DMeshMaterial

object per DMesh store.

13.3. Usage

13.3.1. DMeshObject

A DMeshObject can be constructed using an id (a string), another DMeshObject , or StoreData . If constructed using another DMeshObject or StoreData , the associated DMesh data will

already be set from the incoming DMeshObject or StoreData . Otherwise, the DMesh data will be filled using a dummy mesh with no vertices or faces.

To modify the DMesh being used by the DMeshObject use the setMesh method. This will automatically parse the DMesh and extract all of the mesh geometry, material, and mesh attribute

data. For example, suppose we had a cube.obj file that defines a mesh. Then, we could create a DMeshObject for it by using:

/'
 Define a macro that stores the PlantUML theme.

 To use, in your asciidoc wiki page write:

 include::_auto_global/plantUmlTheme.asciidoc[]

 For example,
 ```plantuml 
    include::_auto_global/plantUmlTheme.asciidoc[] 
 @startuml 
 ... 
 @enduml 
 ``` 
'/

!theme spacelab
skinparam ArrowFontColor #446e9b
@startuml
map DMeshObject {
faces => DMesh faces data.
vertices => DMesh vertices data.
}

map DMeshMaterialObject {
Double data => All double attributes of the material, e.g., OPACITY defines the opactiy of the material.
String data => All string attributes of the material, e.g., DIFFUSE_MAP defines the map for the diffuse color.
Color data => All color attributes of the material, e.g., AMBIENT_COLOR defines the ambient color of the material. These are stored as a vector of 4 doubles.
Integer data => All integer attributes of the material.
}

map DMeshAttributeObject {
Vector => Stores the actual data of the attribute as a vector or matrix, depending on the data type.
Stride => Stride of the attribute data.
Size => Size of the attribute data.
Interpolation => Defines the interpolation scheme for the attribute.
Invalid data value => Defines the invalid data value for the attribute.
Mode => Attirbute insert mode.
}

map DMeshMaterialTextureObject {
Blend => The blend factor for the texture.
Map mode => Defines how UV coordinates outside the [0..1] range are handled
UV index => UV channel; index into the parent Mesh object's mTextureCoords[].
Mapping => Defines how the mapping coords for a texture are generated
Type => Map type, e.g., Material::DIFFUSE_MAP
OP => Defines how the Nth texture is combined with previous layer.
}

map FileRefs {
Texture files => Contain texture data.
Convex hull files => Contain convex hull data.
}

DMeshObject --> DMeshMaterialObject
DMeshObject --> DMeshAttributeObject
DMeshMaterialObject --> DMeshMaterialTextureObject

DMeshObject ..> FileRefs
DMeshMaterialObject ..> FileRefs
DMeshAttributeObject ..> FileRefs
DMeshMaterialTextureObject ..> FileRefs

@enduml

PLANTUML

from DScene import DMesh_Py as DMesh

Get mesh
importer = DMesh.AssimpImporter()
meshList = importer.importMesh("../test_import/cube.obj", "obj")
mesh = meshList[0]

Create DMeshObject
mo = DMesh.DMeshObject("mesh")
mo.setMesh(mesh)

PYTHON

The above will create a DMeshObject called mo that holds the DMesh data from the cube.obj file.

In addition, the setConvexHulls method can be used to add an associated convexhulls file to the DMeshObject .

To retrieve the DMesh , use the getMesh method. To retrieve the convexhulls file, use the getConvexHullsFile method.

For more examples, see DMesh/test/test_dmesh_object

13.4. Software

13.5. Raw documents

14. CORE

14.1. Background

14.1.1. Reference & Source material

CORE Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/CORE/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

14.2. Design

14.2.1. CORE objects

14.2.1.1. Object versions

(from Abhi’s notes)

Found a bug in several of the getStoreData() method implmentations within the SimScape classes. The _version member was being used to get the version for that class and that would

get stored for the class. This is normally OK, but a problem when the object is actually from a derived class. Thus say the object is a TopoMesh (which is at version 10). Thus its _version

field will have value 10. It is derived from the TopoCloud class (which lets say is at version 6). When storing the object, we want to store a the TopoMesh_Version tag with value 10, and the

TopoCloud_version tag with value 6. However if the getStoreData() method uses the _version field, both tags will be stored with the value 10. When loading back the object, we will have

the strange outcome of the TopoCloud’s constructor (at version 6) being asked to deal with a TopoCloud stored data from version 10 (which does not exist)!

The /home/simscape/SimScape/LSOS/LunarSynthesis/Stores/DataSet1_v1:DS1TiledDem object is one with the TiledData2D version number of 10 stored incorrectly as the Data2DBase

class version.

14.3. Usage

14.4. Software

14.5. Raw documents

15. SimScapeBasic

15.1. Background

15.1.1. Reference & Source material

SimScapeBasic Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SimScapeBasic/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

15.2. Design

15.3. Usage

15.3.1. Importing GeoTi� �les

The following describes the key part of the Topo class hierarchy

The following describes the process for converting a GeoTiff file into a TopoDem in a SimScape store. Also see the recipe

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/team/infrastructure/recipes/-/wikis/docFiles/recipe_ImportingTerrains) for examples of the specific commands to use.

15.4. Software

15.5. Raw documents

16. DScene

16.1. Background

16.1.1. Reference & Source material

DScene Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DScene/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

16.2. Design

16.2.1. SceneObject �ags

Flag Visualization Sensors Collision

VISUAL x x

COLLISON x

PHYSICAL x x x

ORNAMENTAL x

STICK x

16.2.2. CallbackRegistry

The callback registry was designed to meet the following requirements:

1. Callbacks should be uniquely identified via a string.

2. The callback execution should be ordered, and new callbacks should be able to be inserted at an arbitrary location in that order.

3. Can accept callbacks in C++ or Python.

4. Clean interface, i.e., the user should not need to wrap their callback functions. This should be done for them.

5. No memory leaks.

Here is how each of these requirements was met:

1. The callback registry uses an std::unordered_map to associate a name (the key, given as a string) with each callback (the value, given as a callback class that wraps the callback

function). Hence, each callback is uniquely identified via a string.

2. An std::vector is used to store the names of the callbacks. Hence, each name is associated with an index (its position in the vector). When the callback registry is executed, i.e., the

callbacks are executed, the registry loops through this vector in order and then executes the callbacks associated with them. Hence, the callbacks are ordered. Moreover, an index can be

specified when adding a new callback to insert it in a particular location.

3. Rather than store the callback functions directly, a Callback wrapper is used. The Callback wrapper is defined using an abstract base class in C++ called _CallbackBase , that has a

virtual method called execute. A concrete C++ class is derived form this, CallbackCpp , whose execute method is overridden to execute a stored C++ callback. Similarly, using SWIG

directors, a Python class is derived from _CallbackBase , called _CallbackPy , whose execute method is overridden to execute a stored Python callback function. The

CallbackRegistry calls execute on each of the _CallbackBase shared pointers, and the class inheritance takes care of executing the C++ or Python callback. The Callback wrapper

classes are organized as follows:

4. The CallbackRegistry methods accept/return the callback functions directly, and the registry itself takes care of wrapping/unwrapping them in the aforementioned callback

wrappers.

5. Since the CallbackRegistry creates the callback wrappers, it must also take care of ensuring the Python reference counts (for the Python callback wrappers) are incremented and

decremented correctly. This is handled via an intermediate C++ class _CallbackBasePy that increments the Python _CallbackPy object upon creation and holds a reference to it, and

decrements the object upon deletion, so the referenced _CallbackPy will be destroyed as well. The 3rd party module objgraph was used to ensure that there are no memory leaks in

Python, and valgrind was used to ensure there were no memory leaks in C++. See https://mg.pov.lt/blog/hunting-python-memleaks.html blog post for more on objgraph.

16.3. Usage

16.3.1. CallbackRegisry

addCallback - Used to register a callback function. An optional index can be used to place the new callback in a specific position.

getCallback - Returns the callback function assocaited with the given name.

removeCallback - Removes the callback associated with the given name

callbackExists - Returns true if a callback is registered under name. Returns false otherwise.

callbackIndex - Returns the index of the callback in the registry associated with name.

getCallbackNames - Returns a vector of all names associated with callbacks in the registry.

execute - Executes all callbacks in the registry in order.

executeReverse - Executes all callbacks in the registry in reverse order.

dumpCallbacks - Dumps info about the callbacks in the registry.

In addition, the C++ and Python wrappers use operator overloading so the registry can be accessed in a map-like or dictionary-like fashion, respectively. Python also overloads the functions

needed to use the is keyword to determine if a name is in the registry and interate through the names, i.e., it can be used in the same way the is keyword is used on dictionaries.

16.4. Software

16.5. Raw documentation

 TBD: Need scrubbing before integration.

16.5.1. DScene: support of Hapke and Principled material through BodyDParam and general improvements

 TBD: Needs scrubbing. Notes brought over from issue (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dscene/-/issues/23).

This issue aims to describe how geometry inputs to BodyDParam get translated to scene objects, key take-aways from this process, and a proposed implementation for improving this

system and allowing for setting other material types through BodyDParam .

The following is a description (to the best of my understanding) of how inputs to BodyDParam (specifically the geometry-related ones) are handled and passed from class to class until they

reach the C++ objects FacadePartGeometry or FacadeTopoGeometry , which are attached to the scene.

skinparam backgroundColor transparent
@startuml

Class _CallbackBase
{
+execute()
+getCallback()
}

Class CallbackCpp extends _CallbackBase
{
-_f
+execute()
+getCallback()
}
note left of CallbackCpp: _f is type std::function<void()>

Class _CallbackPyBase extends _CallbackBase
{
-_py
+execute()
+getCallback()
+getPyObject()
+setPyObject()
}
note right of _CallbackPyBase: _py is type PyObject*

Class _CallbackPy extends _CallbackPyBase
{
-_f
}
note right of _CallbackPy: _f is a Python function

PLANTUML

Click to expand

From the above explanation, we draw some key points:

The parameters that are needed/used depend on the geometry type: for example, topos will require different inputs than spheres. See table below for a breakdown.

The scene_object_flag is always used, idependently of geometry type.

extra_parameters , scale , material , visibility , translation , and quaternion are used for all geometry types except TRIANGLE_MESH .

There is no way to configure a material other than Phong. The ambience , textureFile , diffusivity , specularity , and emissivity parameters are used to configure this Phong

material.

The following table shows the geometry-specific parameters:

Geometry Type Parameters

TRIANGLE_MESH topo_url

FROM_FILE filenames, override_material

CUBE length, width, height

SPHERE radius

CYLINDER height, radius

CONE height, radius

A new way to define geometries in BodyDParam is proposed that aims to support all material and geometry types. This new system is designed in such a way that no fields need/can be

input if they are not used for that specific material or geometry. This is, if the geometry type is CUBE, then override_material cannot be used, as this is unique to FROM_FILE .

BodyDParam would have a geometry field which is of the type Dict[str, Geometry] . Geometry would be an InputDict with the following fields: scene_object_flag , geometry ,

material . The geometry field could be populated by instances of the following InputDict: TopoGeometry , FileGeometry , CubeGeometry , SphereGeometry , CylinderGeometry ,

ConeGeometry , which would have the necessary fields to populate the respective geometry types. The material field could be populated by instances of the InputDict PhongMaterial ,

PrincipledMaterial , or HapkeMaterial OR by instances of the DScene_Py objects PhongMaterial , PrincipledMaterial , or HapkeMaterial . We have separate InputDict and

DScene_Py objects because InputDict objects are more user-friendly: the play better with IDEs, the constructor can be used to set the values, allows better validation… This is an example of

how creating a BodyDParam might look:

The data from these objects would then have to be "re-shaped" so that it conforms to the format expected by the DartsBody::setBodyParams function. Thus most of the process detailed

above would work exactly the same. However, material data represents a significant challenge. FacadePartGeometrySpec has no way of storing material data other than Phong-related. At

first, I thought a possible way around this would be to change the material after the geometry had been created. However, geometries are not created until the

DartsBody::addPartGeometries function is called, which is done after the assemblies are created and the params bind. Thus it is inevitable that the C++ FacadePartGeometrySpec class

has to change to support the new materials.

The cleanest implementation would be removing the Phong-related variables in the FacadePartGeometrySpec class (ambience , textureFile , diffusivity …) and instead have three

class variables of the types: std::optional<PhongMaterial> , std::optional<PrincipledMaterial> , std::optional<HapkeMaterial> . Then, the FacadePartGeometry constructor (or

FacadeTopoGeometry , if supported) would call setPhongMaterial , setHapkeMaterial , or setPrincipledMaterial as needed (instead of always creating a Phong material and

populating it with parameters from FacadePartGeometrySpec).

The above detailed implementation would be backward-incompatible, as the Phong-related variables would be removed. A backward-compatible implementation would be possible by

keeping these variables (but deprecating them) and also having the std::optional<PhongMaterial> , std::optional<PrincipledMaterial> , and std::optional<HapkeMaterial> .

Then, in the FacadePartGeometry constructor, these material objects would be given priority to set the material. If none are defined, then we would default to creating a Phong material

and populating it with parameters from FacadePartGeometrySpec , thus maintaining previous behaviour.

NOTE: there is an additional way with which geometry appear to be loaded in DARTS, and that is through the Dshell++Scripts/python/MbodyDScene.py module, which handles geometry

dictionaries in a different way (for example, this method supports the attach_topo_to_body_frame for topo). The new way to define geometry in BodyDParam would not be compatible

with MbodyDScene. From Abhi: MbodyDScene is obsolete and can be ignored.

An additional improvement could be made to facilitate defining extra parameters. These would be InputDict that contain "groups" of extra parameters and that should be unpacked on the

extra_parameters field. The following could be defined in geometry.py :

my_body_dparam = BodyDParam(
 ...,
 geometry = {
 "my_cube" : Geometry(
 geometry = CubeGeometry(length=1, width=2, height=3, translation=[0, 1, 0]),
 material = PhongMaterial(ambient_color=[0.2, 0, 0.05])
),
 "file" : Geometry(
 geometry = FileGeometry(file="shape.py", override_material=True),
 material = PhongMaterial(ambient_color=[0.2, 0, 0.05])
),
 }
)

and we could define BodyDParam as:

this would help expose extra parameters and add validation to them early on.

16.5.1.1. Implementation

Most of the features here described have been implemented in DScene-R1-15j, DshellCommon-R1-56, FacadeScene-R1-09d, and Ndarts-R1-66g:

FacadePartGeometrySpec can now hold information about other materials appart from Phong, and this information can be populated in the DVar::Branch constructor

This information is now used in createPartGeometry and in (Ndarts) DartsBody::addPartGeometries to set the correct material in the FacadePartGeometry or FacadeTopoGeometry

respectively.

geometry.py has been renamed to shapes.py and the format used to specify these parts in the python side has changed.

See the following example of how to use BodyDParam in the update:

16.5.1.2. Extra parameters situation

The XXXExtraParameters system is interesting, and there have been proposals to extend the shown proposal even further by making using these classes mandatory. This would mean that

every time a new set of extra parameters is defined one would need to create its InputDict counter part. Then, we could have a class ExtraParameters in geometry.py :

and have the extra_parameters field only accept a list of subclasses of ExtraParameters :

Then, the _ShapeOrFileGeometry should implement a populate_geometry_spec function that unpacks each given ExtraParameters into a single dictionary (the expected format by the

rest of the code). Subclasses of _ShapeOrFileGeometry would need to call the parent populate_geometry_spec without their own implementation of populate_geometry_spec .

16.5.2. DScene: Add better support for client scenes that do not support scene graph constructs

 TBD: Needs scrubbing. Notes brought over from issue (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dscene/-/issues/21).

The goal of this issue is to make it easier to work with client scene’s that do not inherently support scene graph paradigms where nodes have a parent/child hierarchy. While Dspace and

Bullet have scene graph support, OptixScene (nor the proposed [DMeshScene](https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-

geometry/dmesh/-/issues/46)) have this. Our original design took scene graph support for granted, and is set up so that geometry world poses are updated by broadcasting the relative poses

class DBulletExtraParameters(InputDict):
 """Parameters to configure DBullet

 Parameters

 max_vertices : Optional[int]
 max number of verticies
 ...
 """
 max_vertices: Optional[int] = None
 min_clusters: Optional[int] = None
 ...

class MayaSceneExtraParameters(InputDict):
 """
 ...
 """
 maya_file: Optional[str] = None
 maya_texture: Optional[str] = None
 maya_bump_map: Optional[str] = None

my_body_dparam = BodyDParam(
 ...,
 geometry = {
 "my_cube" : Geometry(
 geometry = CubeGeometry(
 length=1, width=2, height=3, translation=[0, 1, 0],
 extra_parameters = {
 **DBulletExtraParameters(max_vertices=2),
 **MayaSceneExtraParameters(maya_file="foo"),
 }
),
 material = PhongMaterial(ambient_color=[0.2, 0, 0.05])
),
 }
)

Click to expand

class ExtraParameters(InputDict):
 """Parent class for all InputDict that define a family of extra parameters"""

class _ShapeOrFileGeometry(Geometry):
 ...
 extra_parameters: Iterable[ExtraParameters]

for the scene frames in the scene graph backbone. When the client scene does not support scene graphs, the current design is awkward since we need to set the absolute - and not relative -

poses of the scene frames. The OptixScene design reflects this awkwardness where the scene frames are being organized into a scene graph hierarchy, but with layers added to ensure

that the absolute poses are up to date. We need to refactor to clean up this code, and make it easier to bring in non-scene-graph scenes such as the new DMeshScene

16.5.2.1. Background

Our initial implementation of DScene includes the SceneFrame class that is used to build up a scene graph hierarchy to which we attach geometries,lights etc. These scene frame instances

are proxies for and track the DFrame::Frame instances in the simulation world. The updateSceneFrameTransforms() method is called by the simulation to push updated relative

transform values to sync up the scene frame and frame worlds.

It is worth noting that we already deviate from the frames scene graph hierarchy and structure in a couple of places: - We allow for the use of client scene specific origin scene frame to

serve as the center of the client scene world. This is to handle single precision accuracy of many client scene implementations. - We allow for rooted scene frames where a scene frame is

detached from its natural parent and instead attached directly to the root scene frame. Once agan this is driven by precision considerations.

16.5.2.2. Proposed solution:

The main idea is to not use parent/child scene graph constructs for client scenes that do not have scene graph support. Instead, all scene frames in such client scenes will be rooted , i.e.

they will all be directly attached to the root scene frame. The current design is set up to the broadcast absolute poses for rooted scene frames, and relative poses for non-rooted ones.

Making all client scene frames rooted will automatically get the broadcasting process to broadcast the right data. Changes needed:

Make the SceneFrame::addChild and SceneFrame::removeChild methods will be empty for non-scene-graph client scenes.

The concept of a rooted scene frame currently is at the FacadeSceneFrame level. This concept instead should be pushed down to the SceneFrame level so that it is available to all client

scenes.

When broadcasting poses, a check should be made whether the client scene frame is rooted or not, and the relative or absolute pose info should be sent.

We should still keep the origin frame concept for client scenes even though all transform updates will be made in double precision. It avoids the issue of z-fighting that come up with a

pair of planetary surface assets.

The client scenes should have a global flag that says if they are scene graph type or not. The manager level updateSFT loops can then be cleaned up by acting on this setting instead of

making checks for each scene frame to see if it has a parent or not. Also the attach methods can automatically disable attachment based on this flag.

Need to simplify the manager’s updateSFT implementation for this more granular rel transform management.

Changes:

FacadeSceneFrame class will have a _root_transform and _stale_root_frame members

the existing rootTransform() getter method will continue to use the current method of computing the value on the fly. Caching these values requires detecting when they are stale and

that can be a headache. For non-SG scene frames there is no nesting so there is not big cost. The root frame value is rarely needed anyway at run-time - mostly for dumps.

DartsFacadeScene::updateSceneFrameTransforms will mostly continue to work as in the past.

it still updates the root2origin transforms for all client scenes first

it also updates the root transform value for all MSF

then it will loop through all manager scene frames (MSF) to set relTransform values

For MSF that have a parent MSF it will set the relTransform as the parent to scene frame transform. Note that the generalization being made here is that just because the MSF has a

parent scene frame, it is not necessary the the associated client scene frames have parents. The ones in client scenes with no scene graph support will not have parent scene frames.

For MSF with no parent the relTransform will be set to the root to scene frame transform

For ones with a parent, a subtle change made is to explicitly call the relTransform method

FacadeSceneFrame::relTransform() will be updated as follows

For each client scene (CS) it will loop through the corresponding client scene frame (CSF)

if the CSF has a parent CSF , then the MSF relTransform will be passed on as is to the CSF relTransform call

if the CSF does not have a parent CSF , then (both of these options will use the root to MSF transform available with the MSF

if the CS has no origin scene frame, then the root to MSF transform will be passed to the CSF relTransform call

if the CS has a origin scene frame, the origin to MSF transform will be applied instead.

For client scenes with no scene graph support

Set the _is_scene_graph member to false in the scene constructor

Disable the scene frame addChild and removeChild method

Scene dumps should show the same origin and root transform values, however the relative transform will be different, so regtests may need to be updated

get rid of the updateTree(), cached transforms etc from the client scenes. They should no longer be needed

17. FacadeScene

17.1. Background

17.1.1. Reference & Source material

FacadeScene Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/FacadeScene/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

17.2. Design

17.2.1. Registering client scenes

17.2.1.1. Syncing up client scene objects

A requirement on the DScene approach is that client scenes can come and and go at any time - before and even after the manager scene has been populated with objects. Also objects

can be added and removed from the scene at any time and all client scenes are expected to stay in sync.

Indeed we often have the scenario where the manager scene is created, various geometry objects are added to it, and only later are specific client scenes and collision detection

registered with the manager. At the early stage before even a client scene has been registered, there is no "user" for the objects, and there is no real reason to populate them. We

expect the manager to sync up and populate the client scenes with all the objects it has.

This requirement means that the scene manager needs to keep track of all of the heterogeneous objects, and for each of these objects to know enough about its properties so that it

can introspect and pass them on to a new client scene so that it can faithfully create a mirror instance of the object.

To achieve this, the manager keeps a list of all objects that are created in a list of deferred objects . The idea being that the creation of proxy versions of deferred objects can be

deferred to when a new client scene has been registered. Every scene frame and scene object at the manager level inherits from the DeferredObject class which has the _realize

and _initialize methods. When a new client scene is created the following steps are taken:

the _realize() method is called for each of the objects in the deferred list with the client scene as an argument. This method calls constructors to create a proxy version in the

client scene. Note that some types of objects may be unsupported by some client scenes (eg. light object for collision client scenes), and in this case this the _realize method does

nothing and does not create a proxy method.

following this, the _initialize() method is called for each of the objects in the deferred list with the client scene as an argument. The job of this method is to pass and set the

parameters in the new proxy child to get it ready for use. Nothing is done if a proxy implementation for the client scene was not created. If there is an implementation, then this

method walks through the parameters assigned to the manager version of the object and calls the appropriate methods on the proxy implementation with the parameter values.

17.2.2. Various object types

17.2.2.1. Part geometries

Part geometry instances can be added to add geometry to the overall scene.

17.2.2.1.1. Multiple shapes support

Geometry definitions can come in various flavors. They can be parameterized primitive shapes (eg. boxes, spheres, cylinders), procedurally created meshes with faces and vertices, or from

CAD format obj , gltf etc files. All of these shape choices are supported.

We have 2 choices for the implementation:

Create an empty part geometry instance via createPartGeometry() , and later flesh it out by assigning it a shape and relevant parameters.

Or, since each shape type requires different parameters, we would can have multiple createPartGeometrySphere() , createPartGeometryCylinder() etc methods with each taking

custom parameter arguments. We do have the option of having such a single constructor and using a single std::variant argument for the various shape parameters to help create

the right shape object, but std::variant is not friendly for the Python interface generation via SWIG .

So the choice is between a single creation method, and multiple shape setting methods, or multiple constructors. We have chosen the 2-step first approach for part geometries, and the 1-

step second approach for topo geometries. So there is a single createPartGeometry() method, and multiple method options such as sphere() , cylinder() etc to assign a shape and

set the shape parameters for the object.

One simplification would be to have a single shape() method that takes different parameter value arguments for the different shape types - however this gets ugly too when we

multiple shape types take the same number of arguments (eg. cylinder and cone).

17.3. Usage

17.4. Software

17.5. Raw documents

18. OptixScene

18.1. Background

18.1.1. Reference & Source material

OptixScene Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/OptixScene/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

18.2. Design

18.2.1. Key components and their relationships

The following provides an overview of the overall structure of the OptixScene architecture for sensors and viewports.

The Engine keeps track of all the sensor Pipelines (so they can be marked for recreating

Need Builder::update to rebuild the acceleration structure (IAS) and the Engine::buildChangedOnQueue to regenerate all the sensor pipelines, if renderables have been

added/deleted

each viewport has a sensor that is derived from a SceneObject . This is different from other client scenes such as DspaceScene.

The DOptixEngine instance also keeps a DGLDualEngine instance which is used for OpenGL rendering. This latter engine keeps a list of DGLRenderable objects which are associated

with lines, trails etc that are needed.

some PlantUML diagrams to capture the design

18.2.1.1. Event queue processing

The problem is that the event queue thread alternates between processing all the ordinary events that are added by most optix calls, and poll events with the glfwWaitEventsTimeout call,

if there are no gui events it will wait the full time even if there are ordinary events from optix calls queued up. So the glfw wait timeout is causing the processing of ordinary events to be

delayed. This is made worse if the ordinary event is one that requires the sim thread to sync, such as one that returns a value, because then the sim thread also has to wait for the glfw

timeout. This may be why ROAMS is taking a long time to start up. I think the proper fix is really to spawn another thread for each GUI viewport and call glfwWaitEvents in a loop on that

thread. This will cause the thread to block until the moment a glfw GUI event becomes available. The GUI event handler would be running on a different thread from our existing event

queue thread, so it couldn’t safely make low level optix calls. To be thread safe, the handler for these glfw events could add an event to our existing event queue. This would remove the

need for any explicit sleeps or busy waiting.

The current solution that seems to work well is to switch the main look to use glfwPollEvents when there are events in the queue, and to fallback to glfwWaitEventsTimeout with a

10ms timeout when idling. This seems to keep the system responsive, while also keeping the CPU from maxing out. Note that the ROAMS gui is by itself maxing out the CPU - which is a

separate issue that needs to be fixed.

18.2.1.2. Sensors and viewports

The split between sensors and viewports is introduced in OptixScene and is differentiated from DspaceScene’s use of viewports.

Sensors are the data generation classes and inherit from DOptixSensor , for example DOptixCameraSensor and DOptixLidarSensor . These classes define appropriate ray generation

capabilities and sensor configurations. These classes can generate data in any manner they deem necessary and do not rely on GL functionality to perform their respective data generation.

Viewports are data display classes which can allow sensors to draw their data to a screen (including drawing frames,trails, or text over the sensor data), or allow interaction with a sensor.

These classes inherit from DOptixViewport , and include DOptixSensorViewport and DOptixInteractiveViewport .

The DOptixCameraSensor and DOptiLidarSensor classes do the actual work. We can associate viewports with them to display or interact with the sensor data, or wrap the sensor for

backward compatibility with old-style viewport uses.

A viewport-sensor combination can be created together via the scene. For example: * scene.createViewport() and scene.createOffscreenViewport() create a perspective camera

sensor with a DOptixInteractiveViewport .

Here is a description of how viewports are implemented. As shown in the figure below, a viewport can be a

An empty wrapper around a sensor: DOptixViewport

A window where sensor data is displayed without interaction: DOptixSensorViewport

A window where the user can interact with the sensor or sensor data: DOptixInteractiveViewport

DOptixInteractiveViewport extends DOptixSensorViewport .

Also, as shown in the figure, each viewport has a registered sensor which does the real work of doing the appropriate sensor specific rendering. The currently supported sensors are

camera sensors

lidar sensors

Each viewport/sensor has an independent rendering pipeline independent of others. So multiple viewports and sensors can co-exist.

18.2.1.2.1. 3D graphics visualization viewports

On-screen viewports are either DOptixSensorViewport or DOptixInteractiveViewport type. These viewports use GLFW to create a window to which sensor data and GL overlays can be

drawn. The sensor data along with scene ornaments are drawn to the viewport by DOptixSensor::_GLDraw() such that each sensor can define how its own data should be drawn. An 2D

window overlay can be added with ImGui to add text such as current FPS or "DARTS Lab".

For camera sensors, this is simiply the rendered buffer as an image, while for Lidar’s, a color map is used to visually display the depth map output. To save the sensor’s information directly

to a file, you can call viewport.writeContentsToFile() . For a camera, this will save the image, without any overlays. When a window is used, and it is necessary to save the contents for

the window to a file (e.g. to save an image of a lidar’s point cloud drawn over an image of terrain), you can call viewport.writeWindowedContentsToFile() . This writes out the pixels being

displayed in the viewport’s window.

Furthermore DOptixInteractiveViewport has a mousing interface via a Trackball model that supports zooming, panning, rotating and resizing features. The trackball model’s mousing

callback updates the viewport’s reference view frame based on mouse motion events. Additionally, only a DOptixInteractiveViewport supports pointCameraAt(eye, lookat, up)

functionality, as this is considered interacting with the sensor through the viewport.

In certain cases, included tests, it may be beneficial to have interaction (e.g. pointCameraAt(eye, lookat, up) without a window, or it may be beneficial to hide the glfw window so that a

developer can keep working while tests run. In these cases, viewport can be created in headless or hidden mode. These modes are equivalent to the graphics concept of headless and

offscreen rendering.

headless : the viewport’s window and all GL -related calls are disabled. This means no window will be shown and no graphics context is required (i.e. no X context for linux machines).

Additionally, all GL-draws are disabled, resulting in disabling of draw frames, trails, text, etc. Finally, viewport.writeWindowedContentsToFile() is disabled, as this saves the GL-window

to file. viewport.writeContentsToFile() is still available as it writes the underlying sensor’s data to file without any GL additions.

hidden : the viewport’s window will be used, but will remain invisible to the user. Since a hidden glfw window is not a well-defined rendering target, a gl framebuffer object is used as

the render target regardless of glfw window visibility. When the window is visible, this framebuffer is blitted to the glfw window (copied with interpolation). This allows hiding and

showing the glfw window without losing functionality. For a DOptixSensorViewport , this also allows the sensor’s GL render target to be independent of the size of the glfw window. For

a hidden window, viewport.writeWindowedContentsToFile() and viewport.writeContentsToFile() are both available.

headless and hidden can be passed as booleans through extra_parameters to DOptixSensor::createViewport() , DOptixScene::createViewport() or

DOptixScene::createOffscreenViewport :

virtual DOptixViewport* createViewport(DScene::ViewportType vw_type = DScene::VIEWPORT_TYPE_SENSOR,
 unsigned int width = 0,
 unsigned int height = 0,
 unsigned int antialiasing_factor = 0,
 const std::map<std::string, boost::any>& extra_parameters = {});

virtual DOptixInteractiveViewport* createViewport(const std ::string& name,
 unsigned int width,
 unsigned int height,
 bool interactive = true,
 bool keyboard_interaction = false,
 unsigned int antialiasing_factor = 0,
 const std::map<std::string, boost::any>& extra_parameters
 = std::map<std::string, boost::any>()) override;

virtual DOptixViewport* createOffscreenViewport(const std::string& name,
 unsigned int width,
 unsigned int height,
 unsigned int antialiasing_factor = 0,
 const std::map<std::string, boost::any>& extra_parameters = {}) override;

C++ example:

DOptixViewport* viewport = sensor->createViewport(DScene::VIEWPORT_TYPE_INTERACTIVE,
 0u,
 0u,
 0u,
 { { "hidden", true }, {"headless", false} });

Python example:

viewport = scene.createViewport("viewport", 1280, 720, extra_parameters={"headless": True, "hidden": False})

18.2.1.2.1.1. Visualizing multiple lidar sensor outputs
Having this feature requires us to combine the render results of multiple separate pipelines - one for the plan view camera, and one or more lidar sensors - into a single viewport display. An

approach to doing this would be to

ensure that the plan view pipeline gets rendered last after all the lidar ones have been rendered

register the lidar sensors with the plan view viewport

update the GLDraw part of the viewport code to call GLDraw on each of the registered lidar sensors as well to add in their contributions to the plan view on-screen display.

18.2.1.2.2. Sensors

Sensors are derived from DScene::SceneObject class, and can thus be attached to scene frames (for chase view) or be free standing. Each sensor has a full rendering pipeline containing a

raygen action and multiple filters specific to the sensor type.

Each sensor has a view frame specified in different frame representations as follows:

GL view frame : which specifies the rendering pose in the sensor’s frame. This view frame is identical is kept in sync with the parent viewport’s reference view frame. This view frame

is used as follows.

Each sensor of camera type has a DGLDualRenderFilter filter as the last filter in its pipeline which contains a list of GL renderable objects for frame axes, bounding boxes, trails,

text labels. This filter uses OpenGL to render and add such content to the the optix ray-tracing based rendering buffer in the on-screen viewport display.

This view frame is used to visually display the point cloud range output of sensors of lidar type via the DOptixGuiViewport::_redrawOnQeue() method and merge it into the on-

screen viewport display.

optix view frame : this representation is in the scene’s origin frame and is used by optix for the ray tracing rendering.

trackball view frame : this representation is in the parent scene frame. It is used for re-centering the trackball’s internal frame to avoid gimbal lock singularities.

18.2.1.2.2.1. Viewport/sensor poses and mousing
As described above, sensors have a viewing frame (or pose) used for the optix rendering. The pointCameraAt() and setCameraTransform() viewport methods can be used to change the

sensor’s pose.

For perception sensor simulations, the parent viewport is used to visualize, write to file, and output the rendered data. In this case the viewport has the same pose as the sensor, and

mousing interface is disabled to keep them in lock.

For visualization the DOptixGuiViewport provides additional support for mousing interface. The mouse can be used to change how we view the sensor data for interactive visualization.

For this case, the viewport pose should be independent of the sensor pose.

We need this decoupling to visualize lidar point cloud data from different vantage points. For this case, the mouse motion callback gets the current desired pose and updates just the

queuevar_reference_frame value to set the viewport’s viewing frame, and does not change anything in the sensor.

For simple 3D visualization (instead of perception sensor models) we want to in fact lock the sensor pose to the viewport pose and control them via the mouse. For this case, the mouse

motion callback gets the current desired pose and updates just the queuevar_reference_frame value to set the viewport’s viewing frame, but also simulataneously calls the sensor’s

setReferenceFrmae method to sync up the sensor’s pose to match that of the viewport. Also, for this case, when the pointCameraAt etc methods are called to directly set the sensor’s

pose, the new values are also used to sync up the viewport’s pose so they stay in sync.

18.2.1.2.3. Sensors and the event queue

Most of the viewport methods do their work by posting events on the event queue. Sensors keep track of both sim and event queue versions of data. The former are updated and used on

the main thread, while the latter are used by the events on the event queue. Since the event queue will normally lag the sim thread in time, it is very important that each thread only use the

data mean for it to avoid data race issues. Each sensor instance manages has 2 member instances of SensorParameters named _sim_params and _queued_params . The helper

_sensorParameters(bool on_queue) method can be used to retrieve, with true argument returning the queued version and false the sim version. Whevever, the sim parameters are

updated from the main thread, it is usually necessary to register an event on the event thread to set the same values in the queued parameters. Event queue methods should always be

working with the queued paramters, and main thread ones with the sim parameters.

From Aaron Gaut’s comments from https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/rendering/optixscene/-/issues/14

I wasn’t able to get to this but basically the approach should be to first identify which thread each function is called on. A variable that is accessed from a function that is called on the sim

thread should belong to the sim and same story for the event queue thread. These should be mutually exclusive but they most likely aren’t fully. In cases where a variable is accessed by

both threads, care needs to be taken to fix that. First determine which thread the variable should really belong to, then work out how to get rid of the uses of the variable from the other

thread. It’s really a case-by-case basis, but some things that might work are:

Create two versions of the variable, one for each thread. When the sim thread sets the variable, immediately update the one owned by the sim thread, and create an event to update the

one owned by the event queue thread.#

If the sim doesn’t need its own copy but is directly accessing a variable that should be owned by the event queue, make the sim thread use events instead of directly accessing the

variable

Most likely the worst offender is in the sensors. It is using mutexes to allow access from any thread instead of requiring the sim to put events on the queue. This is problematic if the sim

and event queue are both updating these variables, even with a mutex, because the values they are setting reflect the state at different times, since the sim is generally a bit ahead of the

event queue. This can lead to a jitter effect which fluctuates depending on how far behind the event queue thread is at any time.

Notes from follow up discussion with @gaut

the event queue thread activity is only from events on the queue, which are all lambda functions. so we need to go through these lambda functions, see what members and methods

they access and give them event queue names.

the event queue thread has a mutex to protect its state from access form multiple threads. Generally there is just one mutex to support a class instance’s state, but we can have multiple

mutexs dedicated to different parts of the state. Name them accordingly.

The optix sensors also have a mutex to protect parts from the sim and the event queue. We may want to see if there is a way to get rid of the mutex, by having variables dedicated to

each thread, and events to sync them up. Currently both threads can touch the same variable, and this can be a source of jitter since one thread lags the other.

Need to think about the lifetime of objects, especially if they are being accessed by both threads. Use sync to avoid lingering objects._

18.2.1.2.3.1. Sensor pipeline
Each sensor has an ActionGraph and a FilterGraph which are customizable. The pipeline structure invoked by the DOptixSensor::update() method is as follows:

user defined sensor specific actions that update the scene geometries, eg. clipmapping, band-mode materials, ornamental geometry etc

a DOptixUpdateAction (last action, before any filters) which goes with the Builder. This step creates the optimized AABB data for use during ray tracing based rendering.

a DOptixUpdateFilter which is the first filter which goes with a Pipeline and is responsible for the RayGen step to define the sensor specific rays to be cast, and the subsequent

invocation of OptiX rendering to generate output buffers. This step uses CUDA shaders (eg. phong materials, CAHVORE lens) defined in cuda/shaders to define the rays and their

interaction with the geometry. Its output is a rendered buffer.

a DOptixAccumulateFilter in case of jitter

a DOptixDenoiserFilter after the accumulate filter

user defined sensor specific filters that transform the rendered buffer in some way. Examples including adding noise, blur, vignetting etc. These filters also make use of CUDA shader

kernels defined in cuda/kernels/pixel_operations.cu to transform the buffers in some way.

for camera sensors only, a DGLDualRenderFilter for lines etc (camera here is being used presumable for visual viewport as well as camera sensor).

a final DOptixAccessFilter for converting the buffer’s float4 values into uchar4 values and providing access to the rendered buffer output.

For an on-screen viewport, the final buffer values are written into an on-screen ImGui widget for 3D visualization.

Pipeline structure for a single sensor

[OptixScene-old_sensor_viewports] [OptixScene-new_sensor_viewports]

18.2.2. Proposed restructuring of sensor/viewport classes

The following figure describes the proposed reorganization of the on-screen display classes.

The following figure describes the proposed reorganization of the sensor classes.

18.2.3. Renderables

18.2.3.1. Current Design

 TBD: Add diagram

18.2.3.1.1. Primary choices

One massive DOptixRenderable class

Geometry and materials are handled as class variables

18.2.3.1.2. Cleanup

Information that needs to be cleaned up may included data accessible only as a device pointer from another device pointer. For example, a TextureLayer* may have the only pointer to a

cudaTextureObject_t . In these cases, the convention is to copy the TextureLayer* back to the host, free the ̀ cudaTextureObject_t , then free the host TextureLayer* , then

free the device ̀ TextureLayer*

 TBD: Add diagram showing copy from device to host and freeing operations

18.2.3.1.3. Changing Materials

When materials need to be modified, the old materials are first cleaned up (deleted). The new material is then used. However, mesh geometry holds a material id, which can be greater than

0 , meaning a mesh can have multiple materials. When a mult-material mesh has its material programmatically replaced, this replaces multiple materials with a single material. In this

case, the mesh is reloaded without materials (to force all material ids to be 0 and to prevent material from being loaded again), then the new material is set.

 TBD: Add diagram showing the relationship between geometry and materials

18.2.3.2. Proposed Design Changes

Intended Design Principles

Class that holds scene transform (pos, rotation, scale) can share geometry

Instance meshes where possible

Instance materials where possible

Use inheritance to reduce complexity of DOptixRenderable

18.2.4. Sensor Frames

Here we cover the various aspects related to rendering poses associated with sensors and viewports in OptixScene .

Glossary:

PS - physical sensor

VP - viewing pose

SV - static viewport

IV - interactive viewport

VIV - visualization IV

18.2.4.1. Rendering frame types

There are two distinct renderings associated with each sensor/viewport pair combo. The first is for raytracing using optix, and the second is for OpenGL based painting on a displayed

viewport for the sensor. The renderings require pose info which have to be mutually consistent.

the raytracing render is carried out by optix and is determined by the camera/lidar characteristics. The pose used for this render is the pose of the physical sensor (PS) .

the OpenGL render is for a viewport. Such viewports using a viewing pose (VP) to carry out the visualization render.

If the viewport does not have a mouse or trackball for user interaction, then it is a static viewport (SV) whose VP pose is locked to the PS pose. Use of SV is recommended - and

the default - for visualizing PS output data.

When the viewport does have mousing support, then it is an interactive viewport (IV) whose VP pose can also be manipulated by the user via the mouse.

We can have the following three situations regarding PS and`SCS`:

1. The poses of the PS and VP are often the same for consistency - but need not be. For instance, for lidars, we generate the point cloud using optix and the PS pose. However, we may

want to visualize the point cloud from different vantage point in the sensor’s IV viewport, and hence may want to be able to mouse around and change the pose of the viewport’s VP . So

the two poses can diverge from each other.

2. However, for physical camera sensor models that have viewports, the render from the ray tracing pass is also used for the viewport display, and so there is no separate VP . For this case

the PS and VP are the same, and as such the same pose is used for both the raytracing and OpenGL renders. At some level IV interactive viewports are incompatible with physical

camera PS since we have two separate and conflicting sources determining the PV pose for this case.

3. While the above discussion has focused on physical sensors that may or may not create visualization viewports, for 3D graphics visualization the situation is the reverse and the

viewport instance is in the driver' seat. For this case, the users can directly create one or more visualization interactive viewports (VIV) that have surrogate perspective

camera sensors dedicated to 3D visualization. Such VIV use their surrogate perspective camera sensors for all rendering. For this case, the VP/PS pose is defined by user interaction

via the mouse, or by direct calls to methods such as viewAroundFrame , setCameraTransform or pointCameraAt that can programmatically set convenient viewing poses or by setting

up chase views where the viewing follows specified frames. Unlike situation (2) above, in this case there is no ambiguity or conflict about the correct value of the VP pose.

18.2.4.2. Sensor pose determination

Sensors are scene objects, which may be attached to a scene frame, or be rooted and not have a parent scene frame (in which case their pose is defined wrt to the origin scene frame). Their

full pose wrt to the origin frame is thus a composition of the the parent scene frame’s pose wrt the origin scene frame (if it exists) and the relTransform of the sensor itself.

For a physical sensor, the PS is attached to the mount node’s scene frame, and its relTransform is often constant (eg. defined by a camera CAHVORE file), or more generally managed by

the simulation. The simulation also manages the parent scene frame’s pose (eg. from the motion of the vehicle). This applies to all physical camera and lidar sensors. The PS pose for a

physical sensor is thus determined and set by the simulation.

A viewport’s VP viewing pose is identical to the PS pose for a SV static viewport for a physical viewport.

Am IV interactive viewport’s VP viewing pose can be set via a mouse or programmatically using viewAroundFrame etc methods. *This can lead to a conflicting situation when the

physical sensor is a camera. *

Visualization VIV viewports make use of surrogate camera sensors whose VP pose can be set interactively by mousing , or by calling methods or by enabling chase views by attaching

them to scene frames.

18.2.4.3. Sensor default frames

Each sensor will define it’s default orientation. For example, if a camera is attached to a frame with no orientation, which direction is it facing?

Cameras: The OptixScene convention is to have cameras pointing toward Z, with Y-up and X-left to complete the right-handed frame. However, CAVHORE’s assumption is that -z will be

forward when considering the parameters, so we flip the CAHVORE model’s z axis to fit with the other camera model conventions.

Lidar:

SRP: does not fit into frame convention. It will always point from the sun light to the object origin, regardless of frame orientation.

18.2.4.4. Actions

setCameraPose , pointCameraAt methods are only part of the viewport classes, and cannot be set on a sensor.

Viewing frame is part of the sensor class, as the sensor can optionally use this as an offset for rendering or for visualizing its own data.

getCameraTransform() for a camera now returns its full transform including the view offset for completeness.

The setCameraTransform , pointCameraAt etc methods from the sensor class to the interactive viewport class. The sensor’s pose should come entirely from the relTransform values,

and these methods should only be used to se the VP pose for viewing in a viewport.

mousing interactions set the view frame for the sensor, and the sensor decides how best to use these. For example, camera will include these in the render position, while a lidar will

ignore these for data generation, and will instead use it only for displaying the position of the points so that the user can move around the point and understand what is seen.

18.3. Usage

18.3.1. Assigning materials to partGeometries

After creating a partGeometry (in the example partGeom) there are several ways to change its appearance. If we are cerating a primitive or importing a file with the flag

override_material set to True, a basic Phong material with white diffuse color will be attache d to the object. To override it we can create a new one and attach it to the object:

or retrieve the existing one, modifying the field we want to change, and re attach it:

PhongMaterial is a standard lighting model (not PBR) that is supported by all our client scenes.

However, there are other two lighting models, HapkeMaterial and PrincipledMaterials, that are more complex and supported only by BlenderScene and OptixScene. The Hapke lighting

model is used to describe a regolith body, while the Principled lighting model is a shader created by Walt Disney which can describe many different types of materials by just changing its

parameters.

To assign those two materials to a part geometry:

For more details on the PhongMaterial, HapkeMaterial, and PrincipledMaterials look at DScene/Material.h .

18.3.2. Assigning materials to partGeometries

TopoGeometries have also setPhongMaterial and getPhongMaterials available for all the client scenes, and setHapkeMaterial and getHapkeMaterial available in BlenderScene and

OptixScene, while there has been no need for PrincipledMaterial.

18.3.3. Advanced topics

Texture tiling

OptixScene supports passing extra parameters to topoGeometries to tile the texture, and in the future also partGeometries will support this.

Texture tiling is the process of placing multiple copies of a high resolution texture image over the terrain surface in a way that there are no seams between neighboring tiles. The advantage

of tiling textures is that a relatively small texture can be applied to a large surface by repeating (or "tiling") that texture over the surface. In this way, we can achieve higher resolution for

the terrain texture, without the need to store expensive high-resolution textures.

The extra parameters are two integer values, texture_tile_x and texture_tile_y , to specify how many textures needs to be aligned along the ` (width) and Y (height) directions. To

achieve better results and to avoid stretched textures texture_tile_x and texture_tile_y should be the equal.

Example:

material = PhongMaterial()
material.diffuse_color = Color(0.800000, 0.000000, 0.300000)
material.ambient_color = Color(0.200000, 0.000000, 0.050000)
material.specular_color = Color(0.000000, 1.000000, 0.000000)
material.emissive_color = Color(0.000000, 0.000000, 0.400000)
material.shininess = 1.2
partGeom.setPhongMaterial(material)

material = partGeom.getPhongMaterial()
material.emissive_color = Color(0.000000, 0.000000, 0.400000)
partGeom.setPhongMaterial(material)

material1 = HapkeMaterial()
material1.albedo = Color(0.8, 0.3, 0.5)
material1.normal_map_texture = "../../assets/foil_n.jpg"
partGeom1.setHapkeMaterial(material1)

material2 = PrincipledMaterial()
material2.base_color = Color(0.8, 0.3, 0.5)
material2.normal_map_texture = "../../assets/foil_n.jpg"
partGeom2.setPrincipledMaterial(material2)

18.3.3.1. Blending two textures together

OptixScene supports a really common feature in 3D software which consists in blending two textures.

This is based on the lerp function, which is basically a linear interpolation between the two textures based on a factor (FAC, a float between 0 and 1 where 0 means 100% texture A and 1

means 100% texture B). This FAC factor can also be a texture, (usually grayscale) so we can blend two textures adding variety across the mesh/topo.

This feature is available only when using PhongMaterial:

If you specify only diffuse_map , it will apply that texture map as usual, but if you specify also diffuse_map2 it will linearly interpolate between the two based on the FAC or the FAC_map.

 similar to what happens with diffuse_map and diffuse_color , if FAC_map has been specified FAC will be ignored.

Output example:
Given this texture: Screenshot_from_2022-06-15_10-50-23

and this one: Screenshot_from_2022-06-15_10-50-47

we can blend them using FAC = 0.5 (for example), which results in: Screenshot_from_2022-06-15_10-53-12

Or using this texture as FAC_map: Screenshot_from_2022-06-15_10-51-21

which results in: Screenshot_from_2022-06-15_11-19-25

18.4. Software

18.4.1. Event queue implementation

TBD: taken from Aaron Gaut’s email of 11/6/2021. Needs to be cleaned up.

why are we storing the future instance in the event queue along with the callback when we can always get the future from the packaged event via get_future()?

I’m not sure exactly, but if I remember right, were are storing a shared_future, not just a future. The c++ docs say a shared_future can be copied (the same way a

shared_ptr can be, while an ordinary future can only be moved like a unique_ptr). Also a shared_future can be waited on from multiple threads at once. If you’re going to

use a shared_future I think you would want to do it early, because if you’re going to use the shared_future from multiple places, they need to all be using the same

shared_future or copies of the same shared_future. I’m not sure where we need the capabilities of a shared_future in the design though. I’d look for places we are copying

it or potentially waiting on it from multiple threads. Or maybe we aren’t using those capabilities right now but the designer wanted to allow for that possibility in the

future.

addEvent() currently does not return anything? why does it not return the future instance? Do we never have a need to get back the returned value?

I believe that’s what addReturnEvent is for. Generally in the sim thread if we are getting something back from the event queue we don’t want a future - we want the value

that will be stored in the future, because the sim thread isn’t really set up to go do other work while it’s waiting for the future to complete. So the event queue doesn’t

really expose futures to the sim thread. Instead, there is an addReturnEvent call that will block the sim thread until the future is completed. But the sim thread only

needs to block if it needs to get a value back from the event queue thread. So blocking until the future is complete for every single event would take way longer than it

needs to. That’s why addEvent is a separate method that doesn’t care about the return value - it prevents the sim thread from needing to block on events where there is

no return value.

why does the packaged event signature such as to not return anything instead of at least a status flag or something?

 I think it returns a std::any, no?

why does the dispatch loop not move all pending events to a temp list and unlock the queue right away and then process the events on the temp queue? Currently we are unlocking,

processing one event, locking it, popping the processed event and going back to the top of the loop. The former would seem to be more efficient. THIS DOES NOT WORK WELL -

mousing becomes choppy and sluggish if we try and do this. Note that since events can themselves post new events on the queue, so it is necessary that the mutex for the event

queue not be locked while events are being processed.

extras = {
 "use_clipmaps": 0,
 "max_coarse_levels": 14,
 "clipmap_exp": 6,
 "texture": "../../assets/texture_test.png",
 "texture_tile_x": 3,
 "texture_tile_y": 3,
 }
 topo = scene.createTopoGeometry(leveler_dem, SceneObject.PHYSICAL | SceneObject.ORNAMENTAL, extras, "topo")

material = PhongMaterial()
material.diffuse_map = "../../assets/grass_3K.jpg"
material.diffuse_map2 = "../../assets/rock_3K.jpg"
material.FAC_map = "../../assets/perlin_noise.png"
OR:
material.FAC = 0.5
topo.setPhongMaterial(material)

 Sounds like a reasonable optimization to me

why does the event queue allow for multiple threads? Is it for the case when the order of procssing items is not critical and the event processing can be parallelized?

 I think you’re right that it would require items that don’t need to be processed in order. I’m not sure what the plan was with allowing a different number of threads.

18.4.2. Upgrading Optix and CUDA

18.4.2.1. Upgraded to OptiX 7.7 with CUDA 12.1

Date: July, 2023 OS: Fedora 38

CUDA: 12.1

OptiX: 7.7

Issues, fixes, and notes:

Removed -allow-unsupported-compiler and forced use of gcc 12 since this flag relies on undefined behavior

Change optixModuleCreateFromPTX() to the generic optixModuleCreate()

explicitely set OPTIX_DENOISER_ALPHA_MODE_COPY for the denoiser

pass the optix pipeline into optixProgramGroupGetStackSize()

18.4.2.2. Upgraded to OptiX 7.4 with CUDA 11.5

Date: October 23, 2021 OS: Fedora 34

CUDA: 11.5

OptiX: 7.4

Issues, fixes, and notes:

Had to add -allow-unsupported-compiler to get nvcc to play with gcc 11

Also had to add --compiler-options -std=c++14 option to nvcc to build properly

Eventually had to do a source build of gcc 10.2 to give to nvcc for things to work fully

Eventually updating to gcc 11.2 fixed the bug introduced in gcc 10.4 so we could go back to nvcc using the default gcc installation.

Also needed to use a source build of glfw since the dnf package install seems to be specific to Wayland

18.5. Raw documentation

 TBD: Need scrubbing before integration.

18.5.1. OptixScene: Stop using scene graph approach for updating transforms

 TBD: Needs scrubbing. Notes brought over from issue (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/rendering/optixscene/-/issues/93).

We have been carrying over the Dspace approach - based on a scene graph paradigm - of setting relative transform values, and leaving it to the client scene to update the absolute poses of

all the objects. This works find for Ogre and other OpenGL approaches where the accumulation of transforms is done fast on the GPU. However, optix does not do this - and does not have

the notion of a scene graph. Thus, all objects have to be a position absolutely before invoking ray tracing functions.

This is being done currently via lots of originTransform() calls. This is however very inefficient, since there is no caching being done, and each of these calls triggers a full recursion across

the rel transofmr along the path from the origin scene frame. We need to shift away from the scene graph paradigm and to one more suited to the way optix works. Some options are

Make all objects rooted. This way the relTransform is the originTransform for every object, and no additional recursions are needed. Very simple, but the rootedness will have to be done

at the FacadeScene level - and would need to be done for any new objects that are added.

Disable the originTransform method in DOptixSceneFrame . Instead populate the DOptixScene::updateSceneTransforms method to compute all the origin frame transforms in a

single sweep and store them in each DOptixSceneFrame instance and also push the value on a queued version. The DOptixSceneObject and scene frames then simply look up this value

and use it instead of recomputing it.

These options would be a big improvement over the current approach.

18.5.1.1. Shader implementation

 TBD: Overview of shaders

We are modeling the lighting equation:

Lo(x, ωo) = ∫S2f(x, ωo, ωi) Li(x, ωi) | cosθi | dωi

For more information on the lighting equation: https://pbr-book.org/3ed-2018/Introduction/Photorealistic_Rendering_and_the_Ray-Tracing_Algorithm

Since this cannot be done analytically, we must approximate this integral. With path tracing, this is dont with Monte Carlo sampling. For Whitted ray tracing, this is done by optionally

tracing the mirror reflection direction only. When sampling, the lighting equation becomes

1

N

N

∑
i= 1

f(x, ωo, ωi) Li(x, ωi) | cosθi |

p(ωi)

18.5.1.1.1. Sampling for path tracing and Whitted ray tracing
The inconsistency between Whitted and path tracing comes when choosing samples during path tracing vs selecting reflection rays for Whitted tracing. Both approaches are models of the

incoming light from the normal-aligned hemisphere.

For both approaches, we have a set of known light sources in the environment which we can guarantee will hit the object. These light sources can therefore be tested (sampled) directly (not

stochastically). Since this is the same regardless of approach, this is consistent.

The issue arises when considering indirect sources of light (specular and diffuse reflections). Indirect light could come from any direction in the hemisphere, so we must integrate the light

contribution across the entire hemisphere following the lighting equation:

Lo(x, ωo) = ∫S2f(x, ωo, ωi) Li(x, ωi) | cosθi | dωi

For more information on the lighting equation: https://pbr-book.org/3ed-2018/Introduction/Photorealistic_Rendering_and_the_Ray-Tracing_Algorithm

Since this cannot be done analytically, we must approximate this integral. With path tracing, this is dont with Monte Carlo sampling:

1

N

N

∑
i= 1

f(x, ωo, ωi) Li(x, ωi) | cosθi |

p(ωi)

For Whitted ray tracing, we prioritize few samples and therefore cannot afford to introduce noise. With this approach, we only sample the reflection direction so as to introduce mirror

reflects if they exist. In addition to ignoring diffuse reflections, this approach is also inaccurate in the quality of the reflection. When an object is "half" reflective and "half" diffuse the

physical result should be a faint blurred reflection. Whitted ray tracing will instead result in a faint mirror reflection.

This sampling difference is the root cause of the inconsistency. When choosing random samples for an integral, we weight the sample by the bidirectional distribution function (brdf) and

the reciprocal of the sampling probability density function (pdf). The pdf weighting ensures sampling bias does not contribute to a color difference in the limit of sampl e count. The brdf

weighting specifies the distribution of outgoing directions of light based on the incoming angle. The brdf is responsible for reflections, absorption, and diffusion. If the integral of the brdf is

greater than 1, then more light reflects away from the object than hit it. This is not possible unless the object is a light source (i.e. has emission). See issue #216 for inconsistency when brdf is

not valid as with Phong.

For a perfectly diffuse object, all incoming light reflects back off the surface, but it does so equally in all directions. The brdf for such an object should be 1 / PI . If sampling this with

uniform probability, the pdf is also equal in all directions. The mirror reflection for Whitted ray tracing using this approach would be 1/PI , however this would result in roughly 1/3 perfect

reflection which is not an accurate model of the physical phenomenon.

For an object that is perfectly reflective, the brdf would be a dirac delta function with brdf infinite in the mirror reflection direction and zero otherwise. It is clear that Whitted ray tracing

should not produce a reflection weighting that is infinite. With path tracing, the weighting of this direction is infinite, but the probability of choosing such direction is zero. When it is almost

a perfect reflection, the weighting is very large (>4000) but the probability of choosing the direction with uniform sampling is correspondingly low. With enough samples, this would happen

at some small probability and the weight would result in correct contribution of color.

The probability of choosing this reflection direction with Whitted ray tracing however is 1 (we will always choose it). Therefore, we use a heuristic to determine when the brdf should be

considered to be perfectly reflective. That is we apply a weighting (say 1/4000) which approximates the dirac delta function. When the brdf in the reflection direction is greater than this

value, we will achieve perfect reflection. Note the contribution will be clamped to 1.0 when the brdf is greater than 4000. The specific weighting can be found in the brdf sampling function

(phong.cu, pricinpled.cu, etc). For a perfectly diffuse object, Whitted ray tracing will result in a reflective contribution nearly zero.

18.5.1.1.2. Use of direct callables

 TBD: missing

18.5.1.1.2.1. Material callables

18.5.1.1.2.1.1. Principled BRDF

void __direct_callable__<material name>(const MaterialParameter& material,
 const Ray& ray,
 const PrimitiveData& primitive_data,
 const float2& uv,
 const PackedLightData& light_data,
 const GeneralPRD& wrapped_prd,
 const bool& tracing_lights)
{

}

void __direct_callable__sample_brdf_principled(const MaterialParameter& material,
 const Ray& ray,
 const PrimitiveData& primitive_data,
 const float2& uv,
 const PackedLightData& light_data,
 const GeneralPRD& wrapped_prd,
 const bool& tracing_lights)
{

}

For path tracing, sampling is done based on the roughness of the surface, following GGX sampling.

For Whitted ray tracing, the "sampled" direction is the mirror direction. The pdf is chosen to be 8114.0 so that a brdf associated with the following parameters produces half a mirror

reflection for a viewing direction (.707,0.0,-.707) .

18.5.1.1.2.1.2. Phong BRDF

The default Phong model is defined as

The default Phong model is not a valid brdf as a diffuse color of (1,1,1) and specular color of (1,1,1) would not be energy conserving. This introduces a problem for path tracing, and creates an

inconsistency between Phong and Principled materials, with Phong object appearing brighter in a given scene than Principled objects. To alleviate this, we modify the phong model to be a

valid brdf. To do this, we normalize the diffuse model by dividing by PI. When path tracing, we also normalize the specular model following

https://graphics.geometrian.com/research/normalize_phong.html. We could normalize by default and then use a similar reflection heuristic for Whitted ray tacing. However, to simplify, we

normalize only for path tracing and leave the specular model as is for Whitted ray tracing, as it already produces values [0-1] which is what the heuristic would do anyway.

For Whitted ray tracing, we additionally ignore the diffuse component, as the mirror reflection model is by definition a model only of the specular reflection. When determining the

specular reflection contribution for the mirror reflection, we use the specular model with adjusted_Ks = phong.Kr * phong.Ns * phong.Ks; . This ensures the user can still control the

reflection with Kr. However, it should be Ks (the specular term) which determines reflection as it does with the highlights of the lights. Ns is the shininess of the material and when it is zero,

path tracing produces a perfectly diffuse reflection. Therefore, we use Ns in part to determine, as a heuristic, how much mirror reflection should be produced.

Lastly, to prevent the issues caused by Kd and Ks and Ks, we normalize Kd and Ks by the sum of Kd and Ks means:

This makes it such that when Kd and Ks = (1,1,1), we say the material is equally diffuse and specular, absorbing no light (half is diffusely reflected, have is specularly reflected). When Kd =

(1,1,1) and Ks = (0,0,0), the object is perfectly diffuse. When Kd = (0,0,0), Ks = (1,1,1), Kr = (1,1,1), and Ns = 1.0, the object will be perfectly reflective for both path tracing and Whitted ray

tracing.

Note: this makes the Dspace and OptixScene implementations inconsistent, as the OptixScene environment will be darker than Dspace and will need higher intensity lights to achieve the

same scene brightness.

18.5.1.1.2.1.3. Hapke BRDF

 TBD: missing Hapke implementation

18.5.1.1.2.2. Light callables
Light callables are responsible for calculating the amount of light that would hit a given location. These callables follow the signature:

albedo = (1,1,1)
metallic = .0
subsurface = 0.0
specular = 0.5
roughness = 0.0
specular_tint = 0.0
anisotropic = 0.0
sheen = 0.0
sheen_tint = 0.5
clearcoat = 0.0
clearcoat_roughness = 0.03

void __direct_callable__sample_brdf_phong(const MaterialParameter& material,
 const Ray& ray,
 const PrimitiveData& primitive_data,
 const float2& uv,
 const PackedLightData& light_data,
 const GeneralPRD& wrapped_prd,
 const bool& tracing_lights)
{

}

float Ks_weight = mean(phong.Ks) / mean(Kd + phong.Ks);
float Kd_weight = mean(Kd) / mean(Kd + phong.Ks);

void __direct_callable__sample_brdf_hapke(const MaterialParameter& material,
 const Ray& ray,
 const PrimitiveData& primitive_data,
 const float2& uv,
 const PackedLightData& light_data,
 const GeneralPRD& wrapped_prd,
 const bool& tracing_lights)
{

}

void __direct_callable__<light name>(const LightParameters& light, const float3& hit_point, LightSample& light_sample)
{
 // float3 light_contribution;
 // float dist_to_light;
 // float3 dir_to_light;
}

The light function is required to populate the following struct and, if necessary, should take into account attenuation due to distance, the intensity and color of the light, and the angular

falloff. The lights are not responsible for account for shadow attenuation/transmission or shading based on viewing and normal vectors.

Point light contribution:

Li(x, ωi) =
L0

a + bd + cd2 d : distance from hit point (x) to the light locationL0 : product of the intensity and the light color (separate only due to convention in Dscene)a, b, c : falloff coefficients

Spot light contribution:

Li(x, ωi) =

L0

a+ bd+ cd2 cos − 1(ωi ⋅ ωL) < α0

L0

a+ bd+ cd2

ωi ⋅ωL

cos (α0) − cos (α1)
α0 ≤ cos − 1(ωi ⋅ ωL) < α1

0 α1 < cos − 1(ωi ⋅ ωL)

d : distance from hit point (x) to the light locationL0 : product of the intensity and the light color (separate only due to convention in Dscene)a, b, c : fa

Directional light contribution:

Li(x, ωi) = L0L0 : product of the intensity and the light color (separate only due to convention in Dscene)

18.5.1.1.2.3. Sampling strategies

 TBD: cosine hemisphere sampling

 TBD: phong sampling

 TBD: ggx sampling

18.5.1.1.3. Normalization of Phong model for use with PBR and path tracing

 TBD: missing

Not currently implemented as it would break consistency with DspaceScene

18.5.1.2. Adding a new sensor

 TBD: What is takes to make a new sensor

18.5.1.2.1. DScene API

 TBD: what needs to be exposed in the DScene API?

18.5.1.2.2. OptixScene API

 TBD: what needs to be exposed in the DOptixScene API?

18.5.1.2.3. Sensor and viewport classes

 TBD: what needs to be added in terms of sensor classes/viewport changes?

18.5.1.2.4. Filter Graph Implementation
The filter graph passes a DOptixSensorBuffer between filters. This is where data produced/consumed by the filters is stored. The filter graph is sensor agnostic, but individual filters may

be sensor specific. To allow for this, DOptixSensorBuffer holds the dimensions of the buffer along with a std::variant` data field. Individual sensors are responsible for defining a set of

buffer types that need to be added to this data variant. Currently, the data variants are:

struct LightSample
{
 float3 light_contribution; //how much light would hit the tested point
 float dist_to_light; // distance to the light
 float3 dir_to_light; // the direction to the light
};

{

Any filters that can be applied to the new sensor but be modified to conditionally get the new sensor’s relevant data variant. For example, DOptixUpdateFilter switches on

_sensor.getSensorFamily() to define an update for each sensor class. When adding a new sensor, add the switch condition needed throughout DOptixUpdateFilter.cc . Similarly, add

the new sensor’s case to DOptixFilterGraph.cc and DOptixAccumulateFilter.cc (which can be applied to any/all sensor classes).

 TBD: what needs to be added and modified in the filter graph?

18.5.1.2.5. Material classes
In order to interact with SRP, materials must define an SRP direct callable index. Along with an index, a direct callable for SRP material shading also needs to be defined. In is CRITICAL that

the function index matches the order of direct callable functions created in DOptixEngine::_create_DC_buffersOnQueue()

 TBD: what needs to be added in terms of materials/renderables?

18.5.1.2.6. GPU implementation

 TBD: what needs to be added and modified in the shader code?

18.5.2. Cleanup and Redeisgn of OptixScene 2023

18.5.2.1. Primary Design Principles

18.5.2.1.1. Simulation time
The simulation should interface with the rendering scene in a way that allows viewports/sensor to use sim-time to complete a redraw, even if that data is required by a specific time in

simulation. For visualization viewports, these should be given the frame period before syncing the render. For sensors, they should be parameterized by an allowable sim-lag-time which

defines how much sim time can elapse before the sim should wait and sync the sensor’s data. In some cases this could model the real sensor lag. In other cases, this would be for

computational efficiency only when the processing of the sensor data would allow this. The sensor can still stamp the data/image with the actual sim time, even when returning the data at

the lag time.

18.5.2.1.2. Sensor/scene data access should be enforced at the language leve
Calls to change information in the scene or sensor should not be able to modify data that is in-use. Additionally, even when those calls are allowed to modify such data, the data should

automatically be marked dirty rather than relying on all developers to know what information is sensitive.

 TBD: still need a way to make this happen

18.5.2.1.3. CPU/GPU threading
All GPU functions should be called on a non-default thread, which allows async memcpy and the use of pinned memory for faster data movement. GPU functions that belong to a set of

functions that have sequential dependence on the same data should be on the same thread and same CUDA stream. For example, the ray launch, accumulate, RGBA access, and GL draw

should be on the same CPU thread, using the same non-default CUDA stream with pinned memory for the buffer that is copied back for openGL.

18.5.2.2. Proposed Design

18.5.2.2.1. Sim-render interface and syncing
18.5.2.2.2. Queuing and thread/data access
18.5.2.2.3. Optix rebuilding and launching

std::variant<CameraDeviceBuffers,
 CameraHostBuffers,
 CameraDeviceOutputBuffers,
 LidarDeviceBuffer,
 LidarHostBuffer,
 SRPDeviceBuffers,
 SRPHostBuffers>
 data;

19. DMeshScene

19.1. Background

19.1.1. Reference & Source material

DMeshScene Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DMeshScene/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

19.2. Design

19.3. Usage

19.4. Software

19.5. Raw documentation

 TBD: Need scrubbing before integration.

19.5.1. DMeshScene: DMesh collision detection capability using embree’s rtcCollide method

 TBD: Needs scrubbing. Notes brought over from issue (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dmesh/-/issues/36).

It is seemingly possible to use embree’s rtcCollide (https://spec.oneapi.io/oneart/latest/embree-spec.html#rtccollide) method to do broad phase collision detection. It also has option to register a

callback for fine grain work that the user has to provide. We should explore using this for implementing our own collision detection method. There is an example of this in the PDF

documentation at https://raw.githubusercontent.com/embree/embree/master/readme.pdf (look for the Collision Detection section at the end and the source code at

https://github.com/embree/embree/blob/master/tutorials/collide/collide_device.cpp).

Outstanding issues:

 Ensure that convex decomposition is used when creating the mesh geometries for a DMeshSceneObject since the near libccd phas depends on the meshes being convex. This would

require the DMeshPartGeometry::load method to carry out inline convex-decomposition when loading from an obj file. (see issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dmeshscene/-/issues/1)).

filtering support at the mesh level? there may be something at the embree level to enable filtering. Need to research. Alternatively, cull after the results of the broad phase results.

Should be able to use detachGeometry - but it is not working yet.

Expand map to find parent scene object.

 Assuming we go this route, we may also want to add support for doing the convex decomposition off-line, and passing in the results to the part geometry to use and skip the convex

decomposition step. (see #52)

Maybe use DMeshObject route to load stored convex decomposition files. Possibly store as a obj file.

 Do we need to change DMeshSceneObject to therefore have a list of convex Mesh instances instead of a single member like we do currently? If we do this, we need to make sure to add

filtering so we are not doing collision detection between meshes belonging to the same scene object.

 Implement collision filtering in MeshGroup . This will be necessary for convex decompositions of meshes; we don’t want to detect collisions between meshes belonging to the same scene

object.

SubMesh instances should be acceptable.

 Assuming small penetrations so far. Do we need to add a check for this?

libccd will detect penetration for large values, but results may not be reliable. However, we expect to be dealing with small penetrations virtually all the time. Its only during

initialization that we may have a bad state with large penetrations. At this point we only want to know whether there are collisions or not (since we want a collision free initial state),

and do not really care about accuracy.

 Does libccd always return a legal vertex? Does libccd return a position of a vertex index? if position, then do we need to have a fast way to look up the vertex index?

libccd returns the mid point between the contact points on the two bodies. currently we go half way on both sides to get the contact point on the geometries. then we do a pointQuery

(computeClosestVertex call) to get the closest vertex. Should we also be checking for faces? libccd seems to work with vertices - not faces.

 Can we skip search for contact points early by checking normals to detect if we have a potential line or face contact? See issue #53 for details

if we can find faces involved with the contact vertex then it can used to possibly skip plane/plane contact point detection using normals and separation direction checks. However, still

need to to something about edge/plane intersections.

 Add support for analytical collisions between basic shapes (spheres, cubes, etc.). This will greatly improve speed and accuracy of collisions between these objects.

Will need to create different narrow-phase colliders for sphere-sphere, sphere-mesh, sphere-box, box-box, box-mesh, etc. collisions. See issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dmeshscene/-/issues/2)

Add enum type for known geometries. Look through the pairs and and invoke the specialized colliders as needed before falling libccd when we need to.

 Replace DMesh/ContactPoint class with DScene/CollisionInfo class. All we need to do is to work with DMeshSceneObject instances instead of Mesh instances. Should the methods

that use it be moved to DMeshScene ? See issue (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dmeshscene/-/issues/5)

perhaps derive a MeshCollisionInfo struct from DScene/CollisionInfo and have it hold mesh instances, so the only update needed it to look up the parent scene object … .

 Optimize computeClosestVertex per discussion below: (see issue #49)

just using floats seems to be fast as well

 Figure and fix Sam’s implementation and use of Mesh::_cur_transform . See #54

 Move Mesh::_cur_transform member to DMeshSceneObject class

there is a benefit to keeping this in the mesh. We do not want to change the embree wrapper within each individual mesh. However we do want to update the collision scene where

you can do things at the higher level.

we keep the internal embree world stale, since bounding box does not depend on the embree part

because of this, we should make the mesh objects be private to the collision world and not shared with others who may trip over the stale embree worlds.

 Move collision detection specific methods in MeshUtilities into static or protected methods of MeshGroup class.

 Add hooks to view frames at the contact points (eg. from ContactGui)

 Fix the mesh removal issue (rtcDetachGeometry) mentioned below at the end of the comment

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dmesh/-/issues/36#note_8684).

 Fix handling of edge/edge intersections as discussed below at the end of the comment

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dmesh/-/issues/36#note_8658)

 Change some of the static callback functions into lambda functions if possible. See issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dmeshscene/-/issues/6)

 Add DMeshTopoGeometry class and use to support collision detection with terrains. Also, this class should be able to break up the overall geometry into a set of DMesh tiles (possibly a

MeshGroup), so that the broad-phase BVH (and the later near phase) processing can work with the smaller number of faces and vertices on tiles rather than for the whole terrain. However,

we need to ensure that each of these tiles is convex .

 Update DMeshScene to work with multi-link mechanisms. For this we need to address handling of non-scene-graph clients as discussed in this issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dscene/-/issues/21)

 See if we can use openmp to parallelize some of the loops.

process vertices in contact point generation for parallelization. Check if the number of vertices is large enough to be worth it.

In the support function, we might be able to parallelize over all the vertices.

 Do we still need to worry about duplicate vertices when determining contact points. Has this been taken care of the mesh_only argument to AssimpImporter ?

 Add a checker using the igl::all_pairs_distances method. Use this method and check for 0 distances.

 Convert DMeshScene regtests to create a scene manager so that we can also create 3D visualization to go along with the collision detection. See issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dmeshscene/-/issues/9)

 Also make them generic do that they can be run via dmesh, bullet or fcl using a command line option. This wil help with cross-validation

 Refactor the std::vector<std::set<size_t>> Mesh::getAdjacentVertices(bool duplicate_verts) method body since its current implementation requires Eigen 3.4.0 due to

the way it uses auto/rowwise in a for loop. We should add a version dependent alternate version so that the code compiles with Eigen 3.3 as well.

 Switch the adjacent vertices computation method to use libigl’s adjacency_list method

 Create more test cases to check out the various surface/surface, surface/edge, surface/point, edge/edge, edge/point intersection cases.See issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dmeshscene/-/issues/8)

 Would there be any benefit to creating a single precision version of Mesh (i.e one where vertices are stored as floats instead of doubles)? [Sam - just a note: embree currently uses

single precision for ray tracing, and I don’t believe there is a double precision build out there. I believe libccd also uses single precision.]

probably does not matter. Just make sure callback functions work with floats.

perhaps add methods that work with floats instead of SOARay objects and use them in the callbacks (eg. in the support function)

 In contrast to a sub-item above, it looks like libccd is automatically built in double-precision mode. We will need to compile it in single-precision mode to avoid unnecessary

calculations. See here (https://github.com/danfis/libccd)

In fact, remove all use of SOA objects in the collision detection algorithms. see issue

(https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/scene-geometry/dmeshscene/-/issues/7)

 With the assimp importer now creating a MeshGroup for each part geometry (see issue (https://dartsgitlab-internal.jpl.nasa.gov/darts-lab/jpl-internal/all-access/development/dynamics/ndart/-/issues/5)),

we need to implement the group level methods to add filters between these meshes, implement visibility, and removal methods for these as a group.

 Add libccd related make variables to the site-config-* files

 Do further optimizations to get closer to Bullet performance.

Added benchmark to track how these affect performance here (https://docs.google.com/spreadsheets/d/1cqc1kPWtXv2sEakUSy8jUmBxSkPuiW8j/edit#gid=595681158).

19.5.1.1. Minimal working example with rtcCollide

Before immediately trying to integrate DMesh with rtcCollide , I wanted to start with something more basic. I created basic structs to compose a bare-bones mesh, Vertex and

Triangle . Vertex merely contains 3 floats (x , y , z), and Triangle contains 3 unsigned integer indices (v0 , v1 , v2). The struct CustomMesh stores two vectors, one for Vertex and

one for Triangle .

19.5.1.1.1. Adding a mesh to BVH

Currently rtcCollide only supports user geometry type (RTC_GEOMETRY_TYPE_USER)(see here

(https://spec.oneapi.io/oneart/latest/embree-spec.html#rtccollide:~:text=Currently%2C%20the%20only%20supported%20type%20is%20the%20user%20geometry%20type%20(see%20RTC_GEOMETRY_TYPE_USER).)),

so there are some extra steps you have to do to write your own intersection and bounding functions. I tried for a while to get rtcCollide working using a triangle geometry type

(RTC_GEOMETRY_TYPE_TRIANGLE), but kept getting segfault .

Adding the mesh to the embree scene BVH is done in a series of steps: (these steps can be seen in the Github example here

(https://github.com/embree/embree/blob/master/tutorials/collide/collide_device.cpp#:~:text=//%20if%20(use_user_geometry)%20%7B-,RTCGeometry%20geom%20%3D%20rtcNewGeometry%20(g_device%2C%20RTC_

GEOMETRY_TYPE_USER)%3B,rtcReleaseGeometry(geom)%3B,-meshes.push_back%20(std%3A%3Amove%20(sphere)))

).

Create the new geometry - RTCGeometry geom = rtcNewGeometry(g_device, RTC_GEOMETRY_TYPE_USER);

Attach the new geometry, which returns a unique ID - unsigned int geomID = rtcAttachGeometry(g_scene, geom);

Set the number or primitives in geometry, i.e. for 1 triangle/primitive - rtcSetGeometryUserPrimitiveCount(geom, 1);

Set geometry user data - this attaches a pointer to the "data" of the user geometry. When the embree callbacks are called, a userptr is often passed along with it. This userptr points to

whatever you set the geometry user data to point to. What the Github example does is have a global variable that stores the meshes, and the geometry user data is nothing but an index

in that global vector. Then, in the rtcCollide callbacks, they take that userptr and use it to index the global vector of meshes. When adding the geometry to the scene, they use the

returned geomID variable from earlier to index the vector. This is how I did it too, since I basically copied the structure of the Github example. rtcSetGeometryUserData(geom, (void*)

(size_t)geomID);

Set the geometry bounds function - this function returns the upper and lower coordinates in all 3 dimensions of an arbitrary mesh element - rtcSetGeometryBoundsFunction(geom,

triangle_bounds_func, nullptr);

Set the geometry intersect function - right now I have this function unimplemented, as I believe rtcCollide does not use it. Basically the function you specify should determine

whether a given ray intersects the mesh element. rtcSetGeometryIntersectFunction(geom, triangle_intersect_func);

Commit the geometry to the scene - rtcCommitGeometry(geom);

Release the geometry - rtcReleaseGeometry(geom);

Commit the scene - rtcCommitScene(g_scene);

19.5.1.1.2. How I created my CustomMesh to test rtcCollide

Sometime before you commit the scene, you make the actual mesh. For example, the way I have set up my basic CustomMesh type:

Where meshes is a global vector of the CustomMesh type. I created two meshes, each with one triangle each, that intersect each other, in order to test out rtcCollide .

19.5.1.1.3. User geometry bounds function

The user geometry bounds function (set with rtcSetGeometryBoundsFunction) is pretty straightforward. The callback has a number of parameters passed into it, namely the userptr ,

the primID (primitive ID), and the bounds struct. Essentially, using the userptr to locate the mesh in question and the primID to locate the specific primitive in question, the function

must update the bounds struct to have the upper and lower limits of the mesh element in all 3 dimensions. When the geometry is committed to the scene, embree constructs the BVH using

this function. Here is how I implemented it for my basic mesh:

19.5.1.1.4. Using rtcCollide

The rtcCollide function call is pretty simple when everything is set up properly. It is merely:

std::unique_ptr<CustomMesh> sample(new CustomMesh());
sample->vertices.resize(3);
sample->tris.resize(1);

sample->vertices[0] = Vertex(0,0,1);
sample->vertices[1] = Vertex(0,1,0);
sample->vertices[2] = Vertex(1,0,0);

sample->tris[0] = Triangle(0,1,2);

meshes.push_back(std::move(sample));

C++

void triangle_bounds_func(const RTCBoundsFunctionArguments* args) {
 void* ptr = args->geometryUserPtr;
 unsigned geomID = (unsigned) (size_t) ptr;
 auto const &mesh = *meshes[geomID];

 const Vertex* tri_verts[3];
 tri_verts[0] = &mesh.vertices[mesh.tris[args->primID].v0];
 tri_verts[1] = &mesh.vertices[mesh.tris[args->primID].v1];
 tri_verts[2] = &mesh.vertices[mesh.tris[args->primID].v2];

 args->bounds_o->lower_x = std::min({tri_verts[0]->x, tri_verts[1]->x, tri_verts[2]->x});
 args->bounds_o->upper_x = std::max({tri_verts[0]->x, tri_verts[1]->x, tri_verts[2]->x});
 args->bounds_o->lower_y = std::min({tri_verts[0]->y, tri_verts[1]->y, tri_verts[2]->y});
 args->bounds_o->upper_y = std::max({tri_verts[0]->y, tri_verts[1]->y, tri_verts[2]->y});
 args->bounds_o->lower_z = std::min({tri_verts[0]->z, tri_verts[1]->z, tri_verts[2]->z});
 args->bounds_o->upper_z = std::max({tri_verts[0]->z, tri_verts[1]->z, tri_verts[2]->z});
}

C++

rtcCollide(g_scene, g_scene, &collideFunc, &sim_collisions);
C++

Where collideFunc is the collision callback and sim_collisions stores output collision information. What gets tricky is making sure that collideFunc does what it is supposed to do.

rtcCollide implements "broad phase" collision detection, and collideFunc is supposed to take the pairs of mesh elements that are thought to be colliding and verify precisely that they

are indeed intersecting. For a triangle mesh, you take the 3 vertices from the first mesh element and the 3 vertices from the second mesh element, and determine if they are intersecting. In

the Github example, they wrote a bunch of helper functions to determine if two arbitrary triangles are indeed intersecting. These functions are contained in a class here

(https://github.com/embree/embree/blob/ae029e2ff83bebbbe8742c88aba5b0521aba1a23/kernels/geometry/triangle_triangle_intersector.h). I adapted their method to work with SOAVector3 rather than their

vector type, Vec3fa .

When I use rtcCollide with my collideFunc , and add two meshes with single triangles that intersect each other, I record a collision!

19.5.1.1.5. Next Steps

I will test a variety of different test cases with minimal amounts of triangles to verify that my collideFunc works properly. Then I will adapt my code to integrate with DMesh , which

shouldn’t be too cumbersome since DMesh already has a lot of the necessary tools.

19.5.1.2. Tailoring example to work with DMesh

Editing the minimal working example above to integrate with DMesh was fairly straightforward. DMesh has helper methods to access a certain vertex or triangle number with

getVertex(size_t vertex_index) and with getFace(size_t face_index) , so really all I had to do was change the code to work with SOAVector3 rather than my own simple Vertex

struct.

Another thing that became apparent is that triangles near each other in the same mesh are counted as "collisions" by rtcCollide . In case we want to be able to handle self-intersecting

meshes, we can check for triangle adjacency in the mesh (by seeing if the two "colliding" triangles share at least one vertex). However, the ground plane mesh that I am working with for

some reason has duplicate vertices (i.e. vertices that have the exact same position but different indexes), so in order to truly check for adjacency, you have to compare the positions of each

vertex and not just the indices of each vertex in the vertex array. All in all, this might be computationally expensive to do for meshes that we know are not going to self-intersect (such as a

ground plane), so it might be better to just ignore any collision between triangles of the same mesh.

Here is a screenshot of a result of colliding a 1 m diameter sphere mesh that is 0.5 m above a ground plane mesh. Seems to be a reasonable result.

19.5.1.3. First approach to �nding contact points

Note I (knowingly) make the following assumptions:

small penetration distance

meshes are convex polyhedra

19.5.1.3.1. High level overview

The way I determine the contact points, penetration distance, and collision normal is as follows:

Perform initial collision detection with rtcCollide , which tells us the faces of each mesh that are intersecting

If there is a collision, get all vertices from one mesh that are penetrating (inside of) the other mesh

Use libccd to run the GJK algorithm on the two colliding meshes. The libccd implementation can return the minimum separating axis, which I use as the collision normal.

Use embree’s rtcIntersect to cast rays from all the penetrating vertices in the collision normal direction. The distance until the ray collides with the other mesh is the penetration

distance for that vertex.

Use the penetration distances to determine the contact points - i.e. if there is only one vertex with the max penetration distance, then there was a point collision, so there is just one

contact point.

19.5.1.3.2. Initial collision detection with rtcCollide

See above points for some more specific details on how I set up and used rtcCollide .

19.5.1.3.3. Find all penetrating vertices

I try to be clever about this; rather than checking every single point to see if it’s inside the other mesh, I only check the points of the faces that intersect with the other mesh. The thought

process behind this can be better explained in a 2D illustration.

 ![collisondata]

(uploads/22362f5fc3594a030d97858898cbe02b/collisondata.png)

The edges in red are the ones that intersect with the blue shape, and are analogous to the faces that are returned by rtcCollide . So, we know that one vertex on the red edges are inside

the blue shape, and one vertex is outside. If we first check vertices 2, 3, 6 and 7 for being inside of the blue shape, we will find that vertices 3 and 6 are penetrating the blue shape, and

vertices 2 and 7 are not. Then, because both shapes are convex, any vertices connected to vertices 3 and 6 must also be inside the blue shape as well. So, without having to check for

penetration, we can determine that vertices 4 and 5 are also penetrating the blue shape, and all other vertices are not.

This same logic carries over to 3D convex polyhedra, and potentially saves a lot of time if there are a lot of vertices that are penetrating the other mesh. It also fits nicely with what

rtcCollide gives us.

19.5.1.3.4. Use libccd to perform GJK algorithm

Using libccd is pretty simple, most of the work is setting up what is called the "support function". The support function is a function that, given a direction, returns the vertex in the mesh

that is furthest away along that direction. How this is computed is actually pretty simple: it is merely the vertex that has the largest dot product with the direction. libccd specifies how

the function should be implemented here (https://libccd.readthedocs.io/en/master/examples.html). obj is a void pointer that refers to the user geometry. I decided to just pass the index in the

meshes vector, like what is done with the embree callbacks. Then, I do a simple loop to determine the vertex with the maximum dot product with the direction dir , and save that vertex in

the vec parameter. The specific implementation can be seen below.

To get the separation vector (a.k.a. the collision normal), I use the libccd call defined here

(https://github.com/danfis/libccd/blob/master/src/ccd/ccd.h#:~:text=CCD_EXPORT%20int-,ccdGJKSeparate,-(const%20void)). I set it up like so:

dir now stores the separation vector that I can use in the next step, casting rays to determine penetration distance.

void gjk_support_func(const void *obj, const ccd_vec3_t *dir, ccd_vec3_t *vec) {
 unsigned geomID = *((unsigned*) obj);
 auto const& mesh = *meshes[geomID];
 auto const& vertices = mesh.getPositions();
 const SOAVector3 SOAdir(ccdVec3X(dir), ccdVec3Y(dir), ccdVec3Z(dir));

 double max_dot = std::numeric_limits<double>::lowest();
 double dot;
 const SOAVector3* best_vert;

 for (auto& v : vertices) {
 dot = v.dot(SOAdir);
 if (dot > max_dot) {
 best_vert = &v;
 max_dot = dot;
 }
 }

 ccdVec3Set(vec, (*best_vert)[0], (*best_vert)[1], (*best_vert)[2]);

}

C++

 ccd_t ccd;
 CCD_INIT(&ccd);

 ccd.support1 = &gjk_support_func;
 ccd.support2 = &gjk_support_func;
 ccd.max_iterations = 100;
 ccd.epa_tolerance = 0.0001;

 ccd_vec3_t dir;
 int intersect = ccdGJKSeparate(&geomID1, &geomID0, &ccd, &dir);

C++

19.5.1.3.5. Use embree rays to �nd penetration distance of each penetrating point

With the penetrating points and separation vector found, we can use embree to cast rays and find the intersection with the other mesh. This requires the use of a geometry intersection

function (https://spec.oneapi.io/oneart/latest/embree-spec.html#rtcsetgeometryintersectfunction:~:text=RTC_GEOMETRY_TYPE_USER-,rtcSetGeometryIntersectFunction,-%C2%B6), which checks for the

intersection of a ray with user defined geometry primitives. Luckily, the embree collision detection GitHub example has this function implemented here

(https://github.com/embree/embree/blob/master/tutorials/collide/collide.cpp#:~:text=triangle_intersect_func), which I adapted for use with DMesh and SOA . In order to ensure that the ray is colliding

with the particular mesh we are interested in, I pass the mesh ID we would like to collide with in the RTCRay.flags property

(https://spec.oneapi.io/oneart/latest/embree-spec.html#rtcsetgeometryintersectfunction:~:text=//%20ray%20ID-,unsigned%20int%20flags,-%3B%20//%20ray%20flags). Then, if in the geometry intersection

callback the mesh ID of the face in question is not the one we care about, there is no need to compute the potential intersection and we can return without doing anything. This not only

saves time but makes sure we are getting the correct penetration distances for the collision at hand. My implementation of the intersection function can be seen below:

19.5.1.3.6. Determining contact points from penetration points

I classify contacts as a couple different types:

Point Contact

These occur when one of the colliding meshes has just one penetrating point with the deepest penetration distance. One contact point is generated at this deepest penetrating point. This

type of contact includes Point-Point, Point-Edge, and Point-Face collisions.

Edge Contact

These occur when one of the colliding meshes has exactly two penetrating points with the deepest penetration distance, and none of the meshes have a singular deepest penetrating

point (this would be a point contact). One contact point is generated at the midpoint of the deepest penetrating line segment. This type of contact includes Edge-Edge and Edge-Face

collisions.

Face Contact

void triangle_intersect_func(const RTCIntersectFunctionNArguments* args) {
 // unpack args
 void* ptr = args->geometryUserPtr;
 RTCRayHit* rayhit = (RTCRayHit*)args->rayhit;
 RTCRay* ray = &rayhit->ray;
 RTCHit* hit = &rayhit->hit;

 // ID of primitive
 unsigned int primID = args->primID;
 // mesh ID of current primitive
 unsigned geomID = (unsigned) (size_t) ptr;

 // the mesh ID we are interested in intersecting with is stored in the RTCRay flags
 unsigned hit_geomID = ray->flags;

 // return if the mesh ID of the primitive is not the one we're interested in intersecting with
 if (geomID != hit_geomID)
 return;

 // calculate potential intersection
 auto const & mesh = *meshes[geomID];
 auto const & tri = mesh.getFace(primID);

 const SOAVector3& v0 = mesh.getVertex(tri.v0);
 const SOAVector3& v1 = mesh.getVertex(tri.v1);
 const SOAVector3& v2 = mesh.getVertex(tri.v2);

 const SOAVector3 e1 = v0-v1;
 const SOAVector3 e2 = v2-v0;

 const SOAVector3 Ng = e1.cross(e2);

 const SOAVector3 O(ray->org_x, ray->org_y, ray->org_z);
 const SOAVector3 D(ray->dir_x, ray->dir_y, ray->dir_z);
 const SOAVector3 C = v0 - O;
 const SOAVector3 R = D.cross(C);

 double den = 1 / (Ng.dot(D));

 double u = R.dot(e2) * den;
 double v = R.dot(e1) * den;

 bool valid = (den != 0.0) & (u >= 0.0) & (v >= 0.0) & (u+v<=1.0);
 if (!valid) return;

 // calculate distance of intersection
 double t = Ng.dot(C) * den;
 valid &= (t > ray->tnear) & (t < ray->tfar);
 if (!valid) return;

 // set hit parameters to register an intersection
 ray->tfar = t;
 hit->u = u;
 hit->v = v;
 hit->geomID = geomID;
 hit->primID = primID;
 hit->Ng_x = Ng[0];
 hit->Ng_y = Ng[1];
 hit->Ng_z = Ng[2];
}

C++

These occur when both of the colliding meshes have more than two penetrating points with the deepest penetration distance. Multiple contact points are generated; one at each vertex of

the penetrating face. This type of contact only includes Face-Face collisions.

19.5.1.4. Examining DBulletTest examples

19.5.1.4.1. Plane-Plane example

The categorization above seems to align reasonably well with what Bullet does for contact point determination. For example, take the Face-Face contact case shown below, where two axis-

aligned cubes collide with a penetration depth of 0.22.

The points P1, P2, P3, and P4 are the contact points on the red cube determined by Bullet - they are the vertices of the colliding face. And, as we can see, the collision normal is the minimum

separating vector, which in this case is the negative Y-axis (the green axis in the picture). The visualization was done with GeoGebra and can be viewed and tinkered with here

(https://www.geogebra.org/3d/ysvwj5bb).

19.5.1.4.2. Edge-Edge example

Another interesting example is the Edge-Edge contact case shown below, where two rotated cubes collide perpendicularly through their edges.

The point P1 is the contact point on the red cube determined by Bullet. This is simply the point of deepest penetration. GeoGebra link: here (https://www.geogebra.org/3d/dmw9xnur)

19.5.1.4.3. Edge-Plane example

In the Edge-Plane example, a rotated cube collides with an axis-aligned cube such that the rotated cube’s edge collides with one of the faces of the axis-aligned cube. This example involves

two types of collisions, Face-Face and Edge-Face, and they come about depending on the collision normal (the minimum separating vector).

Face-Face:

In the Face-Face collision, the collision normal is along the Y (green) axis, so there are 3 points with the deepest penetration into the larger cube. As such, these 3 points (P1, P2, P3) are the

contact points determined by Bullet.

Edge-Face:

In Edge-Face collision, the collision normal is along the X (red) axis, so there are only 2 points with the deepest penetration into the larger cube. As such, these 2 points (P1, P2) are the contact

points determined by Bullet. GeoGebra link: here (https://www.geogebra.org/3d/vh7y2vpq)

19.5.1.4.4. Vertex-Plane example

In the Vertex-Plane example, a cube rotated once about the Z-axis and once about the Y-axis collides with an axis-aligned cube such that a rotated cube’s vertex collides with one of the faces

of the axis-aligned cube. This example should just involve one type of collision (by my logic), a Vertex-Face collision, which only generates one contact point. For small penetrations, Bullet

agrees with this. However, when more of the rotated cube’s vertices penetrate the larger cube’s face, Bullet produces multiple contact points. This can be seen below:

Deeper penetration (4 contact points):

In my opinion, this doesn’t make a whole lot of sense, since there is only one point with the deepest penetration, so really the collision is only happening between that point and the face of

the larger cube. That being said, Bullet probably has a good reason for doing it this way. In any case, it is something interesting to note and be aware of. GeoGebra link: here

(https://www.geogebra.org/3d/suftxcgg)

19.5.1.5. Some intuition behind how contact points are determined

From doing a little research online, it seems there is no standard way to determine/define what contact points should be. I’ve defined them as what I believe to be most intuitive: given two

colliding shapes that penetrate one another, if you rewind time to the time at which they first touch, the points where they touch are the contact points for the collision.

The intuition behind this makes sense if we consider a simulation scenario where we have an infinitesimal time step. Then, we would be able to detect collisions at the exact instant that

they happen. The collision contact points would be very well defined; they would simply be the points at which the two meshes touch.

But, simulations don’t use an infinitesimal time step, and we detect collisions with nonzero penetrations. So how do we rewind to a time in between time steps to get the time where the two

meshes first touched? In short, we don’t. Instead, what we can do as an approximation is use the minimum separating direction and penetration distance of the collision. (Penetration

distance = minimum translation distance required to fully separate the two meshes). We can move one of the meshes the penetration distance along the minimum separating direction,

resulting in a contact that mimics what we would see if we rewound time. Assuming small penetration distances, this approximation will work well. This kind of logic can be seen in the

simple 2D case below.

If you notice, the contact point in this case is actually the vertex on the shape with the deepest penetration in step 2! So, this provides us with an initial intuition for how to find contact

points for a collision: look for vertices with the deepest penetration. There can also be more than one contact point, like in 2D when there is an edge-edge intersection. Two examples of

this can be seen the 2D example below.

Here, we can see that the edges intersect squarely, creating an infinite number of points with the deepest penetration. Obviously, we cannot have an infinite number of contact points, so we

select the endpoints of the line segment. Notice how in the case on the left, the centered edge-edge collision, the endpoints of this intersecting line are vertices of the red shape. However, for

the case on the right, the offset edge-edge collision, only one endpoint is a vertex on the red shape. The other endpoint is where edges from the blue and red shapes intersect, a so-called

intersection point (this is how I’ll be referring to points such as this one from now on). This is a crucial feature to capture, since this will drastically affect the applied forces and moments

to the collision, so we have to not only consider just vertices but also intersection points as potential contact points. Thus, we can modify our initial intuition to the following: look for

vertices or intersection points with the deepest penetration. This will ultimately be the main guiding criterion for determining contact points.

19.5.1.6. Updated contact point determination for two colliding meshes

Above, we developed some intuition on what a contact point should be: a point (vertex or intersection point) with the deepest penetration. So, how do we put this into practice efficiently?

19.5.1.6.1. High level overview

Inputs: two meshes that are potentially colliding

Outputs: contact points for the collision, if there is one

19.5.1.6.1.1. Algorithmic steps
Run libccd 's ccdGJKPenetration function to determine the minimum separating vector, penetration distance, and "position" of the collision, if there is one.

Starting at the mesh vertex closest to the libccd "position" (which should at least approximately be the deepest vertex), traverse adjacent connected vertices until there are no more

vertices with the deepest penetration depth. Add all vertices with the deepest penetration depth to be examined further as potential contact points. Do this for each mesh.

Take the potential contact points and find the convex hull of them. This step also removes collinear and duplicate points. Do this for each mesh.

Check the number of potential contact points for each mesh and use that to determine the type of collision. Add the relevant contact points to a final vector to be returned.

19.5.1.6.2. libccd ccdGJKPenetration function call

The ccdGJKPenetration runs the GJK algorithm augmented with the EPA (Expanding Polytrope Algorithm) algorithm. The GJK algorithm alone only is able to detect if there is a collision

between two shapes, not anything more. The EPA algorithm is an augmentation to GJK, and is able to determine the minimum separating vector, penetration depth, and position of the

collision, which is ultimately what we care about when determining contact points.

19.5.1.6.2.1. Brief summary of GJK and EPA (for some context)
GJK is a pretty elegant solution for determining if two polygons (or polyhedrons in 3D) intersect. It is primarily based around something called the Minkowski difference. Something similar,

called the Minkowski sum, can be explained a little easier. The Minkowski sum is defined as the polygon that contains every point in one shape added to every point in the other. The

Minkowski difference, in contrast, is the polygon that contains every point in one shape added to the negative of every point in the other shape. A way of thinking about it is sweeping the

inverted polygon B around the edges of polygon A, and taking the resulting polygon as the Minkowski difference. This sort of logic can be shown below:

The Minkowski difference can be used to determine if two polygons are intersecting; if the Minkowski difference contains the origin, then the polygons are intersecting! (Since the

Minkowski difference can be thought of as subtracting every point contained in polygon B from every point contained in polygon A, then if the origin is in the Minkowski difference, there’s

at least one pair of points in polygon A and B such that they subtract to 0 = intersection!). This can be visualized better in the illustration below.

As we can see, the Minkowski difference (in green) contains the origin, and thus the two polygons collide. Once the Minkowski difference is found, the core of the GJK algorithm is to try

different combinations of points on the boundary of the Minkowski difference in order to find a triangle that contains the origin. If one is found, then the shapes intersect!

EPA builds on this by using the final triangle that GJK produces and expanding it by adding vertices, looking for the edge (or face in 3D) that is closest to the origin. The vector from this edge

to the origin is the penetration vector. These implementation details aren’t crucial for us to understand; libccd handles them for us.

19.5.1.6.2.2. GJK support function
The reason we have to understand a bit about the Minkowski difference is because libccd requires us to specify a support function, which is used to compute the Minkowski difference.

The GJK support function is defined for a polygon as a function that, for a given direction, gives the vertex on the polygon that is furthest in that direction.

insert visualization here **

A simple way to calculate the support function would be to, for a given direction, take the dot product with every vertex in a mesh, as done here

(https://stackoverflow.com/questions/1969922/support-function-in-the-gjk-algorithm). The vertex with the highest dot product is the support point in that direction. However, this becomes very slow for

meshes with a high number of vertices.

Another, faster way to calculate the support function is to perform an Embree point query. Say that for some given support direction dir we have some point P extremely far away from

the origin, on the vector dir . The closest vertex to point P on the mesh will be the support point for that direction. This is a direct result of the shapes being convex. We can use the already

existing computeClosestVertex function in DMesh to do this, and it’s a clever way of avoiding iterating through the vertices. A 2D visualization of this can be seen below.

19.5.1.6.3. Traversing vertices for contact points

As mentioned in a post above, our criterion for contact points are vertices or intersection points that have the maximum penetration distance. Well, how do we define penetration distance

for a point? A natural way to define penetration distance is the distance along the minimum separation vector needed for the point to be outside the other shape. A 2D illustration of this

definition is below.

/Penetration_Distance.jpg[Penetration_Distance]

The penetration distance for a point can be found rather simply using Embree; we can cast a ray with the point as the origin in the minimum separating direction, and the distance until this

ray hits the other shape is the penetration distance. So, to see if a point is at the maximum penetration distance, we need 2 things: the minimum separating direction and the maximum

penetration distance. Luckily for us, both of these things can be found with the prior step, the call to ccdGJKPenetration . ccdGJKPenetration also provides us with the point at which the

penetration is the deepest! We can use this point (or rather, the closest vertex on the shape to this point) as a starting point for our traversal algorithm.

The traversal algorithm is relatively simple and should be pretty intuitive. We perform the following steps:

1. Define a list of contact points, a set of vertex indices that we’ve checked, and a queue of vertices that we need to check.

2. We start at the deepest vertex determined by libccd . Add it to the set of checked vertices.

3. We cast an initial ray from this point along the minimum separating direction, and see if it intersects with the other shape.

a. If it doesn’t, then there are no penetrating points (meaning there are no contact points), so return.

b. If it does intersect, check the penetration distance. If it is the maximum penetration distance, we have a maximum penetration point, so add it to the list of contact points.

4. Add adjacent vertices, with the penetration distance of this vertex, to the queue of vertices to check later. Add these vertices to the set of checked vertices.

5. While queue of vertices to check isn’t empty:

a. Cast a ray from vertex at front of queue, along the minimum separating direction.

b. If it intersects:

i. Find the penetration distance. If it is the maximum penetration distance, we have a maximum penetration point, so add it to the list of contact points.

ii. Compare the penetration distance to the penetration distance of the previous adjacent vertex. If the current penetration distance is >= the previous penetration distance:

A. Add this vertex’s adjacent vertices that are not already checked, along with the penetration distance of this vertex, to the queue of vertices to check later. Add these adjacent

vertices to the set of checked vertices.

c. If it doesn’t intersect:

i. This means the current point is outside the other mesh. So, there is an intersection point somewhere between this vertex and its adjacent vertices.

ii. For each adjacent vertex:

A. Cast a ray from the adjacent vertex to the current vertex.

B. If it intersects the other shape, find the intersection point. Otherwise, continue onto the next adjacent vertex.

C. Cast a ray from this intersection point along the minimum separating direction.

D. Find the penetration distance. If it is the maximum penetration distance, we have a maximum penetration point, so add it to the list of contact points.

Perhaps it is better explained with a visual example.

19.5.1.6.4. Find convex hull of contact points

Ultimately, we only want to keep the contact points that are absolutely necessary. In certain types of collisions, there might be extraneous contact points (possibly due to the number of

subdivisions in the mesh), that don’t actually add anything to the shape of the contact manifold. For this reason, it’s necessary that we filter out these extraneous points by computing the

convex hull. An example of this can be seen below, where the point in the center of the hexagon is extra and does not need to be a contact point.

The algorithm we choose to do this is the simple but effective Graham Scan algorithm, implemented in code here (https://github.com/MiguelVieira/ConvexHull2D/blob/master/ConvexHull.cpp). This

algorithm operates in 2D, however, so first we must project the contact points from 3D to 2D. There is no information loss here since all the points already lie in the same plane by the nature

of a contact manifold. After the Graham Scan algorithm is completed, some post-processing steps also occur to remove duplicates and collinear points, to ensure that only the essential

contact points are kept.

19.5.1.6.5. Use contact points for each mesh to determine �nal contact points

We perform the above steps for both meshes involved in the collision, and arrive at two sets of potential contact points. Now we have to make a decision: which set of contact points to go

with? Whichever set of contact points we choose, we can project the points from one mesh along the minimum separating direction to the surface of the other mesh, to get the contact

position for the other mesh.

In all cases, we select the mesh with more contact points, and project those onto the other mesh. Each contact point in one mesh usually has a corresponding contact point counterpart in the

other mesh. However, when there is a contact point without a counterpart (i.e. one mesh has more contact points than the other), then we need to use the one with more contact points to

capture the collision information accurately. If two meshes have the same number of contact points, we arbitrarily pick one meshes set to go with.

19.5.1.6.5.1. Dealing with edge-edge collisions
If neither mesh has contact points, then a special type of collision has occurred: an edge-edge collision. An illustration of this can be seen a few posts up. In these types of collisions, there

should be a single contact point, but unfortunately it is in the middle of an edge, so the algorithm that we use to determine contact points fails. libccd struggles with this case as well, as (at

least I believe) EPA yields indeterminate results when this case occurs.

So, what we do is find the "deepest" edge for each mesh. I define the deepest edge as the edge in the mesh that is furthest into the other mesh. More rigorously, the deepest edge is the edge

whose midpoint has the deepest penetration. We can then move one of these deepest edges along the minimum separation vector. Where these edges intersect is where the contact point

should be.

It should be noted that this "deepest edge" technique is not necessarily the best way to do this. The problem is a bit tricky to solve efficiently, because the edge on which the contact point

should lie may not penetrate the shape at all (which is what we see in the edge-edge DBulletTest test case). Ideally, the contact point determination process would handle this natively, but

I was unable to figure out a good way to do that.

19.5.1.7. Setting up rtcCollide to do broadphase collision detection

The broadphase collision detection is done using Embree’s rtcCollide . Each MeshGroup object has an Embree scene where this collision detection is run. An important note is that

MeshGroup 's scene only contains the overall mesh bounding boxes, not the primitives that make up the mesh (this was what I was doing initially). Doing this drastically speeds up the broad

phase, and makes committing geometries to the scene a lot faster as well. As before, rtcCollide requires us to specify geometry of the type RTC_GEOMETRY_TYPE_USER for it to work.

19.5.1.7.1. Adding a mesh to the scene

Adding a mesh is fairly straightforward. First, we create and attach a new RTCGeometry object which returns its ID in the scene. We store both the RTCGeometry object and the geometry

ID, as well as the pointer to the DMesh object in a map in MeshGroup . Then, we specify the user primitive count using rtcSetGeometryUserPrimitiveCount . This is just 1, since we only

have one "user primitive": the entire mesh. Then, we specify the pointer to the user data using rtcSetGeometryUserData , which is just the raw pointer to the mesh. Then, we specify the

geometry bounds function using rtcSetGeometryBoundsFunction . The bounds function we pass in is super simple, it just sets the Embree bounding box of the mesh. Finally, we can

commit and release the geometry with rtcCommitGeometry and rtcReleaseGeometry .

19.5.1.7.2. Updating the meshes in the scene

Before every call to rtcCollide , we must tell Embree which meshes have moved before it rebuilds the internal BVH. This is done using rtcCommitGeometry . All we have to do is pass each

geometry object (or at least just the ones that have had their meshes move in the scene) to rtcCommitGeometry , and it will tell Embree that the geometry has been modified.

Then, to actually rebuild the BVH, we call rtcCommitScene , which will rebuild the BVH. Now we are ready to call rtcCollide .

19.5.1.7.3. Calling rtcCollide

Calling rtcCollide is very simple, but because we call it within a class there are some important technicalities. We intersect the MeshGroup scene with itself to do the broad phase

collision detection, that is nothing different from before. A more interesting thing, however, is that the collide function callback that we pass in needs to be a static function to work properly

(there might be some contrived way to make it a member function using std::bind , but it’s easier just to make it a static function). Because it is a static function, we need some way of

getting back to the specific MeshGroup in question. Hence, we pass a pointer to the caller MeshGroup (using the this keyword), as the user pointer, so in the collide function callback, we

know which MeshGroup called rtcCollide .

The collide function callback is simple; all we do is add each potentially intersecting pair of geometry IDs to the caller MeshGroup using the public method MeshGroup::addCollision .

Then, the MeshGroup object will go through these pairs of potentially intersecting pairs and run the narrow phase collision detection (described in a post above) to see if they actually

intersect, and if they do find the contact points associated with the collision.

19.5.1.7.4. Removing a mesh from the scene

A mesh is removed from the scene using a call to rtcDetachGeometry , and then recommitting the scene. This should be all you need to do. However, for whatever reason this does not

seem to work, and Embree still detects collision between geometries that have been detached. I experimented briefly with trying to figure it out, but was unable to determine the

cause. For now I just check if a colliding geometry ID added by rtcCollide currently exists in the mesh-geometry map in MeshGroup . If it doesn’t, then I know that the mesh and geometry

has been deleted from the scene, and to skip it.

19.5.1.8. DMeshScene ecosystem

I thought it might me useful to spend a little time documenting how things fit together at the application level. When creating and colliding geometries in DMeshScene , there is a lot of

moving parts, and a lot that is going on in multiple classes/files. Here is the test script that we will be breaking down, which collides two cubes in a plane-plane intersection:

19.5.1.8.1. Creating scene and scene frame

Line 5: cscene = DMeshScene_Py.DMeshScene()

This creates the DMeshScene object. The constructor of DMeshScene initializes protected member _mesh_group , among other things related to setting up the DMeshScene (like calling base

constructors). The initialization of _mesh_group makes a call to the MeshGroup constructor, which sets up the Embree scene and the libccd object.

Line 7: sf = cscene.createSceneFrame("root")

This creates the root DMeshSceneFrame that geometries will be added to. This class is mostly just a wrapper around SceneFrame . The constructor initializes the _rel_transform and

_abs_transform private members to a 0 transform, and then calls the parent constructor for SceneFrame .

19.5.1.8.2. Creating part geometry

Line 9: little_cube = cscene.createPartGeometry(DScene_Py.SceneObject.PHYSICAL, "little_cube")

This creates the DMeshPartGeometry object for the smaller of the two cubes that we will be colliding. The mesh is not created yet, just the scene object. The call to createPartGeometry

calls the DMeshPartGeometry constructor, which sets up the scene object by calling its parent constructors. Most notably, DMeshPartGeometry inherits from DMeshSceneObject , which

actually holds a pointer to the DMesh object in the protected member _mesh .

Line 10: little_cube.cube(1.0, 1.0, 1.0)

This actually creates the mesh for the little cube. DMeshPartGeometry contains mesh construction methods for numerous primitives that are implemented by DMesh , such as a sphere

cylinder, cone, and cube. The cube construction method calls the DMesh::constructBox method, which returns a shared_ptr to a newly created box mesh, and sets the _mesh field to it.

Then, it calls DMesh::computeAdjacentVertices , which will compute vertex adjacency information for the new mesh. This is an important (but often costly) pre-processing step for

collision detection, so we do on mesh creation and then don’t have to worry about it again. Then, it calls DMesh::checkEmbree(true) , which will initialize the mesh’s Embree wrapper. This

is important to do for collision detection, since we will be intersecting rays with the mesh to determine contact points.

Lastly, it calls DMeshScene::_storeMesh for its parent scene. This method is responsible for adding the DMeshPartGeometry and std::shared_ptr<DMesh::Mesh> pair to its private

member, _meshes_map , which is a map of mesh pointers to part geometry pointers. The point of _meshes_map is to output the appropriate DMeshPartGeometry object given a pointer to a

mesh. This is important to keep track of to interface properly with MeshGroup , since MeshGroup exclusively deals with meshes, and DMeshScene almost exclusively deals with scene

1 from Math.SOA_Py import SOAVector3, SOAQuaternion, SOAHomTran, SOARotationMatrix
2 from DScene import DScene_Py
3 from DScene import DMeshScene_Py
4
5 cscene = DMeshScene_Py.DMeshScene()
6
7 sf = cscene.createSceneFrame("root")
8
9 little_cube = cscene.createPartGeometry(DScene_Py.SceneObject.PHYSICAL, "little_cube")
10 little_cube.cube(1.0, 1.0, 1.0)
11 little_cube.relTransform(SOAHomTran(SOARotationMatrix(0, 0, 0), SOAVector3(1.25, 4.28, 0)))
12 sf.attachSceneObject(little_cube)
13
14 big_cube = cscene.createPartGeometry(DScene_Py.SceneObject.PHYSICAL, "big_cube")
15 big_cube.cube(2.0, 2.0, 2.0)
16 big_cube.relTransform(SOAHomTran(SOARotationMatrix(0, 0, 0), SOAVector3(0, 3, 0)))
17 sf.attachSceneObject(big_cube)
18
19 cscene.detectCollision()
20 nc = cscene.getNumContacts()
21
22 contactInfo = cscene.getContactInfo()

PYTHON

objects. Also in DMeshScene::_storeMesh is the call to MeshGroup::_addMesh , which adds the newly created mesh to the MeshGroup . This method is responsible for creating and

attaching the Embree geometry to the Embree scene contained in MeshGroup that is used for broad phase collision. After creating the geometry, it will store the mesh, geometry, and

geometry ID in a map.

Line 11: little_cube.relTransform(SOAHomTran(SOARotationMatrix(0, 0, 0), SOAVector3(1.25, 4.28, 0)))

This line applies a transfrom to the mesh. What is actually called here is DMeshSceneObject::relTransform which just sets the relative transform, _rel_transform to whatever is

specified by the user. It also sets the boolean flag _needs_update to true, which indicates that the mesh needs to be updated.

Line 12: sf.attachSceneObject(little_cube)

This just adds the newly created scene object to the scene frame using the parent method SceneFrame::attachSceneObject .

19.5.1.8.3. Running the collision detection

Line 19: cscene.detectCollision()

This makes the call to DMeshScene::detectCollision , which first iterates through all the part geometries stored in _meshes_map and updates their meshes using

DMeshSceneObject::updateMesh . What updateMesh does is first check if _needs_update is true. If so, then it goes ahead and transforms its _mesh field using Mesh::transformInPlace .

The transform that is applied to the mesh is the relative transform between the mesh’s current transform (which is out of date) and the scene object’s current transform. That way, the mesh

ends up with the same transformation as its parent scene object.

Then, detectCollision makes the call to MeshGroup::detectCollision , which performs the full collision detection process detailed in posts above. It will commit the geometries to its

internal Embree scene, then run rtcCollide for broad phase, and then use libccd for narrow phase. The contact points MeshGroup finds will be stored internally in a vector and can be

queried using getNumContacts or getContactInfo .

Line 20: nc = cscene.getNumContacts()

This just simply calls the scene’s _mesh_goup 's getNumContacts method, which returns the current size of the contact points vector from the last run of detectCollision .

Line 21: contactInfo = cscene.getContactInfo()

This gets all current contact points by making a call to the MeshGroup::getContactInfo method from _mesh_group . This will return a list of Mesh::ContactPoint structs, which mirror

the DScene::CollisionContactInfo struct, but store meshes instead of objects. The reason for this is that MeshGroup (at least currently) does not store scene object to mesh mappings, so

there is no way for it to go from a mesh back to its associated scene object. DMeshScene does however, and it can get the associated scene object from a mesh pointer by looking in

_meshes_map . This is done in DMeshScene::_getPartGeometry .

DMeshScene iterates through the contact points returned by MeshGroup::getContactInfo , and create analogous DScene::CollisionContactInfo structs, substituting the scene object

pointers for the mesh pointers. Also, depending if the origin option is disabled, it will transform the normals and positions of the contact points to be relative to the scene object

coordinate frame. By default, MeshGroup::getContactInfo returns contact information with respect to the global coordinate frame.

19.5.1.9. Some extra tidbits I think are important or should be clari�ed

19.5.1.9.1. More speci�cs on libccd return values

The call to ccdGJKPenetration is documented here (https://libccd.readthedocs.io/en/master/examples.html#gjk-epa-penetration-of-two-objects). The function call looks like this:

int intersect = ccdGJKPenetration(obj1, obj2, &ccd, &depth, &dir, &pos);

intersect takes on the value -1 if there isn’t a collision and 0 if there is a collision (despite them saying intersect is "true" when there is a collision). obj1 and obj2 are the pointers to

the mesh, and ccd is the libccd object that we initialize earlier (in MeshGroup it is stored as a class variable and initialized in the constructor). depth is the max penetration depth, dir

is the minimum separation direction, and pos is, in their words, "the position in global coordinate system". This is pretty vague and unhelpful in describing what this pos actually is.

The GitHub post (https://github.com/danfis/libccd/issues/73) asks a similar question and provides a tentative answer. I arrived at a similar conclusion as he did: the pos is the midpoint on the

line between a contact point’s positions on each shape. For example, if we move from pos along the minimum separation direction for half the max penetration distance, we will arrive

at the deepest penetrating vertex for one of the shapes. In a more concrete example, say we have two spheres with radius 1, one at (0,0,0) and one at (1.8,0,0). The penetration distance of the

collision is 0.2, and there is only one contact point with a positionA of (1,0,0) and a positionB of (0.8,0,0). The pos returned by libccd in this case is (0.9,0,0), halfway between

positionA and positionB .

In code, it looks like the following:

Where ccd_pos0 is a deepest penetrating point on the surface of mesh 0, and ccd_pos1 is a deepest penetrating point on the surface of mesh 1. ccd_pos0 and ccd_pos1 is not

necessarily a vertex on either of the meshes, depending on the type of collision. That is why I do a computeClosestVertex call to get the closest vertex to the ccd_pos as the starting

point for the vertex traversal algorithm.

19.5.1.9.2. Explanation of ray casting for mesh-level Embree scene

When a mesh is first created or loaded in using the DMeshPartGeometry class, the Embree wrapper is initialized using a call to mesh->checkEmbree(true); This will create an Embree

scene, and commit the current mesh to the scene, resulting in it building the BVH out of triangle mesh primitives for the ray tracing interface. At this point, Embree thinks the mesh is at

the origin, and the mesh really is at the origin; the mesh hasn’t been transformed yet.

Since we are assuming the mesh to be a rigid body, the spatial relationship between the primitives will not change, and as such we don’t really need to rebuild the mesh-level Embree

wrapper Embree scene. If we keep track of the current transform of the mesh and we want to cast intersecting rays using Embree, we can just transform the ray we want to cast back to the

origin coordinate system (using the inverse of the current mesh transform).

When we transform the mesh, we are actually applying the transform to the physical vertices and faces. However, since the Embree wrapper Embree scene has already been committed

(and the BVH has already been constructed), as far as the Embree scene is concerned, the mesh is still at the origin. In order to update this Embree scene, we have to explicitly make a call to

rtcCommitScene for it to rebuild the BVH, and only then will it look at the actual mesh positions and figure out how to reconstruct the BVH at these new positions. As mentioned earlier, we

don’t need to do this, since we can transform rays back to the origin coordinate frame and cast them there.

const SOAVector3 ccd_pos0 = position - 0.5 * max_pen * ray_dir;
const SOAVector3 ccd_pos1 = position + 0.5 * max_pen * ray_dir;

C++

But, and here’s where it gets a little weird, the ray intersection point that Embree returns is when you cast a reverse-transformed ray towards the mesh is what it would be if the Embree

scene had been updated. (I have no idea why this happens, but my guess is that Embree internally keeps pointers to the mesh geometry, so is able to somehow convert from Embree scene

coordinates to mesh coordinates).

It’s probably just best to see what I do in the code to understand how to approach this. Here, we want to cast a ray from closest_vert towards mesh1 in the direction of norm_ray_dir .

What we have to do to transform closest_vert into mesh1 's origin coordinate frame, and use the inverse quaternion’s rotation to point norm_ray_dir in the correct direction.

Ultimately, all of this is done with efficiency in mind. Since the meshes are rigid bodies, we really don’t have to update the Embree scene, which is a costly operation when there are a lot of

vertices in a mesh.

19.5.1.9.3. More on the edge-edge intersection case

The edge-edge intersection case is seen below.

As we can see, there are no vertices or intersection points that have the deepest penetration on either shape! That’s what makes this case so hard. Normally, there is at least one

vertex or intersection point on one of the shapes that has the deepest penetration, and we’re able to find that using the vertex traversal algorithm. Also, the libccd pos is a bit unreliable

here, as I think the EPA algorithm relies on the vertices (and doesn’t directly have edge information) to figure out the pos . So when there is no deepest vertex on either shape, it struggles to

converge. That being said, libccd still provides accurate minimum separating direction and maximum penetration distance.

The strategy I use to find the elusive contact point is by finding the "deepest edge". This means finding the edge on the shape that is furthest along the minimum separating direction. In the

example above, this would be the rightmost vertical edge on the red shape and the leftmost horizontal edge on the orange shape. Logically, the contact point is where these edges touch

when the shapes first touched. So, we translate one of the deepest edges along the minimum separating direction such that these edges now intersect. Where they intersect is the contact

point.

// get inverse transform of mesh1
const SOAHomTran& inv_mesh1 = mesh1.getCurrentTransform().getInverse();
// get norm_ray_dir wrt mesh1 origin
const SOAVector3& rot_norm_ray_dir = inv_mesh1.getQuaternion().getRotation() * norm_ray_dir;
// construct the ray
const SOARay ray(inv_mesh1 * closest_vert, rot_norm_ray_dir);
// get the intersection hit point -- this will not be in mesh1 origin frame!
// i.e. we won't have to transform it back to the current mesh1 transformation to use it
std::optional<SOAVector3> hit_point = mesh1.computeRayIntersection(ray);

C++

The reason I put so much emphasis on bringing this case up is because it is untested other than the case shown above. My worry is that the "deepest edge" strategy I devised is not general

enough to handle all the potential edge-edge cases out there. I think it should be able to handle most of them, but there might be some corner cases I haven’t thought of. That being said, I

imagine that this intersection case is pretty rare to encounter in an actual simulation, especially if the meshes have large numbers of vertices.

20. DBullet

20.1. Background

20.1.1. Reference & Source material

DBullet Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DBullet/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

20.2. Design

20.2.1. MeshToBullet2

MeshToBullet2 was designed to meet the following requirements:

1. Provide interfaces for the VHACD-4.0, VHACD-2.0, and HACD algorithms.

These interfaces should utilizie DMesh for importing/viewing meshes. That way, MeshToBullet2 can support all file types that DMesh supports.

2. Support files that contain multiple meshes.

This includes importing and creating convex hulls for each mesh, as well as merging output convex hulls files into one file.

3. Include visualization of the result that optionally includes: the original mesh, the output convex hull mesh, a wireframe view of the convex hulls.

20.2.1.1. Convex decomposition algorithm interfaces

VHACD-4.0, VHACD 2.0, and HACD come with interface classes that can be utilized to setup and run the algorithms. However, these interfaces are limited in terms of what types of mesh

files they can import, even though the algorithms themselves only require the points/faces of the input mesh. The ConvexDecomUtilities library in DBullet writes wrappers for these

interfaces that utilize DMesh ; this allows the wrapped versions to utilize any mesh file type that can be imported into DMesh . In addition, the original interfaces provide hooks for data

logging and data callback classes. The wrapped versions utilize these to implement logging in C++, and use swig directors so that the callbacks can be optionally implemented in Python. In

ConvexDecompUtilities the default callbacks are ultimately implemented in Python, and utilize the tqdm module to show a status bar that indicates current progress.

The VHACD 4.0, VHACD 2.0, and HACD implementations in ConvexDecompUtilities also come equipped with methods to extract the convex hull decomposition as a convex hull file, and as

a list of `DMesh::Mesh`s. These methods are useful for the visualization.

20.2.1.2. Visualization

The original mesh and convex hull meshes utilize the DMesh::Mesh::showList method to visualize them. The wireframe view of the convex hulls is achieved by creating a part geometry

using the output convex hulls file from the convex decomposition, and turning on the Bullet debugger. To make the best use of three visualizition componenets, original mesh, wireframe

view of convex hulls, and convex hulls mesh, the following strategy is used:

If the original mesh and wireframe are both turned on, then they are positioned so that they lie on top of one another. This allows the user to easily view the difference between the two.

If the original mesh is not enabled, but the convex hulls mesh is enabled, then the wireframe view is positioned on top of the convex hulls mesh.

Otherwise, the wireframe mesh sits at the origin. If the original mesh and convex hulls meshes are both enabled, then they are automatically position so they do not overlap.

20.2.2. MeshToSDF

MeshToSDF was designed to meet the following requirements: 1. Create a signed data function (SDF) file for all mesh types supported by DMesh . At this time, MeshToSDF is only required to

handle files that have one mesh per file. 2. Visualize the SDF alongside the original mesh so the user can compare the two.

20.2.2.1. SDF algorithm interface

The Discregrid (https://github.com/InteractiveComputerGraphics/Discregrid) third-party package provides an algorithm to create an SDF given a mesh represented using its internal data structure.

An interface class was written to take a DMesh , convert it to the mesh structure required by Discregrid , and use the Discregrid algorithm to create an SDF file.

20.2.2.2. Discregrid

This section contains a brief summary of Discregrid . Discregrid divides up the domain based on the user-provided resolution. Then, for each cell in the domain, it queries the distance

to the mesh. This information is saved for each cell. Then, a cubic interpolation scheme is used to interpolate the distance for any point in the domain.

The SDF file is created by simply serializing the cubic interpolation function and required data.

In addition, the gradient of the SDF can be approximated, which Bullet uses internally get the normal of the collision.

20.2.2.3. Visualization

CGAL has the capbility to generate a 3D surface mesh given a function. This is known as meshing via implicit functions (https://doc.cgal.org/latest/Surface_mesher/index.html). This interface is

utilized to construct a CGAL mesh from the SDF . Then, the mesh is converted into a DMesh for visualization.

20.3. Usage

20.3.1. Collision geometry

 TBD: Add sections to this, e.g., primitives. Also, flush out subsections below.

20.3.1.1. Convex hulls

Using a convex hulls representation of a mesh is the most common way to do collision detection. In DARTS, the MeshToBullet2 tool provides a quick and easy way to generate a convex hulls

file for use in DBullet : see the sections on MeshToBullet2 for more details.

In sims, the extra_parameters fields of part geometries or the filenames parameter of the geometries field of body parameters dictionaries can be used to specify a given convex hulls

file. Note, if no file is specified, then DBullet will generate one for you using the HACD algorith; however, this often is not very efficient compared with the convex hulls files that can be

generated by MeshToBullet2 .

20.3.1.2. Signed data �elds

Signed data fields are an alternative way to specify objects for collision detection. They utilize a function whose sign dictates whether an object is penetrating or not. Signed data fields

should ONLY be used for static meshes. Moreover, bullet cannot handle collisions between two SDFs, which is in part why they should only be used for static meshes, e.g., terrains.

See the benchmark located here for details: DBulletTest/Latest/benchmark/test_SDF_collision/script.py .

20.3.2. MeshToBullet2

MeshToBullet2 comes equipped with three convex decomposition algorithms: VHACD 4.0, VHACD-2.0, and HACD. The top-level --algorithm option can be used to switch between these.

VHACD-4.0 is used by default, since it is the newest of the three algorithms, and typically gives better results

The files command is used to set the names of the input and output files. An input file must be specified in order for MeshToBullet2 to run. If no output file is specified, then the default

name will be the same as the input file, but with the .convexhulls extension.

The params command is used to modify the settings of the desired algorithm. The options of this command depend on the algorithm used. The options' help strings can be used to learn

how the option affects the algorithm. In addition, the help text for the param command includes links for articles that explain the algorithm in detail.

The show command is used to modify the visualization settings. There are three visualization elements that can be enabled/disabled: * The original mesh * The convex hulls mesh * The

convex hulls wireframe See the visualization design section for more information on how these are displayed relative to one another. For example outputs, see the images below:

crate convex hull

torus convex hull

20.3.2.1. Common pitfalls

The following is a list of common problems, and resoltions:

The algorithm runs, and the visualization shows, but it appears frozen. This often happens when the number of convex hulls is large. Disabling the wireframe view, using show --

wireframe False , typically resolves this issue.

The HACD algorithm provides many convex hulls with few points per hull. This can be resolved to some extent by using the --concavity option. Increasing the value of this option will

sometimes resolve this issue. However, if the issue persists, then consider switching to the VHACD4 or VHACD2 algorithm.

20.3.2.2. Additional resources

These (https://docs.google.com/presentation/d/1OZ4mtZYrGEC8qffqb8F7Le2xzufiqvaPpRbLHKKgTIM/edit?usp=sharing) slides are a wonderful visual depiction of how the VHACD 4.0 parameters affect

the convex decomposition.

Here (https://github.com/kmammou/v-hacd) is the VHACD 4.0 homepage.

Here (https://www.taylorfrancis.com/chapters/mono/10.1201/b21177-15/volumetric-hierarchical-approximate-convex-decomposition-eric-lengyel) is the original VHACD paper.

Here (http://khaledmammou.com/AllPublications/icip2009.pdf) is the original HACD paper.

This (https://blog.roblox.com/2020/07/search-better-convex-decomposition/) article from Roblox shows a nice visual depiction of how the HACD algorithm works.

Here (http://kmamou.blogspot.com/2014/12/v-hacd-20-vs-hacd.html) is a comparison between the VHACD 2.0 and HACD algorithms.

Reg tests for MeshToBullet2 are located at DBulletTest/test/test-MeshToBullet2 .

20.3.3. MeshToSDF

The MeshToSDF tool comes with a Dclick interface that can be used to configure the creation/visualzation of the SDF file.

The files command is used to set the names of the input and output files. An input file must be specified in order for MeshToSDF to run. If no output file is specified, then the default

name will be the same as the input file, but with the .sdf extension.

The params command is used to modify the settings of the SDF algorithm. The options' help strings can be used to tell the user how and when to use each option. Of particular importance

are the resolution and invert optoins. The main option to control the accuracy is the resolution option, which specifies the discretization of the domain into cells. The invert option

is useful if the SDF algorithm is reading your mesh inside-out. For example, in the case of the hollow sphere below, the invert optoin was necessary to get the SDF to characterize the

inside vs. outside of the mesh correctly:

No SDF inversion: the SDF mesh is inside out. image::docFiles/hollow_cylinder_inside_out.png[]

With SDF inversion: the mesh has the correct orientation. image::docFiles/hollow_cylinder.png[]

The show command is used to modify the visualization settings. There are two visualization elements that can be enabled/disabled: * The original mesh * The SDF mesh For example, see

the image below:

concave box

20.3.3.1. Additional resources

This (https://doc.cgal.org/latest/Surface_mesher/index.html) is the CGAL documentation on creating a 3D surface mesh from an implicit function.

This (https://github.com/InteractiveComputerGraphics/Discregrid) is the third-party Discregrid library, which contains the algorithm used to create an SDF from a mesh.

Reg tests for MeshToSDF are located at DBulletTest/test/test-MeshToSDF .

20.3.3.2. Notes

I have not exposed the tolerance used by CGAL’s Implicit_Surface_3 (https://doc.cgal.org/latest/Surface_mesher/classCGAL_1_1Implicit__surface__3.html). This was not necessary for the meshes I

tried it on, but may need to be exposed in the future.

Implicit_Surface_3 (https://doc.cgal.org/latest/Surface_mesher/classCGAL_1_1Implicit__surface__3.html) claims that the implicit function must be <0 at the center of the bounding sphere, but this

did not appear true in practice. I’m curious if this is an old piece of documentation. Note, I thought this was the original reason the hollow cylinder appeared inverted, but upon

inspecting the SDF, without inversion, the SDF is < 0 in the center, meaning it thinks the "hollow" portion is solid unless inversion is enabled.

I did not expose the tag option of make_surface_mesh (https://doc.cgal.org/latest/Surface_mesher/group__PkgSurfaceMesher3FunctionsMakeMesh.html#ga7e188adef5bfadaafd08db82c8a25dc1). This

option was not necessary on the meshes I tried MeshToSDF on.

20.4. Software

20.5. Raw documents

21. NdartsConstraint

21.1. Background

21.1.1. Reference & Source material

NdartsConstraints Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/NdartsConstraints/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

21.2. Design

21.3. Usage

21.4. Software

21.4.1. General concepts

The pnode or virtual root body for a compound body is effectively the physical` parent body that the compound body is attached to (as returned by the physicalParentBody()

method).

nbodies below refers to the number of embeeded physical bodies, and nindepVels to the number of independent dofs for the body’s hinge.

Recall that ϕ(parent, cbd) = EGϕG, where E∗G is the SKO matrix element whose transpose propagates the physical parent body’s spatial velocity to all the base bodies within the compound

body, and ϕ∗G propagates the base body velocities to all the embedded body spatial velocities. Thus ϕ∗(parent, cbd) propagates the physical parent body’s spatial velocities to the spatial

velocities of all the embedded bodies.

21.4.1.1. DartsCompoundBodySubhinge

21.4.1.1.1. class CompoundSubhingeKinMatrices

Class for compound body kinematics matrices

Member Type Size Description

m_Hst_RG SOAMatrix 6 * nbodies, nindepVels This is H∗
RG = H∗

G ∗ XG element for the

compound body. Each of its 6-row contains

the mapping from the independent

generalized vels to the body frame relative

spatial velocity for the physical row body.

This is also the compound body’s H∗(k)

element in the H∗ spatial operator. Note

that it includes the XG Jacobian that maps

the independent gen vels to the full gen

vels for all the embedded bodies.

m_E_Phi_G SOAMatrix 6 x 6*nbodies the EG ∗ ϕG product matrix for the

compound body. This is also the

ϕ(parent, cbd) matrix contribution to the SKO

matrix for the system. Its elements are the

rigid body transformation 6x6 matrix from

the physical parent body to the pnode for

each embedded body. Thus the elements

map from the individual embedded body

frames to the physical parent frame. The

transpose of this matrix maps the spatial

velocity of the physical parent body to the

individual embedded body spatial

velocities.

21.4.1.1.2. class CompoundSubhingeABIMatrices

Class for compound body ABI matrices derived from SubhingeABIMatricesBase .

Note that the PG ATBI operator element for a compound body is simply a (6 nbody) size, symmetric and square block diagonal matrix with the 6x6 ATBI PR matrix block elements for the

individual embedded bodies along the diagonal. Each of these block elements is in its own pnode frame. Note that the individual embedded body PR matrix is obtained by a regular ATBI

step where it accumulates the external children body ATBI contributions with its spatial inertia - and does not include any contributions from other children bodies that are siblings

within the same parent compound body.

Member Type Size Description

Member Type Size Description

m_PHst_G SOAMatrix 6 nbodies x nindepVels the ATBI PG ∗ H
∗
RG matrix for the

compound body. This intermediate quantity

is kept around since PG is a block-diagonal,

and due to its sparsity we do not want to be

multiplying full matrices. The individual

6x6 row matrix elements are the product of

the PR matrix for the individual embedded

body with the joint map matrix

contribution for the same body.

m_D_G SOAMatrix nindepVels x nindepVels the ATBI DG = HRGPGH
∗
RG operator element

for the compound body

m_Dinv_G SOAMatrix nindepVels x nindepVels the ATBI D −1
G operator element for the

compound body

m_G_G SOAMatrix 6 nbodies x nindepVels the ATBI GG = PGH
∗
RGD

−1
G operator element

for the compound body

21.4.1.1.3. class CompoundBodyElementABIVectors

Class for compound body elemental ABI vectors. An instance is storeed within the hinge ATBI data structure. It is used within the ATBI filter recursion to only hold the contribution from

individual embedded bodies when looping through them all. The results from each such embedded body computation are accumulated into the overall zR , eps and aprime values for the

compound body.

Member Type Size Description

_zR SOAVector6 6 The 6-dimensional zR vector for the

component subhinge

_eps SOAVector n_indep_dofs The eps vector for the compound body

subhinge

_aprime SOASpatialVector 3,3 The spatial vector contribution of a specific

embedded body to the overall compound

body’s aprime Coriolis term

21.4.1.1.4. class CompoundSubhingeABIVectors

Class for compound body ABI vector derived from `SubhingeABIVectorsBase`.

Member Type Size Description

elt_vecs CompoundBodyElementABIVectors struct Holds intermediate`_zR`, _eps and

_aprime values for a single embedded

bodies. These values for each of the

embedded bodies are accumulated into the

overall m_z_G and m_eps_G ATBI values

for the compound body. (There is no great

reason to make this a member here, and

this could be a temporary created during

the computations).

m_z_G SOAVector 6*nbodies the ATBI z vector for the compound body. It

is essentially a stacked vector consisting of

the 6-vector zR contributions from the

individual embedded bodies.

m_eps_G SOAVector nindepVels the ATBI ϵG = TG − HRG ∗ zG vector for the

compound body

m_nu_G SOAVector nindepVels the ATBI ν = D −1
G ϵG vector for the compound

body

Members of a compound subhinge class.

Member Type Size Description

_kin_mats CompoundSubhingeKinMatrices struct Contains the m_Hst_RG and m_E_Phi_G

kinematics matrices

Member Type Size Description

m_X SOAMatrix m_sg→nGenVel(false) x nindepVels The XG independent to full generalized

velocities (Jacobian) map (without

constraint dofs). The order of the columns

corresponds to the the order of the

subhinges in agg_sg. Thus, when the indep

subhinges are in non-canonical order, i.e.,

(they are not the first nindep subhinges in

agg_sg) then the first columns DO NOT

correspond to the independent genvels.

When the indep subhinges are canonical,

then the first nindepVels cols are for the

independent gen vels, and the latter are for

the dependent, and the last ones are for the

constraint hinge gen vels. Hence the top

nindepVels block is an identity matrix.

m_constraintsX SOAMatrix m_sg→nGenVel(true) x nindepVels The XG independent to full generalized

velocities (Jacobian) map (including

constraint dofs). This matrix is essentially

the m_X matrix stacked on top of the

Jacboian mapping to the constraint hinge

gen vels.

_constraintXdot_indepGenVel SOAVector m_sg→nGenVel(true) (Xdot * indepGenVel) product vector. This

product is the kinematic contribution in the

generalized accels expression. Note that the

constraint hinge dofs terms are included.

Key methods

Method Computes Size Description

X() SOAMatrix m_sg→nGenVel(false) x nindepVels Update and return the XG matrix (without

the constraint hinge dofs rows)

constraintsX() SOAMatrix m_sg→nGenVel(true) x nindepVels Update and return the XG matrix (with the

constraint hinge dofs rows included)

dependentGenVelsMap(withConstraints) SOAMatrix m_sg→nGenVel(withConstraints) x

nindepVels

Return the result of X() or

constraintsX() depending on whether

withConstraints is false or true

respectively.

_computeBlock_Hst_RG(sub_body) SOAMatrix 6 x nindepVels Compute the kinematic 6 × 6 column

element contribution for the specified

embedded body in the m_Hst_RG H∗

operator contribution for the compound

body. This method is called by the

compound body’s

_updatehiHstMatrices() method.

_computeBlock_Phi_RG(sub_body) SOAMatrix 6 x 6 Compute the kinematic 6 × 6 column

element contribution for the specified

embedded body in the m_E_Phi_G SKO

operator contribution ϕ(parent, cbbd) for the

compound body. This method is called by

the compound body’s

_updatehiHstMatrices() method.

_updatePhiHstMatrices() SOMatrix This method updates the compound body

subhinge’s m_Hst_RG and m_E_Phi_RG

matrices by calling

_computeBlock_Hst_RG() and

_computeBlock_Phi_RG() for all of the

embedded bodies.

21.4.1.2. DartsCompoundHinge

Member Type Size Description

Member Type Size Description

_aprimeVec std::map<size_t, SOASpatialVector> ?? Stores the aprime contributions from each

of the individual embedded bodies

(computed and stored within the subhinge

level elt_vecs._aprime member withing

the hinge ATBI vectors instance for the

compound body).

_zRplus_bodyfrm SOASpatialVector 3, 3 Need this so we can avoid a cache look up in

the accumATBI* calls. These should really be

passed as input data to the caches

Key methods

Method Computes Size Description

bodyReferencedJointMapMatrix() SOAMatrix (6 nbodies) x nindepVel Returns the Hst_RG (i.e. H∗
RG) matrix for the

compound body that is its contribution to

the H∗ operator. Each 6-row contains the

mapping from the generalized vels to the

body frame spatial velocity for an

embedded body

21.4.1.3. DartsCompoundBody

Members

Member Type Size Description

_dep_subhinge_data DartsSubhingeData subhinge data for the list of dependent

subhinges list for use by _iksolver

_dependents_iksolver DartsInverseKinematicsSolverBase Inverse kinematics solver for the compound

body’s internal constraints. This iksolver

knows about the independent and

dependent bodies in the compound body.

_physical_parent_onode DartsHingeOnode an onode for one of the base bodies in the

compound body’s subgraph that will be

used as a conduit for passing on the

compound body’s ATBI properties to the

parent body. Note that the parent body for

this onode is the virtual root body (i.e. the

physical parent body). When there are

multiple base bodies, the first one in the

sorting order is used.

_cb_spatialInertia SOASpatialInertia The instantaneous spatial inertia of the

compound body derived from its

component bodies

Key methods

Method Computes Size Description

physicalParentBody() DartsBody Return the physical body that this

compound body is attached to. This is the

same as the virtual root body for the

associated aggregation subgraph for the

compound body. Note that this physical

body in turn may be embedded within a

compound body, and so may not be the

topological parent following constraint

embedding. This body effectively serves as

the pnode for a compound body, and many

of its quantities are expressed in this body’s

frame.

bodyOffset(subbody) size_t Return the offset for the specified child

body in the list of component bodies in the

aggregration subgraph. This is used for

indexing by DCraft’s BStar operator.

Method Computes Size Description

_updatehiHstMatrices() SOMatrix This method is updates the compound body

subhinge’s m_Hst_RG and m_E_Phi_RG

matrices.

fromParentEOperator(parent) SOAMatrix 6 * (6 nbodies) This returns the m_E_Phi_G value for the

subhinge. This is the

ϕ(parent, cbbd) = EG ∗ ϕG SKO operator

element for the physical parent body to this

compound body. This matrix is also the lift-

up matrix since the transpose of this matrix

operator propagates the spatial velocity of

the physical parent body to each of the

embedded body spatial velocities. The

parent body should be the physical parent

body if it is not itself embedded, or its

compound body if it is embedded.

toChildBOperator(child) SOAMatrix (6 nbodies) * 6 Returns the BG pick-off operator to the child

body. This operator is sparse and just

contains a 6x6 identity matrix in the slot for

the child body’s physical parent body

(which is embedded within this compound

body). B∗G picks out the spatial velocity of

the child body’s physical parent body . The

child body will be a physical body if it is not

itself embedded, or its compound body if it

is embedded.

fromParentPhiMatrix(parent) SOAMatrix (6 parent.nbodies) * (6 nbodies) Return the SKO entry from the parent body

to this compound body. This is essentially

the product

parent.toChildBOperator(this) *

fromParentEOperator(parent) . The

transpose of this matrix propagates the

VG(parent) full spatial velocities of the

parent (compound or not) body to the

VG(this) full spatial velocities of this body.

toChildPhiMatrix(child) SOAMatrix (6 nbodies) * (6 child.nbodies) Return the SKO entry from this body to the

child body. This is essentially the product

toChildBOperator(child) *

child.fromParentEOperator(this) . The

transpose of this matrix propagates the

VG(this) full spatial velocities of this

compound body to the VG(child) full spatial

velocities of the child (compound or not)

body. The child body will be a physical body

if it is not itself embedded, or its compound

body if it is embedded.

bodyReferencedATBI_P() SOAMatrix 6 nbodies x 6 nbodies Return the ATBI PG articulated body inertia

matrix referenced to the each embedded

body’s pnode frame. It is a (6 nbodies)

square, block-diagonal, symmetric matrix,

with the ATBI P matrix for each aggregated

body referenced to its pnode along the

block diagonal. CAUTION: Note that for a

rigid body, this same method returns the

P matrix reference to its body frame

instead of to the pnode frame. Hence there

is a potential inconsistency here

between rigid and compound bodies which

needs to be looked into.

Method Computes Size Description

osi_Upsilon() SOAMatrix 6 nbodies x 6 nbodies Return the ΥG OSC operator’s block

diagonal, symmetric matrix element for the

compound body. While square, this matrix

is itself not block diagonal or have sparse

structure. Its (i, j) 6x6 block matrix

element maps a spatial force in the j

embedded body frame to a spatial

acceleration in the i embedded body

frame.

osi_Upsilon(other) SOAMatrix 6 nbodies x 6 other.nbodies() Return the ΩG(this, other) OSC operator’s

cross-entry for the (this, other) body

pair. The (i, j) block element maps a

spatial force in the j other body’s

embedded body frame to a spatial

acceleration in this body’s i embedded

body frame. NOTE: When other is a rigid

body, the j frame is its pnode frame and

not its body frame.

bodyReferencedATBI_osi_Upsilon() SOAMatrix 6 nbodies x 6 nbodies Returns the same value as osi_Upsilon().

21.5. Raw documents

22. NdartsContact

22.1. Background

22.1.1. Reference & Source material

NdartsContact Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/NdartsContact/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

22.2. Design

22.2.1. Unilateral constraints

The DARTS unilateral constraint places a constraint between a pair of frames. These constraints are used in contact dynamics to model the normal and tangential forces due to the contact,

collision, or penetration. Each unilateral constraint has an associated contact frame, whose axes point in the following directions:

The z-axis of the contact frame is parallel to the normal direction of the contact.

The x-axis is parallel to and points in the direction of the relative tangential velocity of the contact (source tangential velocity minus target tangential velocity).

The y-axis completes a right-handed coordinate system.

Currently, there are two methods available for calculating the contact force using the penalty method: one has an isotropic friction model and the other has an anisotropic friction model.

They are described in detail below. Once the contact force has been calculated, it can be applied to the unilatleral constraint using the applyPenaltyContactForce method. For example, to

apply a penalty method force with isotropic friction one would do,

where F is a SOASpatialVector containing the contact force in the inertial frame and uc is an instance of a DARTSUnilateralConstraint . See the

NdartsContactModels.CollisionForces model (used in DshellCommon’s FullBodyCollision assembly) for example usage of the isotorpic friction penalty forces and the

EELSModels.CollisionForcesAnisotropic model (used in EELS’s EELSCollisionAssembly) for example usage of the anisitropic friction penalty forces.

22.2.1.1. Normal contact force

The penalty method normal force is calculated using the following:

vrel = vsource − vtarget
vn = (vrel ⋅ n̂)n̂

v̂n =
vn

| | vn | |

Fn = (Kg + C | | vn | |)v̂n

where vsource is the source velocity in the inertial frame, vtarget is the target velocity in the inertial frame, vrel is the relative contact velocity, n̂ is a unit-vector in the direction of the contact

normal, vn is the component of velocity parallel to the contact normal, K is the spring constant, C is the damping coefficient, g is the penetration distance, and Fn is the penalty method

contact force in the normal direction.

22.2.1.2. Isotropic friction

For isotropic friction, the normal force is calculated using the method shown above. Then, the tangential force is calculated using the following:

vt = vrel − vn

v̂t =
vt

| | vt | |

If | | vt | | > 1e − 5:

Ft = − μ | |Fn | | v̂ t

where vt is the component of velocity in the tangential direction, μ is the friction coefficient, and Ft is the tangential contact force. The total contact force when using the isotropic friction

method is Ftot = Fn + Ft. Note that a tangential force is only calculated if the magnitude of the component of velocity in the tangential direction is greater than 1e-5.

22.2.1.3. Anisotropic friction

The anisotropic friction model uses a friction ellipse to define the friction force. This ellipse is determined by μ, the friction coefficient, and the eccentricity vector ev: the magnitude of this

vector defines the level of anisotropy and the direction defines the direction of anisotropy. For anisotropic friction, the normal force is calculated using the method shown above. Then, the

friction force is calculated using the following:

SOASpatialVector F = uc.getPenaltyMethodForces(springConst, dampingCoeff);
uc.applyPenaltyContactForce(F);

vt = vrel − vn

v̂t =
vt

| | vt | |

If | | vt | | > 1e − 5:

e = ev − (ev ⋅ n̂)n̂

ê =
e

| | e | |

ve = v̂ t + (| | ev | | − 1)(v̂ t ⋅ ê)ê

Ft = − μ | |Fn | | ve

where e is the eccentricity vector and Ft is the tangential contact force. The total contact force when using the anisotropic friction method is Ftot = Fn + Ft. Like in the isotropic friction case, a

tangential force is only calculated if the magnitude of the component of velocity in the tangential direction is greater than 1e-5.

The derivation for the anisotropic friction force follows. If we were working in a frame where the x- and y-axes were aligned with the principle friction axes respectively (z-axis is normal),

then the force of friction would be

Ft = − | |Fn | |

μ | | ev | | 0 0

0 μ 0

0 0 0

t1

t2

0

,

where t1 is the magnitude of the component of v̂ t parallel to the e-vector and t2 is the magnitude of the component of v̂ t perpendicular to the e-vector. Mathematically,

t1 = v̂ t ⋅ ê

t2 = | | v̂ t − êt1 | | .

Recall that the x- and y-axes were aligned with ê and a direction perpendicular to ê. Thus, the friction force is

Ft = − Fnμ | | ev | | ê(v̂ t ⋅ ê) + v̂ t − ê(v̂ t ⋅ ê)

Ft = − Fnμ v̂ t + (| | ev | | − 1)(v̂ t ⋅ ê)ê

Note, as a sanity check we can set e = 1 (the isotropic case); then we recover,

Ft = − Fnμ t̂

which is the normal isotropic friction equation. Morevoer, if we set e = 0, then we expect to see no friction in the ê direction,

Ft = − Fnμ t̂ − (t̂ ⋅ ê)ê

which is exactly what we get; the component of Ft in the ê direction is completely removed.

22.3. Background

22.4. Software

22.4.1. CollisionNdarts

The visualizeContactForces method is used to visualize the tangential and normal components of the contact forces. It is called with the following parameters:

scene (DartsFacadeScene) - scene where the forces should be displayed.

enable (bool, optional) - used to enable/disable visualization of the contact forces. (Default = True)

normal (bool, optional) - used to enable/disable visualization of the normal contact forces. (Default = False)

tangent (bool, optional) - used to enable/disable visualization of the tangent contact forces. (Default = True)

scale (float, optional) - used to scale the external force vectors. (Default = 0.1)

22.5. Raw documents

[] []

()
()

()

23. NdartsFlex

23.1. Background

23.1.1. Reference & Source material

NdartsFlex Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/NdartsFlex/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

23.2. Design

23.2.1. Frame conventions

 TBD: Flesh out and clean up this section

need to keep track of what is in what frame

All nodal matrices are in body frame. Hence any computations involving them should be in the body frame - instead of in the onode or pnode frame.

On the other hand all hinge ATBI stuff for now apears to be in the child body’s pnode frame (which is unaffected by flex)

All the accelerations are in pframe (i.e the local frame)

23.3. Usage

23.3.1. Flexible body constraints

Flexible body constraints can be added to a DARTS flexible body via flexible constraint nodes. Flexible constraint nodes have the same positining methods as flexible sensor nodes or

flexible actuator nodes:

bodyToNodeTransform - Defines the homogenous transform between the body and the constraint node. This can be set via the setBodyToNodeTransform method. Pieces of this

transform can be set using other methods, e.g., setBodyToNode sets the translational portion of this transform.

nodalMatrix - Defines the nodal matrix for the constraint node. This can be set via the nodalMatrix method.

For example, suppose one used the FModal module to bring in a flexible body via an H5 file from the NASTRAN-to-DARTS pipeline, and they want to place the constraint node so that it

coorespondes with node 1 from the cooresponding H5 file. Further, let this H5 file be denoted by the variable H5 . Then, this node could be created via the following:

where the body the constraint is being added to is denoted by the variable body . Furthermore, the above assumes that the quaternion between the body frame and node 1 in the

undeformed state is identity, since the setBodyToNode method was used, which only sets the translation of the flexible constraint node.

Once one has defined two constraint nodes, then a constraint can be setup between these nodes. Note, that one can mix flexible- and rigid-body constraint nodes if desired, i.e., both

constraint nodes in the pair do not need to be flexible constraint nodes. For example, a DARTS closure constriant that mimics a LOCKED hinge can be created between two constraint nodes

cn1 and cn2 via:

cn1 = body.createConstraintNode("constraint").upCast()
cn1.setBodyToNode(SOA_Py.SOAVector3(H5.getGridPosition(1).tolist()))
cn1.nodalMatrix(SOA_Py.SOAMatrix(H5.getFlexModeShape(1).tolist()))

PYTHON

cc = Ndarts_Py.DartsClosureConstraint(sim.mbody(), "my_constraint", cn1, cn2, Ndarts_Py.HINGE_LOCKED, [])
PYTHON

Note that like rigid-body-only constraints, one must add this constraint to a constrained subgraph and setup a dynamic solver and integrator that can handle constraints in order to use the

constraint in the dynamics calculations. Examples of constraints between flexible and rigid bodies can be found at FModal/test/test_flex_constraints/script1.py and

FModal/test/test_flex_constraints/script2.py . An example of a constraint between two flexible bodies can be found at FModal/test/test_flex_constraints/script3.py .

23.4. Software

23.4.1. Flex ATBI recursion structure

The following is a plantuml example in gitlab from https://docs.gitlab.com/ee/administration/integration/plantuml.html#configure-your-plantuml-server

The following is a plantuml example from asciidocs site at https://docs.asciidoctor.org/diagram-extension/latest/

The following is the flex dynamics figure from notes.org

23.5. Raw documents

24. FModal

24.1. Background

Flexible multibody dynamics models are often used to develop and analyze guidance and control (G&C) systems for flexible body vehicle platforms. Multibody dynamics models can handle

the nonlinear dynamics from large articulation, configuration changes from the attachment and detachment of bodies, as well as mass property changes from fuel depletion. Such

multibody models can be used to extract linearized models for control system design as well as for closed-loop, time-domain dynamics simulations to verify system performance. Multibody

dynamics models often rely on reduced-order models for G&C development and analysis. Such reduced-order models are typically based on modal representations derived from finite

element method (FEM) structural analysis models for the component flexible bodies. The generation and use of such FEM-based modal models is a complex process requiring: (1) modal

analysis for the flexible body, (2) computation and transfer of a large set of quantities from modal analysis such as frequencies, mode shapes, modal integrals, etc. (3) use of this data to

create corresponding flexible bodies within a multibody dynamics tool. The process requires a user to have expertise (quite uncommon) with both FEM and multibody software and the

careful and error-free generation and transfer of a large amount of data across the tools. The process can be quite challenging, slow, and error-prone for even basic flexible body models and

remains a significant source of friction for model transfer from the structural analysis to the G\&C domains. Due to the complexity of the modal data extraction and transfer process, it is an

unfortunate but common practice in the community to simplify the process by ignoring most of the modal integral and geometric stiffening terms resulting in reduced fidelity of the

multibody dynamics models. One of the key goals of the FModal tool is to avoid such unnecessary devaluation of model fidelity by bridging the gap between the structural dynamics and

G&C domains.

 TBD: Include some of the flowchart figures from the NESC report

The recently developed FModal tool addresses the aforementioned problem by streamlining the process of generating modal data (including modal integrals and geometric stiffening

terms) from component NASTRAN structural dynamics models for use in flexible multibody dynamics tools. FModal’s output is a portable and open-source HDF5 file that is a universal,

hierarchical, well-organized, and labeled data-set that can be interfaced with multibody tools to automate and simplify the model data transfer process. The FModal tool can be used to

extract the critical data needed for flexible multibody dynamics simulations from a NASTRAN structure model without the need for an expert in structural dynamics. Furthermore, since

FModal includes the quantities needed to add modal integrals and geometric stiffening due to inertial loads to the flexible body equations of motion, the user is able to tailor the fidelity of

the simulation to meet their needs. Consequently, FModal can reduce the time needed to create flexible body models and reduce errors in the model transfer process, which leads to faster

design iterations— features that can result in shorter overall project timelines and reduced costs.

24.1.1. Reference & Source material

FModal Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/FModal/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

24.2. Design

24.2.1. NASTRAN-to-DARTS Pipeline

 TBD: Flesh out and clean up this section

Discuss pipeline requirements

Include figures and quotes from the NESCFlex document

24.2.1.1. OP2 Reader

The OP2Reader is designed to read NASTRAN OP2 files, process the data, and write the refined data to an HDF5 file. OP2 files are binary files designed to be read by FORTRAN. Information

on how these files are structured can be found here (https://docs.plm.automation.siemens.com/tdoc/nxnastran/11/help/#uid:index_dmap:xid666580:id496821).

24.2.2. Modal Analysis

The ModalAnalysis tool from FModal is used to calculate mode shapes for the bodies in a given subgraph. The modal analysis tool calculates these mode shapes by forming a mass and

stiffness matrix for the subgrah, and solving the associated eignproblem to compute the modal frequencies and mode shapes; the eig function from scipy is used to solve the

aforementioned eigenproblem. In the general case, the mode shapes may include rigid-body modes, e.g., when calculating the mode shapes of a free-free beam. Hence, the ModalAnalysis

tool comes with a tol variable that can be used to remove mode shapes with a frequency less than tol , since the rigid-body mode shapes of the system have a smaller modal frequency

than the flexible mode shapes.

24.2.2.1. Incorporating constraints

When a subgraph constaints constraints, the problem becomes more complicated, since not all DoFs of the subgraph are independent DoFs, i.e., some of these DoFs must be used to satisfy

the constraint. In these cases, a set of dependent DoFs must be chosen, and are used to form a projection matrix X. This projection matrix is used to obtain the mass and stiffness matrices

for the independent DoFs via,

MI = XTMX

KI = XTKX

where MI and KI are the mass and stiffness matrices associated with the independent DoFs only, and M and K are the mass and stiffness matrices associated with all the DoFs of the

subgraph. Once the modal frequencies and mode shapes, ω and vI respectively, are obtained from solving the eigneproblem associated with MI and KI, the results are projected back to the

original set of coordinates using

v = XvI

where v are the mode shapes for the full set of DoFs.

24.2.2.2. Choosing dependent DoFs

In order to form the projection matrix, a set of dependent DoFs must be chosen. If the user has intuition for what these dependent DoFs should be, then they can specify them directly.

However, in general, the user may not know which DoFs to use as dependent DoFs.

Ultimately, the dependent DoFs should produce a projection matrix that has a low condition number. The user is welcome to implement their own algorithm to try and find dependent DoFs

that do this. However, if constraints are supplied to ModalAnalysis without any dependent DoFs, then the ModalAnalysis has an algorithm that will be used to find suitable dependent

DoFs for the user. That algorithm proceeds as follows:

1. Generate a candidate set of dependent DoFs using the Enhanced Pattern Shifting (EPS) algorithm; see here (https://www.sciencedirect.com/science/article/pii/S0094576516308232) for details.

2. Calculate the projection matrix using this set of DoFs.

3. If the project matrix has a sufficiently low condition number (controller by the condTol keyword argument to ModalAnalysis), then function returns this candidate set. Otherwise, the

algorithm repeats starting at step 1.

24.2.3. Geometric sti�ening due to inertial loads

 TBD: Include discussion of Banerjee’s method and why we use it

A NASTRAN DMAP is used to extract the geometric stiffness matrix of the model at the 21 loading conditions required by Banerjee’s method. Some important points regarding the NASTRAN

geomtric stiffness calculation and SOL 106 non-linear solver process:

NASTRAN applies the loads for a given subcase in increments. It calculates the difference in loads between the previous subcase (or 0 loading if there was no subcase prior) and the

loading for the current subcase. Then, it applies this difference incrementally. The incremental application of loads is called a load step.

NASTRAN utilizies the strain of the model to calcluate the geometric stiffness matrix (often called the differential stiffness matrix in NASTRAN documentation). The calculation

frequency of this matrix is controlled by settings in NLPARAM . The Nastran tool modifies these settings so that the geometric stiffness matrix is computed at each load step.

The SOL 106 process proceeds as follows:

The geomtric stiffness matrix computation is quite complex, so the DMAP should not re-calculate the matrix if possible. Rather, it should be placed somewhere in this iteration loop such

it records the geometric stiffness matrix after the strains for the subcase have been completely converged.

This information leads to the following placement of the geometric stiffness DMAP:

This placement of the geometric stiffness DMAP means that the geometric stiffness matrix for subcase k is actually recorded at the beginning of subcase k+1. This means that to record the

geometric stiffness matrix for subcase 21, there needs to be a subcase 22. Hence, a 22nd, dummy subcase with 0 loading is added to the DAT file by Nastran . In addition, this also means

that the first time the DMAP records a geometric stiffness matrix, it will have useless values, since no subcases have run yet. Therefore,

24.3. Usage

24.3.1. NASTRAN-to-DARTS Pipeline

 TBD: Flesh out and clean up this section

Discuss pipeline usage at a top level

Discuss Nastran and ReadHDF5Flex classes in detail

24.4. Software

24.5. Raw documents

Unresolved directive in darts_lab_documentation_developer.asciidoc - include::./dartsgitlab_internal_docs_https/jpl-internal/all-access/development/numerics/timekeeper/TimeKeeper-

documentation.asciidoc[]

25. Dtest

25.1. Background

25.1.1. Reference & Source material

Dtest Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/Dtest/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

25.2. Design

25.3. Usage

 TBD: Flesh out and clean up this section

25.4. Software

25.5. Raw documents

25.6. Sphinx documentation

25.6.1. Introduction

The Dtest module contains an automated software validation framework, featuring extensive support for regression testing of C/C++ and Python code. This module contains several useful

program verification utilities including:

dtest - Runs sets of regression tests

compareCheckpointFiles - Compares checkpoint output files

compareModelFiles - Compares model definition files

compareDictsInFiles - Compares Python dictionaries embedded in text files

Ddoctest - a drop-in replacement for the python 'doctest' library that does numerical comparisons with relative and absolute tolerances.

25.6.2. JPL Darts/Dshell Testing Framework

25.6.2.1. Dartslab Regression Testing

Hourly, Daily, and Release-driven Builds

Currently over 500 regression tests

Sandboxes used for testing

Source

Link

Test mechanism

Python doctest

Arbitrary scripts

Testing Reporting

Email

Website

25.6.2.2. The Darts/Dshell dtest Testing Harness

Modules can run 'gmake -f Makefile.yam regtest' to run all regression tests in the module

Runs all tests in a specified test directory and all sub-directories (recursively):: * Runs in directories that match the test_ file name pattern (the older test-* format is still

supported, but developers are encouraged to use the new "underscore" naming convention).

'dtest' uses a con�guration �le: DTESTDEFS

DTESTDEFS files use the configObj format (a super set of Windows .ini files)

+

De�ne test command(s) for sub-directories

Can be an arbitrary command (run executable, run python script, etc)

Define where output results go (for comparison tests)

Define how to do comparisons

Define any cleanup procedures

Each test directory can override any parent configuration information with its own DTESTDEFS file (e.g., run multiple and/or specialized tests in the directory)

25.6.2.2.1. Typical Testing Directory Structure

|-- DTESTDEFS
|-- test_basic
| |-- graphics.py
| |-- test_algmbody
| | |-- model.py
| | |-- output.orig
| | `-- script.py
| |-- test_rigidbody
| | |-- test_tumbling
| | | |-- DTESTDEFS
| | | |-- model.py
| | | |-- output.orig
| | | |-- outputEulerSemiImplicit.orig
| | | |-- script.py
| | | `-- scriptEulerSemiImplicit.py
. snip
| | `-- utils.py
| `-- test_subgraphs
| |-- model.py
| |-- output.orig
| `-- script.py
`-- test_shapes
 |-- test_cylinder2D
 | |-- output.orig
 | |-- script.m
 | `-- script.py
 `-- test_torus2D
 |-- output.orig
 |-- script.m
 `-- script.py

NOTES

Nested test directories

Base DTESTDEFS file defines defaults for all tests

DTESTDEFS files in sub-directories

DTESTDEFS files in individual test directories can override any higher-level defaults, as seen in the above layout of the test_tumbling directory structure.

Each test sub-directory has complete control over how its test works using its own DTESTDEFS file.

25.6.2.2.2. Sample DTESTDEFS �le

comma separated list of tests to skip
SKIPTESTS = test_func1, test_func2

file suffix for the "known good" comparison file
TRUTHSUFFIX = orig

"debris" files to be deleted after the test
DELETE=.*\.pyc

the default comparison program and options
CMP = cmp.prg 0, cmp.prg 1

[COMPARE]

 model.out$ = compareModelFiles, /usr/bin/diff

[RUN]

 cmd1 = python script.py >& output
 cmd2 = python script2.py >& output2

NOTES

Files with the designated "truth" suffix are used to determine correctness of the run.

Custom comparison programs can be specified (e.g., the system’s diff utility)

Comparisons can be defined in the [COMPARE] section as shown above, or alternatively, a custom comparison operation can be performed as part of the test command in the [RUN]

section. Keep in mind that individual tests are free to override the default options for the comparison utility.

25.6.2.2.3. Running dtest in a test directory

dtest reads local DTESTDEFS file (if any)

dtest runs all the test commands

Check for test failures (error return status)

Compare output files with the known "truth" output (e.g., manually verified, standard data set, etc)

If any of the comparisons fail, then the entire test fails

““

““

““

““

Delete any debris files (as defined in DTESTDEFS)

Save test results into the regtest.data text file. This output file can be analyzed at a later time with automated tools (see usage).

25.6.2.2.4. Testing Flexibility with dtest

Tests can be completely user-defined

Output files that will be compared with "truth" versions can be redirected from standard output or created in any manner by the test (e.g., image files)

We have comparison scripts that take lists of regexps to ignore superfluous differences (e.g., file paths)

We sometimes do specialized file comparisons as tests themselves to do "fuzzy" tests

Tests that are obsolete can be skipped by the DTESTDEFS file

25.6.3. Using the Dtest Utilities

25.6.3.1. Installing Dtest

In order to install the Dtest utilities, simply include the Dtest module in the user’s sandbox as a work module (directory) or link module and relink. All necessary executables and libraries

will then be usable.

25.6.3.2. Using the dtest test harness

The dtest test program can be used in one of three ways:

1. Run dtest for an entire sandox. In the top level of the sandbox, do this:

Note this should work without difficulties for sandboxes where all modules are checked out as work modules. If any modules are link modules, there may be issues if the user cannot

write test files in the module release area.

Note that this is the way that hourly/overnight regression tests are run: A dedicated all-work sandbox is set up and regression tests and this command is executed at the top level to run

regtests for all modules.

2. Run dtest for a module. Go to the top level of the module and execute this command:

3. Run dtest for a set of regression tests. Go to the level in the test hierarchy where you want to run tests and execute this command:

where dtest is the Drun executable for this sandbox. Note that this command can be run at any level in the test directory. It only runs the regression tests it finds in the directory in

which it is run along with any children test directories.

Dtest options

25.6.3.3. Dtest options

Dtest accepts several command line options when it is executed directly. To specify options, you may give them on the dtest command line:

You may see the available options by executing dtest with the '--help' option.

Dtest tags

25.6.3.4. Selective execution of Dtest tests with TAGS (Dtest tags)

It is possible to selectively exclude regtests based on the 'TAGS' property defined in the 'DTESTDEFS' file withing a test sub-directory (but not child directories). Dtest TAGS offer significant

flexibility in controlling the execution of regression tests. For instance, if the following tag is defined in a regtest’s DTESTDEFS file:

TAGS = logging

and dtest is executed with the '--exclude-tags' option:

then any regtest that defines TAGS to include 'logging' in its DTESTDEFS file will be excluded (skipped).

You may also run only regtest that contain a specific tag:

then only regtests that defines TAGS to include 'validation' in its DTESTDEFS file will be executed. Note that all regtests that are marked for skipping or quarantining, will not be run.

$ gmake regtest
SH

$ gmake -f Makefile.yam regtest
SH

$ <Drun> dtest
SH

$ <Drun> dtest <options>
SH

$ <Drun> dtest --exclude-tags logging
SH

$ <Drun> dtest --run-only-tags validation
SH

““

““

““

““

““

““

The dtest argument --exclude-tags can be given multiple times on the command line and all the exclude tags will be combined. The dtest argument --run-only-tags is handled similarly.

Note that TAGS only affects the subdirectory that it is defined in (in a DTESTDEFS file). If you wish to cause all child directories to inherit a tag, use the CHILD_TAGS property:

CHILD_TAGS = logging

With this defined, all tests in child directories with get the 'logging' tag — as if 'TAGS = logging' was defined in the DTESTDEFS file in all subdirectories below this directory.

Note

To see a TIM summary presentation on Dtest Tags, please see:

Dtest Tags Presentation (April 2016 TIM) <documents/Dtest-Tags-2016-04-08.pdf>

25.6.3.4.1. Special Dtest tags: skip and quarantined

There are two special tags: 'skip' and 'quarantined'. These do the same things as listing the regtests in parent DTESTDEFS file 'SKIP' or 'QURANTINED' lists (respectivley).

One advantage in using tagging to skip or quarantine a regtest is that skip/exclusion flag goes into the same directory as the regtest itself (not its parent).

25.6.3.4.2. Commonly used Dtest tags

There are several tags that have been defined to provide consistent tagging of tests. These tags are:

'code' - Identifies tests that perform code checks.

'graphics' - Identifies tests that use OGRE or other graphics packages that might not be available on all platforms.

'lcm' - Identifies tests that use Lightweight Communications and Marshalling (LCM) software which might not be available on all platforms.

'gtest' - Identifies tests that use GoogleTest (gtest) software which might not be available on all platforms.

25.6.3.5. Useful Tools for Automated Testing

JPL provides the following scripts and utilities for automated code testing tasks:

Ddoctest : extends doctest by calling numarray.allclose so numeric differences that fall under a specified tolerance will pass. To make existing script.py scripts work, add from

Dutils import Ddoctest after import doctest . By default, Ddoctest passes the following parameters to numarray.allclose :

relative error (stored in doctest.rtol) = 1.0000000000000001e-05

absolute error (stored in doctest.atol) = 1e-08

compareDictsInFiles : performs a comparison between specially delimited Python dictionaries embedded in text files.

Options

-h, --help show this help message and exit

-v, --verbose Show the di�s. --start_re=START_RE Regular expression immediately before the dictionary (on its own line). [Default: '<START>']. --

end_re=END_RE Regular expression immediately the dictionary (on its own line). [Default: '<END>']. --abs_eps=ABS_EPS The absolute epsilon to be

used in comparisons (defaults to 1.0e-12) --rel_eps=REL_EPS The relative epsilon to be used in comparisons (when numbers are not small, defaults

to 1.0e-12)

compareCheckpointFiles : performs a comparison between two different checkpoint files.

compareModelFiles : performs a comparison between two different model files.

genRegtestMail : takes a regtest.data file (the output of a dtest run) and constructs and then sends emails based on various options.

Usage: compareDictsInFiles [options] <dict-file1> <dict-file2>
SH

compareCheckpointFiles [options] <state-file1> <state-file2>

Options:
 -h, --help show this help message and exit
 -v, --verbose Show the diffs.

SH

compareModelFiles [options] <model-file1> <model-file2>

Options:
 -h, --help show this help message and exit
 -v, --verbose Show the diffs.

SH

genRegtestMail [options] -dataFile <regtest data file>

Options:

SH

““

genRegtestHtml : takes a regtest.data file (the output of a dtest run) and generates an HTML formatted status page according to several options.

cmp.prg : a UNIX shell script for comparing differences between text files.:: White space (and blank lines) are ignored, as well as expected differences, which are specified as regular

expressions in a separate file. The first command line argument is a Boolean (i.e., "0" or "1") debug flag; when enabled, unexpected differences between files are printed to the screen.

The second argument is the text file containing regular expressions, written using the GNU grep syntax; the regular expressions define what text strings should match the expected

variance between two files, whose names are given as the third and fourth arguments respectively. The script returns 1 if the files contain unexpected differences, and 0 otherwise.

25.6.4. DUnit Testing Framework

25.6.4.1. Introduction

DUnit extends and uses the native python unittest framework. DUnit is a specialized unit tester facilitating the collection of evaluation results and its requirement identifier at the

evaluation statement rather than the method.

DUnit add the following capabilities

Comparisons between lists, with or without a tolerance

Comparisons between SOA Vectors, Matrices, Eulers, and Quaternions

Comparisons between rotations, recognizing equivalent but not-identical values

Comparisons using variance, to measure relative difference as opposed to absolute difference

Comparisons that convey metadata for the purposes of process / metrics

25.6.4.2. Extends Python Unittest

DUnit is an extension of Python Unittest. Therefore, it has the same file structure and basic behavior as Unittest, with a few exceptions. Most importantly, the previous assertion methods

have been deprecated, and replaced with our own assertion methods. You may, however, use the setup and teardown methods as you would in Unittest.

25.6.4.3. DUnit Output

DUnit provides custom formatted output results for each individual assertion you make to both ASCII and XML formats. This output must be turned on if desired though, as it is suppressed

by default. To turn on the file output, set the environment variable DUNIT_FILE_OUT to 'True'.

DUnit also provides output to standard out, if desired. The following arguments control that output::: * evalStdOut True sends results to standard out. False sends no results to

standard out. * evalStdOutOnlyFail True sends only FAIL results to standard out. False sends all results to standard out.

25.6.4.4. Example Usage Syntax

 -h, --help show this help message and exit
 --dataFile=DATAFILE Regtest data file.
 --title=TITLE Title to print above the table
 --html Generate html output to this file
 --url=URL URL for detailed html results (module name is
appended
 for each module)
 --moduleOwner=MODULEOWNER
 string to be evaluated (or file to be executed) to
 construct dictionary:
 moduleOwner = {'<module-name>' : '<owner>', ...}
 --file=FILE file for detailed html results
 --output=OUTPUT Output file for generated HTML file (defaults to
stdout)
 --email=EMAIL Email address or comma-separated list of emails to
 send the summary to. If omitted, print results or
 write to output file.

genRegtestHtml [options] -dataFile <regtest data file>

Options:
 -h, --help show this help message and exit
 --dataFile=DATAFILE Regtest data file.
 --cssURL=CSSURL Full URL for CSS file
 --title=TITLE Title for regression test results HTML page.
 --output=OUTPUT Output file for generated HTML file (defaults to
stdout)
 --showVal Show the VAL outputs for regtests (defaults to False)

SH

from Dtest.dunit import DUnitTest
from Dtest.dunit import DUnitTestRunner
from Dtest.dunit.DUnitTest import RequirementIdentifier as Req

class CovarianceDispersionTest(DUnitTest.DUnit):
 def test_evaluations(self):
 expectedValue = 1
 actualValue = 1
 self.evalEqual(Req("REQ-001"), expectedValue, actualValue)
 self.evalEqualDelta(Req("REQ-001"), expectedValue, actualValue, 1e-10)
 self.evalExpTrue(Req("REQ-001"), expectedValue > actualValue)

if __name__ == '__main__':
 DUnitTestRunner.DUnitRunner(evalStdOut=True, evalStdOutOnlyFail=True)

PYTHON

““

The above code shows a basic DUnit test. After importing the necessary libraries, the tester makes his test a subclass of DUnit. The test method shows 3 of the common evaluation types:

evalEqual will compare the value 1 to 1, and evaluate as PASS.

evalEqualDelta will compare the same numbers within a tolerance of 1e-10, also evaluating to PASS.

evalExpTrue will test the expression '1 >1', which will evaluate to FAIL.

The final line shows the arguments used for output, turning on standard output, but only for tests that FAIL.

25.6.4.5. DUnit Methods

25.6.4.5.1. DUnitFactoryEvaluation

25.6.4.5.1.1. Class Documentation
25.6.4.5.1.1.1. Introduction
A factory-based object and collection of EvaluationObj objects used to perform comparisons.

25.6.4.5.1.1.2. Example Usage Syntax

25.6.4.5.1.1.3. Related Regression Tests
25.6.4.5.1.1.4. DUnitFactoryEvaluation Class API Documentation

Note

Dtest.dunit.DUnitFactoryEvaluation

25.6.4.5.2. DUnitFactoryResult

25.6.4.5.2.1. Class Documentation
25.6.4.5.2.1.1. Introduction
A factory-based object and collection of Result objects used to perform comparisons and format results.

25.6.4.5.2.1.2. Example Usage Syntax

TODO: Additional comments concerning the code example.

25.6.4.5.2.1.3. Related Regression Tests
TODO: Insert link to vDUnitUnittest.rst file.

25.6.4.5.2.1.4. DUnitFactoryResult Class API Documentation

Note

Dtest.dunit.DUnitFactoryResult

25.6.4.5.3. DUnitFactorySoa

25.6.4.5.3.1. Class Documentation
25.6.4.5.3.1.1. Introduction
FactorySoa is a factory-based object used to create Math.SOA_Py objects.

25.6.4.5.3.1.2. Example Usage Syntax

TODO: Additional comments concerning the code example.

25.6.4.5.3.1.3. Related Regression Tests
TODO: Insert link to vDUnitUnittest.rst file.

25.6.4.5.3.1.4. DUnitFactorySoa Class API Documentation

Note

Dtest.dunit.DUnitFactorySoa

25.6.4.5.4. DUnitTestRunner

25.6.4.5.4.1. Class Documentation
25.6.4.5.4.1.1. Introduction
DUnitRunner extends and uses the native python unittest framework. DUnitRunner is a specialized unit test runner that allows passing command line arguments to the test case itself

rather than only passing arguments to the unit test runner. Output generated by DUnitRunner includes JUnit compliant XML, standard unittest text, and ascii text report for each evaluation

statement.

25.6.4.5.4.1.2. Example Construction Syntax
Using DUnitRunner via the command line:

Using DUnitRunner via the python test script:

evaluationObj = FactoryEvaluation.newEvaluationObj(self._expectedValue, self._actualValue, self._delta, self._deltaVariance,
 self._quaternionRotation)

PYTHON

resultObj = FactoryResult.newResultObj(self._evalMessage(requirementIdentifier), expectedValue, actualValue, delta, deltaVariance,
 quaternionRotation, msg, collect, bypass, resultObjSpecial)

PYTHON

expectedValue = FactorySoa.newQuaternion(1.1, 2.2, 3.3, 4.4)
PYTHON

srun python vDUnitUnit.py evalStdOut=True evalStdOutOnlyFail=True
PYTHON

if __name__ == '__main__':
 DUnitTestRunner.DUnitRunner(evalStdOut=True, evalStdOutOnlyFail=True)

PYTHON

25.6.4.5.4.1.3. Related Regression Tests
TODO: Insert link to vDUnitUnittest.rst file.

25.6.4.5.4.1.4. DUnitTestRunner Class API Documentation

Note

Dtest.dunit.DUnitTestRunner

25.6.4.5.5. DUnitUnittest

25.6.4.5.5.1. Class Documentation
25.6.4.5.5.1.1. Introduction
DUnitUnit extends and uses the native python unittest framework. DUnitUnit is a specialized unit tester facilitating the collection of evaluation results and its requirement identifier at the

evaluation statement rather than the method.

25.6.4.5.5.1.2. Example Usage Syntax

TODO: Additional comments concerning the code example.

25.6.4.5.5.1.3. Related Regression Tests
TODO: Insert link to vDUnitUnittest.rst file.

25.6.4.5.5.1.4. DUnitUnittest Class API Documentation

Note

Dtest.dunit.DUnitTest

from Dtest.dunit import DUnitUnittest
from Dtest.dunit import DUnitTestRunner
from Dtest.dunit.DUnitUnittest import RequirementIdentifier as Req

class vDUnitUnit(DUnitUnittest.CompassUnit):
 def test_evalEqual(self):
 expectedValue = 1
 actualValue = 1
 self.evalEqual(Req("evalEqual-Integer-01"), expectedValue, actualValue)

if __name__ == '__main__':
 DUnitTestRunner.DUnitRunner(evalStdOut=True, evalStdOutOnlyFail=True)

PYTHON

26. SiteDefs

26.1. Background

26.1.1. Reference & Source material

SiteDefs Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SiteDefs/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

26.2. Design

26.3. Usage

 TBD: Flesh out and clean up this section

26.4. Software

26.5. Raw documents

26.6. Sphinx documentation

26.6.1. Make�les

Every YaM module is required to have a top level Makefile.yam makefile consistent with the YaM module makefile requirements. YaM uses this makefile to build individual modules. The

standard look and feel of a module makefile also allows users to be able to reuse and rebuild unfamiliar YaM modules with ease. The rule requirements for a module Makefile.yam are

described in DLabDocs_Makefile_rules . To facilitate the easy creation of a Makefile.yam for new modules, a standard set of rules are available for use in the SiteDefs module.

The "overall.mk" �le:

This file defines several standard variables such as YAM_ROOT, YAM_NATIVE etc. and rules for exporting links to header files etc. It is virtually a requirement that this file be included

the first thing in a Makefile.yam.

The "make�le-yam-tail.mk" �le:

This file is made available for user convinence. Its use allows users to reduce the job of writing the Makefile.yam to one of setting variables that define the libraries and binaries to be

built, the names of the source files etc. making their structure very simple. By accomplishing the reasonable fairly easily, it allows users to set up makefiles quickly for normal modules,

while allowing the flexibility of creating specialized makefiles for complex (and typically third party) modules. This file should be included at the end of a Makefile.yam. The standard

variables available for use in a Makefile.yam are described in

For more information about the content of module Makefile.yam files, please see these pages:

26.6.1.1. Sandbox Make�les Rules

Information on the rules supported by a sandboxe’s top level Makefile can be obtained by running the command

 gmake help

from the top level. Below is a sample help message generated by running this command:

This top-level makefile provides a convenient way to loop
 thru all the modules in the sandbox and build the target rule
 for all of them. The available rules are:

 yam-mklinks: Export links for all link/work modules
 yam-rmlinks: Remove exported links for all link/work modules
 links: Build the 'links' rule for all work modules
 depends: Build the 'depends' rule for all work modules
 docs: Build the 'docs' rule for all work modules
 libs: Build the 'libs' rule for all work modules
 libsso: Build the 'libsso' rule for all work modules
 bins: Build the 'bins' rule for all work modules
 clean: Build the 'clean' rule for all work modules
 regtest: Run available rgression tests all work modules
 supp-map: Build the 'supp-map' rule for all work modules

 all: Build the 'all' rule for all work modules
 build: Build the 'build' rule for all work modules

The following 'alltgt' rules additionally allow the building
 of rules for all the modules for all supported targets.
 The ALLTGT variable can be used to restrict the 'alltgt' targets.

 alltgt-<xxx>: Build the 'xxx' rule for all modules
quiet-alltgt-<xxx>: Build (quietly) the 'xxx' rule for all modules
 bg-alltgt-<xxx>: Build (background mode) the 'xxx' rule for all modules

Other available utility rules are:

 help: Generate this message
 rshtest: Check for access to the remote build hosts
 config: Returns the branch names for all work modules
 cvs-update: Runs 'cvs update' for all the work modules
 cvscheck: Runs 'cvscheck' for all the work modules
release-diffs: Runs 'yam diff' for all the work modules

Recognized Unix targets: hppa-hpux10 hppa-hpux9 i486-linux mips-irix5 mips-irix6.5 mips-irix6.5-gcc sparc-sunos5 sparc-sunos5.6 sparc-sunos5.7 sparc-sunos5.7-CC
Recognized VxWorks targets: m68k-vxworks ppc-vxworks5.2 ppc-vxworks5.3

26.6.1.2. Module Make�les Rules

You can get a list of the current module level Makefile.yam rules by running the command:

gmake -f Makefile.yam help

Below is the sample help message with information on the supported rules:

Specify one of the following module build targets:
 mklinks, rmlinks, links, docs, libs, libsso, bins, clean, regtest, supp-map
 or build => links, docs, libs, libsso, bins
 or all => mklinks, build

Other available rules are:
 help => generates this message
 alltgt-<RULE> => builds the specified RULE for
 all available targets
 quiet-alltgt-<RULE> => quiet version of alltgt-<RULE>
 bg-alltgt-<RULE> => background mode version of alltgt-<RULE>
 The ALLTGT variable can be used to restrict the 'alltgt' targets.

26.6.1.3. Make�les Variables

This describes the various variables related to the the Darts Lab makefiles. The variables can be classified into different categories based on the extent of their definition and their

variability.

Variables set at run-time

This class of variables persist only acros the specific make invocation. They are used to override the default values of the build targets. They are defined in DLabDocs_Makefile_runtime .

Variables speci�c to a module

This values of this class of variables is specific to individual modules. They help to define the binaries, libraries, source files, build flags specific to the module. These are defined in

Makefileyam: Module specific variables. For the special subclass of model modules, the makefiles are very streamlined due the uniformity of their structure. The small variability in teh

build procedure is set by the variables defined in Makefileyam: for Dshell model YaM modules. By default modules are assumed to buildable for all the site build targets. However there

are usually some modules that build for only a subset of the available targets. This target restriction for a module is done via the variables described in Makefileyam: supported targets

and OS.

Variables de�ning the development environment and tools

This class of variables defines the development and tool environment for the builds. They specify the compilers, locations of header files, libraries etc. from third party tools. These

variable values apply to all modules. Some of these variables are specific to the build target and apply to all modules and sites. They are described in Makefileyam: Target specific but site

global. Variables that help to define the build variables such as compilers, compilation flags, linkers etc. are defined in Makefileyam: site and target specific build flags and variables.

Since gcc is a widely used compiler, variables specific to this compiler have been grouped together and are described in Makefileyam: GCC related variables. The largest class of variables

are those defining information on the supporting third party tools such as Tcl, Matlab, OpenInventor etc.that are required for builds. These are described in Makefileyam: tool related

variables. This definition of this family of variables changes as the development environment evolves - new tool versions are installed and new tools start being used for the builds.

System con�guration variables

These are variables that change only on occaision and define the general development prameters such as the available build targets, the ones available for each site etc. These are

described in Makefileyam: YaM project configuration variables.

System de�ned variables

This class of variables are never set by the user. These include variables such as the name of the build platform, the module name, directory location etc. They are made available for

potential use in module makefiles. These variables are described in Makefileyam: Standard derived variables.

Internal template variables

This class of variables are also never set by the user. These variables are ones created within the generic Makefile template file. These variables are described in Makefileyam: Internal

variables.

26.6.1.4. Make�les Module Variables

26.6.1.4.1. Project Variables

Variable De�nition Example values Example module

PROJ_BINS List of binaries to build for the module eg. Dshell++, SERoamsPy4

PROJ_LIBS List of libraries to build for the module eg. libNdarts libDshell++ Ndarts

PROJ_BINS_INTERNAL Identical to PROJ_BINS except that links are

not exported for these binaries

eg. Dvalue_test, SOA_test

PROJ_LIBS_INTERNAL Identical to PROJ_LIBS except that links are

not exported for these libraries

eg. libInternal

26.6.1.4.2. Compilation Variables

Variable De�nition Example values Example module

CC_SRC-<proj> List of C source files for the <proj> target tcl/tclCompat.c DshellEnv

CPLUSPLUS_SRC-<proj> List of C++ source files for the <proj>

target

DshellDview.cc DshellDviewCIF.cc DshellDview

F77_SRC-<proj> List of Fortran source files for the <proj>

target

rk45.f dop853.f IntegratorTest

CFLAGS-<proj> Additional compilation flags for the specific

<proj> target

-DUSE_DGETSET -I$(TCL_INCDIR) Dmex

LIBS-<proj> Libraries to use for building the <proj>

binary or shared library

-ltclCompat $(TCL_LIBS) Dshtcl++

FLAVORS-<proj> The different "flavors" to be built for the

"proj" library/binary target. The object files

for each flavor are built under

$(YAM_TARGET)/[FLAVOR], and the

[FLAVOR] suffix is added to the names of

the libraries

plain Tr Ndds TrNdds AtbeTclMesg

FLAVORS_EXT-<proj>-<FLAVOR> The library name "sufix" to use for the

specific [proj] project's [FLAVOR] flavor.

The default suffix string is [FLAVOR] itself.

The "-NONE-" value specifies that an empty

suffix should be used for the flavor.

-NONE- AtbeTclMesg

BIN_USE_FLAVOR The specific flavor object files to use for

building the binaries.

plain AtbeTclMesg

LINKER-<proj> The linker type to use for creating binaries.

The default is to use the C linker.

CPLUSPLUS Darts++

26.6.1.5. Make�le Run-Time Directives

Variable Values De�nition Default Value

ALLTGT x86_64_fedora15-linux etc. Restricts "alltgt-" rules to specified targets All supported targets for the site

YAM_TARGET sparc-sunos5.7-CC Build target to really build for $(YAM_NATIVE)

YAM_TARGETS x86_64_fedora15-linux etc. All targets to build for from the "top-level" $(YAM_TARGET)

Examples of ''Makefile.yam'' files are descriped in Example Makefile.yams

26.6.1.6. Make�le internal details

-=Makefile.yam include hierarchy=-

The various files used to define this family of variables used in module Makefile.yams and their inclusion hierarchy is defined are described here

(http://dartslab.jpl.nasa.gov/internal/dshell/YAM_WWW/SiteDefs-Readme.contents)

26.6.1.6.1. YaM project con�guration variables

Variable Values De�nition Location

ALL_YAM_OS unix vx Available operating systems site.env

ALL_YAM_TARGETS sparc-sunos5.7 i486-linux m68k-vxworks etc. Available build targets site.env

unix_targets sparc-sunos5.7 i486-linux etc. Available unix build targets site.env

vx_targets m68k-vxworks ppc-vxworks5.3 etc. Available VxWorks build targets site.env

Variable Values De�nition Location

SITE_SUPPORTED_TARGETS sparc-sunos5.7 i486-linux etc. Targets supported for "SITE" site [SITE]-supported.mk

SITE_UNSUPPORTED_TARGETS hppa-hpux10 mips-irix5 etc. Targets unsupported for "SITE" site [SITE]-supported.mk

Variable Values De�nition Location

COMPILE_HOST-i486-linux inu Default host machine for "i486-linux" target

for "SITE" site

[SITE]-supported.mk

COMPILE_HOST-sparc-sunos5.7 bertie Default host machine for "sparc-sunos5.7"

target for "SITE" site

[SITE]-supported.mk

etc. etc.

Variable Values De�nition Location

YAM_BUILD_RULES links depends libs libsso bins component sub-rules of the "build" rule site.env

YAM_LINKMOD_RULES regtest install-doxygen-docs setup-doxygen-

docs

build rules for both work and link modules site.env

YAM_WORKMOD_RULES $(YAM_BUILD_RULES) clean docs moddeps build rules for work modules only site.env

Variable Values De�nition Location

RSHCMD ssh -x Command to use to login to remote build

hosts

site.env

26.6.1.6.2. Make�le.yam for Dshell model YaM modules

Variable Values De�nition Example

ADDT_CSRCS load_stars_meas.c starlkup.c Additional C source files for including in the

models' library

MpfModels

ADDT_CPLUSPLUSSRCS Additional C++ source files for including in

the models' library

None so far

ADDT_INCLUDES -I$(YAM_ROOT)/include/libMSIM Additional compilation flags for building

the models

RoverppModels

ADDT_SOLIBS -lKsolv -lLinAlg Additional libraries to link into the models'

shared library

Ksolv

NEEDS_DARTSPP true Flag to signify that the models require

Darts++ and cannot be used with Darts

RoverppModels

SKIP_MEX_BUILDS true Flag to avoid building the ModelMex

wrappers for the models

DhssModels

26.6.1.6.3. Make�le.yam: supported targets and OS

CAUTION: It is highly recommended that when the variables described below need to set, their setting be conditioned upon other variables in the site-config-xx files. The rationale is as

follows. A typical reason for needing to restrict the list of supported targets for a module is because a required tool/library (eg. Matlab, OpenInventor) is not available. Using an entry such as

ifneq ($(HAVE_MATLAB),true) MODULE_UNSUPPORTED_TARGETS = $(YAM_TARGET) endif`

captures and also documents this dependency. Thus when the required tool does become available at a future date for a new target, the module automatically is geared to support the

target.

Variable Values De�nition Location Example

MODULE_SUPPORTED_OS The list of OS' supported for the

module. The default value is "unix

vx", i.e. all OS are assumed to be

supported.

.supported.mk None so far

MODULE_SUPPORTED_TARGETS sparc-sunos5.7 The list of targets supported for

the module. The default value is

$(SITE_SUPPORTED_TARGETS),

i.e. all targets are assumed to be

supported.

.supported.mk Dmex

MODULE_UNSUPPORTED_OS vx The list of OS' not supported for

the module. The default value is

"".

.supported.mk Dspace

MODULE_UNSUPPORTED_TARGETS i486-linux The list of targets not supported

for the module. The default value

is "".

.supported.mk aejTools

26.6.1.6.4. Make�le: Run-time directives

Variable Values De�nition Example

ALLTGT sparc-sunos5.7 i486-linux etc. Restricts "alltgt-" rules to specified targets All supported targets for the site

YAM_TARGET sparc-sunos5.7-CC or m68k-vxworks Build target to really build for $(YAM_NATIVE)

YAM_TARGETS sparc-sunos5.7 i486-linux etc. All targets to build for from the "top-level" $(YAM_TARGET)

26.6.1.6.5. Make�leyam: Target speci�c but site global

The variables below are meant to be target-specific, whose values are valid for all sites and modules.

Variable Example value De�nition Location

CC_DEFINES -DSUNOS5 Compilation flag to be used for C builds. [TARGET].mk

CC_LIBS -lm -lnsl -lsocket -lposix4 Standard list of libraries to be used for C

linking.

[TARGET].mk

Variable Example value De�nition Location

CPLUSPLUS_DEFINES -DSUNOS5 Compilation flag to be used for C++ builds. [TARGET].mk

CPLUSPLUS_LIBS -lm -lnsl -lsocket -lposix4 Standard list of libraries to be used for C++

linking.

[TARGET].mk

Variable Example value De�nition Location

RTI_OS vx RTI’s equivalent OS name for the [TARGET]

build target.

[TARGET].mk

RTI_TARGET sparcSol2.6 RTI’s equivalent name for the [TARGET]

build target.

[TARGET].mk

SHARED_COMPILE_FLAG -KPIC The compiler specific flag to use for

building relocatable object files when

building shared libraries for the [TARGET]

target.

[TARGET].mk

MEXEXT mexsol The Mex extension to use for the [TARGET]

target.

[TARGET].mk

26.6.1.6.6. Make�le.yam: site and target speci�c build �ags and variables

Variable Example value De�nition

BUILDING_SHARED_LIBS true When set to true, shared libraries are built for the module.

LD_SHARED $(LD) -G The linker to use for building a shared library.

Variable Example value De�nition

SHARED_LIBDIR /home/atbe/pkgs/lib/$(YAM_TARGET)-shared Location of external tool shared libraries.

Variable Example value De�nition

CC /usr/bin/gcc The C compiler

CC_DEPEND_FLAG -MM C compiler flag for generating dependency information.

CC_EXTRA_SHLIB -lgcc Library to link into shared libraries.

CC_OPTIMIZATION -g -O3 Optimization flags for compiling

CC_WARNINGS -Wall -Wstrict-prototypes Compiler flags for controlling warning messages.

Variable Example value De�nition

CPLUSPLUS /usr/bin/gcc C++ compiler

CPLUSPLUS_DEPEND_FLAG -MM C++ compiler flag for generating dependency information.

CPLUSPLUS_EXTRA_SHLIB -lgcc Library to link into shared libraries.

CPLUSPLUS_OPTIMIZATION -g -O3 Optimization flags for compiling

CPLUSPLUS_WARNINGS -Wall -Wstrict-prototypes -Woverloaded-virtual Compiler flags for controlling warning messages.

LIBSTDCPP -lstdc++ Standard C++ library to be used during linking.

Variable Example value Definition

F77 /usr/bin/gcc Fortran compiler

HAVE_G77 true Is the Fortran compiler avaiable?

LIBF77 -lg2c Library to link for Fortran object files.

Variable Example value De�nition Locattion

LIBKCS -lkcs The name of the kcs library needed by

StethoScope for some platforms.

[TARGET].mk

_PROF true Flag to turn on code profiling during

compilation.

site-config-xx

26.6.1.6.7. Make�le.yam: tool related variables

Variable Values De�nition Location

HAVE_DOXYGEN

DOXYGEN

DOXYGEN_DOCS_DIR

WWW_DOCS_SUBDIR

WWW_URL

Variable Values De�nition Location

PERL

Variable Values De�nition Location

HAVE_X

X11_INCDIR

Variable Values De�nition Location

HAVE_TCL

Variable Values De�nition Location

TCLSH

TCL_INCDIR

TCL_LIBDIR

TCL_LIBS

TCL_SRCDIR

TCL_VERSION

USE_TCLTK80

HAVE_TK

TK_INCDIR

TK_LIBDIR

TK_LIBS

TK_SRCDIR

TK_VERSION

HAVE_TIX

TIX_INCDIR

TIX_LIBDIR

TIX_LIBS

Variable Values De�nition Location

HAVE_IV

IV_FL_LIB

IV_IMG_LIB

IV_INCDIR

IV_LIB

IV_LIBS

IV_LIB_DIR

IV_XT_LIB

Variable Values De�nition Location

HAVE_MATHEMATICA

MATHEMATICA_BASEDIR

MATHEMATICA_BINDIR

MATHEMATICA_INCDIR

MATHEMATICA_LIBDIR

MATHEMATICA_LIBS

Variable Values De�nition Location

HAVE_MATLAB

MATLAB

MATLAB42c

MATLAB_DIR

Variable Values De�nition Location

MATLAB_INCDIR

MATLAB_LIBDIR

MATLAB_LIBS

MATLAB_TARGET

HAVE_SIMULINK

SIMULINK_INCDI

HAVE_RTW

RTW_INCDIR

Variable Values De�nition Location

HAVE_MESA

MESA_DIR

MESA_INCDIR

MESA_LIBS

Variable Values De�nition Location

GL_LIBS

JPEG_LIBS

Variable Values De�nition Location

HAVE_MOTIF

MOTIF_INCDIR

MOTIF_LIBS

Variable Values De�nition Location

RTIHOME

RTILIBHOM

HAVE_SCOPE

SCOPEGCCEXT

SCOPE_INCDIR

SCOPE_LIBS

STETHOSCOPEHOME

HAVE_NDDS

NDDSHOME

NDDS_INCDIR

NDDS_LIBS

NDDS_SOLIBS

Variable Values De�nition Location

HAVE_LIBIPC

HAVE_LIBSITE

USE_SITE_TERRAIN

Variable Values De�nition LocationVariable Values De�nition Location

HAVE_TRAMEL

TRAMEL_INCDIR

TRAMEL_LIBDIR

TRAMEL_LIBS

Variable Values De�nition Location

HAVE_TMATH

TMATH_INCDIR

TMATH_LIBDIR

TMATH_LIBS

Variable Values De�nition Location

M4

SDFBIN

26.6.1.6.8. Make�le.yam: Internal variables

Internal variables in makefile-yam.mk

26.6.1.6.9. Make�le.yam: Module speci�c variables

Variable Example value De�nition Example module

MODULE_COMPILE_FLAGS $(TCL_INCDIR) Compilation flags to use for all the object

files for the module.

Darts++

MODULE_LIBS $(LIBSTDCPP) Libraries to be appended to CC_LIBS and

CPLUPLUS_LIBS for linking all shared

libraries and binaries for the module.

MathUtils

MODULE_LINK_FLAGS -Lsrc/graphics Link time flags to use for all the shared

libraries and binaries for the module.

MODULE_LINKER $(CPLUSPLUS) Linker to use for all the shared libraries and

binaries for the module.

MathUtils

Variable Values De�nition Example

SKIP_STD_BINS true Directive to skip the standard built-in "bins"

rule.

Dmex

SKIP_STD_LIBS true Directive to skip the standard built-in "libs"

rule.

mathc90

SKIP_STD_LIBSSO true Directive to skip the standard built-in

"libsso" rule.

mathc90

SKIP_STD_CLEAN true Directive to skip the standard built-in

"clean" rule.

libMSIM

ALLBINS ALLLIBS BUILD_SHARED_LIB BUILD_STATIC_LIB
CMEX_FLAGS COMMON_DIR CRLINKS URDIR DATETAG DEPFILES
DOXYGEN_EXCLUDE_PATTERNS DOXYGEN_EXTRACT_ALL DOXYGEN_PREDEFINED
DOXYGEN_RULE DOXYGEN_WARN_FILE F77_COMPILE_FLAGS ECHOVARS FAPP
FILT_ALLTGT FLAVOR FLAVOR_EXT INSTALLDOX_STR IS_VALID_TARGET LIB_SUFFIX
LINKDIR_BIN_LINKS LINKDIR_BIN_MODULE_LINKS LINKDIR_DOC_LINKS
LINKDIR_DOC_MODULE_LINKS LINKDIR_ETC_LINKS LINKDIR_ETC_MODULE_LINKS
LINKDIR_INC_LINKS LINKDIR_INC_MODULE_LINKS LINKDIR_LIB_LINKS
LINKDIR_LIB_MODULE_LINKS LINKER MAKEFLAGS MDLHDRS MDLLIST MDLTCL MEX
MEXFILES MEXLDFLAGS MEXLIST MODELS MODULE_DIR NATIVE_SYS OBJ
OBJ_YAMVERSION POD2MAN POD2TEXT PROJ PROJ_TARGETS RELLNK_DIR
RELMODLNK_DIR RELTGTLNK_DIR SHARED_LIBS_FLAGS SITECONFIGFILE
SITEDEFSHOME SITE_SUPPORTED_OS SITE_UNSUPPORTED_OS SUFFIXES
TAGFILES_EXPANDED TOP_LINKDIR_TYPES TRACE_XARGS USE_XARGS VALID_STATUS
binflavs blinkfile flavext flinkfile hostsstr libflavs HAVE_MEXAUTOGEN
GCCFLAG MAKE INTERNALS
MAKE MAKECMDGOALS MAKEFILES
MAKEINFO MAKELEVEL MAKE_COMMAND MAKE_VERSION

Variable Values De�nition Example

SKIP_YAM_VERSION true Directive to skip linking in YamVersion.o. qhull

CAUTION: Do not set these link export variables directly!!! Only append to them.

Variable Values De�nition Example

BIN_LINKS AcsFswProto_start List of file links to be exported to the top

level bin/ directory

AcsFswProto

BIN_MODULE_LINKS List of file links to be exported to the top

level bin/$(MODULE_NAME) directory

None so far

BIN_TARGET_LINKS Acs/$(YAM_TARGET)/acsif List of file links to be exported to the top

level bin/$(YAM_TARGET) directory

RsrAcsModels

BIN_sparc-sunos5.7_LINKS List of file links to be exported to the top

level bin/sparc-sunos5.7 directory only. This

flag is used only when $(YAM_TARGET)

matches the specified ttarget.

None so far

DOC_LINKS List of file links to be exported to the top

level doc/ directory

None so far

DOC_MODULE_LINKS doc/Doxyfile-generic List of file links to be exported to the top

level doc/$(MODULE_NAME) directory

DshellEnv

ETC_LINKS List of file links to be exported to the top

level etc/ directory

None so far

ETC_MODULE_LINKS tests List of file links to be exported to the top

level etc/$(MODULE_NAME) directory

Dvalue

INC_LINKS Qmv/include/qmv List of file links to be exported to the top

level include/ directory

EphemPropagatorModels

INC_MODULE_LINKS DshellDviewCIF.h DshellDview.h List of file links to be exported to the top

level include/$(MODULE_NAME) directory

DshellDview

LIB_LINKS $(wildcard tcl/lib/tcl*) List of file links to be exported to the top

level lib/ directory

thirdParty

LIB_MODULE_LINKS src/DspaceLib.tcl List of file links to be exported to the top

level lib/$(MODULE_NAME) directory

Dspace

LIB_TARGET_LINKS $(YAM_TARGET)/libsiteCIF.so List of file links to be exported to the top

level lib/$(YAM_TARGET) directory

libMSIM

LIB_sparc-sunos5.7_LINKS List of file links to be exported to the top

level lib/sparc-sunos5.7 directory only. This

flag is used only when $(YAM_TARGET)

matches the specified ttarget.

None so far

26.6.1.6.10. Make�le.yam: GCC related variables

Variable Values De�nition Location

USE_GCC272 true If set to true, then gcc 2.7.2 is used (obsolete) site.gcc

USE_GCC295 true If set to true, then a gcc 2.95 class compiler

is used

site.gcc

GCC_VERSION 2.95.1 The gcc version site.gcc

LIBGCC -lgcc The gcc library site.gcc

GCC_EXEC_PREFIX /home/atbe/pkgs/lib/gcc-lib/sparc-sun-

solaris2.7/2.95.2

Path for the gcc supporting binaries (eg.

cpp)

site.gcc

FPERMISSIVE_OPT -fpermissive Flag to turn off warnings from X header

files

site.gcc

FWRITABLE_STRINGS_OPT -fwritable-strings Flag to allow the writing into string

constant areas. Needed by Tcl 7.4.

site.gcc

Variable Values De�nition Location

FEXTERNAL_TEMPLATES -fexternal-templates Flag needed at times for building with

templates

site.gcc

26.6.1.6.11. Make�le.yam: Standard derived variables

Variable Values De�nition Location

YAM_ROOT Directory path Full directory path to the sandbox overall.mk

YAM_OS unix or vx The operating sytem (Unix or VxWorks) site.env

YAM_NATIVE eg. sparc-sunos5.7 The name of the build platform determined

using "uname -a"

yamNative.mk

YAM_TARGET eg. sparc-sunos5.7 The name of the target platform, default is

$(YAM_NATIVE)

yamNative.mk

YAM_VERSIONS /home/atbe/repo/YaM/Dshell/Module-

Releases

Directory path to the module release area site.env

YAM_VERSION eg. Darts-R3-45d The module version string extracted from

YamVersion.h

bldRules.mk

LOCAL_DIR Full path to the module location This is $(YAM_ROOT)/src/[Module] for work

modules, and is

$(YAM_VERSIONS)/[Module]/[Module-

Release]

localDir.mk

MODULE_NAME eg. Dshell++ The name of the module moduleVars.mk

MODULE_DIR eg. Dshell++ or Darts-R3-33g The basename of the module directory. It is

$(MODULE_NAME) for work modules, and

includes the release suffix for link modules

moduleVars.mk

MODULE_TYPE work or link Specifies whether a module is a "work" or a

"link" module

moduleVars.mk

Variable Values De�nition Location

CC_INCLUDES -I$(YAM_ROOT)/include Include paths to use during C compilation. bldFlags.mk

CC_COMPILE_FLAGS $(CC_OPTIMIZATION) \ $(CC_DEFINES)

$(CC_WARNINGS) $(CC_INCLUDES)

Flags to use during C compilation. bldFlags.mk

CC_LINK_FLAGS -L$(YAM_ROOT)/lib/$(YAM_TARGET) Flags to use during C linking. bldFlags.mk

Variable Values De�nition Location

CPLUSPLUS_INCLUDES -I$(YAM_ROOT)/include Include paths to use during C++

compilation.

bldFlags.mk

CPLUSPLUS_COMPILE_FLAGS $(CPLUSPLUS_OPTIMIZATION) \

$(CPLUSPLUS_DEFINES)

$(CPLUSPLUS_WARNINGS)

$(CPLUSPLUS_INCLUDES)

Flags to use during C++ compilation. bldFlags.mk

CPLUSPLUS_LINK_FLAGS -L$(YAM_ROOT)/lib/$(YAM_TARGET) Flags to use during C++ linking. bldFlags.mk

Variable Values De�nition Location

AR ar The "ar" tool to use for building libraries bldFlags.mk

AR_FLAGS r The flags to pass to $(AR) bldFlags.mk

LD ld The "ld" tool to use for building shared

libraries

bldFlags.mk

RANLIB true The ranlib tool (pretty much obsolete these

days)

bldFlags.mk

27. pyam

27.1. Background

27.1.1. Reference & Source material

pyam Doxygen docs (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/pyam/html/)

Team talks (https://dlabportal.jpl.nasa.gov/resources/darts-lab-talks/)

2019, 2020 course slides (https://dlabportal.jpl.nasa.gov/documentation/coursetutorial-links/)

Sphinx docs (https://dartslab.jpl.nasa.gov/dlabdocs/)

Jupyter notebooks (https://dlabnotebooks.jpl.nasa.gov/hub/login)

DARTS Lab QA site (https://dartslab.jpl.nasa.gov/qa/)

27.2. Design

27.3. Usage

27.3.1. Using baseline package releases

The --baseline option exists on pyam’s register-new-package , save-package and sync commands.

For the register-new-package command, the --baseline option will create a new BaselinePkg package with just the SiteDefs module. This package will be used for baseline

releases. The specification of a package name, or a list of defining modules, are not allowed with the --baseline option. The definition of the package’s with just a single module is just a

stub definition. All releases of this specific package (aka baseline mode) will require the user to specify a YAM.config file with tagged module entries for the actual list of modules and

releases making up the baseline release. This command is expected to be used just once to start the use of the baselines workflow. A typical use of this command is

27.3.1.1. Creating a baseline package release

For the save-package command, the --baseline option will make a release of the BaselinePkg package. The use of the --baseline option will require the user to specify a

YAM.config file with the modules and releases that are to be used for the baseline release. The use of the baseline model will disallow the specification of the package name for this

command since the BaselinePkg package name will be used automatically. It is expected that command will be used periodically to record baseline releases when the regression test

passing percentage is above a specified threshold. There is currently no automated invocation of such releases. Typical uses of this command is (note that no package name is specified with

the --baseline option):

27.3.1.2. Syncing to a baseline package release

For the sync command, the --baseline option will cause the module syncing to use the module releases associated with the specified baseline release for each module sync. In baseline

mode, the --release option value is used to specify the baseline release version rather than the module release version. When the --revision option is not specified, the latest baseline

release is used. Without the --baseline option. we get back the old behavior where syncs are done to the bleeding edge. Typical uses of this command are

27.3.1.3. Updating a YAM.con�g �le to a baseline package release

For the config command, the --baseline option will cause the new config file to have releases for the modules in the input config file to be from the specified baseline release specified

by the --release option. If no --release option is specified, then the latest baseline release is used. Example uses of this command are:

one time to enable use of baseline releases
pyam register-new-package --baseline

normal pkg release with bleeding edge module releases
pyam save-package <mypkg>

normal pkg release with specific module releases
pyam save-package <mypkg> \
 -c /home/dlab3/repo/PKGBUILDS/ROAMSDshellPkg/BASELINE-FC36/YAM.config

make baseline package release
pyam save-package --baseline \
 -c /home/dlab3/repo/PKGBUILDS/ROAMSDshellPkg/BASELINE-FC36/YAM.config

sync all modules in a sandbox to the bleeding edge
pyam sync --all

sync all modules in a sandbox to the latest baseline release
pyam sync --all --baseline

sync all modules in a sandbox to a specific baseline release
pyam sync --all --baseline --release R1-00b

27.3.1.4. Creating a baseline package release sandbox

To create a sandbox for a package with modules from a stable baseline release instead of the bleeding edge you would do this in two steps: - Create the package sandbox from the bleeding

edge as usual using pyam setup <mypkg> - Run pyam sync --all --baseline in the sandbox to change the module versions to a baseline release

Creating such a baseline based sandbox for a docker based external release can be done as well as in the following example:

27.3.2. Recipes for using git based pyam modules

Usage questions.

27.3.2.1. Handy references

Git Merge vs Rebase: The Three Types of Merge (https://itnext.io/git-merge-vs-rebase-938950fb218) article

27.3.2.1.1. What is the di�erence between git rebase , git pull rebase and git config pull --rebase etc?

Various commands possibilities and options:

git rebase

git merge

git merge --ff

git squash

git pull rebase

git pull ff

git config pull --rebase true/false

git config pull --ff

We need to clarify when to use. The first four appear to be for the local repo, the the remainder have to do with multiple repos.

27.3.2.2. How do we set up git credentials to avoid endless prompts for passwords?

There are a few common ways to cache git credentials:

1. With the gnome-keyring

2. In an encrypted file. Here, we will be using GPG.

3. As plain text.

The gnome-keyring is likely the safest and best option if you are already using the gnome-keyring. If you are accessing machines via passwordless SSH without an X display, and are not

unlocking the gnome-keyring, it may be worth pursuing the other two options. The plain text option is the least safe but the easiest option to set up. If you are going to use this, I highly

recommend setting a short timeout window: less than or equal to 15 minutes.

Useful resources:

Here (https://stackoverflow.com/questions/5343068/is-there-a-way-to-cache-https-credentials-for-pushing-commits) is a stack overflow page on git credentials.

27.3.2.2.1. Gnome keyring

To use the gnome-keyring for password caching, use the libsecret git credential store. On Fedora, this can be installed using

Enable libsecret credential storage can be done with

normal use to transform a config file with options
pyam config -c <sbox>/YAM.config -o new-YAM.config <options>

transform a config file with module releases from the latest baseline release
pyam config -c <sbox>/YAM.config -o new-YAM.config --baseline

transform a config file with module releases from a specific baseline release
pyam config -c <sbox>/YAM.config -o new-YAM.config --baseline --release R1-00b

transform a config file with module releases from the latest baseline releases
along with transformation options
pyam config -c <sbox>/YAM.config -o new-YAM.config --baseline --release R1-00b \
 --all-to-link

check out the DAREPkg package with bleeding edge module releases
dockerSandbox.py --pkg DAREPkg --src_dir /home/dlabdriveS/repo/docker/src

check out the DAREPkg package with module releases from the latest baseline
dockerSandbox.py --pkg DAREPkg --src_dir /home/dlabdriveS/repo/docker/src --baseline -

check out the DAREPkg package with module releases from the specific R1-00a baseline
dockerSandbox.py --pkg DAREPkg --src_dir /home/dlabdriveS/repo/docker/src --baseline R1-00a

sudo dnf install git-credential-libsecret

git config --global credential.helper /usr/libexec/git-core/git-credential-libsecret

27.3.2.2.2. GPG encrypted �le

Caching git credentials using an encrypted file can be done using GPG and the netrc git credential manager. Steps for setting this up can be found in Q&A 1892

(https://dartslab.jpl.nasa.gov/qa/1892/how-do-i-encrypt-my-git-credentials-with-gpg).

27.3.2.2.3. Plain text

Caching git credentials using plain text is the easiest to set up, but the least safe. You can enable it by running

The default timeout window is 15 minutes. If you would like to modify that, you can run

27.3.2.3. How do we set up SSL certi�cates?

Q&A 1887 (https://dartslab.jpl.nasa.gov/qa/1887/how-do-i-add-a-self-signed-certificate-to-git) shows how to setup SSL certificates for git.

27.3.2.4. How does one create a git hosted pyam module?

All git-hosted pyam modules should use a repository keyword that has git or Git in the name or a repository keyword that has been specifically listed as using a git version control

system.

27.3.2.4.1. On DLAB machines

Choose a repository keyword for your git module that has either git or Git in the name or that is listed as a keyword that uses the git version control system in pyam . Then, run

 TBD: Need to add info on how to modify things so only certain groups can access the module.

27.3.2.4.2. Hosted elsewhere (GitLab, GitHub, etc.)

Create an empty repository in the are you would like to host it on. Then, add a repository keyword to the pyamrc file whose URL contains everything but the module name: you should use

the https:// URL. For example, if the module’s URL for a module called MyModule was https://my-gitlab-server.com/projects/modules/MyModule , then the repository keyword

should be https://my-gitlab-server.com/projects/modules

Then, register the new pyam module using

27.3.2.5. How to get git to work from outside a checked out folder?

svn command often optionally take the path to a checked out folder as an argument. So they can be run from anywhere, so you can run svn status when within a folder, and run svn

status <folder> when outside.

git commands work similarly when within a checked out folder. However, when outside the folder, we can use git -C <folder_path> … usage to specify the folder to 'step into' before

running the git command. For example, one can run git -C <folder_path> status to check the status of a folder without being within the folder.

27.3.2.6. How do we �nd out the location/URL of the repository used for the checkout?

For svn you can get such info by running svn info .

For git you can run git remote show origin .

27.3.2.7. How do we get rid of local changes and revert back to checked out code?

For svn you can do svn revert file1 file2 … or svn revert -R . .

For git you would do git restor file1 file2 … or git restore . .

27.3.2.8. How do we check the branch that a checked out module is on?

For svn you can run svn info and check the URL to get the branch info.

27.3.2.9. How do we switch the branch of the module in place to a di�erent pre-existing one using git?

For svn we can use the svn switch … . command to switch in-place to a different branch.

To switch to a different branch, run

To get a list of all branches for a module, run

git config --global credential.helper cache

git config --global credential.helper "cache --timeout=<timeout_window_in_seconds>"

pyam register-new-module --repository-keyword <repo_keyword> <module_name>

pyam register-new-module --repository-keyword <repo_keyword> <module_name>

git -C <module path> branch

git checkout <branch_name>

git branch -a

27.3.2.10. How do we directly check out an existing branch/tagged/dead/main trunk version of a module using git?

For low level debugging and fixing things, we sometimes need to be able to step down to the version control system (like we can do with svn checkout …) to check out code.

First, clone the git module. To do so, you will need the module’s URL. If you have a copy of the module somewhere, you can use

to obtain it’s URL. Otherwise, you can use the git module’s repository keyword from pyam to find out where it lives. Then, use

to obtain a local copy of the main branch. If you want to be on a different branch/tag than main , then use git checkout to switch to whichever branch/tag you would like.

27.3.2.11. How do we get a list of the previous feature branches, dead branches, and releases using git?

For svn , we can do this by running svn ls <repo_path> where repo_path points to the releass, feature branches and dead branches of the SVN repository for a module.

One can obtain a list of all branches for a git repository by running git branch -a . All dead branches have the pattern *_dead to identify them as dead branches. The remaining branches

are feature branches.

When modules are saved (released) using pyam , they are tagged in git. One can get a list of git tags by running git tag in the module.

27.3.2.12. What do we do if we have committed a �le that should not be on revision control?

For svn , we can use svn rm … followed by a commit to remove unwanted files.

1. Remove that file from revision control using git rm --cached <file>

2. If this file will often exist, but should not be on revision control, e.g., built libraries, then add it to the .gitignore file.

27.3.2.13. How do we move/rename a repository?

This describes how to move/rename a repository. This will copy over all of the history of the original module, but it will not be connected to the main branch, i.e., all of the old branches/tags

will be there, but they will not be connected to the main branch like they were in the original repository.

1. Create the module at the new location with the new name the same way you would register any new pyam module.

2. git clone --mirror <old-repo-url> <new-repo-name>

3. cd <new-repo-name>; git remote remove origin

4. git remote add origin <new-repo-url>

5. git push --all; git push --tags This step is going to give warnings/errors about the main branch. This will essentially push everything except for the main branch, since the

histories of the two repo’s main branches are different.

6. pyam checkout <new-repo-name>

7. git pull

8. git checkout <most-recent-tag-of-old-repo> — .

9. git commit

10. git push

11. pyam save <new-repo-name>

This (https://itnext.io/git-repository-transfer-keeping-all-history-670fe04cd5e4) and this (https://stackoverflow.com/questions/20790014/git-copy-source-code-to-new-branch-without-history) were useful when

creating this answer.

27.3.2.14. Mirroring git repositories

This guide will help you mirror a pyam git repository to a GitLab repository. The benefits of doing this are: * External users can work directly with git and don’t need to work with pyam.

They do this by branching off of main, and merging back into main whenever they are ready to make their changes live. * Issues in the GitLab repository can be referenced in the commits

and vice-versa. This makes it a lot easier to track which code changes go with which issues.

To start the process, first you must have a module you have created with pyam. We will call this module MY_MODULE for the rest of the guide. Then, create a project on the DARTS GitLab

server that will be associated with this module.

27.3.2.14.1. Pull mirroring

1. On the GitLab page for your project, go to Settings → Repository → Mirroring repositories.

2. Enter your GitLab URL. This URL should include your username. For example, ssh://MY_USERNAME@dartslab.jpl.nasa.gov/alt/SVN/git/Modules/MY_MODULE .

3. Change mirror direction to Pull .

4. Click Detect host keys

5. Set the authentication method to SSH public key .

6. Check Mirror only protected branches .

7. Click Mirror repository . Note, this will create the mirror try to do a pull immedietly, which will fail since we have not added the GitLab repository’s SSH key to the list of authorized

SSH keys.

8. Click on Copy SSH public key .

git remote get-url origin

git clone <URL>

copy ssh key

9. Paste this SSH pulic key into your user’s authorized SSH keys file, i.e., /home/leake/MY_USERNAME/authorized_keys .

27.3.2.14.2. Push mirroring

1. On the GitLab page for your project, go to Settings → Repository → Mirroring repositories.

2. Enter your GitLab URL. This URL should include your username. For example, ssh://MY_USERNAME@dartslab.jpl.nasa.gov/alt/SVN/git/Modules/MY_MODULE .

3. Change mirror direction to Push .

4. Click Detect host keys

5. Set the authentication method to SSH public key .

6. Check Mirror only protected branches .

7. Click Mirror repository .

8. Click on Copy SSH public key .

copy ssh key

9. Paste this SSH pulic key into your user’s authorized SSH keys file, i.e., /home/leake/MY_USERNAME/authorized_keys .

27.3.2.14.3. Protected branches

Per the settings above, the repository will only mirror projected branches. It is recommended you setup your protected branches as follows:

protected branches

27.3.2.14.4. Pyam releases via CD pipeline

As mentioned in the benefits earlier, we want our GitLab repository to automatically make pyam releases whenever we commit to main. To do that, we can to create a GitLab pipeline. We do

this by adding a .gitlab-ci.yml to the main directory of the repository. Inside, the text should contain:

where MY_MODULE in the variables section is replaced with the name of your module.

27.4. Software

27.5. Raw documents

variables:
 PYAM: /home/dlab/pkgs/x86_64-fedora36-linux/bin/pyam
 MODULE_NAME: MY_MODULE

merge_pyam:
 rules:
 - if: $CI_COMMIT_BRANCH == "main"
 script:
 - umask 002 # Set umask correctly so that files are group writable
 - sleep 60 # Give the push mirror 60 seconds to update the pyam git repository
 - export YAM_SITE='telerobotics'
 - export YAM_SEND_EXCEPTION_TO_HOST_PORT_EMAIL='smtp.jpl.nasa.gov:25:jain@jpl.nasa.gov'
 - export YAM_PROJECT_CONFIG_DIR='/home/dlab/repo/yamConfigs'
 - export YAM_PROJECT='Dshell'
 - export YAM_VERSIONS='/home/atbe/repo/YaM/Dshell/Module-Releases'
 - git config --global user.email "gitlab-runner@jpl.nasa.gov"
 - git config --global user.name "gitlab-runner"
 - mkdir tmpSandbox
 - cd tmpSandbox
 - mkdir common
 - touch common/YAM.modules
 - touch YAM.config
 - touch Makefile
 - $PYAM checkout --no-build $MODULE_NAME
 - cd src/$MODULE_NAME
 - git merge origin/main
 - git add -A
 - git diff-index --quiet HEAD || git commit . -m "Automatic release from merge with main on GitLab."
 - git push
 - cd ..
 - $PYAM save $MODULE_NAME

YAML

Model modules

28. DshellCommonModels Dshell model library

Doxygen reference to Models in DshellCommonModels by Type

Actuators (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Actuator__group.html)

Sensors (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Sensor__group.html)

Motors (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Motor__group.html)

Encoders (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Encoder__group.html)

Flows (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Flow__group.html)

Continuous (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__ContStates__group.html)

28.1. DshellCommonModels::Accelerometer Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Sensor__group.html)

Description

models accelerometer measurements

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model Accelerometer class details

For more information on the members and functions of this model class, please see DshellCommonModels::Accelerometer model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Accelerometer__group.html)

Enums

cntIntType Enum

In the Accelerometer model definition, the original enum cntIntType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

stateTypeEnum Enum

In the Accelerometer model definition, the original enum stateTypeEnum is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

 enum cntIntType
 {
 8BIT = 0,
 16BIT = 1,
 32BIT = 2
 };

 /// AccelerometercntIntType enum
 enum AccelerometercntIntType
 {
 ACCELEROMETER_CNT_INT_TYPE_8BIT = 0,
 ACCELEROMETER_CNT_INT_TYPE_16BIT = 1,
 ACCELEROMETER_CNT_INT_TYPE_32BIT = 2
 };

 enum stateTypeEnum
 {
 CONTINUOUS = 0,
 DISCRETE = 1
 };

 /// AccelerometerstateTypeEnum enum
 enum AccelerometerstateTypeEnum
 {
 ACCELEROMETER_STATE_TYPE_ENUM_CONTINUOUS = 0,
 ACCELEROMETER_STATE_TYPE_ENUM_DISCRETE = 1
 };

Name Type Size Quantity Units DescriptionName Type Size Quantity Units Description

arw double acceleration random walk

constant [m/s (3/2)]

axisBody double 3 accelerometer axis in body

frame

biasStblty double acceleration bias

(in)stability constant

[m/s^2]

constAccelBias double Acceleration acceleration bias constant

[m/s^2]

misAlign double Angle accelerometer axis

misalignment relative to

body frame [rad]

scaleFactor double scale factor error

seed long PRN seed

stateType stateTypeEnum accelerometer state type

velocityCntIntType cntIntType accelerometer velocity

integer type

velocityLSB double accelerometer velocity least

significant bit [m/s/cnt]

vrw double velocity random walk

constant [m/s/s^(1/2)]

vwn double velocity white noise

constant [m/s/Hz^(1/2)]

Scratch

Name Type Size Quantity Units Description

velocity_bias double Velocity accelerometer velocity bias

Discrete States

Name Type Size Quantity Units Description

arw double acceleration random walk

state

biasStblty double acceleration bias

(in)stability state

velocity double Velocity accumulated accelerometer

velocity

vrw double velocity random walk state

Continuous States

Name Type Size Quantity Units Description

arw double acceleration random walk

state

biasStblty double acceleration bias

(in)stability state

velocity double Velocity accumulated accelerometer

velocity

vrw double velocity random walk state

Flow Outs

2/s

Name Type Size Quantity Units DescriptionName Type Size Quantity Units Description

accel double measured accelerometer

acceleration

deltaVelocity double measured accelerometer

delta velocity

deltaVelocityCnts long measured accelerometer

delta velocity counts

velocity double Velocity measured accelerometer

velocity

velocityCnts long measured accelerometer

velocity counts

28.2. DshellCommonModels::BallEncoder Encoder Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Encoder class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Encoder__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Hinge__keyword__group.html)

Hinge!Ball (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Hinge__Ball__keyword__group.html)

Description

Outputs the ball rotation displacements

Author: Carl Merry
 The BallEncoder reports the angular displacements a ball hinge has undergone in both quaternion and Euler form.

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model BallEncoder class details

For more information on the members and functions of this model class, please see DshellCommonModels::BallEncoder model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__BallEncoder__group.html)

Enums

SOAEulerType Enum

In the BallEncoder model definition, the original enum SOAEulerType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

 enum SOAEulerType
 {
 BAD = 0,
 ZYX = 1,
 ZXY = 2,
 YZX = 3,
 YXZ = 4,
 XZY = 5,
 XYZ = 6,
 ZXZ = 7,
 ZYZ = 8,
 YXY = 9,
 YZY = 10,
 XYX = 11,
 XZX = 12
 };

Parameters

Name Type Size Quantity Units Description

EulerSequence SOAEulerType The angle sequence used in

determining euler angles

for the attitude.

Flow Outs

Name Type Size Quantity Units Description

angle1 double 1 Angle ball hinge first axis rotation

angle2 double 1 Angle ball hinge second axis

rotation

angle3 double 1 Angle ball hinge third axis rotation

rotation double 4 Quaternion ball hinge rotation

28.3. DshellCommonModels::BallMasking Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Actuator__group.html)

Description

Mask a BALL subhinge

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model BallMasking class details

For more information on the members and functions of this model class, please see DshellCommonModels::BallMasking model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__BallMasking__group.html)

Parameters

Name Type Size Quantity Units Description

maskingActive bool Flag: True sets masking to Q

Flow Ins

Name Type Size Quantity Units Description

genAccelMask double 3 AngularAcceleration UDOT masking data

genCoordMask double 4 Quaternion Q masking data

genVelMask double 3 AngularVelocity U masking data

 /// BallEncoderSOAEulerType enum
 enum BallEncoderSOAEulerType
 {
 BALL_ENCODER_SOAEULER_TYPE_BAD = 0,
 BALL_ENCODER_SOAEULER_TYPE_ZYX = 1,
 BALL_ENCODER_SOAEULER_TYPE_ZXY = 2,
 BALL_ENCODER_SOAEULER_TYPE_YZX = 3,
 BALL_ENCODER_SOAEULER_TYPE_YXZ = 4,
 BALL_ENCODER_SOAEULER_TYPE_XZY = 5,
 BALL_ENCODER_SOAEULER_TYPE_XYZ = 6,
 BALL_ENCODER_SOAEULER_TYPE_ZXZ = 7,
 BALL_ENCODER_SOAEULER_TYPE_ZYZ = 8,
 BALL_ENCODER_SOAEULER_TYPE_YXY = 9,
 BALL_ENCODER_SOAEULER_TYPE_YZY = 10,
 BALL_ENCODER_SOAEULER_TYPE_XYX = 11,
 BALL_ENCODER_SOAEULER_TYPE_XZX = 12
 };

28.4. DshellCommonModels::CmFrameStateSensor Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Attitude (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Attitude__keyword__group.html)

Idealized (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Idealized__keyword__group.html)

Position (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Position__keyword__group.html)

Description

Maintains the CM based frame origin/attitude and outputs the orientation of a vehicle relative to the frame.

Author: Scott Nemeth
 This sensor model uses node and frame objects to calculate the orientation of a body relative to the desired frame.

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model CmFrameStateSensor class details

For more information on the members and functions of this model class, please see DshellCommonModels::CmFrameStateSensor model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__CmFrameStateSensor__group.html)

Enums

SOAEulerType Enum

In the CmFrameStateSensor model definition, the original enum SOAEulerType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

CenterOfMassType Enum

In the CmFrameStateSensor model definition, the original enum CenterOfMassType is defined as:

 enum SOAEulerType
 {
 _NOT_USED_ = 0,
 ZYX = 1,
 ZXY = 2,
 YZX = 3,
 YXZ = 4,
 XZY = 5,
 XYZ = 6,
 ZXZ = 7,
 ZYZ = 8,
 YXY = 9,
 YZY = 10,
 XYX = 11,
 XZX = 12
 };

 /// CmFrameStateSensorSOAEulerType enum
 enum CmFrameStateSensorSOAEulerType
 {
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE__NOT_USED_ = 0,
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE_ZYX = 1,
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE_ZXY = 2,
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE_YZX = 3,
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE_YXZ = 4,
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE_XZY = 5,
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE_XYZ = 6,
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE_ZXZ = 7,
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE_ZYZ = 8,
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE_YXY = 9,
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE_YZY = 10,
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE_XYX = 11,
 CM_FRAME_STATE_SENSOR_SOAEULER_TYPE_XZX = 12
 };

 enum CenterOfMassType
 {
 FIXED = 0,
 COMPONENT = 1,
 COMPOSITE = 2
 };

In the C model code, these enum values can be accessed by using the follow C enum definitions:

AngleModuloType Enum

In the CmFrameStateSensor model definition, the original enum AngleModuloType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

VelocityReferenceType Enum

In the CmFrameStateSensor model definition, the original enum VelocityReferenceType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

FrameType Enum

In the CmFrameStateSensor model definition, the original enum FrameType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

CM_FRAME_UUID int Not for user input - UUID

for the Center of Mass based

frame.

 /// CmFrameStateSensorCenterOfMassType enum
 enum CmFrameStateSensorCenterOfMassType
 {
 CM_FRAME_STATE_SENSOR_CENTER_OF_MASS_TYPE_FIXED = 0,
 CM_FRAME_STATE_SENSOR_CENTER_OF_MASS_TYPE_COMPONENT = 1,
 CM_FRAME_STATE_SENSOR_CENTER_OF_MASS_TYPE_COMPOSITE = 2
 };

 enum AngleModuloType
 {
 ZERO_TO_TWO_PI = 0,
 MINUS_PI_TO_PI = 1
 };

 /// CmFrameStateSensorAngleModuloType enum
 enum CmFrameStateSensorAngleModuloType
 {
 CM_FRAME_STATE_SENSOR_ANGLE_MODULO_TYPE_ZERO_TO_TWO_PI = 0,
 CM_FRAME_STATE_SENSOR_ANGLE_MODULO_TYPE_MINUS_PI_TO_PI = 1
 };

 enum VelocityReferenceType
 {
 INERTIAL = 0,
 RELATIVE = 1
 };

 /// CmFrameStateSensorVelocityReferenceType enum
 enum CmFrameStateSensorVelocityReferenceType
 {
 CM_FRAME_STATE_SENSOR_VELOCITY_REFERENCE_TYPE_INERTIAL = 0,
 CM_FRAME_STATE_SENSOR_VELOCITY_REFERENCE_TYPE_RELATIVE = 1
 };

 enum FrameType
 {
 NONE = 0,
 VELOCITY_ALIGN = 1,
 LVLH = 2,
 UVW = 3,
 CW = 4
 };

 /// CmFrameStateSensorFrameType enum
 enum CmFrameStateSensorFrameType
 {
 CM_FRAME_STATE_SENSOR_FRAME_TYPE_NONE = 0,
 CM_FRAME_STATE_SENSOR_FRAME_TYPE_VELOCITY_ALIGN = 1,
 CM_FRAME_STATE_SENSOR_FRAME_TYPE_LVLH = 2,
 CM_FRAME_STATE_SENSOR_FRAME_TYPE_UVW = 3,
 CM_FRAME_STATE_SENSOR_FRAME_TYPE_CW = 4
 };

Name Type Size Quantity Units Description

PCI_FRAME_UUID int Not for user input - UUID

for the planet centered

inertial frame.

PCR_FRAME_UUID int Not for user input - UUID

for the planet centered

relative frame.

angleModulo AngleModuloType Specifies the modulo at

which each angle will be

output.

centerOfMassType CenterOfMassType Specifies whether to use the

component body or

composite body for CM

location.

eulerSequence SOAEulerType The angle sequence used in

determining euler angles

for the attitude.

frameType FrameType The type of the frame that

this model will create to

measure the frame attitude

state.

velocityReference VelocityReferenceType Specifies whether to inertial

or relative velocity in

creating the CM based

frame.

Flow Outs

Name Type Size Quantity Units Description

angles double 3 Angle Euler angles extracted using

desired sequence.

quat double 4 Quaternion Body orientation relative to

input reference frame.

28.5. DshellCommonModels::GimbalAngleEncoder Encoder Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Encoder class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Encoder__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Hinge__keyword__group.html)

Hinge!Gimbal (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Hinge__Gimbal__keyword__group.html)

Description

Outputs the gimbal angular displacements

Author: David Henriquez
 / Garett Sohl (converted to flowIns/Outs) The GimbalEncoder encoder reports the angular displacements a gimbal hinge has undergone (i.e. angle[3]). If

GimbalEncoder is attached to a hinge with less than three degrees of freedom, the extra degree(s) of freedom will be set to zero. If GimbalEncoder is attached to a hinge with more

than three degrees of freedom, only the first three will be reported; however, such a scenario may cause a system error (i.e. segmentation fault).

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model GimbalAngleEncoder class details

For more information on the members and functions of this model class, please see DshellCommonModels::GimbalAngleEncoder model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__GimbalAngleEncoder__group.html)

Flow Outs

Name Type Size Quantity Units DescriptionName Type Size Quantity Units Description

rotation double 3 Angle gimbal hinge angle values

xangle double 1 Angle gimbal hinge angle values

yangle double 1 Angle gimbal hinge angle values

zangle double 1 Angle gimbal hinge angle values

28.6. DshellCommonModels::NodePosVelAccelSensor Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Accelerometer (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Accelerometer__keyword__group.html)

Gyroscope (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Gyroscope__keyword__group.html)

IMU (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__IMU__keyword__group.html)

Inertial (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Inertial__keyword__group.html)

Description

Model of a IMU truth sensor.

Returns linear and angular rates and accelerations. Linear values are given in the inertial frame, while angular values are given in the local/node frame. Partly based on

RoverDynModels/RoverTruthIMU

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model NodePosVelAccelSensor class details

For more information on the members and functions of this model class, please see DshellCommonModels::NodePosVelAccelSensor model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__NodePosVelAccelSensor__group.html)

Scratch

Name Type Size Quantity Units Description

accelMag double Acceleration Linear acceleration

magnitude (with respect to

the inertial frame, m/sec**2)

bodySensedAccelMag double Acceleration Linear acceleration

magnitude in body axis

(with respect to the inertial

frame, m/sec**2)

bodyVelMag double Velocity Linear inertial velocity

magnitude (with respect to

the body frame, m/sec)

posMag double Length Position magnitude relative

to inertial frame (m)

quat double 4 Quaternion Node attitude quaternion

velMag double Velocity Linear inertial velocity

magnitude (with respect to

the inertial frame, m/sec)

Flow Outs

Name Type Size Quantity Units Description

accel double 3 Acceleration Linear accelerations (with

respect to the inertial

frame, m/sec**2)

Name Type Size Quantity Units Description

alpha double 3 AngularAcceleration Angular accels (with respect

to the inertial frame,

rad/sec**2)

bodyOmega double 3 AngularVelocity Angular rates (with respect

to the body frame, rad/sec)

bodySensedAccel double 3 Acceleration Linear accelerations in body

axis (with respect to the

inertial frame, m/sec**2)

bodyVel double 3 Velocity Linear inertial velocity (with

respect to the body frame,

m/sec)

omega double 3 AngularVelocity Angular rates (with respect

to the inertial frame,

rad/sec)

pos double 3 Length Position relative to inertial

frame (m)

quat double 4 Quaternion Attitude quaternion (with

respect to the inertial

frame)

vel double 3 Velocity Linear inertial velocity (with

respect to the inertial

frame, m/sec)

28.7. DshellCommonModels::NoisyIMU Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Accelerometer (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Accelerometer__keyword__group.html)

Gyroscope (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Gyroscope__keyword__group.html)

IMU (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__IMU__keyword__group.html)

Inertial (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Inertial__keyword__group.html)

Random (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Random__keyword__group.html)

noise (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__noise__keyword__group.html)

Description

Model of a Noisy IMU (gyro+accel) with noise.

Model of a Noisy IMU with noise (based on EDLR4AeroModels/EdlIMU). The noisy output is computed as follows: y = (1+sf) * x + b + w where y : measured value sf : scale factor x : true

value b : bias w : noise

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model NoisyIMU class details

For more information on the members and functions of this model class, please see DshellCommonModels::NoisyIMU model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__NoisyIMU__group.html)

Parameters

Name Type Size Quantity Units Description

Accel_derivNoise double 3 Dimensionless Accel random walk noise (3-

axis), NOT USED

Name Type Size Quantity Units Description

Accel_initBias double 3 Acceleration Initial bias error for accel (3-

axis)

Accel_nodriftPole double 3 Dimensionless no drift pole, NOT USED

Accel_quantization double Velocity quatization factor for accel

delta-v counts, NOT USED

Accel_randomWalkFactor double 3 Dimensionless Random Walk factor inputed

by user, NOT USED

Accel_rateNoise double 3 Dimensionless Accel rate noise (3-axis)

Accel_scaleFactor double 3 Dimensionless scale factor error for accel

(0=no scale factor error);

measured_value =

(1+scale_factor)*real_value +

bias + noise

Gyro_derivNoise double 3 Dimensionless Gyro random walk noise (3-

axis), NOT USED

Gyro_initBias double 3 AngularVelocity Initial bias error for gyro (3-

axis)

Gyro_nodriftPole double 3 Dimensionless no drift pole, NOT USED

Gyro_quantization double Angle quatization factor for gyro

counts, NOT USED

Gyro_randomWalkFactor double 3 Dimensionless Random Walk factor inputed

by user, NOT USED

Gyro_rateNoise double 3 Dimensionless Gyro rate noise (3-axis)

Gyro_scaleFactor double 3 Dimensionless scale factor error for gyro

(0=no scale factor error);

measured_value =

(1+scale_factor)*real_value +

bias + noise

seed int Seed #1 for uniform pseudo-

random number generator

Scratch

Name Type Size Quantity Units Description

prior_IO_dv_at_IMU double 3 Velocity dv at IMU in last IO step

prior_IO_theta double 3 Angle Theta at IMU in last IO step

Continuous States

Name Type Size Quantity Units Description

dvAtIMU double 3 Velocity Integral of accelerometer

noiseAccel double 3 Velocity Noise Term for Accel

noiseOmega double 3 Angle Noise Term for Omega

thetaReal double 3 Angle Integral of angular rate

Flow Outs

Name Type Size Quantity Units Description

accumulated_dv_at_IMU_IO double 3 Velocity Delta-V (linear) in node

frame with noise and

without gravity accel

Name Type Size Quantity Units Description

dv_at_IMU_IO double 3 Velocity Delta-V (linear) in node

frame with noise and

without gravity accel; delta

in IO step

theta double 3 Angle Gyro angles with noise

theta_IO double 3 Angle Delta-Theta for each IO step

with noise

28.8. DshellCommonModels::NoisyNodePosVelAccelSensor Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Accelerometer (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Accelerometer__keyword__group.html)

Gyroscope (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Gyroscope__keyword__group.html)

IMU (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__IMU__keyword__group.html)

Inertial (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Inertial__keyword__group.html)

Random (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Random__keyword__group.html)

noise (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__noise__keyword__group.html)

Description

Adds noise to the node's attitude and body sensed accel.

Based on GeneralModels/NoisyAttitude. This model gets the node’s attitude quaternion and multiplies it with an error quaternion. The error quaternion noise added to its four

elements and is then normalized to guarantee that the norm of error quaternion is equal to unity. The model parameters determine the noise characteritics of the error quaternion.

noise_switch is a flag to turn the noise on or off; 0 = no noise; 1 = noise included. If noise is turned off, the output of the model is the true attitude of the node. If the noise is turned on,

the model initializes its error quaternion in setup(). The initial error quaternion adds uniformly distributed noise (i.e sig_init_error*[-1, 1]) to each element of the identity quaternion.

seed[2] are the random number seeds used to generate ONLY for generating the initial error quaternion. For every I/O step in the simulation, the error quaternion has uniformly

distributed noise (i.e. sig_att_noise*[-1, 1]) added to each of its elements. Also a random walk term is added (i.e. sig_gyro_drift*dt*[-1, 1] + gyro_random_walk*sqrt(dt)*[-1, 1]) to each of

the error quaternion elements. The model states keep the current value of the random number seeds (i.e. seed_state[2]) and next value for the random walk term (i.e.

drift_rand_state[4]) for the error quaternion.

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model NoisyNodePosVelAccelSensor class details

For more information on the members and functions of this model class, please see DshellCommonModels::NoisyNodePosVelAccelSensor model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__NoisyNodePosVelAccelSensor__group.html)

Parameters

Name Type Size Quantity Units Description

gyro_random_walk double Dimensionless gyro random walk

noise_switch int switch for noise; 0 = no

noise; 1 = noise included

seed double 2 Dimensionless random number seed value

sig_att_noise double Angle attitude noise

sig_gyro_drift double AngularVelocity gyro drift

sig_init_error double Angle initial attitude error

Scratch

Name Type Size Quantity Units Description

Name Type Size Quantity Units Description

bodySensedAccel_truth double 3 Acceleration m/s**2 Truth linear accelerations in

body axis (with respect to

the inertial frame, m/sec**2)

quat_noise_level double 4 Quaternion Noise level of attitude

quaternion

quat_truth double 4 Quaternion Truth attitude quaternion

Discrete States

Name Type Size Quantity Units Description

drift_rand_state double 4 Dimensionless

seed_state double 2 Dimensionless

28.9. DshellCommonModels::RateGyro Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Sensor__group.html)

Description

models rate gyro measurements

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model RateGyro class details

For more information on the members and functions of this model class, please see DshellCommonModels::RateGyro model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__RateGyro__group.html)

Enums

cntIntType Enum

In the RateGyro model definition, the original enum cntIntType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

stateTypeEnum Enum

In the RateGyro model definition, the original enum stateTypeEnum is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

 enum cntIntType
 {
 8BIT = 0,
 16BIT = 1,
 32BIT = 2
 };

 /// RateGyrocntIntType enum
 enum RateGyrocntIntType
 {
 RATE_GYRO_CNT_INT_TYPE_8BIT = 0,
 RATE_GYRO_CNT_INT_TYPE_16BIT = 1,
 RATE_GYRO_CNT_INT_TYPE_32BIT = 2
 };

 enum stateTypeEnum
 {
 CONTINUOUS = 0,
 DISCRETE = 1
 };

Parameters

Name Type Size Quantity Units Description

angleCntIntType cntIntType gyro angle integer type

angleLSB double gyro angle least significant

bit [rad/cnt]

arw double angle random walk constant

[rad/sec^(1/2)]

awn double angle white noise constant

[rad/Hz^(1/2)]

axisBody double 3 gyro axis in body frame

biasStblty double rate bias (in)stability

constant [rad/sec]

constRateBias double AngularVelocity rate bias constant [rad/sec]

driftRate double linear drift rate constant

[rad/sec^2]

misAlign double Angle gyro axis misalignment

relative to body frame [rad]

rrw double rate random walk constant

[rad/sec^(3/2)]

scaleFactor double scale factor error

seed long PRN seed

stateType stateTypeEnum gyro state type

Scratch

Name Type Size Quantity Units Description

angle_bias double Angle gyro angle bias

Discrete States

Name Type Size Quantity Units Description

angle double Angle accumulated gyro angle

arw double angle random walk state

biasStblty double rate bias (in)stability state

driftRate double linear drift rate

rrw double rate random walk state

Continuous States

Name Type Size Quantity Units Description

angle double Angle accumulated gyro angle

arw double angle random walk state

biasStblty double rate bias (in)stability state

driftRate double linear drift rate

rrw double rate random walk state

 /// RateGyrostateTypeEnum enum
 enum RateGyrostateTypeEnum
 {
 RATE_GYRO_STATE_TYPE_ENUM_CONTINUOUS = 0,
 RATE_GYRO_STATE_TYPE_ENUM_DISCRETE = 1
 };

Flow Outs

Name Type Size Quantity Units Description

angle double Angle measured gyro angle

angleCnts long measured gyro angle counts

deltaAngle double measured gyro delta angle

deltaAngleCnts long measured gyro delta angle

counts

rate double measured gyro rate

28.10. DshellCommonModels::ReactionWheel Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Motor__group.html)

Description

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model ReactionWheel class details

For more information on the members and functions of this model class, please see DshellCommonModels::ReactionWheel model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__ReactionWheel__group.html)

Enums

FrictionModel Enum

In the ReactionWheel model definition, the original enum FrictionModel is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

PowerState Enum

In the ReactionWheel model definition, the original enum PowerState is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

 enum FrictionModel
 {
 NONE = 0,
 LUGRE = 1,
 DAHL = 2,
 COULOMB_VISCOUS = 3
 };

 /// ReactionWheelFrictionModel enum
 enum ReactionWheelFrictionModel
 {
 REACTION_WHEEL_FRICTION_MODEL_NONE = 0,
 REACTION_WHEEL_FRICTION_MODEL_LUGRE = 1,
 REACTION_WHEEL_FRICTION_MODEL_DAHL = 2,
 REACTION_WHEEL_FRICTION_MODEL_COULOMB_VISCOUS = 3
 };

 enum PowerState
 {
 OFF = 0,
 ON = 1
 };

 /// ReactionWheelPowerState enum
 enum ReactionWheelPowerState
 {
 REACTION_WHEEL_POWER_STATE_OFF = 0,
 REACTION_WHEEL_POWER_STATE_ON = 1
 };

Name Type Size Quantity Units DescriptionName Type Size Quantity Units Description

k_coulomb double Torque coulomb torque

k_dahl_exp double Dimensionless dahl exponent

k_dahl_stiff double RotationalSpringStiffness dahl stiffness coeffiecient

k_disable_spd double AngularVelocity wheel speed disable

threshold

k_enable_spd double AngularVelocity wheel speed enable

threshold

k_friction_model FrictionModel NONE=0, LUGRE=1, DAHL=2,

COULOMB_VISCOUS=3

k_lugre_damp double lugre damping coefficient

k_lugre_stiff double RotationalSpringStiffness lugre stiffness coefficient

k_mtr_trq_constant double motor torque constant

k_static double Torque static torque

k_stiction_coeff double stiction coefficient

k_stribeck_exp double Dimensionless stribeck exponent

k_stribeck_vel double AngularVelocity stribeck velocity

k_tach_pulses_per_rev int number of pulses per wheel

revolution

k_tach_read_period double Time tachometer read period

k_viscous double viscous friction coefficient

Discrete States

Name Type Size Quantity Units Description

overspeed bool wheel overspeed condition

power_state PowerState wheel power state

Continuous States

Name Type Size Quantity Units Description

z double Angle mean bristle deflection

Flow Ins

Name Type Size Quantity Units Description

mtr_current double Current motor current

power_cmd bool wheel power command

Flow Outs

Name Type Size Quantity Units Description

trq_output double Torque torque output

wheel_tach double AngularVelocity tachometer wheel speed

28.11. DshellCommonModels::SpiceFramePCIBodySync Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Actuator__group.html)

Description

Keeps a body in sync with an inertial Spice frame.

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model SpiceFramePCIBodySync class details

For more information on the members and functions of this model class, please see DshellCommonModels::SpiceFramePCIBodySync model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__SpiceFramePCIBodySync__group.html)

Parameters

Name Type Size Quantity Units Description

PCI_SPICE_FRAME_UUID int Not for user input - UUID

for the planet centered

inertial frame.

SPICE_ROOT_FRAME_UUID int Not for user input - UUID

for the Darts root inertial

frame.

spiceETSimEpoch double Time Spice Frame Container time

corresponding to sim

time=0.0.

Scratch

Name Type Size Quantity Units Description

pciBodyOmega double 3 AngularVelocity rad/s Rotational velocity of the

PCI body with respect to the

Darts root frame.

pciBodyPosition double 3 Length m Position of the PCI body

with respect to the Darts

root frame.

pciBodyQuaternion double 4 Quaternion unitless Orientation of the PCI body

with respect to the Darts

root frame.

pciBodyVelocity double 3 Velocity m/s Velocity of the PCI body

with respect to the Darts

root frame.

Flow Outs

Name Type Size Quantity Units Description

spiceTime double Time Time according to the Spice

Frame Container. This signal

is used to correctly order

the Spice models.

28.12. DshellCommonModels::SpiceFramePCRBodySync Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Actuator__group.html)

Description

Keeps a body in sync with a rotating Spice frame.

Keeps a body in sync with a rotating Spice frame.

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model SpiceFramePCRBodySync class details

For more information on the members and functions of this model class, please see DshellCommonModels::SpiceFramePCRBodySync model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__SpiceFramePCRBodySync__group.html)

Parameters

Name Type Size Quantity Units Description

PCI_SPICE_FRAME_UUID int Not for user input - UUID

for the planet centered

inertial frame.

PCR_SPICE_FRAME_UUID int Not for user input - UUID

for the planet centered

rotating frame.

SPICE_ROOT_FRAME_UUID int Not for user input - UUID

for the Darts root inertial

frame.

Scratch

Name Type Size Quantity Units Description

pcrBodyOmega double 3 AngularVelocity rad/s Rotational velocity of the

PCR body with respect to

the PCI body.

pcrBodyQuaternion double 4 Quaternion unitless Orientation of the PCR body

with respect to the PCI body.

Flow Ins

Name Type Size Quantity Units Description

spiceTime double Time Time according to the Spice

Frame Container. This signal

is used to correctly order

the Spice models.

28.13. DshellCommonModels::UserClock Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all DshellCommonModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__Sensor__group.html)

Keywords Doxygen groups

MET (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__MET__keyword__group.html)

clock (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__clock__keyword__group.html)

time (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__time__keyword__group.html)

timer (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__timer__keyword__group.html)

Description

userClock sensor for providing vehicle/site-specific times to models

userClock sensor for providing vehicle/site-specific times to models

from the DshellCommonModels models library for the xref:Dshellpp_module simulation framework.

Model UserClock class details

For more information on the members and functions of this model class, please see DshellCommonModels::UserClock model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/DshellCommonModels/html/group__UserClock__group.html)

Parameters

Name Type Size Quantity Units Description

baseTime int 2 Value of clock at sim time =

0.0

Flow Outs

Name Type Size Quantity Units Description

clockTime int 2 Value of userClock at

current sim time in seconds

and nanoseconds

time double Time Value of userClock at

current sim time as a double

29. GeneralSGModels Dshell model library

Doxygen reference to Models in GeneralSGModels by Type

Actuators (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Actuator__group.html)

Sensors (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Sensor__group.html)

Motors (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Encoders (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Encoder__group.html)

Flows (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Flow__group.html)

Continuous (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__ContStates__group.html)

29.1. GeneralSGModels::BallJointSpringDamper Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Ball (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Ball__keyword__group.html)

Description

Spring Damper for ball joints

This model computes and applies generalized forces representing spring dampers that resist rotation of a ball joint.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model BallJointSpringDamper class details

For more information on the members and functions of this model class, please see GeneralSGModels::BallJointSpringDamper model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__BallJointSpringDamper__group.html)

Parameters

Name Type Size Quantity Units Description

C_x double RotationalSpringDamping damping constant for

rotations about the x axis

C_y double RotationalSpringDamping damping constant for

rotations about the y axis

C_z double RotationalSpringDamping damping constant for

rotations about the z axis

K_x double RotationalSpringStiffness spring force constant for

rotations about the x axis

K_y double RotationalSpringStiffness spring force constant for

rotations about the y axis

K_z double RotationalSpringStiffness spring force constant for

rotations about the z axis

Scratch

Name Type Size Quantity Units Description

gen_coord double 4 Quaternion Hinge coordinates

(quaternion)

gen_f double 3 Torque Generalized force (torque)

on hinge

Name Type Size Quantity Units Description

gen_vel double 3 AngularVelocity Hinge rotational velocity

(rad/sec)

pitch double Angle Pitch of hinge (rotation

about the attachment node

Y axis)

roll double Angle Roll of hinge (rotation about

the attachment node X axis)

yaw double Angle Yaw of hinge (rotation about

the attachment node Z axis)

29.2. GeneralSGModels::BearingAngle Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Celestial (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Celestial__keyword__group.html)

Relative (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Relative__keyword__group.html)

angle (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__angle__keyword__group.html)

vector (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__vector__keyword__group.html)

Description

Outputs angle between a node-fixed vector and an inertial vector

Author: David Henriquez
 / Garett Sohl (converted to flowIn/Outs) The BearingAngle sensor model takes two parameter vectors and reports the angle between the two vectors at

each I/O step. The angle will have a value between [0, 2*pi]. The BearingAngle model parameters consist of two vectors. One of the parameter vectors is an inertial vector called

celest_vec[3]. The other parameter vector is a vector fixed to the node called body_vec[3]. As the inertial node attitude changes due to spacecraft motion or body articulation, the

inertial orientation of node-fixed vector also changes. The sole output of the BearingAngle model is the angle between the celest_vec[3] and body_vec[3].

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model BearingAngle class details

For more information on the members and functions of this model class, please see GeneralSGModels::BearingAngle model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__BearingAngle__group.html)

Parameters

Name Type Size Quantity Units Description

body_vec double 3 Length body fixed vector

celest_vec double 3 Length vector to celestial body in

inertial frame

Scratch

Name Type Size Quantity Units Description

angle double Angle angle between the body and

the celestial vector

Flow Outs

Name Type Size Quantity Units Description

angle double Angle bearing angle to celestial

body

29.3. GeneralSGModels::DCMotorVin Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Description

Model of a DC motor with voltage input.

Model an idealized DC motor with voltage control. The Motor current dynamics are assumed to be instataneous (inductance is assumed to be zero). Input to this model is a voltage

across the motor. Outputs of this model are motor torque and current draw. Motor braking is not yet implemented by this model.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model DCMotorVin class details

For more information on the members and functions of this model class, please see GeneralSGModels::DCMotorVin model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__DCMotorVin__group.html)

Parameters

Name Type Size Quantity Units Description

K_t double MotorTorqueConstant Motor torque constant (N-

m/Amp) = back emf constant

(V-sec/rad)

R double Resistance Motor resistance

damping double RotationalSpringDamping Mechanical damping

coefficient (N-m-s/rad)

Scratch

Name Type Size Quantity Units Description

gearRatio double Dimensionless Motor gear ratio

inbOmega double AngularVelocity Angular velocity of motor

input shaft

outOmega double AngularVelocity Angular velocity of motor

output shaft (after gear

ratio)

Discrete States

Name Type Size Quantity Units Description

brake int flag to turn brake on(1) or

off(0)

Flow Ins

Name Type Size Quantity Units Description

voltage double Voltage Motor voltage

Flow Outs

Name Type Size Quantity Units Description

current double Current Motor current draw

power double Power Motor power draw

torque double Torque Motor torque

29.4. GeneralSGModels::DCMotorVin2 Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Description

Model of a DC motor with voltage input.

Model an idealized DC motor with voltage control, damping, and resistance. The Motor current dynamics are assumed to be instantaneous (inductance is assumed to be zero). Input to

this model is a voltage across the motor. Outputs of this model are motor torque and current draw. Motor braking is not yet implemented by this model. REFERENCE: Mechatronics

and Measurement Systems by Michael B. Histand and David G. Alciatore, McGraw-Hill, 1999.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model DCMotorVin2 class details

For more information on the members and functions of this model class, please see GeneralSGModels::DCMotorVin2 model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__DCMotorVin2__group.html)

Parameters

Name Type Size Quantity Units Description

K_e double MotorBackEmfConstant Voltage/speed constant (V-

sec/rad)

stall_current double Current Stall current (amps)

29.5. GeneralSGModels::ExternalSingleDofDisturbance Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Disturbance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Disturbance__keyword__group.html)

model (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__model__keyword__group.html)

Description

Actuates a single degree of freedom on a node

Author: David Henriquez
 / Garett Sohl (modified to use flowIns) The ExternalSingleDofDisturbance actuator model is similar to the ExternalDisturbance actuator model.

However, it also applies a pure force or pure torque about only one axis. The ExternalSingleDofDisturbance parameter Axis specifies the active axis and whether a force or torque is

applied. The options for Axis are the following enumerated list: MX (torque about the local X axis), MY (torque about the local Y axis), MZ (torque about the local Z axis), FX (force about

the local X axis), FY (force about the local Y axis), FZ (force about the local Y axis) and IGNORE; by default, the Axis parameter is set to IGNORE. The ExternalSingleDofDisturbance

model flowIn specfies the magnitude of the force or torque. This model has no flowOuts.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model ExternalSingleDofDisturbance class details

For more information on the members and functions of this model class, please see GeneralSGModels::ExternalSingleDofDisturbance model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__ExternalSingleDofDisturbance__group.html)

Enums

Axis Enum

In the ExternalSingleDofDisturbance model definition, the original enum Axis is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

activeDof Axis

Flow Ins

Name Type Size Quantity Units Description

dof double Unspecified External single dof

disturbance force or torque

29.6. GeneralSGModels::GearedPinAccel Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Pin (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Pin__keyword__group.html)

Hinge!Prescribed (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Prescribed__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__keyword__group.html)

Rover!Controller (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Controller__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Locomotion__keyword__group.html)

Rover!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Wheel__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Wheel__keyword__group.html)

Wheel!Controller (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Wheel__Controller__keyword__group.html)

Wheel!Steering (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Wheel__Steering__keyword__group.html)

Description

Prescribes accelerations to PIN joints with gear ratios. This motor MUST be on a body with a PRESCRIBED, single DOF joint.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model GearedPinAccel class details

For more information on the members and functions of this model class, please see GeneralSGModels::GearedPinAccel model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__GearedPinAccel__group.html)

 enum Axis
 {
 MX = 0,
 MY = 1,
 MZ = 2,
 FX = 3,
 FY = 4,
 FZ = 5,
 IGNORE = 6
 };

 /// ExternalSingleDofDisturbanceAxis enum
 enum ExternalSingleDofDisturbanceAxis
 {
 EXTERNAL_SINGLE_DOF_DISTURBANCE_AXIS_MX = 0,
 EXTERNAL_SINGLE_DOF_DISTURBANCE_AXIS_MY = 1,
 EXTERNAL_SINGLE_DOF_DISTURBANCE_AXIS_MZ = 2,
 EXTERNAL_SINGLE_DOF_DISTURBANCE_AXIS_FX = 3,
 EXTERNAL_SINGLE_DOF_DISTURBANCE_AXIS_FY = 4,
 EXTERNAL_SINGLE_DOF_DISTURBANCE_AXIS_FZ = 5,
 EXTERNAL_SINGLE_DOF_DISTURBANCE_AXIS_IGNORE = 6
 };

Scratch

Name Type Size Quantity Units Description

gearRatio double Dimensionless gear ratio

Flow Ins

Name Type Size Quantity Units Description

accel double AngularAcceleration Prescribed acceleration

29.7. GeneralSGModels::GearedPinAngle Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Pin (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Pin__keyword__group.html)

Hinge!Prescribed (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Prescribed__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__keyword__group.html)

Rover!Controller (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Controller__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Locomotion__keyword__group.html)

Rover!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Wheel__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Wheel__keyword__group.html)

Wheel!Controller (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Wheel__Controller__keyword__group.html)

Wheel!Steering (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Wheel__Steering__keyword__group.html)

Description

Prescribes angles for PIN joints with gear ratios. This motor MUST be on a body with a PRESCRIBED, single DOF joint.

This model also assumes that the Q and U variables are MASKED. evn though this is a prescribed hinge. The purpose of the masking is to force the subhinge’s Q & U to exactly follow

the model’s Q and U values. So this model is meant to be used for dofs that do not have a controller, but we want the dof to follow a desired profile. The alternative is to add a high gain

controller for the steering dof. Just removing the masking does not work because without a controller, residual velocities in the integrted U bleed into Q causing it to grow steadily.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model GearedPinAngle class details

For more information on the members and functions of this model class, please see GeneralSGModels::GearedPinAngle model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__GearedPinAngle__group.html)

Flow Ins

Name Type Size Quantity Units Description

angle double Angle Prescribed angle

rate double AngularVelocity Prescribed rate

29.8. GeneralSGModels::GeneralAccelGimbal Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Gimbal (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Gimbal__keyword__group.html)

Hinge!Prescribed (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Prescribed__keyword__group.html)

Description

Applies a generalized acceleration to a 3 DOF hinge

Author: David Henriquez
 / Garett Sohl (modified to use flowIns) The GeneralAccelGimbal motor model applies a generalized acceleration to the 3 DOF hinge on which the model

is attached. The GeneralAccelGimbal model flowIn is used to specify the applied generalized acceleration. This model has no output.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model GeneralAccelGimbal class details

For more information on the members and functions of this model class, please see GeneralSGModels::GeneralAccelGimbal model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__GeneralAccelGimbal__group.html)

Flow Ins

Name Type Size Quantity Units Description

input double 3 AngularAcceleration prescribed gimbal hinge

acceleration values

29.9. GeneralSGModels::GeneralAccelUjoint Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Prescribed (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Prescribed__keyword__group.html)

Hinge!Ujoint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Ujoint__keyword__group.html)

Description

Applies a generalized acceleration to a 2 DOF hinge

Author: David Henriquez
 / Garett Sohl (modified to use flowIns) The GeneralAccelUjoint motor model applies a generalized acceleration to the 2 DOF hinge on which the model is

attached. The GeneralAccelUjoint model flowIn is used to specify the applied generalized acceleration. This model has no output.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model GeneralAccelUjoint class details

For more information on the members and functions of this model class, please see GeneralSGModels::GeneralAccelUjoint model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__GeneralAccelUjoint__group.html)

Flow Ins

Name Type Size Quantity Units Description

input double 2 AngularAcceleration prescribed u-joint hinge

acceleration values

29.10. GeneralSGModels::GeneralForceFulldofs Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

6dof (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__6dof__keyword__group.html)

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Full (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Full__keyword__group.html)

Torque (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Torque__keyword__group.html)

Torque!Commanded (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Torque__Commanded__keyword__group.html)

Description

Applies a generalized force to a 6 DOF hinge

Author: David Henriquez
 / Garett Sohl (modified to use flowIns) The GeneralForceFulldofs motor model applies a generalized force to the 6 DOF hinge on which the model is

attached. The GeneralForceFulldofs model flowIn is used to specify the applied generalized force. This model has no output.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model GeneralForceFulldofs class details

For more information on the members and functions of this model class, please see GeneralSGModels::GeneralForceFulldofs model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__GeneralForceFulldofs__group.html)

Flow Ins

Name Type Size Quantity Units Description

input double 6 Mixed generalized force value

29.11. GeneralSGModels::GeneralForceGimbal Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Gimbal (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Gimbal__keyword__group.html)

Torque (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Torque__keyword__group.html)

Torque!Commanded (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Torque__Commanded__keyword__group.html)

Description

Applies a generalized force to a 3 DOF hinge

Author: David Henriquez
 / Garett Sohl (modified to use flowIns) The GeneralForceGimbal motor model applies a generalized force to the 3 DOF hinge on which the model is

attached. The GeneralForceGimbal model flowIn is used to specify the applied generalized force. This model has no output.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model GeneralForceGimbal class details

For more information on the members and functions of this model class, please see GeneralSGModels::GeneralForceGimbal model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__GeneralForceGimbal__group.html)

Flow Ins

Name Type Size Quantity Units Description

input double 3 Torque gimbal hinge generalized

force value

29.12. GeneralSGModels::GeneralForceUjoint Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Ujoint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Ujoint__keyword__group.html)

Torque (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Torque__keyword__group.html)

Torque!Commanded (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Torque__Commanded__keyword__group.html)

Description

Applies a generalized force to a 2 DOF hinge

Author: David Henriquez
 / Garett Sohl (modified to use flowIns) The GeneralForceUjoint motor model applies a generalized force to the 2 DOF hinge on which the model is

attached. The GeneralForceUjoint model flowIn is used to specify the applied generalized force. This model has no output.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model GeneralForceUjoint class details

For more information on the members and functions of this model class, please see GeneralSGModels::GeneralForceUjoint model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__GeneralForceUjoint__group.html)

Flow Ins

Name Type Size Quantity Units Description

input double 2 Torque u-joint hinge generalized

force value

29.13. GeneralSGModels::GeneralizedSpringDamperMotor Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Dynamics__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Spring-Damper__keyword__group.html)

Description

Generalized Spring Damper Motor Model for any of hinge

Given any hinge, compute generalized forces for the hinge dofs given the spring and damping coefficients for each of the dofs

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model GeneralizedSpringDamperMotor class details

For more information on the members and functions of this model class, please see GeneralSGModels::GeneralizedSpringDamperMotor model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__GeneralizedSpringDamperMotor__group.html)

Parameters

Name Type Size Quantity Units Description

C double * Unspecified Damping term for a hinge

dof (size of this value is

number of hinge dofs)

K double * Unspecified Spring coefficient for a

hinge dof (size of this value

is number of hinge dofs)

Name Type Size Quantity Units Description

zero_gen double * Unspecified Nominal zero value for a

hinge dof (size of this value

is number of hinge dofs)

Scratch

Name Type Size Quantity Units Description

damping_f double * Unspecified Generalized damping forces

gen_coord double * Unspecified Hinge Coordinates

gen_f double * Unspecified Generalized hinge forces

gen_vel double * Unspecified Hinge velocities

spring_f double * Unspecified Generalized spring forces

29.14. GeneralSGModels::GimbalEncoder Encoder Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Encoder class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Encoder__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Gimbal (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Gimbal__keyword__group.html)

Description

Outputs the gimbal angular displacements

Author: David Henriquez
 / Garett Sohl (converted to flowIns/Outs) The GimbalEncoder encoder reports the angular displacements a gimbal hinge has undergone (i.e. angle[3]). If

GimbalEncoder is attached to a hinge with less than three degrees of freedom, the extra degree(s) of freedom will be set to zero. If GimbalEncoder is attached to a hinge with more

than three degrees of freedom, only the first three will be reported; however, such a scenario may cause a system error (i.e. segmentation fault).

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model GimbalEncoder class details

For more information on the members and functions of this model class, please see GeneralSGModels::GimbalEncoder model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__GimbalEncoder__group.html)

Flow Outs

Name Type Size Quantity Units Description

angle double 3 Angle gimbal hinge angle values

29.15. GeneralSGModels::JointForceTorqueSensor Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Force (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Force__keyword__group.html)

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Force (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Force__keyword__group.html)

Hinge!Torque (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Torque__keyword__group.html)

torque (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__torque__keyword__group.html)

Description

Outputs the forces and torques at the joint connecting the body to its parent body

Author: Jonathan M. Cameron This model senses the forces and torques at the joint connecting the body to its parent body. The forces and torques are normally in the 'p-node'

(outboard) node frame of the joint. However, the user may specify a frame to transform the forces and torques into. WARNING: This will be the constraint forces at the joint projected

into the 'p-node' frame. Therefore, this sensor will sense zero forces and torques if the joint in unconstrained. To sense the full forces and torques at the joint, ensure that it si a

'LOCKED' joint.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model JointForceTorqueSensor class details

For more information on the members and functions of this model class, please see GeneralSGModels::JointForceTorqueSensor model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__JointForceTorqueSensor__group.html)

Enums

FTSenseMode Enum

In the JointForceTorqueSensor model definition, the original enum FTSenseMode is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

referenceFrame unsigned long (ulong) UUID of Frame in which the

input external disturbance

force and torque are

appleid.

senseMode FTSenseMode Selects how the forces and

torques are felt: by the

body(BODY) or by the

inboard body(PARENT)

Scratch

Name Type Size Quantity Units Description

force double 3 Force Joint force in the reference

frame

torque double 3 Torque Joint force in the reference

frame

Flow Outs

Name Type Size Quantity Units Description

force double 3 Force joint force

torque double 3 Torque joint torque

29.16. GeneralSGModels::NodeFrame2FrameUuid Sensor Model

 enum FTSenseMode
 {
 BODY = 0,
 PARENT = 1
 };

 /// JointForceTorqueSensorFTSenseMode enum
 enum JointForceTorqueSensorFTSenseMode
 {
 JOINT_FORCE_TORQUE_SENSOR_FTSENSE_MODE_BODY = 0,
 JOINT_FORCE_TORQUE_SENSOR_FTSENSE_MODE_PARENT = 1
 };

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Idealized (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Idealized__keyword__group.html)

Node (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Node__keyword__group.html)

Node!Frame (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Node__Frame__keyword__group.html)

Node!Uuid (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Node__Uuid__keyword__group.html)

Description

Outputs the UUID for the node this frame is attached to

The NodeFrame2FrameUuid sensor model outputs UUID for the root frame to the sensor node frame to frame. It is a simpler alternative to the NodePosAttitude model and does not

put out the attitude/position information.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model NodeFrame2FrameUuid class details

For more information on the members and functions of this model class, please see GeneralSGModels::NodeFrame2FrameUuid model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__NodeFrame2FrameUuid__group.html)

Parameters

Name Type Size Quantity Units Description

rootFrame unsigned long (ulong) UUID for the root frame

against which position and

orientation are calculated

Scratch

Name Type Size Quantity Units Description

pos double 3 Length The sensor node position

wrt mbody root frame

quat double 4 Quaternion The sensor node quaternion

wrt mbody root frame

Flow Outs

Name Type Size Quantity Units Description

root2node_f2f_uuid unsigned long (ulong) The UUID for the mbody

root to the sensor frame

29.17. GeneralSGModels::NoisyAttitude Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Node (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Node__keyword__group.html)

Node!Attitude (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Node__Attitude__keyword__group.html)

Random (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Random__keyword__group.html)

noise (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__noise__keyword__group.html)

Description

Adds noise a node's attitude

Author: David Henriquez
 The NoisyAttitude sensor model gets the node’s attitude quaternion and multiplies it with an error quaternion. The error quaternion noise added to its

four elements and is then normalized to guarantee that the norm of error quaternion is equal to unity. The NoisyAttitude model parameters determine the noise characteritics of the

error quaternion. noise_switch is a flag to turn the noise on or off; 0 = no noise; 1 = noise included. If noise is turned off, the output of the model is the true attitude of the node. If the

noise is turned on, the model initializes its error quaternion in setup(). The initial error quaternion adds uniformly distributed noise (i.e sig_init_error*[-1, 1]) to each element of the

identity quaternion. seed[2] are the random number seeds used to generate ONLY for generating the initial error quaternion. For every I/O step in the simulation, the error

quaternion has uniformly distributed noise (i.e. sig_att_noise*[-1, 1]) added to each of its elements. Also a random walk term is added (i.e. sig_gyro_drift*dt*[-1, 1] +

gyro_random_walk*sqrt(dt)*[-1, 1]) to each of the error quaternion elements. The NoisyAttitude model states keep the current value of the random number seeds (i.e. seed_state[2])

and next value for the random walk term (i.e. drift_rand_state[4]) for the error quaternion. The NoisyAttitude model output is the error quaternion (i.e. noise_level[4]) and the noisy

attitude (i.e. noisy_attitude[4]). If the noise is turned off, the error quaternion will be the identity quaternion and the noisy attitude will be the true attitude of the node.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model NoisyAttitude class details

For more information on the members and functions of this model class, please see GeneralSGModels::NoisyAttitude model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__NoisyAttitude__group.html)

Parameters

Name Type Size Quantity Units Description

gyro_random_walk double Unspecified gyro random walk

noise_switch int switch for noise; 0 = no

noise; 1 = noise included

seed double 2 Dimensionless random number seed value

sig_att_noise double Angle attitude noise

sig_gyro_drift double AngularVelocity gyro drift

sig_init_error double Angle initial attitude error

Scratch

Name Type Size Quantity Units Description

firstFlag int triggers initialization

behavior on the first io step

Discrete States

Name Type Size Quantity Units Description

drift_rand_state double 4 Quaternion

error_out double 4 Quaternion The noise quaternion to be

applied to true attitude

quaternion

seed_state double 2 Dimensionless

Flow Outs

Name Type Size Quantity Units Description

noise_level double 4 Quaternion

noisy_attitude double 4 Quaternion

29.18. GeneralSGModels::PinRate Encoder Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Encoder class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Encoder__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Angular (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Angular__keyword__group.html)

Hinge!Pin (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Pin__keyword__group.html)

velocity (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__velocity__keyword__group.html)

Description

Outputs the pin joint angular velocity

Author: Garett Sohl
 The PinRate sensor reports the angular velocity of a pin joint hinge. If PinRate is attached to a hinge with more than one degree of freedom, only the first

degree of freedom will be reported; however, such a scenario may cause a system error (i.e. segmentation fault).

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model PinRate class details

For more information on the members and functions of this model class, please see GeneralSGModels::PinRate model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__PinRate__group.html)

Discrete States

Name Type Size Quantity Units Description

rate double AngularVelocity

Flow Outs

Name Type Size Quantity Units Description

rate double AngularVelocity Pin rate

29.19. GeneralSGModels::PrescribedUjoint Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Prescribed (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Prescribed__keyword__group.html)

Hinge!Ujoint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Ujoint__keyword__group.html)

Description

Set the displacement, velocity and acceleration of a u-joint hinge

Author: David Henriquez
 The PrescribedUjoint motor model, upon receiving a command, sets the u-joint’s hinge displacement, hinge velocity and hinge acceleration. NOTE:

angle[0] goes to subhinge(0), angle[1] to subhinge(1), etc Refactored flowIns by Jonathan M. Cameron, November 2015.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model PrescribedUjoint class details

For more information on the members and functions of this model class, please see GeneralSGModels::PrescribedUjoint model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__PrescribedUjoint__group.html)

Enums

MaskType Enum

In the PrescribedUjoint model definition, the original enum MaskType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

 enum MaskType
 {
 MASK_NONE = 0,
 MASK_Q = 1,
 MASK_U = 2,
 MASK_Q_U = 3
 };

Parameters

Name Type Size Quantity Units Description

MaskMode MaskType 2 Masking mode for the two

subhinges

Flow Ins

Name Type Size Quantity Units Description

angAccel double 2 AngularAcceleration prescribed hinge angular

acceleraties (radians/sec**2)

angVel double 2 AngularVelocity prescribed hinge angular

velocities (radians/sec)

angle double 2 Angle prescribed hinge angles

(radians)

29.20. GeneralSGModels::SecondOrderResponse Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Order (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Order__keyword__group.html)

Response (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Response__keyword__group.html)

Second (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Second__keyword__group.html)

Description

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model SecondOrderResponse class details

For more information on the members and functions of this model class, please see GeneralSGModels::SecondOrderResponse model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__SecondOrderResponse__group.html)

Parameters

Name Type Size Quantity Units Description

Fc double Frequency Roll-off frequency (Hz)

InputMax double Unspecified Maximum value of input (u)

InputMin double Unspecified Minimum value of input (u)

State2ndDerivMax double Unspecified Maximum value of state

second derivative

State2ndDerivMin double Unspecified Minimum value of state

second derivative

StateDerivMax double Unspecified Maximum value of state

derivative

StateDerivMin double Unspecified Minimum value of state

derivative

 /// PrescribedUjointMaskType enum
 enum PrescribedUjointMaskType
 {
 PRESCRIBED_UJOINT_MASK_TYPE_MASK_NONE = 0,
 PRESCRIBED_UJOINT_MASK_TYPE_MASK_Q = 1,
 PRESCRIBED_UJOINT_MASK_TYPE_MASK_U = 2,
 PRESCRIBED_UJOINT_MASK_TYPE_MASK_Q_U = 3
 };

Name Type Size Quantity Units Description

StateMax double Unspecified Maximum value of state

StateMin double Unspecified Minimum value of state

damping double Dimensionless Damping coefficent (0-1)

Scratch

Name Type Size Quantity Units Description

Wn double AngularVelocity Natural frequency (rad/sec)

Continuous States

Name Type Size Quantity Units Description

x1 double Unspecified State

x2 double Unspecified State derivative

Flow Ins

Name Type Size Quantity Units Description

u double Unspecified Input command

Flow Outs

Name Type Size Quantity Units Description

state double Unspecified state

state2ndDeriv double Unspecified state second derivative

stateDeriv double Unspecified state derivative

29.21. GeneralSGModels::SignalMux Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Sensor__group.html)

Description

Multiplexes output signal based on input signal and provided mux table.

Multiplexes output signal based on input signal and provided mux table. The provided variable sized parameter integer index table has to be the same size as the flow-output muxed

signal. The flow-out is updated at PREDERIV granularity as flow_out[i] = flow_in[index[i]] The indices within this table need to be in the range of the input to-be-muxed signal. The

model can handle input and output signals of different variable sizes.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model SignalMux class details

For more information on the members and functions of this model class, please see GeneralSGModels::SignalMux model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__SignalMux__group.html)

Parameters

Name Type Size Quantity Units Description

muxTable int * Index table

Flow Ins

Name Type Size Quantity Units Description

Name Type Size Quantity Units Description

in double * Unspecified Input signal

Flow Outs

Name Type Size Quantity Units Description

out double * Unspecified Output signal

29.22. GeneralSGModels::SingleTrapezoidalPro�le Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Motion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motion__keyword__group.html)

profile (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__profile__keyword__group.html)

Description

Generates a trapezoidal velocity profile motion for a specified change in coordinates.

Parameters define the maximum velocity and acceleration for the wheel. This model generates a motor velocity profile consisting of a linear acceleration/deceleration phases plus a

possible constant velocity (coast) phase. The input commands for this model consist of a triplet of maximum acceleration, maximimum velocity and the desired change in coordinates.

The model computes the velocity profile based on the input velocity/acceleration constraints and to meet the desired motion. This model can handle new commands that come in

while in the midst of generating a profile - the profile is continued based on the new velocity/acceleration constraints and the desired angular motion. If the input max velocity is zero,

then a brake to rest motion is triggered. The motion can consist of three phases: accel to coast, coast, and decel to rest phase. The first two phase may not be beeded based on the

commanded motion.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model SingleTrapezoidalPro�le class details

For more information on the members and functions of this model class, please see GeneralSGModels::SingleTrapezoidalProfile model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__SingleTrapezoidalProfile__group.html)

Parameters

Name Type Size Quantity Units Description

relativeMode bool True means to use 2*PI

wrap around for input

coords to determine

shortest motion.

Discrete States

Name Type Size Quantity Units Description

currentStatus int current status (0→moving

on profile, 1→done with

profile

end_coord double Unspecified The absolute end coord

value

prev_iostep_coord double Unspecified The output coordinate value

at the end of the previous

I/O step

prev_iostep_vel double Unspecified The output velocity value at

the end of the previous I/O

step

prev_profile_coord double Unspecified The output coordinate value

at the end of the last profile

Flow Ins

Name Type Size Quantity Units Description

accel double Unspecified Absolute value of

acceleration

coord double Unspecified Desired coord change

maxVel double Unspecified Absolute value of maximum

velocity.

Flow Outs

Name Type Size Quantity Units Description

accel double Unspecified The current acceleration

value for the motion profile.

coord double Unspecified The current absolute

coordinate value for the

motion profile.

rate double Unspecified The current velocity value

for the motion profile.

status int 0→still moving, 1→done with

profile

29.23. GeneralSGModels::SoftJointStop Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Constraint__Soft__keyword__group.html)

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Constraint__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Dynamics__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Spring-Damper__keyword__group.html)

Description

Models a joint stop using a soft constraint.

A soft constraint penalty function is used to prevent motion past joint stops by applying an opposing torque. A nonlinear, Hunt-Crossley spring model is used.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model SoftJointStop class details

For more information on the members and functions of this model class, please see GeneralSGModels::SoftJointStop model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__SoftJointStop__group.html)

Parameters

Name Type Size Quantity Units Description

alpha double RotationalSpringDamping Damping coefficient

k double RotationalSpringStiffness Spring constant

lower_bound double Angle Lower angle bound for joint

Name Type Size Quantity Units Description

n double Dimensionless Exponential for deflection

term

upper_bound double Angle Upper angle bound for joint

Scratch

Name Type Size Quantity Units Description

angle double Angle Hinge angle

delta double Angle Deflection past joint stop

gearRatio double Dimensionless Gear ratio of hinge

omega double AngularVelocity Hinge angular velocity

outb_angle double Angle Angle of outboard body

outb_omega double AngularVelocity Angular velocity of outboard

body

outb_tau double Torque Constraint torque on

outboard body

tau double Torque Constraint torque on hinge

29.24. GeneralSGModels::SpringDamper Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Constraint__Soft__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Dynamics__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Spring-Damper__keyword__group.html)

Description

Simple spring-damper model

This model computes and applies constraint forces for a simple spring-damper that connects two actuator nodes on two different Darts bodies. The names of these nodes are input to

the model with the node1 and node2 parameters. The connection force is always double-sided (tension and/or compression). This model has no flowIns or flowOuts. It makes direct

Darts calls to compute the positions of each attachment point (node1 and node2) and applies the constraint forces. This model isnot ModelMex compliant.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model SpringDamper class details

For more information on the members and functions of this model class, please see GeneralSGModels::SpringDamper model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__SpringDamper__group.html)

Parameters

Name Type Size Quantity Units Description

C double LinearSpringDamping damping constant

K double LinearSpringStiffness spring force constant

from_node object frame of node on the first

end of the spring-damper

Name Type Size Quantity Units Description

to_node object frame of node on the second

end of the spring-damper

unsprung_length double Length Nominal unsprung length of

spring

Scratch

Name Type Size Quantity Units Description

damper_force double Force Magnitude of force exerted

by the damper on node1

deflection double Length Deflection of the spring

length from nominal

force double 3 Force Total constraint force

exerted by the spring-

damper on node 1

force1_local double 3 Force Total constraint force

exerted by the spring-

damper on node 1

force2_local double 3 Force Total constraint force

exerted by the spring-

damper on node 1

length double Length Length of the deflected

spring

pos1 double 3 Length Position of first node

pos2 double 3 Length Position of second node

quat1 double 4 Quaternion Quaternion of first node’s

local body coordinates

quat2 double 4 Quaternion Quaternion of second node’s

local body coordinates

rel_velocity double Velocity Relative speed of the end

nodes

rvec double 3 Length Postion vector from node1

to node2

rvec_unit double 3 Dimensionless Unit vector from node1

towards node2

spring_force double Force Magnitude of force exerted

by the spring on node1

vel1 double 3 Velocity Velocity of first node

vel2 double 3 Velocity Velocity of second node

29.25. GeneralSGModels::SpringDamperMotor Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Dynamics__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Spring-Damper__keyword__group.html)

Description

Simple spring-damper model

This model computes and applies a generalized forces for a simple spring-damper that connects two different Darts bodies by a hinge. The connection force is always double-sided

(tension and/or compression). This model has no flowIns or flowOuts. It makes direct Darts calls to compute the positions of each attachment point (node1 and node2) and applies the

constraint forces. This model isnot ModelMex compliant.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model SpringDamperMotor class details

For more information on the members and functions of this model class, please see GeneralSGModels::SpringDamperMotor model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__SpringDamperMotor__group.html)

Parameters

Name Type Size Quantity Units Description

C double Unspecified damping constant

K double Unspecified spring force constant

unsprung_length double Unspecified Nominal unsprung length of

spring

Scratch

Name Type Size Quantity Units Description

gen_coord double Unspecified Hinge coordinate

gen_f double Unspecified Generalized force on hinge

gen_vel double Unspecified Hinge velocity

29.26. GeneralSGModels::SpringDamperMotor6dof Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Dynamics__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Spring-Damper__keyword__group.html)

Description

Simple spring-damper model

This model computes and applies a generalized forces for a simple 6 dof spring-damper that connects two different Darts bodies by a hinge. The connection force is always double-

sided (tension and/or compression). This model has no flowIns or flowOuts. It makes direct Darts calls to compute the positions of each attachment point (node1 and node2) and

applies the constraint forces. This model is not ModelMex compliant.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model SpringDamperMotor6dof class details

For more information on the members and functions of this model class, please see GeneralSGModels::SpringDamperMotor6dof model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__SpringDamperMotor6dof__group.html)

Parameters

Name Type Size Quantity Units Description

C double 36 Mixed damping constant (6x6

matrix)

Name Type Size Quantity Units Description

K double 36 Mixed spring force constant (6x6

matrix)

unsprung_length double 6 Mixed Nominal unsprung length of

spring (6-vector; first 3

values=translational, last 3

values=rotational)

Scratch

Name Type Size Quantity Units Description

gen_coord double 7 Mixed Hinge coordinates (7 vec;

first 3=translation, last

4=quaternion)

gen_f double 6 Mixed Generalized force on hinge

(6 vec)

gen_vel double 6 Mixed Hinge velocity (6 vec)

29.27. GeneralSGModels::TiltVector Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__keyword__group.html)

Rover!Sensor (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Sensor__keyword__group.html)

Rover!Tilt (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Rover__Tilt__keyword__group.html)

vector (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__vector__keyword__group.html)

Description

Provides the pointing direction of the vehicle's tilt vector

This is an abstract of the accelerometer that is used for the pointing of rover’s downward direction.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model TiltVector class details

For more information on the members and functions of this model class, please see GeneralSGModels::TiltVector model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__TiltVector__group.html)

Parameters

Name Type Size Quantity Units Description

tvec double 3 Dimensionless tilt vector on the local frame

Flow Outs

Name Type Size Quantity Units Description

tvec_global double 3 Dimensionless tilt vector in the global

frame

29.28. GeneralSGModels::UjointSpringDamper Motor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GeneralSGModels models of Motor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Motor__group.html)

Keywords Doxygen groups

Hinge (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__keyword__group.html)

Hinge!Ujoint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__Hinge__Ujoint__keyword__group.html)

Description

Spring Damper for U-joints

This model computes and applies generalized forces representing spring dampers in a U-joint.

from the GeneralSGModels models library for the xref:Dshellpp_module simulation framework.

Model UjointSpringDamper class details

For more information on the members and functions of this model class, please see GeneralSGModels::UjointSpringDamper model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GeneralSGModels/html/group__UjointSpringDamper__group.html)

Parameters

Name Type Size Quantity Units Description

C double 2 RotationalSpringDamping damping constants

K double 2 RotationalSpringStiffness spring force constants

Scratch

Name Type Size Quantity Units Description

gen_coord double 2 Angle Hinge coordinates

gen_f double 2 Torque Generalized force on hinge

gen_vel double 2 AngularVelocity Hinge velocity

30. GravitySGModels Dshell model library

Doxygen reference to Models in GravitySGModels by Type

Actuators (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GravitySGModels/html/group__Actuator__group.html)

Sensors (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GravitySGModels/html/group__Sensor__group.html)

Motors (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GravitySGModels/html/group__Motor__group.html)

Encoders (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GravitySGModels/html/group__Encoder__group.html)

Flows (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GravitySGModels/html/group__Flow__group.html)

Continuous (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GravitySGModels/html/group__ContStates__group.html)

30.1. GravitySGModels::SphericalHarmonicGravity Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all GravitySGModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GravitySGModels/html/group__Actuator__group.html)

Description

SphericalHarmonicGravity - a NxM gravity Model

Author: NASA/JSC COMPASS Team

from the GravitySGModels models library for the xref:Dshellpp_module simulation framework.

Model SphericalHarmonicGravity class details

For more information on the members and functions of this model class, please see GravitySGModels::SphericalHarmonicGravity model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/GravitySGModels/html/group__SphericalHarmonicGravity__group.html)

Parameters

Name Type Size Quantity Units Description

PCI_FRAME_UUID int Not for user input - UUID

for the planet-centered

rotating frame.

PCR_FRAME_UUID int Not for user input - UUID

for the planet-centered

rotating frame.

apply bool Flag to indicate if computed

gravitational acceleration

should be applied to node.

cCoefficients double * Unspecified Gravitational C Coefficients

degree int Gravity Model Degree

(tesserals)

equatorialRadius double Length Central body equatorial

radius

gravityParameter double GmGravitationalParameter Central body gravitational

parameter - GM

normalized bool Flag to indicate if

coeffcients (C and S) are

normalized and need to be

un-normalized after input.

order int Gravity Model Order

(zonals)

sCoefficients double * Unspecified Gravitational S Coefficients

useGravityGradient bool Use Gravity Gradient Flag

Scratch

Name Type Size Quantity Units Description

angAccelBody double 3 AngularAcceleration Angular acceleration vector

in the body frame

angAccelInertial double 3 AngularAcceleration Angular acceleration vector

in the PCI frame

angularAccelMag double AngularAcceleration Magnitude of the angular

acceleration vector in

node/body frame

gravGradientTorque double 3 Torque Gravity gradient torque

vector in the node/body

frame

gravGradientTorqueMag double Torque Magnitude of the gravity

gradient torque vector

linearAccelMag double Acceleration Magnitude of the linear

acceleration vector in PCR

frame

linearAccelPCR double 3 Acceleration Linear gravitational

acceleration in PCR frame

relativePosition double 3 Length Relative position in Planet-

Centered Rotating (PCR)

frame

relativePositionBody double 3 Length Relative position in body

frame

Flow Outs

Name Type Size Quantity Units Description

angularAccel double 3 AngularAcceleration Angular/Rotational

gravitational acceleration in

PCI frame

linearAccel double 3 Acceleration Linear gravitational

acceleration in PCI frame

potential double SpecificEnergy Gravitational potential

31. RoverNavModels Dshell model library

Doxygen reference to Models in RoverNavModels by Type

Actuators (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Actuator__group.html)

Sensors (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Sensor__group.html)

Motors (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Motor__group.html)

Encoders (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Encoder__group.html)

Flows (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Continuous (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__ContStates__group.html)

31.1. RoverNavModels::ArcTraj Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Controller (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Controller__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Description

Generate vehicle chassis linear and angular velocity from radius and mode produced by the RoverNavDyn.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model ArcTraj class details

For more information on the members and functions of this model class, please see RoverNavModels::ArcTraj model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__ArcTraj__group.html)

Parameters

Name Type Size Quantity Units Description

nominal_angular_velocity double AngularVelocity Nominal angular velocity to

use

nominal_linear_velocity double Velocity Nominal linear speed to use

Flow Ins

Name Type Size Quantity Units Description

mode int 0 → turn in place, 1 → move

forward, -1 → move reverse

radius double Length turning radius (0 → straight,

positive → left turn, negative

→ right turn)

Flow Outs

Name Type Size Quantity Units Description

angular_velocity double AngularVelocity Chassis angular velocity, +ve

→ left turn, -ve → right turn

linear_velocity double Velocity Chassis linear velocity, +ve →

forward, -ve → backward

31.2. RoverNavModels::ControlStatus Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Controller (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Controller__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Description

Model to determine if commanded angles have been acheived.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model ControlStatus class details

For more information on the members and functions of this model class, please see RoverNavModels::ControlStatus model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__ControlStatus__group.html)

Parameters

Name Type Size Quantity Units Description

dimension int Dimension of input vectors

epsilon double Angle tolerance (radians) to

determine if motion is

complete

Flow Ins

Name Type Size Quantity Units Description

angle double * Angle Current angles

angle_d double * Angle Desired angles

Flow Outs

Name Type Size Quantity Units Description

status int status (false → still

controlling to desired

values, true → done

31.3. RoverNavModels::DriveTrain4x4 Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Rover!Odometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Odometry__keyword__group.html)

Rover!n-wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__n-wheel__keyword__group.html)

Description

Model used as part of drive train modeling for a 4x4 vehicle for distributing engine torque to wheels.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model DriveTrain4x4 class details

For more information on the members and functions of this model class, please see RoverNavModels::DriveTrain4x4 model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__DriveTrain4x4__group.html)

Parameters

Name Type Size Quantity Units Description

max_steer_angle double Angle The maximum absolute

angle for the steer angle.

pitman_frame_uuid unsigned long (ulong) The UUID for the Pitman

steering frame.

zero_axis double 3 Dimensionless The effective wheel rotation

axis for zero steer.

Scratch

Name Type Size Quantity Units Description

desired_yaw_angle double Angle The angle wrt forward

direction for the pitman

axis.

motion_direction int Forward/backward motion

direction of the vehicle.

raw_yaw_angle double Angle The unclamped, raw value

for the pitman steering

angle.

turn_center2pitman_vec double 3 Length The turn center to pitman

frame vector in the chassis

frame.

turn_radius double Length The turning radius.

Flow Ins

Name Type Size Quantity Units Description

chassis_motion2turn_center_f2f_uuid unsigned long (ulong) Chassis motion to turn

center frame location

frame2frame UUID.

desired_x_y_h_rate double 3 Mixed The desired instantaneous

chassis x,y.h velocity

Flow Outs

Name Type Size Quantity Units Description

current_chassis_speed double Velocity The current speed of the

chassis

desired_chassis_speed double Velocity The desired speed of the

chassis

desired_steer_angle double Angle Instantneous desired steer

angle for the chassis

31.4. RoverNavModels::DriveTrainAccel Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Rover!Odometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Odometry__keyword__group.html)

Rover!n-wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__n-wheel__keyword__group.html)

Description

Model used as part of drive train modeling for a 4x4 vehicle's accelerator/brake.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model DriveTrainAccel class details

For more information on the members and functions of this model class, please see RoverNavModels::DriveTrainAccel model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__DriveTrainAccel__group.html)

Flow Ins

Name Type Size Quantity Units Description

desired_chassis_accel double Acceleration The desired instantaneous

accelerator/brake

acceleration

Flow Outs

Name Type Size Quantity Units Description

current_chassis_speed double Velocity The current speed of the

chassis

desired_chassis_speed double Velocity The desired speed of the

chassis

31.5. RoverNavModels::DriveTrainSteering Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Rover!Odometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Odometry__keyword__group.html)

Rover!n-wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__n-wheel__keyword__group.html)

Description

Model used as part of drive train modeling for a 4x4 vehicle for distributing engine torque to wheels.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model DriveTrainSteering class details

For more information on the members and functions of this model class, please see RoverNavModels::DriveTrainSteering model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__DriveTrainSteering__group.html)

Flow Ins

Name Type Size Quantity Units Description

desired_chassis_angular_velocity double AngularVelocity The desired instantaneous

chassis angular velocity

Name Type Size Quantity Units Description

desired_chassis_speed double Velocity The desired speed of the

chassis

Flow Outs

Name Type Size Quantity Units Description

desired_steer_angle double Angle Instantneous desired steer

angle for the chassis

31.6. RoverNavModels::Locomotion Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Description

Model of rover locomotion. The input is a commanded motion. This model splits a motion into smaller submotions - commanding a new (x,y,heading) for each small sub-move. The distance
between sub-motions is commanded by the stepDist (for linear) and stepAngle (for turn-in-place) paramters.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model Locomotion class details

For more information on the members and functions of this model class, please see RoverNavModels::Locomotion model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Locomotion__group.html)

Parameters

Name Type Size Quantity Units Description

look_move_direction double 2 Dimensionless x/y direction of forward

motion for rover when

heading is zero

pivotOffsetX double Length x-direction offset from

chassis frame of pivot point.

(body frame)

stepAngle double Angle Sub-motion angle change

(for turn-in-place)

stepDist double Length Sub-motion travel distance

Scratch

Name Type Size Quantity Units Description

deltaAngle double Angle The heading angle delta

(nominally stepAngle,

except when close to

completion of turn

Discrete States

Name Type Size Quantity Units Description

accumAngle double Angle Accumulated angle chance

since last command

Name Type Size Quantity Units Description

accumDist double Length Accumulated distance since

last command

status int Current status (0 → moving,

1 → ready for new command

Flow Ins

Name Type Size Quantity Units Description

angle double Angle angle to tranverse when

turning in place

distance double Length total distance to traverse

when moving

forward/backward

heading_in double Angle Current heading

mode int mode (0 → turn in place, 1 →

move forward, -1 → move

reverse)

radius double Length turning radius (0 → straight,

positive → left turn, negative

→ right turn)

xpos double Length Current x position

ypos double Length Current y position

Flow Outs

Name Type Size Quantity Units Description

direction int motion direction

heading double Angle Commanded heading

status int 0 → still moving, 1 → done

moving (ready for new

command)

x double Length Commanded x position

y double Length Commanded y position

31.7. RoverNavModels::NavOdometry Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!6wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__6wheel__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Rover!Odometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Odometry__keyword__group.html)

Description

Model of rover odometry for a 6 wheeled rover where all 6 wheels can be steered.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model NavOdometry class details

For more information on the members and functions of this model class, please see RoverNavModels::NavOdometry model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__NavOdometry__group.html)

Parameters

Name Type Size Quantity Units Description

bogeyFront double Flag +1 → bogey is on forward

side of rover. -1 → rocker is

on forward side of rover

direction double Flag +1 → rover moves towards

bogey when wheels rotate

positive. -1 → rover moves

towards rocker when

wheels rotate positive

epsilon double Angle Acceptable wheel encoder

error

maxAngularVelocity double AngularVelocity Maximum angular velocity

for wheels (default = 0)

minAngularVelocity double AngularVelocity Minimum angular velocity

for wheels (default = 0)

wheelCenterBias double Length Bias of center wheel

(positive implies closer to

front side wheels, zero

implies in center of front

and back wheels)

wheelFrontRearDist double Length Distance between front and

back side wheels

wheelLeftRightDist double Length Distance between left and

right side wheels

wheelRadius double Length Wheel radius

Discrete States

Name Type Size Quantity Units Description

leftBogeySideAngle double Angle Wheel encoder angles

needed to complete motion

for left front wheel

leftBogeySideSpeed double Dimensionless Speed multiplier for left

front wheel (ranges from 0

(minimum speed) to 1 (max))

leftBogeySideStartAngle double Angle Wheel encoder angle at

start of motion

leftCenterAngle double Angle Wheel encoder angles

needed to complete motion

for left center wheel

leftCenterSpeed double Dimensionless Speed multiplier for left

center wheel (ranges from 0

(minimum speed) to 1 (max))

leftCenterStartAngle double Angle Wheel encoder angle at

start of motion

leftRockerSideAngle double Angle Wheel encoder angles

needed to complete motion

for left back wheel

leftRockerSideSpeed double Dimensionless Speed multiplier for left

back wheel (ranges from 0

(minimum speed) to 1 (max))

Name Type Size Quantity Units Description

leftRockerSideStartAngle double Angle Wheel encoder angle at

start of motion

rightBogeySideAngle double Angle Wheel encoder angles

needed to complete motion

for right front wheel

rightBogeySideSpeed double Dimensionless Speed multiplier for right

front wheel (ranges from 0

(minimum speed) to 1 (max))

rightBogeySideStartAngle double Angle Wheel encoder angle at

start of motion

rightCenterAngle double Angle Wheel encoder angles

needed to complete motion

for right center wheel

rightCenterSpeed double Dimensionless Speed multiplier for right

center wheel (ranges from 0

(minimum speed) to 1 (max))

rightCenterStartAngle double Angle Wheel encoder angle at

start of motion

rightRockerSideAngle double Angle Wheel encoder angles

needed to complete motion

for right back wheel

rightRockerSideSpeed double Dimensionless Speed multiplier for right

back wheel (ranges from 0

(minimum speed) to 1 (max))

rightRockerSideStartAngle double Angle Wheel encoder angle at

start of motion

startTime double Time Start time of current motion

(used to interpolate output

angles for position control

status int Current status (0 → moving,

1 → ready for new command

Continuous States

Name Type Size Quantity Units Description

leftBogeySideAngle double 1 Angle Left front desired angle

leftCenterAngle double 1 Angle Left center desired angle

leftRockerSideAngle double 1 Angle Left rear desired angle

rightBogeySideAngle double 1 Angle Right front desired angle

rightCenterAngle double 1 Angle Right center desired angle

rightRockerSideAngle double 1 Angle Right rear desired angle

Flow Ins

Name Type Size Quantity Units Description

BogeySideLeftEnc double Angle Current value of left front

wheel encoder

BogeySideRightEnc double Angle Current value of right front

wheel encoder

CenterLeftEnc double Angle Current value of left center

wheel encoder

CenterRightEnc double Angle Current value of right

center wheel encoder

Name Type Size Quantity Units Description

RockerSideLeftEnc double Angle Current value of left back

wheel encoder

RockerSideRightEnc double Angle Current value of right back

wheel encoder

angle double Angle angle to tranverse when

turning in place

distance double Length distance to traverse when

moving forward/backward

mode int mode (0 → turn in place, 1 →

move forward, -1 → move

reverse)

radius double Length turning radius (0 → straight,

positive → left turn, negative

→ right turn)

speed double Dimensionless 0 → minimum speed, 1 →

maximum speed

steerStatus double Flag 0 → steering not done, 1 →

steering complete

Flow Outs

Name Type Size Quantity Units Description

BogeySideLeftAngle double Angle Desired wheel angle for left

front wheel

BogeySideLeftRate double AngularVelocity Desired wheel rate for left

front wheel

BogeySideRightAngle double Angle Desired wheel angle for

right front wheel

BogeySideRightRate double AngularVelocity Desired wheel rate for right

front wheel

CenterLeftAngle double Angle Desired wheel angle for left

center wheel

CenterLeftRate double AngularVelocity Desired wheel rate for left

center wheel

CenterRightAngle double Angle Desired wheel angle for

right center wheel

CenterRightRate double AngularVelocity Desired wheel rate for right

center wheel

RockerSideLeftAngle double Angle Desired wheel angle for left

back wheel

RockerSideLeftRate double AngularVelocity Desired wheel rate for left

back wheel

RockerSideRightAngle double Angle Desired wheel angle for

right back wheel

RockerSideRightRate double AngularVelocity Desired wheel rate for right

back wheel

status int 0 → still moving, 1 → done

moving (ready for new

command)

31.8. RoverNavModels::NavOdometry2W Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!2 (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__2__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Rover!Odometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Odometry__keyword__group.html)

wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__wheel__keyword__group.html)

Description

Model of rover odometry for a 6 wheeled rover where only 2 wheels are actively driven/steered (as in Rocky7).

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model NavOdometry2W class details

For more information on the members and functions of this model class, please see RoverNavModels::NavOdometry2W model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__NavOdometry2W__group.html)

Parameters

Name Type Size Quantity Units Description

direction double Flag +1 → implies rover moves

forward when wheels turn

forward. -1 → rover moves

backwards when wheels

move forward

epsilon double Angle Acceptable wheel encoder

error

maxAngularVelocity double AngularVelocity Maximum angular velocity

for wheels (default = 0)

minAngularVelocity double AngularVelocity Minimum angular velocity

for wheels (default = 0)

wheelCenterBias double Length Bias of center wheel

(positive implies closer to

front side wheels, zero

implies in center of front

and back wheels)

wheelFrontBackDist double Length Distance between front and

back side wheels

wheelLeftRightDist double Length Distance between left and

right side wheels

wheelRadius double Length Wheel radius

Discrete States

Name Type Size Quantity Units Description

leftAngle double Angle Wheel encoder angles

needed to complete motion

for left side driven wheel

leftSpeed double Dimensionless Speed multiplier for left

side wheel (ranges from 0

(minimum speed) to 1 (max))

rightAngle double Angle Wheel encoder angles

needed to complete motion

for right side driven wheel

Name Type Size Quantity Units Description

rightSpeed double Dimensionless Speed multiplier for right

side wheel (ranges from 0

(minimum speed) to 1 (max))

status int Current status (0 → moving,

1 → ready for new command

Flow Ins

Name Type Size Quantity Units Description

angle double Angle angle to tranverse when

turning in place

distance double Length distance to traverse when

moving forward/backward

leftEnc double Angle Current value of left side

wheel encoder

mode double Flag mode (0 → turn in place, 1 →

move forward, -1 → move

reverse)

radius double Length turning radius (0 → straight,

positive → left turn, negative

→ right turn)

rightEnc double Angle Current value of right side

wheel encoder

speed double Dimensionless 0 → minimum speed, 1 →

maximum speed

steerLeft double Angle Current steering angle for

left side wheel

steerRight double Angle Current steering angle for

right side wheel

Flow Outs

Name Type Size Quantity Units Description

leftRate double AngularVelocity Desired wheel rate for left

side wheel

rightRate double AngularVelocity Desired wheel rate for right

side wheel

status double Flag 0 → still moving, 1 → done

moving (ready for new

command)

steerLeft double Angle Desired steering angle for

left side wheel

steerRight double Angle Desired steering angle for

right side wheel

31.9. RoverNavModels::RoverNavDyn Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Navigation!Sojourner (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Navigation__Sojourner__keyword__group.html)

Description

Model of autonomous rover navigation

Given the obstacle detection camera view, this model navigates the rover to a given goal. This model was built to interface to the NavOdometry model which provides odometry

estimates on the motion needed to complete the motion commanded by this model.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model RoverNavDyn class details

For more information on the members and functions of this model class, please see RoverNavModels::RoverNavDyn model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__RoverNavDyn__group.html)

Enums

ObsLocation Enum

In the RoverNavDyn model definition, the original enum ObsLocation is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

NavigationMode Enum

In the RoverNavDyn model definition, the original enum NavigationMode is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

large_turn_radius double Length large turning radius

look_move_direction double 2 Dimensionless x/y direction which camera

looks: unit length

 enum ObsLocation
 {
 None = 0,
 Left = 1,
 Center = 2,
 Right = 3,
 LeftCenter = 4,
 LeftRight = 5,
 CenterRight = 6,
 All = 7
 };

 /// RoverNavDynObsLocation enum
 enum RoverNavDynObsLocation
 {
 ROVER_NAV_DYN_OBS_LOCATION_NONE = 0,
 ROVER_NAV_DYN_OBS_LOCATION_LEFT = 1,
 ROVER_NAV_DYN_OBS_LOCATION_CENTER = 2,
 ROVER_NAV_DYN_OBS_LOCATION_RIGHT = 3,
 ROVER_NAV_DYN_OBS_LOCATION_LEFT_CENTER = 4,
 ROVER_NAV_DYN_OBS_LOCATION_LEFT_RIGHT = 5,
 ROVER_NAV_DYN_OBS_LOCATION_CENTER_RIGHT = 6,
 ROVER_NAV_DYN_OBS_LOCATION_ALL = 7
 };

 enum NavigationMode
 {
 TurnToGoal = 0,
 LoopToGoal = 1,
 TurnInPlace = 2,
 ThreadNeedle = 3,
 Backup = 4
 };

 /// RoverNavDynNavigationMode enum
 enum RoverNavDynNavigationMode
 {
 ROVER_NAV_DYN_NAVIGATION_MODE_TURN_TO_GOAL = 0,
 ROVER_NAV_DYN_NAVIGATION_MODE_LOOP_TO_GOAL = 1,
 ROVER_NAV_DYN_NAVIGATION_MODE_TURN_IN_PLACE = 2,
 ROVER_NAV_DYN_NAVIGATION_MODE_THREAD_NEEDLE = 3,
 ROVER_NAV_DYN_NAVIGATION_MODE_BACKUP = 4
 };

Name Type Size Quantity Units Description

medium_pos_err double Length medium position error

medium_rot_err double Angle medium rotation error

nominal_rotation double Angle nominal rotation

nominal_trans double Length nominal straight motion (25

cm)

small_pos_err double Length small position error

small_rot_err double Angle small rotation error

small_turn_radius double Length small turning radius

very_small_pos_err double Length very small position error

Discrete States

Name Type Size Quantity Units Description

alley_length double Length length of needle alley

curr_mode NavigationMode Current navigation mode

curr_obstacle ObsLocation Current obstacle location

moveLength double Length Total length of forward

movement commands since

start of simulation

prev_obstacle ObsLocation Previous obstacle location

turnLength double Angle Total angle of turn in place

commands since start of

simulation

Flow Ins

Name Type Size Quantity Units Description

ObstacleC int center obstacle if > 0

ObstacleL int left side obstacle if > 0

ObstacleR int right side obstacle if > 0

driveStatus int status of rover (0 → rover

still competing previous

drive command, 1 → rover

ready for new command)

enable int List of flags to enable

generation of new

trajectory. This allows

blocking of new trajectory

generation to allow a variety

of actions (all 1’s→enable

new trajectory, 0→disable

new trajectory)

heading_d double Angle desired heading

heading_in double Angle current heading

steerStatus double Flag status of rover (0 → rover

still competing previous

steer command, 1 → rover

may still be completing

drive command)

xpos double Length current x position

xpos_d double Length desired x position

Name Type Size Quantity Units Description

ypos double Length current y position

ypos_d double Length desired y position

Flow Outs

Name Type Size Quantity Units Description

angle double Angle angle to traverse when

turning in place

at_goal int Flag for whether the rover

has reached the goal

location (not heading)

(true/1 if at goal, false/0

otherwise)

at_heading int Flag for whether the rover

has achieved the correct

heading (true/1 if at

heading, false/0 otherwise)

distance double Length distance to travel (when

moving forward/backward)

mode int 0 → turn in place, 1 → move

forward, -1 → move reverse

radius double Length turning radius (0 → straight,

positive → left turn, negative

→ right turn)

speed double Dimensionless 0 → minimum speed, 1 →

maximum speed

31.10. RoverNavModels::RoverPosNavigation Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Navigation!Sojourner (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Navigation__Sojourner__keyword__group.html)

Description

Model of autonomous rover navigation

Given the obstacle detection camera view, this model navigates the rover to a given goal. This model was built to interface to the WheelDriveMotion and WheelSteerDriveMotion

model which provides computes the motion needed to complete the motion commanded by this model.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model RoverPosNavigation class details

For more information on the members and functions of this model class, please see RoverNavModels::RoverPosNavigation model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__RoverPosNavigation__group.html)

Enums

Obstacle Enum

In the RoverPosNavigation model definition, the original enum Obstacle is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Mode Enum

In the RoverPosNavigation model definition, the original enum Mode is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

 enum Obstacle
 {
 None = 0,
 Left = 1,
 Center = 2,
 Right = 3,
 LeftCenter = 4,
 LeftRight = 5,
 CenterRight = 6,
 All = 7
 };

 /// RoverPosNavigationObstacle enum
 enum RoverPosNavigationObstacle
 {
 ROVER_POS_NAVIGATION_OBSTACLE_NONE = 0,
 ROVER_POS_NAVIGATION_OBSTACLE_LEFT = 1,
 ROVER_POS_NAVIGATION_OBSTACLE_CENTER = 2,
 ROVER_POS_NAVIGATION_OBSTACLE_RIGHT = 3,
 ROVER_POS_NAVIGATION_OBSTACLE_LEFT_CENTER = 4,
 ROVER_POS_NAVIGATION_OBSTACLE_LEFT_RIGHT = 5,
 ROVER_POS_NAVIGATION_OBSTACLE_CENTER_RIGHT = 6,
 ROVER_POS_NAVIGATION_OBSTACLE_ALL = 7
 };

 enum Mode
 {
 Disabled = 0,
 Enabled = 1,
 TurnToGoal = 2,
 TurnInPlaceToGoal = 3,
 SteerInPlaceToGoal = 4,
 DriveToGoal = 5,
 DriveLine = 6,
 DriveArc = 7,
 SteerArc = 8,
 TurnToHeading = 9,
 TurnInPlaceToHeading = 10,
 SteerInPlaceToHeading = 11,
 HandleObstacle = 12,
 SteerTurnInPlaceObstacle = 13,
 SteerLineInPlaceObstacle = 14,
 TurnInPlaceObstacle = 15,
 DriveForwardObstacle = 16,
 DriveBackwardObstacle = 17,
 UndefinedState = 18
 };

 /// RoverPosNavigationMode enum
 enum RoverPosNavigationMode
 {
 ROVER_POS_NAVIGATION_MODE_DISABLED = 0,
 ROVER_POS_NAVIGATION_MODE_ENABLED = 1,
 ROVER_POS_NAVIGATION_MODE_TURN_TO_GOAL = 2,
 ROVER_POS_NAVIGATION_MODE_TURN_IN_PLACE_TO_GOAL = 3,
 ROVER_POS_NAVIGATION_MODE_STEER_IN_PLACE_TO_GOAL = 4,
 ROVER_POS_NAVIGATION_MODE_DRIVE_TO_GOAL = 5,
 ROVER_POS_NAVIGATION_MODE_DRIVE_LINE = 6,
 ROVER_POS_NAVIGATION_MODE_DRIVE_ARC = 7,
 ROVER_POS_NAVIGATION_MODE_STEER_ARC = 8,
 ROVER_POS_NAVIGATION_MODE_TURN_TO_HEADING = 9,
 ROVER_POS_NAVIGATION_MODE_TURN_IN_PLACE_TO_HEADING = 10,
 ROVER_POS_NAVIGATION_MODE_STEER_IN_PLACE_TO_HEADING = 11,
 ROVER_POS_NAVIGATION_MODE_HANDLE_OBSTACLE = 12,
 ROVER_POS_NAVIGATION_MODE_STEER_TURN_IN_PLACE_OBSTACLE = 13,
 ROVER_POS_NAVIGATION_MODE_STEER_LINE_IN_PLACE_OBSTACLE = 14,
 ROVER_POS_NAVIGATION_MODE_TURN_IN_PLACE_OBSTACLE = 15,
 ROVER_POS_NAVIGATION_MODE_DRIVE_FORWARD_OBSTACLE = 16,
 ROVER_POS_NAVIGATION_MODE_DRIVE_BACKWARD_OBSTACLE = 17,
 ROVER_POS_NAVIGATION_MODE_UNDEFINED_STATE = 18
 };

Name Type Size Quantity Units Description

chassis_motion_frame_uuid unsigned int (uint) The UUID for the frame

located at the chassis

frame but oriented so X

axis is along desired linear

velocity.

ck_mode int A flag to indicate if using

CK mode (=1) or not (=0).

large_turn_radius double Length large turning radius

look_move_direction double 2 Dimensionless x/y direction which camera

looks: unit length

medium_pos_err double Length medium position error

medium_rot_err double Angle medium rotation error

nominal_angular_velocity double AngularVelocity Nominal angular velocity

to use

nominal_linear_velocity double Velocity Nominal linear speed to

use

nominal_rotation double Angle nominal rotation

nominal_trans double Length nominal straight motion

(25 cm)

obstacle_avoidance_motion_counter double Dimensionless The number of cycles to

continue turning or

driving in an obstacle

avoidance turn or drive.

obstacle_avoidance_motion_timeout double Dimensionless The number of cycles

before timing out on a

motion state.

small_pos_err double Length small position error

small_rot_err double Angle small rotation error

small_turn_radius double Length small turning radius

turn_center_frame_uuid unsigned int (uint) The UUID for the frame

located at the arc turn

center.

vehicle_type int Vehicle type: -1 = skid

steered, 0 = partially

steered, 1 = fully-steered

very_small_pos_err double Length very small position error

very_small_rot_err double Angle very_small rotation error

Discrete States

Name Type Size Quantity Units Description

alley_length double Length length of needle alley

curr_mode Mode Current navigation mode

curr_obstacle Obstacle Current obstacle location

motion_cycle_counter double Dimensionless Updates the motion

command if the counter

exceeds a set number of

cycles

moveLength double Length Total length of forward

movement commands since

start of simulation

Name Type Size Quantity Units Description

nextState Mode The next statechart state to

transition to

obstacle_avoidance_heading double Angle The desired heading to

avoid an obstacle

obstacle_drive_location_x double Length The x-component of the

distance to drive when

avoiding an obstacle

obstacle_drive_location_y double Length The y-component of the

distance forward to drive

when avoiding an obstacle

prev_d_error double Length previous distance error

prev_h_error double Angle previous heading error

prev_obstacle Obstacle Previous obstacle location

prev_x_y_h double 3 Mixed previous x, y, h

turnLength double Angle Total angle of turn in place

commands since start of

simulation

Flow Ins

Name Type Size Quantity Units Description

ObstacleC int center obstacle if > 0

ObstacleL int left side obstacle if > 0

ObstacleR int right side obstacle if > 0

desired_x_y_h double 3 Mixed desired x,y,h position

driveStatus int status of rover (0 → rover

still competing previous

drive command, 1 → rover

ready for new command)

enable int List of flags to enable

generation of new

trajectory. This allows

blocking of new trajectory

generation to allow a variety

of actions (all 1’s→enable

new trajectory, 0→disable

new trajectory)

root2localization_f2f_uuid unsigned long (ulong) Root to localization frame

location frame2frame UUID.

steerStatus int status of rover (0 → rover

still competing previous

steer command, 1 → rover

may still be completing

drive command)

x_y_h double 3 Mixed current x, y, h position

Flow Outs

Name Type Size Quantity Units Description

angle double Angle angle to traverse when

turning in place

angular_velocity double AngularVelocity angular velocity for arc

motion

Name Type Size Quantity Units Description

at_goal int Flag for whether the rover

has reached the goal

location (not heading)

(true/1 if at goal, false/0

otherwise)

at_heading int Flag for whether the rover

has achieved the correct

heading (true/1 if at

heading, false/0 otherwise)

chassis_motion2turn_center_f2f_uuid unsigned long (ulong) Chassis motion to turn

center frame location

frame2frame UUID.

direction double Dimensionless The direction to drive in

for vehicles that are

capable to - i.e. all wheel

steered. =0

distance double Length distance to travel (when

moving forward/backward)

linear_velocity double Velocity linear velocity for arc

motion

localization2chassis_motion_f2f_uuid unsigned long (ulong) Localization to chassis

motion frame location

frame2frame UUID.

mode int 0 → turn in place, 1 → move

forward, -1 → move reverse

nav_drive_state int Flag for indicating is

wheels can drive (true/1 if

steering completed, false/0

otherwise)

radius double Length turning radius (0 →

straight, positive → left

turn, negative → right turn)

speed double Dimensionless 0 → minimum speed, 1 →

maximum speed

x_y_h_out double 3 Mixed For CK mode, next x, y, h

output

31.11. RoverNavModels::RoverPosNavigationFsm Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Navigation!Sojourner (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Navigation__Sojourner__keyword__group.html)

Description

Model of autonomous rover navigation

Given the obstacle detection camera view, this model navigates the rover to a given goal. This model was built to interface to the WheelDriveMotion and WheelSteerDriveMotion

model which provides computes the motion needed to complete the motion commanded by this model.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model RoverPosNavigationFsm class details

For more information on the members and functions of this model class, please see RoverNavModels::RoverPosNavigationFsm model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__RoverPosNavigationFsm__group.html)

Parameters

Name Type Size Quantity Units Description

chassis_motion_frame_uuid unsigned int (uint) The UUID for the frame

located at the chassis

frame but oriented so X

axis is along desired linear

velocity.

ck_mode int A flag to indicate if using

CK mode (=1) or not (=0).

large_turn_radius double Length large turning radius

look_move_direction double 2 Dimensionless x/y direction which camera

looks: unit length

medium_pos_err double Length medium position error

medium_rot_err double Angle medium rotation error

nominal_angular_velocity double AngularVelocity Nominal angular velocity

to use

nominal_linear_velocity double Velocity Nominal linear speed to

use

nominal_rotation double Angle nominal rotation

nominal_trans double Length nominal straight motion

(25 cm)

obstacle_avoidance_motion_counter double Dimensionless The number of cycles to

continue turning or

driving in an obstacle

avoidance turn or drive.

obstacle_avoidance_motion_timeout double Dimensionless The number of cycles

before timing out on a

motion state.

small_pos_err double Length small position error

small_rot_err double Angle small rotation error

small_turn_radius double Length small turning radius

turn_center_frame_uuid unsigned int (uint) The UUID for the frame

located at the arc turn

center.

vehicle_type int Vehicle type: -1 = skid

steered, 0 = partially

steered, 1 = fully-steered

very_small_pos_err double Length very small position error

very_small_rot_err double Angle very_small rotation error

Flow Ins

Name Type Size Quantity Units Description

ObstacleC int center obstacle if > 0

ObstacleL int left side obstacle if > 0

ObstacleR int right side obstacle if > 0

desired_x_y_h double 3 Mixed desired x,y,h position

Name Type Size Quantity Units Description

driveStatus int status of rover (0 → rover

still competing previous

drive command, 1 → rover

ready for new command)

enable int List of flags to enable

generation of new

trajectory. This allows

blocking of new trajectory

generation to allow a variety

of actions (all 1’s→enable

new trajectory, 0→disable

new trajectory)

root2localization_f2f_uuid unsigned long (ulong) Root to localization frame

location frame2frame UUID.

steerStatus int status of rover (0 → rover

still competing previous

steer command, 1 → rover

may still be completing

drive command)

x_y_h double 3 Mixed current x, y, h position

Flow Outs

Name Type Size Quantity Units Description

angle double Angle angle to traverse when

turning in place

angular_velocity double AngularVelocity angular velocity for arc

motion

at_goal int Flag for whether the rover

has reached the goal

location (not heading)

(true/1 if at goal, false/0

otherwise)

at_heading int Flag for whether the rover

has achieved the correct

heading (true/1 if at

heading, false/0 otherwise)

chassis_motion2turn_center_f2f_uuid unsigned long (ulong) Chassis motion to turn

center frame location

frame2frame UUID.

direction double Dimensionless The direction to drive in

for vehicles that are

capable to - i.e. all wheel

steered. =0

distance double Length distance to travel (when

moving forward/backward)

linear_velocity double Velocity linear velocity for arc

motion

localization2chassis_motion_f2f_uuid unsigned long (ulong) Localization to chassis

motion frame location

frame2frame UUID.

mode int 0 → turn in place, 1 → move

forward, -1 → move reverse

nav_drive_state int Flag for indicating is

wheels can drive (true/1 if

steering completed, false/0

otherwise)

Name Type Size Quantity Units Description

radius double Length turning radius (0 →

straight, positive → left

turn, negative → right turn)

speed double Dimensionless 0 → minimum speed, 1 →

maximum speed

x_y_h_out double 3 Mixed For CK mode, next x, y, h

output

31.12. RoverNavModels::RoverTurningRadiusWayPointsNav Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Navigation (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Navigation__keyword__group.html)

Description

Model to generate waypoints for non-zero turning radius vehicles

For vehicles with non-zero turning radius, this model generated way points that provide a path that is compatible with the minimum turning radius for getting the vehicle to the

desired goal.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model RoverTurningRadiusWayPointsNav class details

For more information on the members and functions of this model class, please see RoverNavModels::RoverTurningRadiusWayPointsNav model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__RoverTurningRadiusWayPointsNav__group.html)

Parameters

Name Type Size Quantity Units Description

h_waypoint_tol double Angle Waypoint heading error

threshold to use when

switching to next waypoint

value as goal

min_approach_offset double Length The minimum approach

distance to goal.

min_turning_radius double Length The minimum turning

radius for the vehicle

xy_waypoint_tol double Length Waypoint x,y error

threshold to use when

switching to next waypoint

value as goal

Discrete States

Name Type Size Quantity Units Description

num_waypoints unsigned int (uint) The number of current

waypoints.

waypoint_index unsigned int (uint) The current active waypoint

index.

waypoints double 9 Mixed Buffer for the list of

waypoints (3 times number

of waypoints)

Flow Ins

Name Type Size Quantity Units Description

desired_x_y_h double 3 Mixed desired x,y,h position

x_y_h double 3 Mixed current x,y,h position

Flow Outs

Name Type Size Quantity Units Description

waypoint_x_y_h double 3 Mixed next waypoint x,y,h position

31.13. RoverNavModels::RoverVelNavigation Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Navigation!Velocity (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Navigation__Velocity__keyword__group.html)

Description

Model of autonomous rover navigation

Given the obstacle detection camera view, this model navigates the rover to a given goal using velocity commands instead of position drive commands as is used by

RoverPosNavigation. This model was built to interface to the WheelDriveVelocity and WheelSteerDriveVelocity model which provides computes the motion needed to complete the

motion commanded by this model.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model RoverVelNavigation class details

For more information on the members and functions of this model class, please see RoverNavModels::RoverVelNavigation model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__RoverVelNavigation__group.html)

Enums

Obstacle Enum

In the RoverVelNavigation model definition, the original enum Obstacle is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Mode Enum

In the RoverVelNavigation model definition, the original enum Mode is defined as:

 enum Obstacle
 {
 None = 0,
 Left = 1,
 Center = 2,
 Right = 3,
 LeftCenter = 4,
 LeftRight = 5,
 CenterRight = 6,
 All = 7
 };

 /// RoverVelNavigationObstacle enum
 enum RoverVelNavigationObstacle
 {
 ROVER_VEL_NAVIGATION_OBSTACLE_NONE = 0,
 ROVER_VEL_NAVIGATION_OBSTACLE_LEFT = 1,
 ROVER_VEL_NAVIGATION_OBSTACLE_CENTER = 2,
 ROVER_VEL_NAVIGATION_OBSTACLE_RIGHT = 3,
 ROVER_VEL_NAVIGATION_OBSTACLE_LEFT_CENTER = 4,
 ROVER_VEL_NAVIGATION_OBSTACLE_LEFT_RIGHT = 5,
 ROVER_VEL_NAVIGATION_OBSTACLE_CENTER_RIGHT = 6,
 ROVER_VEL_NAVIGATION_OBSTACLE_ALL = 7
 };

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

CK_obstacle_avoid_drive_steps int Number of steps to

continue driving to avoid an

obstacle

angular_velocity double AngularVelocity Rotational speed to drive at

chassis_motion_frame_uuid unsigned int (uint) The UUID for the frame

located at the vehicle frame

and defining the desired

instantaneous chassis

spatial velocity.

ck_mode int A flag to indicate if using CK

mode (=1) or not (=0).

drive_pos_err double Length position error between

vehicle lcoation and goal

location during drive

goal_rot_err double Angle rotation error betweeen

vehicle heading and goal

drive direction

heading_rot_err double Angle rotation error betweeen

vehicle heading and goal

drive direction

linear_velocity double Velocity Linear speed to drive at

look_move_direction double 2 Dimensionless x/y direction which camera

looks: unit length

obstacle_avoid_drive_steps int Number of steps to

continue driving to avoid an

obstacle

obstacle_avoid_on int Flag to indicate use of

obstacle avoidance: 0 don’t

use, 1 use obstacle

avoidance

 enum Mode
 {
 Disabled = 0,
 Enabled = 1,
 ApproachGoal = 2,
 TurnToGoal = 3,
 DriveToGoal = 4,
 ApproachHeading = 5,
 TurnToHeading = 6,
 ObstacleTurn = 7,
 ObstacleDriveForward = 8,
 ObstacleDriveBackward = 9,
 UndefinedState = 10
 };

 /// RoverVelNavigationMode enum
 enum RoverVelNavigationMode
 {
 ROVER_VEL_NAVIGATION_MODE_DISABLED = 0,
 ROVER_VEL_NAVIGATION_MODE_ENABLED = 1,
 ROVER_VEL_NAVIGATION_MODE_APPROACH_GOAL = 2,
 ROVER_VEL_NAVIGATION_MODE_TURN_TO_GOAL = 3,
 ROVER_VEL_NAVIGATION_MODE_DRIVE_TO_GOAL = 4,
 ROVER_VEL_NAVIGATION_MODE_APPROACH_HEADING = 5,
 ROVER_VEL_NAVIGATION_MODE_TURN_TO_HEADING = 6,
 ROVER_VEL_NAVIGATION_MODE_OBSTACLE_TURN = 7,
 ROVER_VEL_NAVIGATION_MODE_OBSTACLE_DRIVE_FORWARD = 8,
 ROVER_VEL_NAVIGATION_MODE_OBSTACLE_DRIVE_BACKWARD = 9,
 ROVER_VEL_NAVIGATION_MODE_UNDEFINED_STATE = 10
 };

Name Type Size Quantity Units Description

obstacle_avoid_turn_steps int Number of steps to

continue turning to avoid

an obstacle

small_goal_rot_err double Angle small rotation error

betweeen vehicle heading

and goal drive direction

threshold_scale double Dimensionless Threshold parameter. When

exceeded start setting

outputs at max value

turn_center_frame_uuid unsigned int (uint) The UUID for the frame

located at the arc turn

center.

turn_pos_err double Length position error between

vehicle lcoation and goal

location during turn

Discrete States

Name Type Size Quantity Units Description

curr_obstacle Obstacle Current obstacle location

nextState Mode The next statechart state

to transition to

obstacle_avoid_drive_steps_completed int Number of steps to driven

to avoid an obstacle

obstacle_avoid_turn_steps_completed int Number of steps to turned

to avoid an obstacle

turn_direction int Turn direction: left = -1, no

turn = 0, right = 1

Flow Ins

Name Type Size Quantity Units Description

ObstacleC int center obstacle if > 0

ObstacleL int left side obstacle if > 0

ObstacleR int right side obstacle if > 0

desired_x_y_h double 3 Mixed desired x,y,h position

enable int List of flags to enable

generation of new

trajectory. This allows

blocking of new trajectory

generation to allow a variety

of actions (all 1’s→enable

new trajectory, 0→disable

new trajectory)

root2localization_f2f_uuid unsigned long (ulong) Root to localization frame

location frame2frame UUID.

x_y_h double 3 Mixed current x,y,h position

Flow Outs

Name Type Size Quantity Units Description

chassis_motion2turn_center_f2f_uuid unsigned long (ulong) Chassis motion to turn

center frame location

frame2frame UUID.

Name Type Size Quantity Units Description

desired_x_y_h_rate double 3 Mixed Desired chassis x,y.h rates

localization2chassis_motion_f2f_uuid unsigned long (ulong) Localization to chassis

motion frame location

frame2frame UUID.

x_y_h_out double 3 Mixed next x,y,h position in CK

mode

31.14. RoverNavModels::RoverVelNavigationFsm Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Navigation!Velocity (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Navigation__Velocity__keyword__group.html)

Description

Model of autonomous rover navigation

Given the obstacle detection camera view, this model navigates the rover to a given goal using velocity commands instead of position drive commands as is used by

RoverPosNavigation. This model was built to interface to the WheelDriveVelocity and WheelSteerDriveVelocity model which provides computes the motion needed to complete the

motion commanded by this model.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model RoverVelNavigationFsm class details

For more information on the members and functions of this model class, please see RoverNavModels::RoverVelNavigationFsm model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__RoverVelNavigationFsm__group.html)

Parameters

Name Type Size Quantity Units Description

CK_obstacle_avoid_drive_steps int Number of steps to

continue driving to avoid an

obstacle

angular_velocity double AngularVelocity Rotational speed to drive at

chassis_motion_frame_uuid unsigned int (uint) The UUID for the frame

located at the vehicle frame

and defining the desired

instantaneous chassis

spatial velocity.

ck_mode int A flag to indicate if using CK

mode (=1) or not (=0).

drive_pos_err double Length position error between

vehicle lcoation and goal

location during drive

goal_rot_err double Angle rotation error betweeen

vehicle heading and goal

drive direction

heading_rot_err double Angle rotation error betweeen

vehicle heading and goal

drive direction

idle_angular_velocity double AngularVelocity Forward 'in-gear' angular

velocity of vehicle in idle

Name Type Size Quantity Units Description

idle_drive_velocity double Velocity Forward 'in-gear' driving

velocity of vehicle in idle

linear_velocity double Velocity Linear speed to drive at

look_move_direction double 2 Dimensionless x/y direction which camera

looks: unit length

no_backup bool Disable backing up

maneuvers for the vehicle

obstacle_avoid_drive_steps int Number of steps to

continue driving to avoid an

obstacle

obstacle_avoid_on int Flag to indicate use of

obstacle avoidance: 0 don’t

use, 1 use obstacle

avoidance

obstacle_avoid_turn_steps int Number of steps to

continue turning to avoid

an obstacle

rollover_threshold double Acceleration Upper limit on the product

of desired angular and

linear velocity

small_goal_rot_err double Angle small rotation error

betweeen vehicle heading

and goal drive direction

threshold_scale double Dimensionless Threshold parameter. When

exceeded start setting

outputs at max value

turn_center_frame_uuid unsigned int (uint) The UUID for the frame

located at the arc turn

center.

turn_pos_err double Length position error between

vehicle lcoation and goal

location during turn

Flow Ins

Name Type Size Quantity Units Description

ObstacleC int center obstacle if > 0

ObstacleL int left side obstacle if > 0

ObstacleR int right side obstacle if > 0

desired_x_y_h double 3 Mixed desired x,y,h position

enable int List of flags to enable

generation of new

trajectory. This allows

blocking of new trajectory

generation to allow a variety

of actions (all 1’s→enable

new trajectory, 0→disable

new trajectory)

root2localization_f2f_uuid unsigned long (ulong) Root to localization frame

location frame2frame UUID.

x_y_h double 3 Mixed current x,y,h position

Flow Outs

Name Type Size Quantity Units Description

Name Type Size Quantity Units Description

chassis_motion2turn_center_f2f_uuid unsigned long (ulong) Chassis motion to turn

center frame location

frame2frame UUID.

desired_x_y_h_rate double 3 Mixed Desired chassis x,y.h rates

localization2chassis_motion_f2f_uuid unsigned long (ulong) Localization to chassis

motion frame location

frame2frame UUID.

x_y_h_out double 3 Mixed next x,y,h position in CK

mode

31.15. RoverNavModels::SimpleArcPlanner Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Arc!Planner (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Arc__Planner__keyword__group.html)

Description

Model of arc planner for vehicles with no turn in place capability

Rover will check a series of arcs for potential obstacles and choose the arc that is clear of obstacles and gets the orver closest to the goal

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model SimpleArcPlanner class details

For more information on the members and functions of this model class, please see RoverNavModels::SimpleArcPlanner model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__SimpleArcPlanner__group.html)

Enums

Mode Enum

In the SimpleArcPlanner model definition, the original enum Mode is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

arc_resolution double Time Time step used to propagate

arcs

arc_steps int How far arc should be

expanded and checked

 enum Mode
 {
 CalculateArc = 0,
 PerformingArc = 1,
 GoalReached = 2,
 BackUp = 3
 };

 /// SimpleArcPlannerMode enum
 enum SimpleArcPlannerMode
 {
 SIMPLE_ARC_PLANNER_MODE_CALCULATE_ARC = 0,
 SIMPLE_ARC_PLANNER_MODE_PERFORMING_ARC = 1,
 SIMPLE_ARC_PLANNER_MODE_GOAL_REACHED = 2,
 SIMPLE_ARC_PLANNER_MODE_BACK_UP = 3
 };

Name Type Size Quantity Units Description

bounding_box_x double Length X bounds for obstacle

detection

bounding_box_y double Length Y bounds for obstacle

detection

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

goal_error double Length Error for determines when

goal has been reached

nominal_angular_velocity double AngularVelocity Nominal angular speed to

use

nominal_linear_velocity double Velocity Nominal linear speed to use

num_arcs int Number of arcs to check

obstacle_height double Length Height for an obstacle

recompute_steps int Number of steps before arc

should be recomputed

Discrete States

Name Type Size Quantity Units Description

nSteps int Number of steps taken from

last arc compute

navState int State logic for navigation

Flow Ins

Name Type Size Quantity Units Description

chassis_motion2turn_center_f2f_uuid unsigned long (ulong) Chassis motion to turn

center frame location

frame2frame UUID.

desired_x_y_h double 3 Mixed desired x,y,h position

enable int List of flags to enable

generation of new

trajectory. This allows

blocking of new trajectory

generation to allow a

variety of actions (all

1’s→enable new trajectory,

0→disable new trajectory)

x_y_h double 3 Mixed current x,y,h position

Flow Outs

Name Type Size Quantity Units Description

desired_x_y_h_rate double 3 Mixed desired x,y,h rate for arc

motion

31.16. RoverNavModels::SimpleArcPlannerFsm Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Arc!Planner (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Arc__Planner__keyword__group.html)

Description

Model of arc planner for vehicles with no turn in place capability

Rover will check a series of arcs for potential obstacles and choose the arc that is clear of obstacles and gets the orver closest to the goal

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model SimpleArcPlannerFsm class details

For more information on the members and functions of this model class, please see RoverNavModels::SimpleArcPlannerFsm model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__SimpleArcPlannerFsm__group.html)

Enums

Mode Enum

In the SimpleArcPlannerFsm model definition, the original enum Mode is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

arc_resolution double Time Time step used to propagate

arcs

arc_steps int How far arc should be

expanded and checked

bounding_box_x double Length X bounds for obstacle

detection

bounding_box_y double Length Y bounds for obstacle

detection

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

goal_error double Length Error for determines when

goal has been reached

nominal_angular_velocity double AngularVelocity Nominal angular speed to

use

nominal_linear_velocity double Velocity Nominal linear speed to use

num_arcs int Number of arcs to check

obstacle_height double Length Height for an obstacle

recompute_steps int Number of steps before arc

should be recomputed

Discrete States

 enum Mode
 {
 CalculateArc = 0,
 PerformingArc = 1,
 GoalReached = 2,
 BackUp = 3
 };

 /// SimpleArcPlannerFsmMode enum
 enum SimpleArcPlannerFsmMode
 {
 SIMPLE_ARC_PLANNER_FSM_MODE_CALCULATE_ARC = 0,
 SIMPLE_ARC_PLANNER_FSM_MODE_PERFORMING_ARC = 1,
 SIMPLE_ARC_PLANNER_FSM_MODE_GOAL_REACHED = 2,
 SIMPLE_ARC_PLANNER_FSM_MODE_BACK_UP = 3
 };

Name Type Size Quantity Units DescriptionName Type Size Quantity Units Description

nSteps int Number of steps taken from

last arc compute

navState int State logic for navigation

Flow Ins

Name Type Size Quantity Units Description

chassis_motion2turn_center_f2f_uuid unsigned long (ulong) Chassis motion to turn

center frame location

frame2frame UUID.

desired_x_y_h double 3 Mixed desired x,y,h position

enable int List of flags to enable

generation of new

trajectory. This allows

blocking of new trajectory

generation to allow a

variety of actions (all

1’s→enable new trajectory,

0→disable new trajectory)

x_y_h double 3 Mixed current x,y,h position

Flow Outs

Name Type Size Quantity Units Description

desired_x_y_h_rate double 3 Mixed desired x,y,h rate for arc

motion

31.17. RoverNavModels::Steering2W Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!2 (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__2__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__wheel__keyword__group.html)

Description

Model to command steering angle for 2 wheel steering rovers. Rover has 6 wheels in a general configuration.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model Steering2W class details

For more information on the members and functions of this model class, please see RoverNavModels::Steering2W model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Steering2W__group.html)

Parameters

Name Type Size Quantity Units Description

epsilon double Angle tolerance to determine if

steering motion is complete

Name Type Size Quantity Units Description

steeringSide int +1 → front wheel steering. -1

→ rear wheel steering

(assuming forward motion)

wheelCenterBias double Length Bias of center wheel

(positive implies closer to

front side wheels, zero

implies in center of front

and back wheels)

wheelFrontBackDist double Length Distance between front and

back side wheels

wheelLeftRightDist double Length Distance between left and

right side wheels

Flow Ins

Name Type Size Quantity Units Description

angle double Angle angle to tranverse when

turning in place

mode int mode (0 → turn in place, 1 →

move forward, -1 → move

reverse)

radius double Length turning radius (0 → straight,

positive → left turn, negative

→ right turn)

steerLeftIn double Angle Current left steering angle

steerRightIn double Angle Current right steering angle

Flow Outs

Name Type Size Quantity Units Description

steerLeft double Angle Desired steering angle for

left side wheel

steerRight double Angle Desired steering angle for

right side wheel

steerStatus double Flag Steering status (0 → still

steering to desired values, 1

→ done steering

31.18. RoverNavModels::Steering2WFlow Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!2 (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__2__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__wheel__keyword__group.html)

Description

Flow model to command steering angle for 2 wheel steering rovers. Rover has 6 wheels in a general configuration.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model Steering2WFlow class details

For more information on the members and functions of this model class, please see RoverNavModels::Steering2WFlow model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Steering2WFlow__group.html)

Parameters

Name Type Size Quantity Units Description

steeringSide int +1 → front wheel steering. -1

→ rear wheel steering

(assuming forward motion)

wheelCenterBias double Length Bias of center wheel

(positive implies closer to

front side wheels, zero

implies in center of front

and back wheels)

wheelFrontRearDist double Length Distance between front and

back side wheels

wheelLeftRightDist double Length Distance between left and

right side wheels

Flow Ins

Name Type Size Quantity Units Description

angle double Angle angle to tranverse when

turning in place

mode int mode (0 → turn in place, 1 →

move forward, -1 → move

reverse)

radius double Length turning radius (0 → straight,

positive → left turn, negative

→ right turn)

Flow Outs

Name Type Size Quantity Units Description

steerRockerSideLeft double Angle Desired steering angle for

left side wheel

steerRockerSideRight double Angle Desired steering angle for

right side wheel

31.19. RoverNavModels::Steering4W Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!4 (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__4__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__wheel__keyword__group.html)

Description

Model to command steering angles for rovers with 4 wheel steering. Center wheels (if any) are not steered. A line through the center wheels (real or phantom) goes through the
center of steering.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model Steering4W class details

For more information on the members and functions of this model class, please see RoverNavModels::Steering4W model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Steering4W__group.html)

Parameters

Name Type Size Quantity Units Description

epsilon double Angle tolerance to determine if

steering motion is complete

wheelCenterBias double Length Bias of center wheel axis or

center line (positive implies

closer to front side wheels,

zero implies in center of

front and back wheels)

wheelFrontBackDist double Length Distance between front and

back side wheels

wheelLeftRightDist double Length Distance between left and

right side wheels

Flow Ins

Name Type Size Quantity Units Description

angle double Angle angle to tranverse when

turning in place

mode double Flag mode (0 → turn in place, 1 →

move forward, -1 → move

reverse)

radius double Length turning radius (0 → straight,

positive → left turn, negative

→ right turn)

steerLeftBackIn double Angle Current left rear steering

angle

steerLeftFrontIn double Angle Current left front steering

angle

steerRightBackIn double Angle Current right rear steering

angle

steerRightFrontIn double Angle Current right front steering

angle

Flow Outs

Name Type Size Quantity Units Description

steerLeftBack double Angle Desired steering angle for

left rear wheel

steerLeftFront double Angle Desired steering angle for

left front wheel

steerRightBack double Angle Desired steering angle for

right rear wheel

steerRightFront double Angle Desired steering angle for

right front wheel

steerStatus double Flag Steering status (0 → still

steering to desired values, 1

→ done steering

31.20. RoverNavModels::Steering4WFlow Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!4 (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__4__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__wheel__keyword__group.html)

Description

Flow model to command steering angles for rovers with 4 wheel steering. Rover has wheels in a general configuration.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model Steering4WFlow class details

For more information on the members and functions of this model class, please see RoverNavModels::Steering4WFlow model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Steering4WFlow__group.html)

Parameters

Name Type Size Quantity Units Description

bogeyFront double Flag +1 → bogey side is front, -1 →

rocker side is front

wheelCenterBias double Length Bias of center wheel

(positive implies closer to

bogey side wheels, zero

implies in center of front

and back wheels)

wheelFrontRearDist double Length Distance between front and

back side wheels

wheelLeftRightDist double Length Distance between left and

right side wheels

Flow Ins

Name Type Size Quantity Units Description

angle double Angle angle to tranverse when

turning in place

mode int mode (0 → turn in place, 1 →

move forward, -1 → move

reverse)

radius double Length turning radius (0 → straight,

positive → left turn, negative

→ right turn)

Flow Outs

Name Type Size Quantity Units Description

steerBogeySideLeft double Angle Desired steering angle for

left bogey wheel

steerBogeySideRight double Angle Desired steering angle for

right bogey wheel

steerRockerSideLeft double Angle Desired steering angle for

left rear wheel

Name Type Size Quantity Units Description

steerRockerSideRight double Angle Desired steering angle for

right rear wheel

31.21. RoverNavModels::Steering6W Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!6 (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__6__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__wheel__keyword__group.html)

Description

Model to command steering angles for rovers with 6 wheel steering. Rover has wheels in a general configuration.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model Steering6W class details

For more information on the members and functions of this model class, please see RoverNavModels::Steering6W model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Steering6W__group.html)

Parameters

Name Type Size Quantity Units Description

epsilon double Angle tolerance to determine if

steering motion is complete

wheelCenterBias double Length Bias of center wheel

(positive implies closer to

front side wheels, zero

implies in center of front

and back wheels)

wheelFrontBackDist double Length Distance between front and

back side wheels

wheelLeftRightDist double Length Distance between left and

right side wheels

Flow Ins

Name Type Size Quantity Units Description

angle double Angle angle to tranverse when

turning in place

mode double Flag mode (0 → turn in place, 1 →

move forward, -1 → move

reverse)

radius double Length turning radius (0 → straight,

positive → left turn, negative

→ right turn)

steerLeftBackIn double Angle Current left rear steering

angle

steerLeftCenterIn double Angle Current left center steering

angle

Name Type Size Quantity Units Description

steerLeftFrontIn double Angle Current left front steering

angle

steerRightBackIn double Angle Current right rear steering

angle

steerRightCenterIn double Angle Current right center

steering angle

steerRightFrontIn double Angle Current right front steering

angle

Flow Outs

Name Type Size Quantity Units Description

steerLeftBack double Angle Desired steering angle for

left rear wheel

steerLeftCenter double Angle Desired steering angle for

left center wheel

steerLeftFront double Angle Desired steering angle for

left front wheel

steerRightBack double Angle Desired steering angle for

right rear wheel

steerRightCenter double Angle Desired steering angle for

right center wheel

steerRightFront double Angle Desired steering angle for

right front wheel

steerStatus double Flag Steering status (0 → still

steering to desired values, 1

→ done steering

31.22. RoverNavModels::Steering6WFlow Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!6 (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__6__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__wheel__keyword__group.html)

Description

Flow model to command steering angles for rovers with 6 wheel steering. Rover has wheels in a general configuration.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model Steering6WFlow class details

For more information on the members and functions of this model class, please see RoverNavModels::Steering6WFlow model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Steering6WFlow__group.html)

Parameters

Name Type Size Quantity Units Description

Name Type Size Quantity Units Description

bogeyFront double Flag +1 → bogey is front side, -1 →

rocker is front side

wheelCenterBias double Length Bias of center wheel

(positive implies closer to

front side wheels, zero

implies in center of front

and back wheels)

wheelFrontRearDist double Length Distance between front and

back side wheels

wheelLeftRightDist double Length Distance between left and

right side wheels

Flow Ins

Name Type Size Quantity Units Description

angle double Angle angle to tranverse when

turning in place

mode int mode (0 → turn in place, 1 →

move forward, -1 → move

reverse)

radius double Length turning radius (0 → straight,

positive → left turn, negative

→ right turn)

Flow Outs

Name Type Size Quantity Units Description

steerBogeySideLeft double Angle Desired steering angle for

left front wheel

steerBogeySideRight double Angle Desired steering angle for

right front wheel

steerCenterLeft double Angle Desired steering angle for

left center wheel

steerCenterRight double Angle Desired steering angle for

right center wheel

steerRockerSideLeft double Angle Desired steering angle for

left rear wheel

steerRockerSideRight double Angle Desired steering angle for

right rear wheel

31.23. RoverNavModels::SteeringStatus Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Controller (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Controller__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Description

Model to determine if commanded steering angles have been acheived.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model SteeringStatus class details

For more information on the members and functions of this model class, please see RoverNavModels::SteeringStatus model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__SteeringStatus__group.html)

Parameters

Name Type Size Quantity Units Description

dimension int Dimension of input vectors

epsilon double Angle tolerance (radians) to

determine if steering

motion is complete

Flow Ins

Name Type Size Quantity Units Description

steerAngle double * Angle Current steering angles

steerAngle_d double * Angle Desired steering angles

Flow Outs

Name Type Size Quantity Units Description

steerStatus int Steering status (0 → still

steering to desired values, 1

→ done steering

31.24. RoverNavModels::SwitchExample Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Controller (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Controller__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Description

Example to show to use boost statechart.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model SwitchExample class details

For more information on the members and functions of this model class, please see RoverNavModels::SwitchExample model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__SwitchExample__group.html)

Flow Ins

Name Type Size Quantity Units Description

flip int Flip state

Flow Outs

Name Type Size Quantity Units Description

state double Flag Output state

31.25. RoverNavModels::SwitchMSMExample Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Controller (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Controller__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Description

Example to show to use boost Meta state Machine (MSM).

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model SwitchMSMExample class details

For more information on the members and functions of this model class, please see RoverNavModels::SwitchMSMExample model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__SwitchMSMExample__group.html)

Flow Ins

Name Type Size Quantity Units Description

flip int Flip state

Flow Outs

Name Type Size Quantity Units Description

state double Flag Output state

31.26. RoverNavModels::SwitchMSMFunctorExample Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Controller (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Controller__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Description

Example to show to use boost Meta state Machine (MSM) specified using functors.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model SwitchMSMFunctorExample class details

For more information on the members and functions of this model class, please see RoverNavModels::SwitchMSMFunctorExample model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__SwitchMSMFunctorExample__group.html)

Flow Ins

Name Type Size Quantity Units Description

flip int Flip state

Flow Outs

Name Type Size Quantity Units Description

state double Flag Output state

31.27. RoverNavModels::WheelDriveMotion Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Rover!Odometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Odometry__keyword__group.html)

Rover!n-wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__n-wheel__keyword__group.html)

Description

Model of rover wheel kinematics for a non-steered wheel on a rover.

This model computes the drive distance this wheel should drive to traverse the arc it will follow when the vehicle drives along a circular arc specified by the flow-in desired vehicle

motion.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model WheelDriveMotion class details

For more information on the members and functions of this model class, please see RoverNavModels::WheelDriveMotion model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__WheelDriveMotion__group.html)

Parameters

Name Type Size Quantity Units Description

direction double Flag +1 → rover moves towards

bogey when wheels rotate

positive. -1 → rover moves

towards rocker when

wheels rotate positive

localization_frame_uuid unsigned int (uint) The UUID for the vehicle’s

localization frame.

maxAngularVelocity double AngularVelocity Maximum angular velocity

for wheels (default = 0)

minAngularVelocity double AngularVelocity Minimum angular velocity

for wheels (default = 0)

speedScaleFactor double Dimensionless Scale parameter for wheel

turn rate.

wheelRadius double Length Wheel radius

wheel_frame_uuid unsigned int (uint) The UUID for the wheel

frame.

wheel_rate_factor double Dimensionless The wheel rate factor (0 to

1.0) used to generate a

smooth angle profile for the

motors to get to the total

desired angle change. The

larger the number the

faster the profile.

Discrete States

Name Type Size Quantity Units DescriptionName Type Size Quantity Units Description

arc_radius double Length Same as flowIns radius, the

distance of the chassis

frame from the turn center

(0 means turn in place, +

means left, - means right)

chassis_from_turn_center_x double Length X component of the distance

of the chassis frame from

the turn center in the

chassis frame. This value is

0.

chassis_from_turn_center_y double Length Y component of the distance

of the chassis frame from

the turn center in the

chassis fframe. This value is

the input turn arc radius.

desired_wheel_angle double Angle Delta wheel rotation

(radians) needed to cover

desired ground arc distance

prev_drive_angle double Angle Drive angle at previous step

(seems to be in wheel

encoder angle) {not used?)

prev_drive_rate double AngularVelocity Current value of desired

wheel angle

reference_wheel_angle double Angle The absolute wheel encoder

angle at start of new sub-arc

command. The commanded

motion is wrt to this

reference wheel angle.

status int Current status (0 → moving,

1 → ready) for new

command

wheel_arc_distance double Length Ground distance along the

arc that the wheel needs to

move.

wheel_scale_direction double Flag When 1, the rotation of the

wheel is in the same

direction as the turn angle.

The value is based on the

wheel’s position wrt the

turn center

wheel_speed double Velocity Wheel’s linear ground speed

along its arc path. It is the

product of the

wheel_turn_radius and the

chassis angular velocity.

wheel_turn_radius double Length Distance of the wheel from

the turn center. It is the

square root of the sum of

the squares of the X & Y

components.

wheel_x_position double Length X component of the position

of the wheel wrt the turn

center in the chassis frame

wheel_y_position double Length Y component of the position

of the wheel wrt the turn

center in the chassis frame

Flow Ins

Name Type Size Quantity Units DescriptionName Type Size Quantity Units Description

angle double Angle Chassis angle to tranverse

during turn in place

angular_velocity double AngularVelocity Chassis angular velocity

wrt inertial frame in the

chassis frame

chassis_motion2turn_center_f2f_uuid unsigned long (ulong) Chassis motion to turn

center frame location

frame2frame UUID.

distance double Length Ground distance to

traverse for the chassis

when moving

forward/backward

linear_velocity double Velocity Chassis’s linear velocity

wrt inertial frame in the

chassis frame. Only used

for straight drive motion.

mode int mode (0 → turn in place, 1

→ move forward, -1 →

move reverse, 2 → arc-

drive). No used directly -

only used to detect a new

arc command has been

issued.

nav_drive_state int Flag for indicating is

wheels can drive (true/1 if

steering completed, false/0

otherwise)

speed double Dimensionless 0 → minimum speed, 1 →

maximum speed

wheel_enc double Angle Current value of wheel

encoder

Flow Outs

Name Type Size Quantity Units Description

total_drive_angle double Angle Total delta in wheel drive

angle needed (in radians)

for the wheel along the arc

wheel_drive_angle double Angle Desired delta wheel drive

angle (in radians) for wheel

wheel_drive_rate double AngularVelocity Desired wheel drive rate for

wheel

31.28. RoverNavModels::WheelDriveVelocity Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Rover!Odometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Odometry__keyword__group.html)

Rover!n-wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__n-wheel__keyword__group.html)

Description

Model of rover wheel velocity kinematics for a non-steered wheel on a rover.

This model computes the wheel drive velocity corresponding to a desired vehicle velocity.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model WheelDriveVelocity class details

For more information on the members and functions of this model class, please see RoverNavModels::WheelDriveVelocity model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__WheelDriveVelocity__group.html)

Parameters

Name Type Size Quantity Units Description

chassis_frame_uuid unsigned int (uint) The UUID for the chassis

frame.

direction double Flag +1 → rover moves towards

bogey when wheels rotate

positive. -1 → rover moves

towards rocker when

wheels rotate positive

maxAngularVelocity double AngularVelocity Maximum angular velocity

for wheels (default = 0)

minAngularVelocity double AngularVelocity Minimum angular velocity

for wheels (default = 0)

speedScaleFactor double Dimensionless Scale parameter for wheel

turn rate.

wheelRadius double Length Wheel radius

wheel_frame_uuid unsigned int (uint) The UUID for the wheel

frame.

wheel_rate_factor double Dimensionless The wheel rate factor (0 to

1.0) used to generate a

smooth angle profile for the

motors to get to the total

desired angle change. The

larger the number the

faster the profile.

Scratch

Name Type Size Quantity Units Description

arc_radius double Length The chassis turn radius

based on the desired

angular velocity and the

desired XY velocity for the

chassis.

chassis_from_turn_center_x double Length X component of the distance

of the chassis frame from

the turn center

chassis_from_turn_center_y double Length Y component of the distance

of the chassis frame from

the turn center

linear_velocity double Velocity The magnitude of the

desired XY linear velocity of

the chassis

wheel_scale_direction double Flag The direction the wheel

should turn because of its

position wrt the turn center

Name Type Size Quantity Units Description

wheel_speed double Velocity The transational speed of

the wheel.

wheel_turn_radius double Length The distance of the wheel

from the turn center

wheel_x_position double Length X component of the distance

of the wheel from the turn

center

wheel_y_position double Length Y component of the distance

of the wheel from the turn

center

Discrete States

Name Type Size Quantity Units Description

prev_drive_rate double AngularVelocity Current value of desired

wheel angle

status int Current status (0 → moving,

1 → ready for new command

Flow Ins

Name Type Size Quantity Units Description

chassis_motion2turn_center_f2f_uuid unsigned long (ulong) Chassis motion to turn

center frame location

frame2frame UUID.

desired_x_y_h_rate double 3 Mixed The desired instantaneous

chassis x,y,h rates

initialized_pose int Flag to inticate pose is

initialized; (1, initialized; 0

,not initialized)

ready_status int Flag to indicate if can drive

Flow Outs

Name Type Size Quantity Units Description

total_drive_angle double Angle Total desired wheel drive

angle for the wheel motion

wheel_drive_angle double Angle Instantneous desired wheel

drive aangle for wheel

wheel_drive_rate double AngularVelocity Desired wheel drive rate for

wheel

31.29. RoverNavModels::WheelSteerDriveMotion Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Rover!Odometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Odometry__keyword__group.html)

Rover!n-wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__n-wheel__keyword__group.html)

Description

Model of rover wheel kinematics for a steered wheel on a rover.

This model computes the steer angle and the drive distance this wheel should steer/drive to traverse the arc it will follow when the vehicle drives along a circular arc specified by the

flow-in desired vehicle motion. The steer angle computation is based on the following. At any given instance, the desired wheel rotation axis should ideally be along the turn center to

wheel center vector. We compute this vector in the chassis frame. We also keep track of the wheel axis in the chassis frame when the steer angle is zero. The steer angle is the steer

rotation needed to line up these two vectors, and thus is the angle between these two vectors.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model WheelSteerDriveMotion class details

For more information on the members and functions of this model class, please see RoverNavModels::WheelSteerDriveMotion model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__WheelSteerDriveMotion__group.html)

Parameters

Name Type Size Quantity Units Description

chassis_frame_uuid unsigned int (uint) The UUID for the chassis

frame.

ck_mode int A flag to indicate if using CK

mode (=1) or not (=0).

steerBodyId unsigned int (uint) The UUID for the steer body

for this wheel.

steerOffsetAngle double Angle The offset between the zero

steer angle and the chassis

x-axis

steerParentBodyId unsigned int (uint) The UUID for the parent

body of the steer body for

this wheel.

steer_rate_factor double Dimensionless The steer rate factor to slow

down the steer angle change

wheelBodyId unsigned int (uint) The UUID for the wheel

body for this wheel.

Scratch

Name Type Size Quantity Units Description

curr_steer_theta double Angle Current steer hinge

coordinate value

curr_yaw_angle double Angle Current yaw angle for the

wheel axis

desired_yaw_angle double Angle Desired yaw angle for the

wheel axis

motion_type string Type of motion being

commanded

Discrete States

Name Type Size Quantity Units Description

desired_wheel_steer_angle double Angle Current value of desired

wheel angle

first_run int Flag to indicate that the

computeSteerMotion is run

the first time

new_output_steer_angle double Angle The steer angle output from

this model

Name Type Size Quantity Units Description

orig_steer_wrt_chassis_yaw double Angle The initial yaw attitude of

the steer body with respect

to the chassis

performed_drive_motion int Flag to indicate if the wheel

drive part was performed

reference_wheel_steer_angle double Angle Actual wheel steer angle at

start of new sub-arc

wheel_axis_angle double Angle The angle of the wheel joint

axis wrt the steering body

frame (used as an offset in

computing the steering

angle)

Flow Ins

Name Type Size Quantity Units Description

steerStatus int Current steer status (0 → not

complete, 1 → complete

Flow Outs

Name Type Size Quantity Units Description

total_steer_angle double Angle Total desired wheel steer

angle for the wheel

wheel_steer_angle double Angle Desired wheel steer angle

for wheel

31.30. RoverNavModels::WheelSteerDriveVelocity Flow Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all RoverNavModels models of Flow class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Flow__group.html)

Keywords Doxygen groups

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__keyword__group.html)

Rover!Locomotion (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Locomotion__keyword__group.html)

Rover!Odometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__Odometry__keyword__group.html)

Rover!n-wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__Rover__n-wheel__keyword__group.html)

Description

Model of rover wheel kinematics for a steered wheel on a rover.

This model computes the steer angle and the drive distance this wheel should steer/drive to traverse the arc it will follow when the vehicle drives along a circular arc specified by the

flow-in desired vehicle motion.

from the {RoverNavModels_module_uri}[RoverNavModels] models library for the xref:Dshellpp_module simulation framework.

Model WheelSteerDriveVelocity class details

For more information on the members and functions of this model class, please see RoverNavModels::WheelSteerDriveVelocity model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/RoverNavModels/html/group__WheelSteerDriveVelocity__group.html)

Parameters

Name Type Size Quantity Units Description

ck_mode int A flag to indicate if using CK

mode (=1) or not (=0).

Name Type Size Quantity Units Description

steerBodyId unsigned int (uint) The UUID for the steer body

for this wheel.

steerOffsetAngle double Angle The offset between the zero

steer angle and the chassis

x-axis

steerParentBodyId unsigned int (uint) The UUID for the parent

body of the steer body for

this wheel.

steer_rate_factor double Dimensionless The steer rate factor to slow

down the steer angle change

wheelBodyId unsigned int (uint) The UUID for the wheel

body for this wheel.

Discrete States

Name Type Size Quantity Units Description

desired_wheel_steer_angle double Angle Current value of desired

wheel angle

first_run int Flag to indicate that the

computeSteerMotion is run

the first time

new_output_steer_angle double Angle The steer angle output from

this model

orig_steer_wrt_chassis_yaw double Angle The initial yaw attitude of

the steer body with respect

to the chassis

performed_drive_motion int Flag to indicate if the wheel

drive part was performed

reference_wheel_steer_angle double Angle Actual wheel steer angle at

start of new sub-arc

wheel_axis_angle double Angle The wheel drive joint axis

wrt the chassis

Flow Outs

Name Type Size Quantity Units Description

total_steer_angle double Angle Total desired wheel steer

angle for the wheel

wheel_steer_angle double Angle Desired wheel steer angle

for wheel

32. SurfaceContactModels Dshell model library

Doxygen reference to Models in SurfaceContactModels by Type

Actuators (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Sensors (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Sensor__group.html)

Motors (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Motor__group.html)

Encoders (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Encoder__group.html)

Flows (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Flow__group.html)

Continuous (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__ContStates__group.html)

32.1. SurfaceContactModels::BekkerWheelSoilContact Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__keyword__group.html)

Wheel!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Contact__keyword__group.html)

Wheel!Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Soil__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

Description

Applies compliant contact force to a body based on a Bekker terramechanics model.

This model computes and applies wheel/soil contact forces.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model BekkerWheelSoilContact class details

For more information on the members and functions of this model class, please see SurfaceContactModels::BekkerWheelSoilContact model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__BekkerWheelSoilContact__group.html)

Parameters

Name Type Size Quantity Units Description

cohesion_modulus double Dimensionless Bekker soil cohesion

modulus

default_cohesion double Pressure Soil cohesion

default_density double Density soil density

default_phi double Angle internal friction angle

Name Type Size Quantity Units Description

demSpecName string The name of the top level

DVar spec with the

vehicle’s TopoDem pointer.

exit_angle_coeffs double 2 Mixed Coefficient for determing

exit angle from the entry

angle

exponent double Dimensionless Bekker normal force

exponent

friction_modulus double Dimensionless Bekker friction angle

modulus

lateral_shear_modulus_coeffs double 2 Mixed The constant and linear

coeffs used for comuting

the lateral shear modulus

from the lateral slip angle.

longitudinal_shear_modulus_coeffs double 2 Mixed The constant and linear

coeffs used for comuting

the longitudinal shear

modulus from the lateral

slip angle.

max_stress_angle_coeffs double 2 Mixed The constant and linear

coeffs used for computing

the max stress angle from

the longitudinal stress

soil_damping double LinearSpringDamping Soil damping coefficient

wheel_radius double Length wheel radius (used to

compute contact patch

area)

wheel_width double Length wheel width (used to

compute contact patch

area)

Scratch

Name Type Size Quantity Units Description

cohesion double Pressure Current soil cohesion

density double Density Current soil density

force double 3 Force Contact constraint force

(contact frame)

phi double Angle Current internal friction

angle

torque double 3 Torque Contact constraint torque

(contact frame)

wheel_moment double 3 Torque Wheel moment (contact

frame)

Flow Ins

Name Type Size Quantity Units Description

gravity double 3 Acceleration Gravity vector

sinkage double Length penetration distance

32.2. SurfaceContactModels::BekkerWheelVariableSoilContact Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Rover!Wheel/Variable (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Variable__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__keyword__group.html)

Wheel!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Contact__keyword__group.html)

Wheel!Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Soil__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__soil__keyword__group.html)

Description

Applies compliant contact force to a body based on a Bekker terramechanics model on a terrain with variable soil properties.

This model computes and applies wheel/soil contact forces on a terrain with variable soil properties.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model BekkerWheelVariableSoilContact class details

For more information on the members and functions of this model class, please see SurfaceContactModels::BekkerWheelVariableSoilContact model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__BekkerWheelVariableSoilContact__group.html)

Parameters

Name Type Size Quantity Units Description

bekker_soil_params BekkerSoilParams * Variable size list of Struct

containing Bekker soil

parameter values

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

wheel_radius double Length wheel radius (used to

compute contact patch area)

wheel_width double Length wheel width (used to

compute contact patch area)

Scratch

Name Type Size Quantity Units Description

body_pos double 3 Length The location of the body in

terrain frame

current_bekker_soil_params BekkerSoilParams Current soil parameters

Name Type Size Quantity Units Description

force double 3 Force Contact constraint force

(contact frame)

soil_type int Current soil type under the

wheel.

torque double 3 Torque Contact constraint torque

(contact frame)

wheel_moment double 3 Torque Wheel moment (contact

frame)

Flow Ins

Name Type Size Quantity Units Description

gravity double 3 Acceleration Gravity vector

sinkage double Length penetration distance

32.3. SurfaceContactModels::CompliantContact Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Crossley (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Crossley__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__keyword__group.html)

Spring/Damper!Hunt (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Hunt__keyword__group.html)

Spring/Damper!Nonlinear (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Nonlinear__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__keyword__group.html)

Wheel!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Contact__keyword__group.html)

Wheel!Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Soil__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

Description

Applies compliant contact force to a body based on the non-linear Hunt Crossley spring/damper equations

This model computes and applies a compliant, frictional contact force for a single contact point. Current Limitations: Normal plane unit directions are written in the inertial frame.

This does not allow for different slip/roll behaviour in the lateral and transverse directions. To overcome this, a technique for correctly displacing the contact point within a local

reference frame (which may be rotating due to steering) must be developed.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model CompliantContact class details

For more information on the members and functions of this model class, please see SurfaceContactModels::CompliantContact model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__CompliantContact__group.html)

Enums

ContactLocationFrame Enum

In the CompliantContact model definition, the original enum ContactLocationFrame is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

ForceModel Enum

In the CompliantContact model definition, the original enum ForceModel is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

ContactType Enum

In the CompliantContact model definition, the original enum ContactType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

alpha double 2 LinearSpringDamping alpha for normal and

tangent directions

frame ContactLocationFrame Contact location frame

(default is body frame

kp double 2 LinearSpringStiffness Spring constant for

compliant contact in normal

and tangent directions

 enum ContactLocationFrame
 {
 inertial = 0,
 body = 1
 };

 /// CompliantContactContactLocationFrame enum
 enum CompliantContactContactLocationFrame
 {
 COMPLIANT_CONTACT_CONTACT_LOCATION_FRAME_INERTIAL = 0,
 COMPLIANT_CONTACT_CONTACT_LOCATION_FRAME_BODY = 1
 };

 enum ForceModel
 {
 nonlinear = 0,
 linear = 1
 };

 /// CompliantContactForceModel enum
 enum CompliantContactForceModel
 {
 COMPLIANT_CONTACT_FORCE_MODEL_NONLINEAR = 0,
 COMPLIANT_CONTACT_FORCE_MODEL_LINEAR = 1
 };

 enum ContactType
 {
 NoContact = 0,
 Sliding = 1,
 Rolling = 2
 };

 /// CompliantContactContactType enum
 enum CompliantContactContactType
 {
 COMPLIANT_CONTACT_CONTACT_TYPE_NO_CONTACT = 0,
 COMPLIANT_CONTACT_CONTACT_TYPE_SLIDING = 1,
 COMPLIANT_CONTACT_CONTACT_TYPE_ROLLING = 2
 };

Name Type Size Quantity Units Description

maxForce double Force Maximum allowed applied

force - prevents numeric

problems

n double 2 Dimensionless exponential for deflection

term for normal and

tangent directions

normalForceModel ForceModel Normal force model (default

is non-linear)

tangentForceModel ForceModel Tangent force model

(default is linear)

tangent_x double 3 Dimensionless First tangent direction

(inertial coordinates).

tangent_y double 3 Dimensionless Second tangent direction

(inertial coordinates,

orthogonal to tanget_x)

Scratch

Name Type Size Quantity Units Description

contactVelocity double 3 Velocity Velocity of contact point

(node frame)

force double 3 Force Contact constraint force

(node frame)

nodeAngularVelocity double 3 AngularVelocity Linear velocity of node

center (node coordinates)

nodeLinearVelocity double 3 Velocity Linear velocity of node

center (node coordinates)

nodeframeNormal double 3 Dimensionless normal vector written in

node frame

normalVelocity double 3 Velocity Velocity of point in normal

direction

penetrationDistance double Length Penetration distance

tangentX double 3 Dimensionless Rotated params.tangent_x

to match orientation of

current contact normal

tangentY double 3 Dimensionless Rotated params.tangent_y

to match orientation of

current contact normal

tangent_z double 3 Dimensionless Nominal normal direction

(inertial coordinates)

torque double 3 Torque Contact constraint torque

(node frame)

Discrete States

Name Type Size Quantity Units Description

currentContactPlot int Current contact type (for

plotting)

currentContactType ContactType Current contact type

normalForce double 3 Force Force of normal direction

spring/damper (node frame)

tangentForce double 3 Force Force of tangent direction

spring/damper (node frame)

Continuous States

Name Type Size Quantity Units Description

tangentDeflection double 2 Length Currect deflection of contact

point in tangental

directions.

Flow Ins

Name Type Size Quantity Units Description

contactLocation double 3 Length Location of contact relative

to body node (inertial

coordinats for TESTING

ONLY, see code)

mu double Dimensionless coefficient of friction at

contact point - used to

determine maximum

allowable tangent force

normalDirection double 3 Dimensionless Normal vector for contact

(inertial coordinates)

penetrationDistance double Length pen dist

Flow Outs

Name Type Size Quantity Units Description

currCState double 2 Length current cont state (used for

testing)

32.4. SurfaceContactModels::CompliantContact2 Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Crossley (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Crossley__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__keyword__group.html)

Spring/Damper!Hunt (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Hunt__keyword__group.html)

Spring/Damper!Nonlinear (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Nonlinear__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__keyword__group.html)

Wheel!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Contact__keyword__group.html)

Wheel!Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Soil__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

Description

Applies compliant contact force to a body based on the non-linear Hunt Crossley spring/damper equations

This model computes and applies a compliant, frictional contact force for a single contact point. Current Limitations: Normal plane unit directions are written in the inertial frame.

This does not allow for different slip/roll behaviour in the lateral and transverse directions. To overcome this, a technique for correctly displacing the contact point within a local

reference frame (which may be rotating due to steering) must be developed.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model CompliantContact2 class details

For more information on the members and functions of this model class, please see SurfaceContactModels::CompliantContact2 model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__CompliantContact2__group.html)

Enums

ContactLocationFrame Enum

In the CompliantContact2 model definition, the original enum ContactLocationFrame is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

ForceModel Enum

In the CompliantContact2 model definition, the original enum ForceModel is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

ContactType Enum

In the CompliantContact2 model definition, the original enum ContactType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

 enum ContactLocationFrame
 {
 inertial = 0,
 body = 1
 };

 /// CompliantContact2ContactLocationFrame enum
 enum CompliantContact2ContactLocationFrame
 {
 COMPLIANT_CONTACT2_CONTACT_LOCATION_FRAME_INERTIAL = 0,
 COMPLIANT_CONTACT2_CONTACT_LOCATION_FRAME_BODY = 1
 };

 enum ForceModel
 {
 nonlinear = 0,
 linear = 1,
 terra = 2
 };

 /// CompliantContact2ForceModel enum
 enum CompliantContact2ForceModel
 {
 COMPLIANT_CONTACT2_FORCE_MODEL_NONLINEAR = 0,
 COMPLIANT_CONTACT2_FORCE_MODEL_LINEAR = 1,
 COMPLIANT_CONTACT2_FORCE_MODEL_TERRA = 2
 };

 enum ContactType
 {
 NoContact = 0,
 Sliding = 1,
 Rolling = 2
 };

 /// CompliantContact2ContactType enum
 enum CompliantContact2ContactType
 {
 COMPLIANT_CONTACT2_CONTACT_TYPE_NO_CONTACT = 0,
 COMPLIANT_CONTACT2_CONTACT_TYPE_SLIDING = 1,
 COMPLIANT_CONTACT2_CONTACT_TYPE_ROLLING = 2
 };

Name Type Size Quantity Units Description

alpha double 3 LinearSpringDamping alpha for normal, tangX and

tangY directions

contactFrame ContactLocationFrame Contact location frame

(default is body frame

kp double 3 LinearSpringStiffness Spring constant for

compliant contact in normal,

tangX and tangY directions

maxForce double Force Maximum allowed applied

force - prevents numeric

problems

n double 3 Dimensionless exponential for deflection

term for normal, tangX and

tangY directions

normalForceModel ForceModel Normal force model (default

is non-linear)

tangXForceModel ForceModel Tangent force model for

forward direction (default is

linear)

tangY double 3 Dimensionless Sideways tangent unit

direction (body coordinates,

matches rotation axis of

wheel)

tangYForceModel ForceModel Tangent force model for

sideways direction (default

is linear)

Scratch

Name Type Size Quantity Units Description

contactVelocity double 3 Velocity Velocity of contact point

(node frame)

contactVelocityNormal double 3 Velocity Velocity of contact point

computed using

nodeAngularVelocityNormal

(node frame)

nodeAngularVelocity double 3 AngularVelocity Angular velocity of node

center (node coordinates)

nodeAngularVelocityNormal double 3 AngularVelocity Angular velocity of node

center with any portion

about the wheel rotation

axis zerod out(node

coordinates)

nodeLinearVelocity double 3 Velocity Linear velocity of node

center (node coordinates)

nodeframeNormal double 3 Dimensionless normal vector written in

node frame

normalVelocity double 3 Velocity Velocity of point in normal

direction

penetrationDistance double Length Penetration distance

tangX double 3 Dimensionless tangent unit direction (body

coordinates) - orhogonal to

params.tangY and the

current terrain normal

direction

Discrete States

Name Type Size Quantity Units Description

currXContactType ContactType Current contact type

direciton

currYContactType ContactType Current contact type

direciton

normalForce double 3 Force Force of normal direction

spring/damper (node frame)

tangXForce double 3 Force Force in tangX direction

(node frame)

tangYForce double 3 Force Force in tangY direction

(node frame)

Continuous States

Name Type Size Quantity Units Description

tangentDeflection double 2 Length Currect deflection of contact

point in tangX and tangY

directions.

Flow Ins

Name Type Size Quantity Units Description

contactLocation double 3 Length Location of contact relative

to node (body or inertial

frame based on

contactFrame parameter)

muX double Dimensionless coefficient of friction at

contact point - used to

determine maximum

allowable tangent force in x

direction

muY double Dimensionless coefficient of friction at

contact point - used to

determine maximum

allowable tangent force in y

direction

normalDirection double 3 Dimensionless Normal vector for contact

(inertial coordinates)

penetrationDistance double Length pen dist

Flow Outs

Name Type Size Quantity Units Description

currCState double 2 Length current cont state (used for

testing/debugging)

32.5. SurfaceContactModels::CompliantTerzaghi Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Crossley (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Crossley__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__keyword__group.html)

Spring/Damper!Hunt (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Hunt__keyword__group.html)

Spring/Damper!Nonlinear (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Nonlinear__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__keyword__group.html)

Wheel!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Contact__keyword__group.html)

Wheel!Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Soil__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

Description

Applies compliant contact force to a body based on a simplified Terzaghi model.

This model computes and applies wheel/soil contact forces. Normal force is computed using a non-linear spring model. A linear spring/damper applies forces in the plane tangent to

the contact normal. Terzahi base soil model is used to compute the transition between rolling and sliding behavior in the tangent direction.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model CompliantTerzaghi class details

For more information on the members and functions of this model class, please see SurfaceContactModels::CompliantTerzaghi model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__CompliantTerzaghi__group.html)

Enums

ContactType Enum

In the CompliantTerzaghi model definition, the original enum ContactType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

alpha double 2 LinearSpringDamping alpha for normal and

tangent directions

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

 enum ContactType
 {
 NoContact = 0,
 Sliding = 1,
 Rolling = 2
 };

 /// CompliantTerzaghiContactType enum
 enum CompliantTerzaghiContactType
 {
 COMPLIANT_TERZAGHI_CONTACT_TYPE_NO_CONTACT = 0,
 COMPLIANT_TERZAGHI_CONTACT_TYPE_SLIDING = 1,
 COMPLIANT_TERZAGHI_CONTACT_TYPE_ROLLING = 2
 };

Name Type Size Quantity Units Description

kp double 2 LinearSpringStiffness Spring constant for

compliant contact in normal

and tangent directions

maxForce double Force Maximum allowed applied

force - prevents numeric

problems

max_stddev double Dimensionless Maximum standard

deviation for randomness

n double 2 Dimensionless exponential for deflection

term for normal and

tangent directions

normalForceModel bool Normal force model (default

true, i.e. nonlinear)

rolling_resistance_scale double Dimensionless scale factor for

experimental rolling

resistance code (default = 0)

seeds double 2 Dimensionless Initial random seeds

slope_stddev double Dimensionless Slope of standard deviation

(should be less that zero)

tangentForceModel bool Tangent force model

(default false, i.e. linear)

tangent_x double 3 Dimensionless First tangent direction

(inertial coordinates).

tangent_y double 3 Dimensionless Second tangent direction

(inertial coordinates,

orthogonal to tanget_x)

use_random bool Randomness off (0) or on (1)

wheel_radius double Length wheel radius (used to

compute contact patch area)

wheel_width double Length wheel width (used to

compute contact patch area)

Scratch

Name Type Size Quantity Units Description

Nc double Dimensionless Terzaghi Cohesion constant

Ng double Dimensionless Terzaghi Gamma constant

Nq double Dimensionless Terzaghi Soil surcharge

constant

area double Area Computed area of contact

patch

contactLocationInertial double 3 Length Location of contact (inertial

frame)

contactVelocity double 3 Velocity Velocity of contact point

(node frame)

force double 3 Force Contact constraint force

(node frame)

gamma double SpecificWeight Soil specific weight = gravity

* density

mag_grav double Acceleration Magnitude of gravity

nodeAngularVelocity double 3 AngularVelocity Linear velocity of node

center (node coordinates)

Name Type Size Quantity Units Description

nodeLinearVelocity double 3 Velocity Linear velocity of node

center (node coordinates)

nodeframeNormal double 3 Dimensionless normal vector written in

node frame

normalForceInertial double 3 Force Force of normal direction

spring/damper (inertial

frame)

normalVelocity double 3 Velocity Velocity of point in normal

direction

patch_length double Length Length of contact patch

penetrationDistance double Length Penetration distance

tanPhi double Angle Tangent of friction angle

tangentForceInertial double 3 Force Force of tangent direction

spring/damper (inertial

frame)

tangentX double 3 Dimensionless Rotated params.tangent_x

to match orientation of

current contact normal

tangentX_inertial double 3 Dimensionless Rotated params.tangent_x

to match orientation of

current contact normal (in

inertial coordinates)

tangentY double 3 Dimensionless Rotated params.tangent_y

to match orientation of

current contact normal

tangentY_inertial double 3 Dimensionless Rotated params.tangent_y

to match orientation of

current contact normal (in

inertial coordinates)

tangent_z double 3 Dimensionless Nominal normal direction

(inertial coordinates)

torque double 3 Torque Contact constraint torque

(node frame)

Discrete States

Name Type Size Quantity Units Description

contact_area double Area Estimate of contact patch

area

currentContactPlot int Current contact type (for

plotting)

currentContactType ContactType Current contact type

current_seeds double 2 Dimensionless Current random seeds

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

normalForce double 3 Force Force of normal direction

spring/damper (node frame)

sinkage double Length Estimate of sinkage

tangentForce double 3 Force Force of tangent direction

spring/damper (node frame)

traction_scale double Dimensionless Current traction scale

Continuous States

Name Type Size Quantity Units Description

tangentDeflection double 2 Length Currect deflection of contact

point in tangental

directions.

Flow Ins

Name Type Size Quantity Units Description

cohesion double Pressure Soil cohesion (kPa)

contactLocation double 3 Length Location of contact relative

to body node (body frame)

density double Density soil density (kg/m^3)

gravity double 3 Acceleration Gravity vector

normalDirection double 3 Dimensionless Normal vector for contact

(inertial frame)

penetrationDistance double Length penetration distance

phi double Angle internal friction angle

(radians)

Flow Outs

Name Type Size Quantity Units Description

currCState double 2 Length current cont state (used for

testing)

32.6. SurfaceContactModels::CompliantTerzaghiBaseAlt Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Crossley (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Crossley__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Pad/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Pad-Soil__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__keyword__group.html)

Spring/Damper!Hunt (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Hunt__keyword__group.html)

Spring/Damper!Nonlinear (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Nonlinear__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

Description

Model that applies compliant contact force to a body based on a simplified Terzaghi model.

This model computes and applies soil contact forces on object in contact with the surface. This model assumes that when the pad is in contact with the soil, all parts of the pad are in

contact. This model is a reimplementation of the CompliantTerzaghiPad model except that it uses the TerrainContactForce helper class. Normal force is computed using a non-linear

spring model. A linear spring/damper applies forces in the plane tangent to the contact normal. Terzahi base soil model is used to compute the transition between non-sliding and

sliding behavior in the tangent direction.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model CompliantTerzaghiBaseAlt class details

For more information on the members and functions of this model class, please see SurfaceContactModels::CompliantTerzaghiBaseAlt model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__CompliantTerzaghiBaseAlt__group.html)

Enums

BodyType Enum

In the CompliantTerzaghiBaseAlt model definition, the original enum BodyType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

alpha double 2 LinearSpringDamping Damping coefficient for

normal and tangent

directions

bodyType BodyType Wheel or pad body type

default_cohesion double Pressure Soil cohesion (kPa)

default_density double Density soil density

default_phi double Angle internal friction angle

(radians)

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

kp double 2 LinearSpringStiffness Spring constant for

compliant contact in normal

and tangent directions

maxForce double Force Maximum allowed applied

force - prevents numeric

problems

max_stddev double Dimensionless Maximum standard

deviation for randomness

n double 2 Dimensionless exponential for deflection

term for normal and

tangent directions

normalForceModel bool Normal force model (default

true, i.e. nonlinear)

 enum BodyType
 {
 wheel = 0,
 pad = 1
 };

 /// CompliantTerzaghiBaseAltBodyType enum
 enum CompliantTerzaghiBaseAltBodyType
 {
 COMPLIANT_TERZAGHI_BASE_ALT_BODY_TYPE_WHEEL = 0,
 COMPLIANT_TERZAGHI_BASE_ALT_BODY_TYPE_PAD = 1
 };

Name Type Size Quantity Units Description

rolling_resistance_scale double Dimensionless scale factor for

experimental rolling

resistance code (default = 0)

seeds double 2 Dimensionless Initial random seeds

slope_stddev double Dimensionless Slope of standard deviation

(should be less that zero)

tangentForceModel bool Tangent force model

(default false, i.e. linear)

use_random int Randomness off (0) or on (1)

Scratch

Name Type Size Quantity Units Description

cohesion double Pressure Current soil cohesion

current_seeds double 2 Dimensionless Current random seeds

density double Density Current soil density

force double 3 Force Contact constraint force

(node frame)

phi double Angle Current internal friction

angle

torque double 3 Torque Contact constraint torque

(node frame)

traction_scale double Dimensionless Current traction scale

Continuous States

Name Type Size Quantity Units Description

tangentDeflection double 2 Length Currect deflection of contact

point in tangental

directions.

Flow Ins

Name Type Size Quantity Units Description

gravity double 3 Acceleration Gravity vector

penetrationDistance double Length penetration distance

Flow Outs

Name Type Size Quantity Units Description

currCState double 2 Length current cont state (used for

testing)

32.7. SurfaceContactModels::CompliantTerzaghiBaseAltVariableSoil Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Crossley (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Crossley__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Pad/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Pad-Soil__keyword__group.html)

Rover!Wheel/Variable (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Variable__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__keyword__group.html)

Spring/Damper!Hunt (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Hunt__keyword__group.html)

Spring/Damper!Nonlinear (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Nonlinear__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__soil__keyword__group.html)

Description

Model that applies compliant contact force to a body based on a simplified Terzaghi model on a terrain with variable soil properties.

This model computes and applies soil contact forces on object in contact with the surface. This model assumes that when the pad is in contact with the soil, all parts of the pad are in

contact. This model is a reimplementation of the CompliantTerzaghiPad model except that it uses the TerrainContactForce helper class. Normal force is computed using a non-linear

spring model. A linear spring/damper applies forces in the plane tangent to the contact normal. Terzahi base soil model is used to compute the transition between non-sliding and

sliding behavior in the tangent direction. Soil properties are specified through a SurfaceIndicantOverlay SimScape object.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model CompliantTerzaghiBaseAltVariableSoil class details

For more information on the members and functions of this model class, please see SurfaceContactModels::CompliantTerzaghiBaseAltVariableSoil model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__CompliantTerzaghiBaseAltVariableSoil__group.html)

Enums

BodyType Enum

In the CompliantTerzaghiBaseAltVariableSoil model definition, the original enum BodyType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

bodyType BodyType Wheel or pad body type

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

max_stddev double Dimensionless Maximum standard

deviation for randomness

seeds double 2 Dimensionless Initial random seeds

 enum BodyType
 {
 wheel = 0,
 pad = 1
 };

 /// CompliantTerzaghiBaseAltVariableSoilBodyType enum
 enum CompliantTerzaghiBaseAltVariableSoilBodyType
 {
 COMPLIANT_TERZAGHI_BASE_ALT_VARIABLE_SOIL_BODY_TYPE_WHEEL = 0,
 COMPLIANT_TERZAGHI_BASE_ALT_VARIABLE_SOIL_BODY_TYPE_PAD = 1
 };

Name Type Size Quantity Units Description

slope_stddev double Dimensionless Slope of standard deviation

(should be less that zero)

terzaghi_soil_params TerzaghiSoilParams * Variable size list of Struct

containing Terzaghi

parameter values for each

soil type

use_random int Randomness off (0) or on (1)

Scratch

Name Type Size Quantity Units Description

body_pos double 3 Length The location of the body in

terrain frame

current_seeds double 2 Dimensionless Current random seeds

current_terzaghi_soil_params TerzaghiSoilParams Current soil parameters

force double 3 Force Contact constraint force

(node frame)

soil_type int Current soil type under the

wheel.

torque double 3 Torque Contact constraint torque

(node frame)

traction_scale double Dimensionless Current traction scale

Continuous States

Name Type Size Quantity Units Description

tangentDeflection double 2 Length Currect deflection of contact

point in tangental

directions.

Flow Ins

Name Type Size Quantity Units Description

gravity double 3 Acceleration Gravity vector

penetrationDistance double Length penetration distance

Flow Outs

Name Type Size Quantity Units Description

currCState double 2 Length current cont state (used for

testing)

32.8. SurfaceContactModels::CompliantTerzaghiCylindricalWheelAlt Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Crossley (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Crossley__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__keyword__group.html)

Spring/Damper!Hunt (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Hunt__keyword__group.html)

Spring/Damper!Nonlinear (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Nonlinear__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__keyword__group.html)

Wheel!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Contact__keyword__group.html)

Wheel!Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Soil__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

Description

Applies compliant contact force to a body based on a simplified Terzaghi model.

This model computes and applies wheel/soil contact forces. This model is a reimplementation of the CompliantTerzaghi model except that it uses the TerrainContactForce helper class.

Normal force is computed using a non-linear spring model. A linear spring/damper applies forces in the plane tangent to the contact normal. Terzahi base soil model is used to

compute the transition between rolling and sliding behavior in the tangent direction.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model CompliantTerzaghiCylindricalWheelAlt class details

For more information on the members and functions of this model class, please see SurfaceContactModels::CompliantTerzaghiCylindricalWheelAlt model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__CompliantTerzaghiCylindricalWheelAlt__group.html)

Enums

Parameters

Name Type Size Quantity Units Description

wheel_radius double Length wheel radius (used to

compute contact patch area)

wheel_width double Length wheel width (used to

compute contact patch area)

32.9. SurfaceContactModels::CompliantTerzaghiCylindricalWheelAltVariableSoil Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Crossley (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Crossley__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Rover!Wheel/Variable (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Variable__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__keyword__group.html)

Spring/Damper!Hunt (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Hunt__keyword__group.html)

Spring/Damper!Nonlinear (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Nonlinear__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__keyword__group.html)

Wheel!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Contact__keyword__group.html)

Wheel!Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Soil__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__soil__keyword__group.html)

Description

Applies compliant contact force to a body based on a simplified Terzaghi model on a terrain with variable soil properties.

This model computes and applies wheel/soil contact forces. This model is a reimplementation of the CompliantTerzaghi model except that it uses the TerrainContactForce helper class.

Normal force is computed using a non-linear spring model. A linear spring/damper applies forces in the plane tangent to the contact normal. Terzahi base soil model is used to

compute the transition between rolling and sliding behavior in the tangent direction. Soil properties are specified through a SurfaceIndicantOverlay SimScape object.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model CompliantTerzaghiCylindricalWheelAltVariableSoil class details

For more information on the members and functions of this model class, please see SurfaceContactModels::CompliantTerzaghiCylindricalWheelAltVariableSoil model class doxygen

documentation (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__CompliantTerzaghiCylindricalWheelAltVariableSoil__group.html)

Enums

Parameters

Name Type Size Quantity Units Description

wheel_radius double Length wheel radius (used to

compute contact patch area)

wheel_width double Length wheel width (used to

compute contact patch area)

32.10. SurfaceContactModels::CompliantTerzaghiPad Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Crossley (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Crossley__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Pad/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Pad-Soil__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__keyword__group.html)

Spring/Damper!Hunt (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Hunt__keyword__group.html)

Spring/Damper!Nonlinear (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Nonlinear__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

Description

Applies compliant contact force to a body based on a simplified Terzaghi model.

This model computes and applies soil contact forces on flat pad in contact with the surface. This model assumes that when the pad is in contact with the soil, all parts of the pad are in

contact. Normal force is computed using a non-linear spring model. A linear spring/damper applies forces in the plane tangent to the contact normal. Terzahi base soil model is used to

compute the transition between non-sliding and sliding behavior in the tangent direction.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model CompliantTerzaghiPad class details

For more information on the members and functions of this model class, please see SurfaceContactModels::CompliantTerzaghiPad model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__CompliantTerzaghiPad__group.html)

Enums

ContactType Enum

In the CompliantTerzaghiPad model definition, the original enum ContactType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

alpha double 2 LinearSpringDamping alpha for normal and

tangent directions

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

kp double 2 LinearSpringStiffness Spring constant for

compliant contact in normal

and tangent directions

maxForce double Force Maximum allowed applied

force - prevents numeric

problems

max_stddev double Dimensionless Maximum standard

deviation for randomness

n double 2 Dimensionless exponential for deflection

term for normal and

tangent directions

normalForceModel bool Normal force model (default

true, i.e. nonlinear)

 enum ContactType
 {
 NoContact = 0,
 Sliding = 1,
 NotSliding = 2
 };

 /// CompliantTerzaghiPadContactType enum
 enum CompliantTerzaghiPadContactType
 {
 COMPLIANT_TERZAGHI_PAD_CONTACT_TYPE_NO_CONTACT = 0,
 COMPLIANT_TERZAGHI_PAD_CONTACT_TYPE_SLIDING = 1,
 COMPLIANT_TERZAGHI_PAD_CONTACT_TYPE_NOT_SLIDING = 2
 };

Name Type Size Quantity Units Description

pad_radius double Length pad radius (used to compute

contact patch area)

rolling_resistance_scale double Dimensionless scale factor for

experimental rolling

resistance code (default = 0)

seeds double 2 Dimensionless Initial random seeds

slope_stddev double Dimensionless Slope of standard deviation

(should be less that zero)

tangentForceModel bool Tangent force model

(default false, i.e. linear)

tangent_x double 3 Dimensionless First tangent direction

(inertial coordinates).

tangent_y double 3 Dimensionless Second tangent direction

(inertial coordinates,

orthogonal to tanget_x)

use_random bool Randomness off (0) or on (1)

Scratch

Name Type Size Quantity Units Description

Nc double Dimensionless Terzaghi Cohesion constant

Ng double Dimensionless Terzaghi Gamma constant

Nq double Dimensionless Terzaghi Soil surcharge

constant

area double Area Computed area of contact

patch

contactLocationInertial double 3 Length Location of contact (inertial

frame)

contactVelocity double 3 Velocity Velocity of contact point

(node frame)

force double 3 Force Contact constraint force

(node frame)

gamma double SpecificWeight Soil specific weight = gravity

* density

mag_grav double Acceleration Magnitude of gravity

nodeAngularVelocity double 3 AngularVelocity Linear velocity of node

center (node coordinates)

nodeLinearVelocity double 3 Velocity Linear velocity of node

center (node coordinates)

nodeframeNormal double 3 Dimensionless normal vector written in

node frame

normalForceInertial double 3 Force Force of normal direction

spring/damper (inertial

frame)

normalVelocity double 3 Velocity Velocity of point in normal

direction

penetrationDistance double Length Penetration distance

tanPhi double Angle Tangent of friction angle

tangentForceInertial double 3 Force Force of tangent direction

spring/damper (inertial

frame)

Name Type Size Quantity Units Description

tangentX double 3 Dimensionless Rotated params.tangent_x

to match orientation of

current contact normal

tangentY double 3 Dimensionless Rotated params.tangent_y

to match orientation of

current contact normal

tangent_z double 3 Dimensionless Nominal normal direction

(inertial coordinates)

torque double 3 Torque Contact constraint torque

(node frame)

Discrete States

Name Type Size Quantity Units Description

contact_area double Area Estimate of contact patch

area

currentContactPlot int Current contact type (for

plotting)

currentContactType ContactType Current contact type

current_seeds double 2 Dimensionless Current random seeds

normalForce double 3 Force Force of normal direction

spring/damper (node frame)

sinkage double Length Estimate of sinkage

tangentForce double 3 Force Force of tangent direction

spring/damper (node frame)

traction_scale double Dimensionless Current traction scale

Continuous States

Name Type Size Quantity Units Description

tangentDeflection double 2 Length Currect deflection of contact

point in tangental

directions.

Flow Ins

Name Type Size Quantity Units Description

cohesion double Pressure Soil cohesion (kPa)

contactLocation double 3 Length Location of contact relative

to body node (body frame)

density double Density soil density (kg/m^3)

gravity double 3 Acceleration Gravity vector

normalDirection double 3 Dimensionless Normal vector for contact

(inertial frame)

penetrationDistance double Length penetration distance

phi double Angle internal friction angle

(radians)

Flow Outs

Name Type Size Quantity Units Description

currCState double 2 Length current cont state (used for

testing)

32.11. SurfaceContactModels::CompliantTerzaghiPadAlt Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Crossley (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Crossley__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Pad/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Pad-Soil__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__keyword__group.html)

Spring/Damper!Hunt (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Hunt__keyword__group.html)

Spring/Damper!Nonlinear (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Nonlinear__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

Description

Applies compliant contact force to a body based on a simplified Terzaghi model.

This model computes and applies soil contact forces on flat pad in contact with the surface. This model assumes that when the pad is in contact with the soil, all parts of the pad are in

contact. This model is a reimplementation of the CompliantTerzaghiPad model except that it uses the TerrainContactForce helper class. Normal force is computed using a non-linear

spring model. A linear spring/damper applies forces in the plane tangent to the contact normal. Terzahi base soil model is used to compute the transition between non-sliding and

sliding behavior in the tangent direction.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model CompliantTerzaghiPadAlt class details

For more information on the members and functions of this model class, please see SurfaceContactModels::CompliantTerzaghiPadAlt model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__CompliantTerzaghiPadAlt__group.html)

Enums

Parameters

Name Type Size Quantity Units Description

pad_radius double Length pad radius (used to compute

contact patch area)

32.12. SurfaceContactModels::CompliantTerzaghiRotatingPad Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Bevameter (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Bevameter__keyword__group.html)

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Crossley (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Crossley__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Pad/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Pad-Soil__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__keyword__group.html)

Spring/Damper!Hunt (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Hunt__keyword__group.html)

Spring/Damper!Nonlinear (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Nonlinear__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

Description

Applies compliant contact force to an annular body based on a simplified Terzaghi model and computes torque from shear stress.

This model is essential the CompliantTerzaghiPadAlt model with additional code to compute torques if the pad rotates. This model computes and applies soil contact forces on an

annular pad in contact with the surface. This model assumes that when the pad is in contact with the soil, all parts of the pad are in contact. This model is a reimplementation of the

CompliantTerzaghiPad model except that it uses the TerrainContactForce helper class. Normal force is computed using a non-linear spring model. Normal torque is computed from

Bekker’s formula for the shear stress: shear stress = (soil_cohesion + normal_stress * coefficient_of_internal_friction) * (1 - exp(-j/k)) where j = shear displacement k = soil modulus of

deformation A linear spring/damper applies forces in the plane tangent to the contact normal. Terzahi base soil model is used to compute the transition between non-sliding and

sliding behavior in the tangent direction.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model CompliantTerzaghiRotatingPad class details

For more information on the members and functions of this model class, please see SurfaceContactModels::CompliantTerzaghiRotatingPad model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__CompliantTerzaghiRotatingPad__group.html)

Enums

Parameters

Name Type Size Quantity Units Description

deformation_modulus double Length horizontal soil modulus of

deformation (meters)

inner_radius double Length inner pad radius (non-zero

if pad is annular ring)

pad_radius double Length outer pad radius

Scratch

Name Type Size Quantity Units Description

J double Length displacement (valid only if

penetration > 0)

current_theta double Angle Current angle

delta_theta double Angle Angular Displacement (valid

only if penetration > 0)

effective_pad_radius double Length radius for computing

normal stress

normal_stress double Pressure normal stress (valid only if

penetration > 0)

Name Type Size Quantity Units Description

normal_torque double Torque normal torque from shear

stress (valid only if

penetration > 0)

r_mean double Length mean radius for computing

displacement (valid only if

penetration > 0)

shear_stress double Pressure shear stress (valid only if

penetration > 0)

Discrete States

Name Type Size Quantity Units Description

theta_start double Angle If penetration > 0: angle at

start of penetration

otherwise equal to

current_theta

32.13. SurfaceContactModels::ComputePlanePenetration Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Computational (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Computational__keyword__group.html)

Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Distance__keyword__group.html)

Distance!Penetration (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Distance__Penetration__keyword__group.html)

Penetration (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Penetration__keyword__group.html)

Penetration!Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Penetration__Distance__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Surface (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Surface__keyword__group.html)

Surface!Plane (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Surface__Plane__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__keyword__group.html)

Wheel!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Contact__keyword__group.html)

Wheel!Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Soil__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

geometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__keyword__group.html)

geometry!Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__Distance__keyword__group.html)

Description

Computes the penentration of a body node into a flat plane.

dummy

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model ComputePlanePenetration class details

For more information on the members and functions of this model class, please see SurfaceContactModels::ComputePlanePenetration model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__ComputePlanePenetration__group.html)

Parameters

Name Type Size Quantity Units Description

normal double 3 Dimensionless normal to plane

Name Type Size Quantity Units Description

point double 3 Length point on plane

Flow Outs

Name Type Size Quantity Units Description

penetrationDistance double Length penetration distance

32.14. SurfaceContactModels::FialaTire Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

Tire (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Tire__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__keyword__group.html)

Wheel!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Contact__keyword__group.html)

Wheel!Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Soil__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

Description

Applies contact spatial force for a soft tire using Fiala model.

This model computes and applies tire/hard ground contact forces.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model FialaTire class details

For more information on the members and functions of this model class, please see SurfaceContactModels::FialaTire model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__FialaTire__group.html)

Parameters

Name Type Size Quantity Units Description

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

friction_limits double 2 Dimensionless The static and dynamic

coefficients of fricition

lateral_tire_stiffness double Unspecified The lateral tire stiffness.

longitudinal_tire_stiffness double Force The longitudinal tire

stiffness.

Name Type Size Quantity Units Description

normal_damping double LinearSpringDamping The normal damping

coefficient for the tire.

normal_stiffness double LinearSpringStiffness The normal stiffness

coefficient for the tire.

rolling_resistance_coeff double Length The rolling resistance

moment coefficient

wheel_radius double Length wheel radius (used to

compute contact patch area)

wheel_width double Length wheel width (used to

compute contact patch area)

Scratch

Name Type Size Quantity Units Description

force double 3 Force Contact force (contact

frame)

torque double 3 Torque Contact moment (contact

frame)

wheel_moment double 3 Torque Wheel moment (contact

frame)

Flow Ins

Name Type Size Quantity Units Description

deformation double Length tire deformation

gravity double 3 Acceleration Gravity vector

32.15. SurfaceContactModels::MagicFormulaTireHMMWV Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

Tire (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Tire__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__keyword__group.html)

Wheel!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Contact__keyword__group.html)

Wheel!Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Soil__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

Description

Applies contact spatial force for a soft tire using the Magic Formula HMMWV tire model from UMich for the HMMWV vehicle 315_80R22_5 tire .

This model computes and applies tire/hard ground contact forces.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model MagicFormulaTireHMMWV class details

For more information on the members and functions of this model class, please see SurfaceContactModels::MagicFormulaTireHMMWV model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__MagicFormulaTireHMMWV__group.html)

Parameters

Name Type Size Quantity Units Description

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

normal_damping double LinearSpringDamping The normal damping

coefficient for the tire.

normal_stiffness double LinearSpringStiffness The normal stiffness

coefficient for the tire.

Scratch

Name Type Size Quantity Units Description

force double 3 Force Contact force (contact

frame)

torque double 3 Torque Contact moment (contact

frame)

wheel_moment double 3 Torque Wheel moment (contact

frame)

Discrete States

Name Type Size Quantity Units Description

prev_deformation double Length Tire deformation at the

previous time tick

Flow Ins

Name Type Size Quantity Units Description

camber_angle double Angle the tire tilt angle

deformation double Length tire deformation

gravity double 3 Acceleration Gravity vector

32.16. SurfaceContactModels::MagicFormulaTireMRZR Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

Tire (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Tire__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__keyword__group.html)

Wheel!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Contact__keyword__group.html)

Wheel!Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Soil__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

Description

Applies contact spatial force for a soft tire using the Magic Formula MRZR tire model from UMich for the MRZR vehicle tire .

This model computes and applies tire/hard ground contact forces.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model MagicFormulaTireMRZR class details

For more information on the members and functions of this model class, please see SurfaceContactModels::MagicFormulaTireMRZR model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__MagicFormulaTireMRZR__group.html)

Parameters

Name Type Size Quantity Units Description

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

normal_damping double LinearSpringDamping The normal damping

coefficient for the tire.

normal_stiffness double LinearSpringStiffness The normal stiffness

coefficient for the tire.

Scratch

Name Type Size Quantity Units Description

force double 3 Force Contact force (contact

frame)

torque double 3 Torque Contact moment (contact

frame)

wheel_moment double 3 Torque Wheel moment (contact

frame)

Discrete States

Name Type Size Quantity Units Description

prev_deformation double Length Tire deformation at the

previous time tick

Flow Ins

Name Type Size Quantity Units Description

camber_angle double Angle the tire tilt angle

deformation double Length tire deformation

gravity double 3 Acceleration Gravity vector

32.17. SurfaceContactModels::ScmDartsModel Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Description

Soil Contact model for wheel-soil interaction

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model ScmDartsModel class details

For more information on the members and functions of this model class, please see SurfaceContactModels::ScmDartsModel model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__ScmDartsModel__group.html)

Parameters

Name Type Size Quantity Units Description

deform_param deformationParameter soil deformation parameter

dem object The terrain TopoDem

instance.

elastic_layer double Length elasticLayer algorithm

parameter describing the

max elastic layer thickness

erosion_limit int erosionLimit max number

of allowed erosion loops

numberOfChords int number of chords used in

the deposition algorithm

numberOfThreads int numberOfThreads multi

threading settings

scm_flags int flags SCM options

soil_param soilParameter soil parameter

vd double Velocity velocity for regularization

wheel_param wheelParameter Characteristics of wheel

wheel_radius double Length wheel radius (used to

compute contact patch area)

wheel_width double Length wheel width (used to

compute contact patch area)

Scratch

Name Type Size Quantity Units Description

time double Time current simulation time

wheel_pos double 3 Torque Contact constraint torque

(node frame)

wheel_vel double 3 Velocity Current traction scale

Flow Ins

Name Type Size Quantity Units Description

gravity double 3 Acceleration gravity environment

parameter describing the

gravitational acceleration

Flow Outs

Name Type Size Quantity Units Description

wheel_force double 3 Force Force on wheels in x, y, and z

direction

wheel_torque double 3 Torque Torque on wheels in x, y, and

z direction

32.18. SurfaceContactModels::TerrainPenAnalytic Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Computational (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Computational__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Distance__keyword__group.html)

Distance!Penetration (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Distance__Penetration__keyword__group.html)

Penetration (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Penetration__keyword__group.html)

Penetration!Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Penetration__Distance__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Surface (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Surface__keyword__group.html)

Swift (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Swift__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

geometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__keyword__group.html)

geometry!Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__Distance__keyword__group.html)

geometry!Swift (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__Swift__keyword__group.html)

Description

Calculates penetration distance of wheel shape into terrain

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model TerrainPenAnalytic class details

For more information on the members and functions of this model class, please see SurfaceContactModels::TerrainPenAnalytic model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__TerrainPenAnalytic__group.html)

Parameters

Name Type Size Quantity Units Description

axis double 3 Dimensionless Rotation axis of wheel

demSpecName string The name of the top level

DVar spec with the

vehicle’s TopoDem pointer.

depthfactor double Dimensionless multiplicative factor for

wheel penetration of soil

on topodem

Name Type Size Quantity Units Description

padding double Dimensionless not used

patch_size double Length terrain patch size

radius double Length Actual wheel radius

showtracks double Flag enable terrain change due

to tracks

velocityThreshold double Velocity Set Minimum Velocity to

show wheel tracks

wheel_penetration_patch_resolution double Length Maximum subsampled

resolution to use for

computing terrain patch

statistics

width double Length Wheel width

Scratch

Name Type Size Quantity Units Description

normal double 3 Dimensionless scratch normal test

Flow Ins

Name Type Size Quantity Units Description

cohesion double Pressure input soil mechanics

cohesion parameter

density double Density input soil mechanics density

parameter

frictionAngle double Angle input soil mechanics friction

parameter

Flow Outs

Name Type Size Quantity Units Description

cohesion double Pressure soil mechanics cohesion

parameter

contactLocation double 3 Length contact point location (body

frame)

density double Density soil mechanics density

parameter

frictionAngle double Angle soil mechanics friction

parameter

penetrationDistance double Length penetration distance

terrainNormal double 3 Dimensionless normal to terrain at contact

point

32.19. SurfaceContactModels::TerrainPenAnalyticBaseAlt Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Computational (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Computational__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Pad (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Pad__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Distance__keyword__group.html)

Distance!Penetration (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Distance__Penetration__keyword__group.html)

Penetration (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Penetration__keyword__group.html)

Penetration!Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Penetration__Distance__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Pad/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Pad-Soil__keyword__group.html)

Surface (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Surface__keyword__group.html)

Swift (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Swift__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

geometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__keyword__group.html)

geometry!Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__Distance__keyword__group.html)

geometry!Swift (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__Swift__keyword__group.html)

Description

Base class for calculating penetration distance of an object into the terrain

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model TerrainPenAnalyticBaseAlt class details

For more information on the members and functions of this model class, please see SurfaceContactModels::TerrainPenAnalyticBaseAlt model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__TerrainPenAnalyticBaseAlt__group.html)

Parameters

Name Type Size Quantity Units Description

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

patch_resolution double Length Maximum subsampled

resolution to use for

computing terrain patch

statistics

patch_size double Length terrain patch size

use_node_flag bool Flag to select whether the

node (if false) or the body (if

true) location is used for

penetration check.

Scratch

Name Type Size Quantity Units Description

contact_pos double 3 Length The location of the contact

location (inertial frame)

terrain_height double Length The terrain height at the

body location

Flow Outs

Name Type Size Quantity Units Description

penetrationDistance double Length penetration distance

32.20. SurfaceContactModels::TerrainPenAnalyticCylindricalWheelAlt Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Computational (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Computational__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Distance__keyword__group.html)

Distance!Penetration (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Distance__Penetration__keyword__group.html)

Penetration (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Penetration__keyword__group.html)

Penetration!Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Penetration__Distance__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Surface (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Surface__keyword__group.html)

Swift (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Swift__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

geometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__keyword__group.html)

geometry!Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__Distance__keyword__group.html)

geometry!Swift (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__Swift__keyword__group.html)

Description

Calculates penetration distance of cylindrical wheel into terrain

This model is a reimplementation of the TerrainPenAalytic model except that it uses the TerrainPeneration helper class.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model TerrainPenAnalyticCylindricalWheelAlt class details

For more information on the members and functions of this model class, please see SurfaceContactModels::TerrainPenAnalyticCylindricalWheelAlt model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__TerrainPenAnalyticCylindricalWheelAlt__group.html)

Parameters

Name Type Size Quantity Units Description

contact_wheel_aligned int If 0, the contact frame is

aligned with the terrain,

else with the wheel

radius double Length Actual wheel radius

width double Length Wheel width

Flow Outs

Name Type Size Quantity Units Description

camber_angle double Angle The wheel tilt angle

32.21. SurfaceContactModels::TerrainPenAnalyticPad Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Computational (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Computational__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Pad (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Pad__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Distance__keyword__group.html)

Distance!Penetration (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Distance__Penetration__keyword__group.html)

Penetration (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Penetration__keyword__group.html)

Penetration!Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Penetration__Distance__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Pad/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Pad-Soil__keyword__group.html)

Surface (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Surface__keyword__group.html)

Swift (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Swift__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

geometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__keyword__group.html)

geometry!Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__Distance__keyword__group.html)

geometry!Swift (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__Swift__keyword__group.html)

Description

Calculates penetration distance of a circular pad shape into terrain

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model TerrainPenAnalyticPad class details

For more information on the members and functions of this model class, please see SurfaceContactModels::TerrainPenAnalyticPad model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__TerrainPenAnalyticPad__group.html)

Parameters

Name Type Size Quantity Units Description

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

num_points int Number of points to

evaluate around pad

circumference (>=0)

pad_radius double Length Radius of the pad (m)

patch_resolution double Length Maximum subsampled

resolution to use for

computing terrain patch

statistics

Scratch

Name Type Size Quantity Units Description

normal double 3 Dimensionless scratch normal test

patch_size double Length terrain patch size

point_sep_angle double Angle Angle between successive

points on the circumference

Flow Ins

Name Type Size Quantity Units Description

Name Type Size Quantity Units Description

cohesion double Stress input soil mechanics

cohesion parameter

density double Density input soil mechanics density

parameter

frictionAngle double Angle input soil mechanics friction

parameter

Flow Outs

Name Type Size Quantity Units Description

cohesion double Stress soil mechanics cohesion

parameter

contactLocation double 3 Length contact point location (body

frame)

density double Density soil mechanics density

parameter

frictionAngle double Angle soil mechanics friction

parameter

penetrationDistance double Length penetration distance

terrainNormal double 3 Dimensionless normal to terrain at contact

point (inertial frame)

32.22. SurfaceContactModels::TerrainPenAnalyticPadAlt Sensor Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Sensor class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Sensor__group.html)

Keywords Doxygen groups

Computational (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Computational__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Pad (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Pad__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Distance__keyword__group.html)

Distance!Penetration (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Distance__Penetration__keyword__group.html)

Penetration (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Penetration__keyword__group.html)

Penetration!Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Penetration__Distance__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Pad/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Pad-Soil__keyword__group.html)

Surface (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Surface__keyword__group.html)

Swift (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Swift__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

geometry (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__keyword__group.html)

geometry!Distance (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__Distance__keyword__group.html)

geometry!Swift (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__geometry__Swift__keyword__group.html)

Description

Calculates penetration distance of a circular pad shape into terrain

This model is a reimplementation of the TerrainPenAnalyticPad model except that it uses the TerrainPeneration helper class.

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model TerrainPenAnalyticPadAlt class details

For more information on the members and functions of this model class, please see SurfaceContactModels::TerrainPenAnalyticPadAlt model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__TerrainPenAnalyticPadAlt__group.html)

Parameters

Name Type Size Quantity Units Description

num_points int Number of points to

evaluate around pad

circumference (>=0)

pad_radius double Length Radius of the pad (m)

pen_offset double 3 Length The translational offset

from the body frame to the

sensing plane (body frame)

32.23. SurfaceContactModels::TyreContact Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all SurfaceContactModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Constraint (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__keyword__group.html)

Constraint!Soft (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Constraint__Soft__keyword__group.html)

Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__keyword__group.html)

Contact!Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Terrain__keyword__group.html)

Contact!Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Contact__Wheel__keyword__group.html)

Crossley (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Crossley__keyword__group.html)

Friction (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Friction__keyword__group.html)

Rover (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__keyword__group.html)

Rover!Dynamics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Dynamics__keyword__group.html)

Rover!Wheel/Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Rover__Wheel-Soil__keyword__group.html)

Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Soil__keyword__group.html)

Spring/Damper (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__keyword__group.html)

Spring/Damper!Hunt (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Hunt__keyword__group.html)

Spring/Damper!Nonlinear (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Spring-Damper__Nonlinear__keyword__group.html)

Terrain (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__keyword__group.html)

Terrain!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Terrain__Contact__keyword__group.html)

Wheel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__keyword__group.html)

Wheel!Contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Contact__keyword__group.html)

Wheel!Soil (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__Wheel__Soil__keyword__group.html)

contact (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__contact__keyword__group.html)

mechanics (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__mechanics__keyword__group.html)

Description

Applies compliant contact force to a body based on Magic Formula Tyre Model.

This model computes and applies wheel/soil contact forces treating the Tire as a flexible body and uses the interpolated data based on various tire parameters Created by Adam

Ryason and Calvin Kuo

from the SurfaceContactModels models library for the xref:Dshellpp_module simulation framework.

Model TyreContact class details

For more information on the members and functions of this model class, please see SurfaceContactModels::TyreContact model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/SurfaceContactModels/html/group__TyreContact__group.html)

Enums

ForceModel Enum

In the TyreContact model definition, the original enum ForceModel is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

ContactType Enum

In the TyreContact model definition, the original enum ContactType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

alpha double 2 LinearSpringDamping alpha for normal and

tangent directions

demSpecName string The name of the top level

DVar spec with the vehicle’s

TopoDem pointer.

kp double 2 LinearSpringStiffness Spring constant for

compliant contact in normal

and tangent directions

maxForce double Force Maximum allowed applied

force - prevents numeric

problems

n double 2 Dimensionless exponential for deflection

term for normal and

tangent directions

normalForceModel ForceModel Normal force model (default

is nonlinear)

tangentForceModel ForceModel Tangent force model

(default is linear)

tangent_x double 3 Dimensionless First tangent direction

(inertial coordinates).

tangent_y double 3 Dimensionless Second tangent direction

(inertial coordinates,

orthogonal to tanget_x)

 enum ForceModel
{

 nonlinear = 0,
linear = 1

 };

/// TyreContactForceModel enum
 enum TyreContactForceModel

{
 TYRE_CONTACT_FORCE_MODEL_NONLINEAR = 0,

TYRE_CONTACT_FORCE_MODEL_LINEAR = 1
 };

 enum ContactType
{

 NoContact = 0,
Sliding = 1,

 Rolling = 2
};

/// TyreContactContactType enum
 enum TyreContactContactType

{
 TYRE_CONTACT_CONTACT_TYPE_NO_CONTACT = 0,

TYRE_CONTACT_CONTACT_TYPE_SLIDING = 1,
 TYRE_CONTACT_CONTACT_TYPE_ROLLING = 2

};

Name Type Size Quantity Units Description

wheel_radius double Length wheel radius (used to

compute contact patch area)

Scratch

Name Type Size Quantity Units Description

ContProjectionVelocity double Velocity Projection of contact point

veclocity along the

Directional Velocity

ContVelocity double 3 Velocity Velocity of contact point

(node frame)

DirectionMag double Velocity Magnitude of the Direction

Vector (node coords)

HubLinearVelocity double 3 Velocity Linear velocity of Hub /

Wheel Center (node

coordinates)

HubMag double Velocity Magnitude of the Hub

velocity vector

HubProjeNormVelocity double 3 Velocity Projection of tire veclocity

along the Rotational Vector

HubProjectionVelocity double 3 Velocity Projection of tire veclocity

along the Directional

Velocity

HubProjectionVelocityX double Velocity Projection of tire veclocity

along the Directional

Velocity

HubProjectionVelocityY double Velocity Projection of tire veclocity

along the Directional

Velocity

Latforce double Force Lateral Force scalar

Longforce double Force Longitudinal Force scalar

NodeVelocity double 3 Velocity Velocity of contact point in

Inertial

NormalMag double Force Magnitude of the Normal

Force (node coords)

NormalO double Force sum of normal forces used

for calculating the average

force

contactLocationInertial double 3 Length Location of contact (inertial

frame)

count int counts the step since last

steady state (normal force)

force double 3 Force Contact constraint force

(node frame)

latslip double Angle Lateral Slip Ratio

nodeAngularVelocity double 3 AngularVelocity Angular velocity of contact

node (node coordinates)

nodeLinearVelocity double 3 Velocity Linear velocity of contact

node (node coordinates)

nodeframeNormal double 3 Dimensionless normal vector written in

node frame

Name Type Size Quantity Units Description

normalForce double 3 Force Force of normal direction

spring/damper (node frame)

normalVelocity double 3 Velocity Velocity of point in normal

direction

okay bool sum of normal forces used

for calculating the average

force

penetrationDistance double Length Penetration distance

slipVelocity double Velocity Slip Velocity of the Contact

Point

slope double Force sum of normal forces used

for calculating the average

force

tangentForce double 3 Force Force of tangent direction

spring/damper (node frame)

tangentX double 3 Dimensionless Rotated params.tangent_x

to match orientation of

current contact normal

tangentX_inertial double 3 Dimensionless Rotated params.tangent_x

to match orientation of

current contact normal (in

inertial coordinates)

tangentY double 3 Dimensionless Rotated params.tangent_y

to match orientation of

current contact normal

tangentY_inertial double 3 Dimensionless Rotated params.tangent_y

to match orientation of

current contact normal (in

inertial coordinates)

tangent_z double 3 Dimensionless Nominal normal direction

(inertial coordinates)

torque double 3 Torque Contact constraint torque

(node frame)

unitDir double 3 Dimensionless Direction of the Tire (node

frame)

unitHub double 3 Dimensionless Hub Vel unit vector

unitWheel double 3 Dimensionless Rotation unit vector

wheelRate double 3 AngularVelocity Wheel rate about its spin

axis (node coordinates)

wheelVector double 3 Dimensionless Wheel Vector (node

coordinates)

wheelslip double Dimensionless Longitudinal Slip Ratio

Flow Ins

Name Type Size Quantity Units Description

cohesion double Pressure Soil cohesion (kPa)

contactLocation double 3 Length Location of contact relative

to body node (body frame)

density double Density soil density (kg/m^3)

gravity double 3 Acceleration Gravity vector

Name Type Size Quantity Units Description

normalDirection double 3 Dimensionless Normal vector for contact

(inertial frame)

penetrationDistance double Length penetration distance

phi double Angle internal friction angle

(radians)

Flow Outs

Name Type Size Quantity Units Description

currCState double 2 Length current cont state (used for

testing)

33. VehicleModels Dshell model library

Doxygen reference to Models in VehicleModels by Type

Actuators (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Sensors (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Sensor__group.html)

Motors (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Motor__group.html)

Encoders (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Encoder__group.html)

Flows (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Flow__group.html)

Continuous (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__ContStates__group.html)

33.1. VehicleModels::FixedThruster Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Force (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Force__keyword__group.html)

Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Fuel__keyword__group.html)

Resource (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Resource__keyword__group.html)

Thruster (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__keyword__group.html)

Thruster!Constant (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__Constant__keyword__group.html)

Thruster!On/Off (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__On-Off__keyword__group.html)

consumption (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__consumption__keyword__group.html)

model (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__keyword__group.html)

model!Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__Fuel__keyword__group.html)

Description

Models a thruster with constant force output, ON/OFF commands and no delay. This thruster tracks fuel consumption and outputs total fuel burned.

The FixedThruster model accepts an on(1) or off(0) flowIn, and has parameters for thruster force level, direction (orientation) and specific impulse. The thrust commands are executed

without delay, and there is no ramp up or ramp down time on the thrust output. Fuel consumption is calculated based on the specific impulse. The fuel_used flowOut should be tied to

a FuelTank model in order to change the mass and inertial properties for the s/c. The fuel_remaining flowOut of the FuelTank model should be tied to the fuel_remaining flowIn of

this model. This allows the thruster to know when all available fuel has been used.

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model FixedThruster class details

For more information on the members and functions of this model class, please see VehicleModels::FixedThruster model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__FixedThruster__group.html)

Parameters

Name Type Size Quantity Units Description

isp double SpecificImpulse specific impulse

level double Force amount of force generated

by this thruster

Flow Ins

Name Type Size Quantity Units Description

on_off double Dimensionless command to turn thruster

on (!=0) or off (0)

33.2. VehicleModels::FuelManifold Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Description

Models a simple fuel manifold.

The FuelManifold model accepts two inputs which denotes the amount of fuel burned/drawn from a set of sinks and the amount of fuel avaialable from a set of sources. The inputs are

variable sized so that several thrusters/sinks and several tanks can share a single FuelManifold model. It outputs two array of doubles: fuel_burned_output, the sum of the input fuel

draws divided by the size of flowOuts()→fuel_burned, and fuel_remaining_output, the sum of input fuel avaialability replicated on all slices. Note: when the fuel_remaining is zero on

any line the draw rates for the other lines will be adjusted by their ratios to give a total flow rate of 1.0.

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model FuelManifold class details

For more information on the members and functions of this model class, please see VehicleModels::FuelManifold model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__FuelManifold__group.html)

Parameters

Name Type Size Quantity Units Description

fuel_draw_weights double * Dimensionless Fuel draw weighting for the

fuel_burned_output lines

Discrete States

Name Type Size Quantity Units Description

current_fuel_draw_weights double * Dimensionless The current fuel draw

weighting for the

fuel_burned_output lines

fuel_burned_output double * Mass The total amount of fuel burned

for each tank as far as this

manifold knows

num_burned_inputs unsigned int (uint) size of

flowIns()→fuel_burned_input

num_burned_outputs unsigned int (uint) size of

flowOuts()→fuel_burned_output

total_fuel_burned double Mass total fuel burned

total_fuel_remaining double Mass total remaining fuel

Flow Ins

Name Type Size Quantity Units Description

fuel_burned_input double * Unspecified Total amount of fuel burned

from each input

fuel_remaining_input double * Mass Total amount of remaining

fuel from each input

Flow Outs

Name Type Size Quantity Units Description

fuel_burned_output double * Unspecified Sum of thruster fuel burned

divided by num_outputs

multipled by

fuel_draw_weighting

fuel_remaining_output double Mass Sum of fuel remaining in

tanks connected to manifold

33.3. VehicleModels::FuelTank Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Description

Models a simple fuel tank.

The FuelTank model accepts a single input which denotes the amount of fuel burned. This input is variable sized so that several thrusters can share a single FuelTank model. It makes

Darts calls to update the mass and inertial properties of the spacecraft based on the amount of fuel remaining in the tank. It outputs the remaining fuel mass (this output can be tied

into the thruster models). Parameters denote the starting amount of fuel in the tank and the inertia matrix and CM location for the tank when empty. As fuel is removed from the tank

the inertia matrix and CM location are interpolated (linearly) between the starting value and the given value for the empty tank.

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model FuelTank class details

For more information on the members and functions of this model class, please see VehicleModels::FuelTank model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__FuelTank__group.html)

Enums

InertiaOriginType Enum

In the FuelTank model definition, the original enum InertiaOriginType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

empty_CM double 3 Length CM location for empty tank

empty_inertia double 9 MomentsOfInertia Inertia matrix for empty

tank

empty_mass double Mass Mass of fuel tank when

empty

inertia_data_origin InertiaOriginType Origin for for inertia matrix

data

initial_CM double 3 Length CM location for full tank

initial_inertia double 9 MomentsOfInertia Inertia matrix for full tank

num_thrusters unsigned int (uint) Number of thrusters using

this fuel tank

starting_fuel double Mass Initial mass of fuel in tank

Discrete States

Name Type Size Quantity Units Description

fuel_remaining double Mass remaining fuel

sum_fuel_consumed double Mass total fuel consumed

 enum InertiaOriginType
{

 BODY_ORIGIN = 0,
CENTER_OF_MASS = 1

 };

 /// FuelTankInertiaOriginType enum
enum FuelTankInertiaOriginType

 {
FUEL_TANK_INERTIA_ORIGIN_TYPE_BODY_ORIGIN = 0,

 FUEL_TANK_INERTIA_ORIGIN_TYPE_CENTER_OF_MASS = 1
};

Flow Ins

Name Type Size Quantity Units Description

fuel_burned double * Mass Total amount of consumed

fuel

Flow Outs

Name Type Size Quantity Units Description

fuel_remaining double Mass Fuel remaining in tank

33.4. VehicleModels::FuelTankDryMassWithTableLookup Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Description

Models a simple fuel tank. Mass and inertia are interpolated from a user-supplied table

Based on EDLR4Models/FuelTankWithTableLookup with the addition of the update_mass_properties parameter to enable/disable updating the body mass and inertia. * The tableFile

containing the mass/inertia should have this format: 1. Text file with 13 columns. Each column is a floating point number. Lines beginning with a non-numeric character are treated as

comments. 2. First column contains mass values (the independent value). 3. 2nd to 10th columns contain the inertia values. 11th to 13th columns contain the CM location. 2nd column

contains inertia[0][0] value 3rd column contains inertia[0][1] value 4th column contains inertia[0][2] value 5th column contains inertia[1][0] value 6th column contains inertia[1][1]

value 7th column contains inertia[1][2] value 8th column contains inertia[2][0] value 9th column contains inertia[2][1] value 10th column contains inertia[2][2] value 11th column

contains CM_loc[0] value 12th column contains CM_loc[1] value 13th column contains CM_loc[2] value Interpolation is done through the mathc90 dilup() function with ndeg=3 and

lup=1 (see mathc90/doc/ch12-01.pdf for dilup documentation). There is no extrapolation; end points are used if dilup reports extrapolation is necessary.

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model FuelTankDryMassWithTableLookup class details

For more information on the members and functions of this model class, please see VehicleModels::FuelTankDryMassWithTableLookup model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__FuelTankDryMassWithTableLookup__group.html)

Enums

InertiaOriginType Enum

In the FuelTankDryMassWithTableLookup model definition, the original enum InertiaOriginType is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

empty_CM double 3 Length CM location for empty tank

empty_inertia double 9 MomentsOfInertia Inertia matrix for empty

tank (about CM)

empty_mass double Mass Mass of fuel tank when

empty

 enum InertiaOriginType
 {
 BODY_ORIGIN = 0,
 CENTER_OF_MASS = 1
 };

 /// FuelTankDryMassWithTableLookupInertiaOriginType enum
 enum FuelTankDryMassWithTableLookupInertiaOriginType
 {
 FUEL_TANK_DRY_MASS_WITH_TABLE_LOOKUP_INERTIA_ORIGIN_TYPE_BODY_ORIGIN = 0,
 FUEL_TANK_DRY_MASS_WITH_TABLE_LOOKUP_INERTIA_ORIGIN_TYPE_CENTER_OF_MASS = 1
 };

Name Type Size Quantity Units Description

inertia_data_origin InertiaOriginType Origin for for inertia matrix

data

initial_CM double 3 Length CM location for full tank

initial_inertia double 9 MomentsOfInertia Inertia matrix for full tank

(about CM)

num_thrusters unsigned int (uint) Number of thrusters using

this fuel tank

starting_fuel double Mass Initial mass of fuel in tank

tableFile string File containing mass and

inertia table

Scratch

Name Type Size Quantity Units Description

current_CM double 3 Length Current CM from 'tableFile'

lookup

current_inertia double 9 MomentsOfInertia Current inertia from

'tableFile' lookup

current_mass double Mass Current massfrom

'tableFile' lookup

Discrete States

Name Type Size Quantity Units Description

dry_mass_consumed double Mass Total amount of consumed

dry mass

dry_mass_remaining double Mass Remaining dry mass

fuel_remaining double Mass remaining fuel

sum_fuel_consumed double Mass total fuel consumed

Flow Ins

Name Type Size Quantity Units Description

dry_mass_consumed double Mass Total amount of dry mass

consumed

fuel_burned double * Mass Total amount of consumed

fuel

Flow Outs

Name Type Size Quantity Units Description

fuel_remaining double Mass Fuel remaining in tank

33.5. VehicleModels::FuelTankWithTableLookup Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Description

Models a simple fuel tank. Mass and inertia are interpolated from a user-supplied table

The FuelTank model accepts a single input which denotes the amount of fuel burned. This input is variable sized so that several thrusters can share a single FuelTank model. It makes

Darts calls to update the mass and inertial properties of the spacecraft based on a user-supplied table. It outputs the remaining fuel mass (this output can be tied into the thruster

models). Parameters denote the starting amount of fuel in the tank and the inertia matrix and CM location for the tank when empty. As fuel is removed from the tank the inertia

matrix and CM location are interpolated (linearly) between the starting value and the given value for the empty tank. The file containing the mass/inertia should have this format: 1.

Text file with 13 columns. Each column is a floating point number. Lines beginning with a non-numeric character are treated as comments. 2. First column contains mass values (the

independent value). (This is the total fuel tank mass including dry tank and fuel.) 3. 2nd to 10th columns contain the inertia values. 11th to 13th columns contain the CM location. 2nd

column contains inertia[0][0] value 3rd column contains inertia[0][1] value 4th column contains inertia[0][2] value 5th column contains inertia[1][0] value 6th column contains

inertia[1][1] value 7th column contains inertia[1][2] value 8th column contains inertia[2][0] value 9th column contains inertia[2][1] value 10th column contains inertia[2][2] value 11th

column contains CM_loc[0] value 12th column contains CM_loc[1] value 13th column contains CM_loc[2] value Interpolation is done through the mathc90 dilup() function with ndeg=3

and lup=1 (see mathc90/doc/ch12-01.pdf for dilup documentation). There is no extrapolation; end points are used if dilup reports extrapolation is necessary.

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model FuelTankWithTableLookup class details

For more information on the members and functions of this model class, please see VehicleModels::FuelTankWithTableLookup model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__FuelTankWithTableLookup__group.html)

Enums

Parameters

Name Type Size Quantity Units Description

tableFile string File containing mass and

inertia table

Scratch

Name Type Size Quantity Units Description

current_CM double 3 Length Current CM from 'tableFile'

lookup

current_inertia double 9 MomentsOfInertia Current inertia from

'tableFile' lookup

current_mass double Mass Current massfrom

'tableFile' lookup

33.6. VehicleModels::PulsedThruster Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Description

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model PulsedThruster class details

For more information on the members and functions of this model class, please see VehicleModels::PulsedThruster model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__PulsedThruster__group.html)

Parameters

Name Type Size Quantity Units Description

isp_gfactor double Acceleration acceleration of gravity used

for computing fuel

consumption

min_commanded_time double Time min commanded time for

thruster

Discrete States

Name Type Size Quantity Units DescriptionName Type Size Quantity Units Description

off_time double Time duration from beginning of

I/O to off

true_thrusting double Flag Decides if the craft is

thrusting or not

Flow Ins

Name Type Size Quantity Units Description

on_time_cmd double Time command to turn thruster

on 0.0 is off to time duration

33.7. VehicleModels::PulsedThrusterBlowdown Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Description

Models a pulsed thruster with a thrust blowdown model for redcued thrust and ISP with decreasing fuel tank pressure.

Similar to PulsedThruster, the model checks whether a thrust command is currently active and with the ON/OFF commands from the FixedThruster class. It uses and isothermal

(gamma = 1.0) or adiabatic model (gamma > 1.0) to determine the internal tank pressure, and deduces the changing pulse thrust level and ISP at everz IO step. The corresponding

thrust levels and ISP are used for the computation thrust forces in the ThrusterBase class

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model PulsedThrusterBlowdown class details

For more information on the members and functions of this model class, please see VehicleModels::PulsedThrusterBlowdown model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__PulsedThrusterBlowdown__group.html)

Parameters

Name Type Size Quantity Units Description

V_tank double Volume structural tank volume (not

fuel volume)

fuel_density double Density density of the propellant

fuel_mass_init double * Mass initial propellant mass per

tank

gamma double Dimensionless Isotropic coefficient for fuel

vapor (cp/cv)

isp_C double Dimensionless Multiplier coefficient for isp

blowdown equation

isp_exp double Dimensionless Exponential parameter for

isp blowdown equation

level_C double Dimensionless Multiplier coefficient for

thrust blowdown equation

level_exp double Dimensionless Exponential parameter for

thrust blowdown equation

num_tanks int Number of tanks a thruster

is using (define fuel

remaining in one tank)

p_tank_init double Pressure initial pressure in

corresponding thruster fuel

tank

Discrete States

Name Type Size Quantity Units Description

isp double SpecificImpulse Maximum specific impulse

calculated according to

blowdown model

level double Force Maximum thrust force

generated by the thruster

according to blowdown

model

p_tank double * Pressure pressure in corresponding

thruster fuel tanks

Flow Ins

Name Type Size Quantity Units Description

fuel_mass_linked_tanks double * Mass Mass of fuel remaining in

tanks that are connected to

thrust, is vector.

Flow Outs

Name Type Size Quantity Units Description

isp_out double SpecificImpulse Maximum specific impulse

calculated according to

blowdown model

level_out double Force Maximum constant thrust

force generated by the

thruster according to

blowdown model

33.8. VehicleModels::SimpleTurn Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Description

This model applies forces in a specified direction to simulate a spacecraft force controller. It also controls the prescribed attitude degrees of freedom using a PD controller.

This model attempts to apply forces in the specifed direction at the desired throttle setting. The force could be either be applied in the inertial direction or along the body-fixed thrust

axis. The former corresponds to an ideal attitude control that instantaneously turns the spacecraft. The model also computes angular accelerations to align the local thrust axis with

the specified thrust direction. Thus both forces and attitude are controlled although in an idealized and somewhat independent fashion.

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model SimpleTurn class details

For more information on the members and functions of this model class, please see VehicleModels::SimpleTurn model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__SimpleTurn__group.html)

Enums

ThrustDirectionMode Enum

In the SimpleTurn model definition, the original enum ThrustDirectionMode is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

 enum ThrustDirectionMode
 {
 BODYFIXED = 0,
 INERTIAL = 1
 };

AccelerationFrame Enum

In the SimpleTurn model definition, the original enum AccelerationFrame is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

AttitudeControlMode Enum

In the SimpleTurn model definition, the original enum AttitudeControlMode is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

accFrame AccelerationFrame Frame in which acceleration

commands are specified.

burns_fuel int flag to turn on (1) or off (0)

mass/fuel consumption

cant_angle double Angle Engine cant angle (radians)

controlMode AttitudeControlMode Control mode for angular

motion.

forceMode ThrustDirectionMode Direction mode for force

application.

isp_max double SpecificImpulse maximum specific impulse

isp_min double SpecificImpulse minimum specific impulse

local_thrust_axis double 3 Dimensionless Local thrust axis (unit

vector, body frame).

max_angular_accel double 1 AngularAcceleration Maximum prescribed

angular acceleration

max_level double Force Maximum thrust force

magnitude/engine

(newtons).

 /// SimpleTurnThrustDirectionMode enum
enum SimpleTurnThrustDirectionMode

 {
SIMPLE_TURN_THRUST_DIRECTION_MODE_BODYFIXED = 0,

 SIMPLE_TURN_THRUST_DIRECTION_MODE_INERTIAL = 1
};

enum AccelerationFrame
 {

BODY = 0,
 INERTIAL = 1

};

/// SimpleTurnAccelerationFrame enum
 enum SimpleTurnAccelerationFrame

{
 SIMPLE_TURN_ACCELERATION_FRAME_BODY = 0,

SIMPLE_TURN_ACCELERATION_FRAME_INERTIAL = 1
 };

 enum AttitudeControlMode
{

 PDCONTROL = 0,
OPENLOOP = 1

 };

 /// SimpleTurnAttitudeControlMode enum
enum SimpleTurnAttitudeControlMode

 {
SIMPLE_TURN_ATTITUDE_CONTROL_MODE_PDCONTROL = 0,

 SIMPLE_TURN_ATTITUDE_CONTROL_MODE_OPENLOOP = 1
};

Name Type Size Quantity Units Description

min_level double Force Minimum thrust force

magnitude/engine

(newtons).

num_thr int Number of descent engines

omega_gain double RotationalSpringDamping Damping term (greater than

zero) (gain on angular

velocity)

planetOmega double 3 AngularVelocity Planet rotation rate in the

PCR frame.

planetPosition double 3 Length Position of planetary center

in inertial frame.

theta_gain double RotationalSpringStiffness Proportional gain based on

angle between desired and

actual thrust direction

(greater than zero)

velocity_cutoff double Velocity Relative velocity level below

which actuator becomes

inactive (m/s)

Scratch

Name Type Size Quantity Units Description

accel double 6 Mixed Prescribed accelerations for

attitude control

angle_error double Angle Error between desired

angle direction and actual

direction.

body_pos double 3 Length Position of body wrt

planetary center (inertial

frame).

body_quat double 4 Quaternion Attitude of body wrt inertial

frame.

force double 3 Force Applied force vector (body

frame)

gr_omega double 3 Velocity ground relative angular

velocity (body frame)

gr_vel double 3 Velocity ground relative linear

velocity (body frame)

neg_gr_vel double 3 Velocity negative of ground relative

linear velocity (body frame)

omegaB double 3 AngularVelocity angular velocity of body

(body frame).

velI double 3 Velocity absolute linear velocity of

body (inertial frame).

Discrete States

Name Type Size Quantity Units Description

cur_coeff double Dimensionless Current fraction of thrust

(from 0 to 1)

cur_isp double SpecificImpulse Current isp

cur_thrust double Force Current thrust

Name Type Size Quantity Units Description

velocity_cutoff_activated int Whether velocity cutoff was

activated

Continuous States

Name Type Size Quantity Units Description

fuel_used double Mass State to track fuel

consumption of thruster

Flow Ins

Name Type Size Quantity Units Description

accdir double 3 Dimensionless Vector in which force is to

be applied.

angacc double 3 AngularAcceleration Vector of angular acc used in

open-loop control.

throttle double Dimensionless Throttle: 0 gives min_level, 1

(or more) gives max_level.

Force is linear between

throttle values of 0 and 1.

Negative throttle settings

are clipped to min_level.

Throttle inputs greater than

1 are clipped to max_level.

Flow Outs

Name Type Size Quantity Units Description

fuel_used double Mass total fuel used by thruster

33.9. VehicleModels::ThrottledPro�leThruster Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Fuel__keyword__group.html)

Resource (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Resource__keyword__group.html)

Thruster (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__keyword__group.html)

Thruster!On/Off (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__On-Off__keyword__group.html)

Thruster!Throttled (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__Throttled__keyword__group.html)

consumption (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__consumption__keyword__group.html)

model (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__keyword__group.html)

model!Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__Fuel__keyword__group.html)

Description

Extended version of NewThrottledThruster.

Extended version of NewThrottledThruster with additional parameters for delay, cutoff_criteria and coefficient table. The 'coeff' is now a parameter instead of a signal. If the

coeffFile parameter is specified, the thruster coefficient is interpolated from the file and the coeff parameter is not used. If the thrustFile parameter is specified: the thrust

magnitude is taken from the thrustFile and coeffFile and coeff are not used. If the flowrateFile parameter is specified: the fuel flowrate is taken from the flowrateFile. The coeffFile

should have this format: 1. Text file with 2 columns. Each column is a floating point number. Columns are separated by 1 or more spaces. Lines beginning with a non-numeric character

are treated as comments. 2. First column contains 'burn time' values in seconds (the independent value). 3. Second column contains the thruster level coefficient (0.0=0%, 1.0=100%)

The thrustFile should have this format: 1. Text file with 2 columns. Each column is a floating point number. Columns are separated by 1 or more spaces. Lines beginning with a non-

numeric character are treated as comments. 2. First column contains 'burn time' values in seconds (the independent value). 3. Second column contains the thrust magnitude. The

flowrateFile should have this format: 1. Text file with 2 columns. Each column is a floating point number. Columns are separated by 1 or more spaces. Lines beginning with a non-

numeric character are treated as comments. 2. First column contains 'burn time' values in seconds (the independent value). 3. Second column contains the fuel flowrate The

dryMassFlowrateFile should have this format: 1. Text file with 2 columns. Each column is a floating point number. Columns are separated by 1 or more spaces. Lines beginning with a

non-numeric character are treated as comments. 2. First column contains 'burn time' values in seconds (the independent value). 3. Second column contains the dry mass flowrate (kg/s)

Interpolation is done through the mathc90 dilup() function with ndeg=3 and lup=1 (see mathc90/doc/ch12-01.pdf for dilup documentation). There is no extrapolation; end points are

used if dilup reports extrapolation is necessary.

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model ThrottledPro�leThruster class details

For more information on the members and functions of this model class, please see VehicleModels::ThrottledProfileThruster model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__ThrottledProfileThruster__group.html)

Enums

CutO�Criteria Enum

In the ThrottledProfileThruster model definition, the original enum CutOffCriteria is defined as:

In the C model code, these enum values can be accessed by using the follow C enum definitions:

Parameters

Name Type Size Quantity Units Description

coeff double Dimensionless percentage of thrust (from 0

(minimum) to 1

(maximum)); used only if

coeffFile is not specified

coeffFile string file containing burn time vs.

thruster level coefficient;

use to compute thrust

magnitude. Not used if

thrustFile is specified.

cutoff_criteria CutOffCriteria specifies criteria to cut off

engine, either

'FUEL_MASS’or

'BURN_TIME'

cutoff_value double Unspecified numeric value with units of

kg or sec depending on the

cutoff_criteria

delay double Time delay time before engine

starts thrusting

dryMassFlowrateFile string file containing burn time vs.

dry mass flowrate; if not

specified, dry mass does not

reduce

flowrateFile string file containing burn time vs.

fuel flowrate; if not

specified, the flowrate will

be estimated from the ISP

isp_max double SpecificImpulse maximum specific impulse

isp_min double SpecificImpulse minimum specific impulse

max_level double Force maximum force generated

by this thruster when on

enum CutOffCriteria
 {

FUEL_MASS = 0,
 BURN_TIME = 1

};

 /// ThrottledProfileThrusterCutOffCriteria enum
enum ThrottledProfileThrusterCutOffCriteria

 {
THROTTLED_PROFILE_THRUSTER_CUT_OFF_CRITERIA_FUEL_MASS = 0,

 THROTTLED_PROFILE_THRUSTER_CUT_OFF_CRITERIA_BURN_TIME = 1
};

Name Type Size Quantity Units Description

min_level double Force minimum force generated

by this thruster when on

thrustFile string file containing burn time vs.

thrust magnitude. If not

specified, thrust magnitude

is computed from coeff

parameter.

Discrete States

Name Type Size Quantity Units Description

cumulative_impulse double Impulse cumulative impulse i.e.

summation of F*dt where

dt is incremental burn

time; F = average(F[i], F[i-

1])

cur_coeff double Dimensionless current percentage of

thrust (from 0 to 1)

cur_dryMassFlowrate double MassChangeRate current dry mass flowrate

cur_flowrate double MassChangeRate current fuel flowrate

cur_isp double SpecificImpulse current specific impulse

(only used if flowrateFile

is not given)

cur_thrust double Force current thrust magnitude

dryMassFlowrateFileBurnTimeOffset double Time This value will be

subtracted from

burn_time for the dry

mass flowrate table

lookup

flowrateFileBurnTimeOffset double Time This value will be

subtracted from

burn_time for the fuel

flowrate table lookup

on_off_time double Time time when thruster was

last turned on/off

(seconds)

thrustFileBurnTimeOffset double Time This value will be

subtracted from

burn_time for the table

lookup

Continuous States

Name Type Size Quantity Units Description

dry_mass_consumed double Mass State to track dry mass

consumption of thruster

Flow Ins

Name Type Size Quantity Units Description

on_off double Dimensionless command to turn thruster

on (!=0) or off (0)

Flow Outs

Name Type Size Quantity Units Description

Name Type Size Quantity Units Description

dry_mass_consumed double Mass total dry mass used by

thruster

33.10. VehicleModels::ThrottledPro�leThrusterWithBackPressure Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Back (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Back__keyword__group.html)

Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Fuel__keyword__group.html)

Nozzle (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Nozzle__keyword__group.html)

Resource (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Resource__keyword__group.html)

Thruster (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__keyword__group.html)

Thruster!On/Off (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__On-Off__keyword__group.html)

Thruster!Throttled (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__Throttled__keyword__group.html)

area (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__area__keyword__group.html)

consumption (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__consumption__keyword__group.html)

model (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__keyword__group.html)

model!Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__Fuel__keyword__group.html)

pressure (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__pressure__keyword__group.html)

Description

This model takes into account reduced thrust due to back pressure and nozzle area.

Subclassed from ThrottledProfileThruster with thrust reduced by the back pressure multiplied by nozzle area.

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model ThrottledPro�leThrusterWithBackPressure class details

For more information on the members and functions of this model class, please see VehicleModels::ThrottledProfileThrusterWithBackPressure model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__ThrottledProfileThrusterWithBackPressure__group.html)

Enums

Parameters

Name Type Size Quantity Units Description

nozzle_area double Area nozzle area (m**2)

Discrete States

Name Type Size Quantity Units Description

back_pressure_force double Force total back pressure force

(newtons)

Flow Ins

Name Type Size Quantity Units Description

back_pressure double Pressure net back pressure

(newtons/m**2)

33.11. VehicleModels::ThrottledThruster Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Fuel__keyword__group.html)

Resource (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Resource__keyword__group.html)

Thruster (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__keyword__group.html)

Thruster!On/Off (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__On-Off__keyword__group.html)

Thruster!Throttled (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__Throttled__keyword__group.html)

consumption (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__consumption__keyword__group.html)

model (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__keyword__group.html)

model!Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__Fuel__keyword__group.html)

Description

Models a throttled thruster with ON/OFF command, percentage of thrust and no delay. This thruster tracks fuel consumption and outputs total fuel burned.

The ThrottledThruster model accepts an on(1) or off(0) flowIn plus a percentage of thrust (minimum thrust 0, maximum is 1). It has parameters for direction (orientation) of thrusters

and both minimum and maximum thruster force level. The thrust commands are executed without delay, and there is no ramp up or ramp down time on the thrust output. In

addition, the model tracks fuel consumption with a continuous state and outputs the total fuel consumed by the thruster. This can be tied to a FuelTank model in order to change the

mass and inertial properties of the s/c to model fuel depletion. The fuel_remaining flowOut of the FuelTank model should be tied to the fuel_remaining flowIn of this mo del. This

allows the thruster to know when all available fuel has been used.

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model ThrottledThruster class details

For more information on the members and functions of this model class, please see VehicleModels::ThrottledThruster model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__ThrottledThruster__group.html)

Parameters

Name Type Size Quantity Units Description

isp_gfactor double Acceleration acceleration of gravity used

for computing fuel

consumption

isp_max double SpecificImpulse maximum specific impulse

isp_min double SpecificImpulse minimum specific impulse

max_level double Force maximum force generated

by this thruster when on

min_level double Force minimum force generated

by this thruster when on

Discrete States

Name Type Size Quantity Units Description

cur_coeff double Dimensionless current percentage of thrust

(from 0 to 1)

isp double SpecificImpulse specific impulse

level double Force current force level

Flow Ins

Name Type Size Quantity Units Description

coeff double Dimensionless percentage of thrust (from 0

(minimum) to 1 (maximum))

on_off double Dimensionless command to turn thruster

on (!=0) or off (0)

33.12. VehicleModels::ThrottledThrusterMinimal Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Fuel__keyword__group.html)

Resource (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Resource__keyword__group.html)

Thruster (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__keyword__group.html)

Thruster!On/Off (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__On-Off__keyword__group.html)

Thruster!Throttled (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__Throttled__keyword__group.html)

consumption (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__consumption__keyword__group.html)

model (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__keyword__group.html)

model!Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__Fuel__keyword__group.html)

Description

Models a thruster with its exit velocity and thrust force. This thruster tracks fuel consumption and outputs total fuel burned.

The ThrottledThrusterMinimal model accepts the thrust force and exit velocity. This is a very basic set of inputs, and more sophisticated models can be built on top of this one. It has

parameters for direction (orientation) of thrusters and both minimum and maximum thruster force level. In addition, the model tracks fuel consumption with a continuous state and

outputs the total fuel consumed by the thruster. This can be tied to a FuelTank model in order to change the mass and inertial properties of the s/c to model fuel depletion. The

fuel_remaining flowOut of the FuelTank model should be tied to the fuel_remaining flowIn of this model. This allows the thruster to know when all available fuel has been used.

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model ThrottledThrusterMinimal class details

For more information on the members and functions of this model class, please see VehicleModels::ThrottledThrusterMinimal model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__ThrottledThrusterMinimal__group.html)

Parameters

Name Type Size Quantity Units Description

max_level double Force maximum force generated

by this thruster when on

min_level double Force minimum force generated

by this thruster when on

Discrete States

Name Type Size Quantity Units Description

thrust double Force current force level

generated by this thruster

Flow Ins

Name Type Size Quantity Units Description

current_thrust double Force Force currently generated

by the thruster

exit_velocity double Velocity Thruster exit velocity, in m/s

33.13. VehicleModels::ThrottledThrusterWithBackPressure Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Back (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Back__keyword__group.html)

Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Fuel__keyword__group.html)

Nozzle (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Nozzle__keyword__group.html)

Resource (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Resource__keyword__group.html)

Thruster (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__keyword__group.html)

Thruster!On/Off (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__On-Off__keyword__group.html)

Thruster!Throttled (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__Throttled__keyword__group.html)

area (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__area__keyword__group.html)

consumption (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__consumption__keyword__group.html)

model (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__keyword__group.html)

model!Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__Fuel__keyword__group.html)

pressure (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__pressure__keyword__group.html)

Description

Models a throttled thruster with ON/OFF command, percentage of thrust and no delay. Takes into account reduced thrust due to back pressure and nozzle area. This thruster tracks fuel
consumption and outputs total fuel burned.

The ThrottledThruster model accepts an on(1) or off(0) flowIn plus a percentage of thrust (minimum thrust 0, maximum is 1). Thrust is reduced by the back pressure multiplied by

nozzle area. It has parameters for direction (orientation) of thrusters and both minimum and maximum thruster force level. The thrust commands are executed without delay, and

there is no ramp up or ramp down time on the thrust output. In addition, the model tracks fuel consumption with a continuous state and outputs the total fuel consumed by the

thruster. This can be tied to a FuelTank model in order to change the mass and inertial properties of the s/c to model fuel depletion. The fuel_remaining flowOut of the FuelTank model

should be tied to the fuel_remaining flowIn of this mo del. This allows the thruster to know when all available fuel has been used.

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model ThrottledThrusterWithBackPressure class details

For more information on the members and functions of this model class, please see VehicleModels::ThrottledThrusterWithBackPressure model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__ThrottledThrusterWithBackPressure__group.html)

Parameters

Name Type Size Quantity Units Description

nozzle_area double Area nozzle area (m**2)

Discrete States

Name Type Size Quantity Units Description

back_pressure_force double Force total back pressure force

(newtons)

Flow Ins

Name Type Size Quantity Units Description

back_pressure double Pressure net back pressure

(newtons/m**2)

33.14. VehicleModels::ThrusterBase Actuator Model

 This model documentation is auto-generated. Documentation updates should be made to the model’s mdl file to avoid the changes being lost.

Doxygen link to all VehicleModels models of Actuator class (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Actuator__group.html)

Keywords Doxygen groups

Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Fuel__keyword__group.html)

Resource (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Resource__keyword__group.html)

Thruster (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__keyword__group.html)

Thruster!Base (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__Thruster__Base__keyword__group.html)

consumption (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__consumption__keyword__group.html)

model (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__keyword__group.html)

model!Fuel (https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__model__Fuel__keyword__group.html)

Description

Models the most basic properties of a thruster. Not for direct use.

This models the basic properties common to all thrusters. Simulations generally want more that just what this class provides, so you probably want to use one of the models derived

from this one to provide the specific functionality you need.

from the VehicleModels models library for the xref:Dshellpp_module simulation framework.

Model ThrusterBase class details

For more information on the members and functions of this model class, please see VehicleModels::ThrusterBase model class doxygen documentation

(https://dartslab.jpl.nasa.gov/internal/www/DLabDocs/modules/VehicleModels/html/group__ThrusterBase__group.html)

Parameters

Name Type Size Quantity Units Description

BASEBODY_UUID int NOT FOR USER INPUT -

UUID for the base body of

the spacecraft.

burns_fuel int flag to turn on (1) or off (0)

mass/fuel consumption

orientation double 3 Dimensionless direction thruster is

pointing

Scratch

Name Type Size Quantity Units Description

burn_time double Time Engine on-time FOR THIS

CYCLE

burn_time_total double Time Combined engine on-time

FOR ALL CYCLES

cg2node_cbFrame double 3 Length Vector from total system cg

to force node in CapsuleBase

frame. Requires

BASEBODY_UUID param

moment_cbFrame double 3 Torque Moment = vector from the

total system cg to the force

node [cross] force vector

(which includes all

atmospheric effects) in

CapsuleBase frame.

Requires BASEBODY_UUID

param

nodeloc_cbFrame double 3 Length Force node location in

CapsuleBase frame.

Requires BASEBODY_UUID

param

Discrete States

Name Type Size Quantity Units Description

cur_posn int whether the thruster is

currently on or off

step_posn int whether the thruster was

ever on this step

Name Type Size Quantity Units Description

warning int out of fuel warning flag

Continuous States

Name Type Size Quantity Units Description

fuel_used double Mass State to track fuel

consumption of thruster

Flow Ins

Name Type Size Quantity Units Description

fuel_remaining double Mass Mass of fuel remaining in

tank.

Flow Outs

Name Type Size Quantity Units Description

fVec double 3 Force force direction and

magnitude

fuel_used double Mass total fuel used by thruster

Index

1. Note that some of the code snippets used for illustrative purposes here are from the regression test: DshellCommon/test/test_Ndarts/test_VehicleAssembly_spice.

2. Note that some of the code snippets used for illustrative purposes here are from the regression test: DshellCommon/test/test_Ndarts/test_VehicleAssembly_spice.

Last updated 2023-10-06 06:11:52 -0700

