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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov

equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including gravity 

and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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Recap
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Recap

• Introduced ATBI spatial operators

• Developed several operator identities

• Developed Innovations Factorization of the mass 

matrix

• Has square and invertible factors

• Can reduce forward dynamics costs

• Developed expression for inverse of factors

• Developed operator expression for the mass matrix 

inverse
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Spatial operators

• Velocity expression

• Jacobian

• Mass matrix NE factorization

• Lyapunov equation for CRBs

• Mass matrix decomposition

• Riccati equation for ATBI

• Several operator identities

• Mass matrix Innovations factorization

• Mass matrix determinant

• Mass matrix inverse and factorization

spatial operators 

family

,      ,                          

,    ,            ,    ,    

Have started to build up a vocabulary of spatial operators that  can be 

used to express and manipulate the structure of dynamics quantities.

Now can see the rationale for the algebra part of SOA from the analytical 

transformations and simplifications possible using the operators.  
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Recursive Computational Algorithms

• O(N) Gather and scatter recursions pattern

• O(N) Body velocities scatter recursion

• O(N) CRBs gather recursion

• mass matrix computation

• O(N) NE scatter/gather inverse dynamics

• inverse dynamics based mass matrix

• O(N) CRBs based inverse dynamics

• O(N) ATBI gather recursion

• forward dynamics

Can derive such low-cost scatter/gather algorithms usually by 

examination of the spatial operator expressions.
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Forward Dynamics
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System level equations of motion

System level equations of motion

mass matrix

Coriolis terms

Newton-Euler factorization
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Inverse and Forward dynamics

Inverse dynamics: 

• Given the state, and generalized accelerations, use 

the equations of motion to compute the generalized 

forces

• Important for feedforward control applications

Forward dynamics: 

• Given the state, and generalized forces, solve the 

equations of motion to compute the generalized 

accelerations

• Important for simulation applications



forward dynamics

• Forward dynamics involves computing

• The conventional approach would be to the compute 

the mass matrix, and to then solve the above matrix 

equation 

• This process is of          computational complexity

• Can we do better?

10
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Spatial operator identities recap

These identities are very useful in transforming and 

simplifying operator expressions. We will see their 

use in a number of instances ahead.
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Another operator identity

Earlier mass matrix expression

versus the similar expression

block-diagonal

dense

The only difference is the use of     instead of    !

Complex product of spatial 

operators collapses into 

just D!



forward dynamics using Innovations Factorization

• Forward dynamics involves computing

With the NE factorization our options were limited to            complexity

• The new factors however can be computed at             cost

• Moreover these factors can be used to compute                            at             

cost as well.

• We have reduced the cost from            to            .This is progress – but 

can we do even better?

triangular with identity 

along block-diagonal

Upper triangular with identity 

along block-diagonal
Block-diagonal

Innovations Factorization of the mass matrix

13



Mass Matrix Factorization & Inversion

Analytical operator expression for the mass matrix inverse

Analytical Newton-Euler 

factorization of the  mass matrix 

Analytical Innovations 

factorization of the  mass matrix 

14
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Forward dynamics expression

Analytical operator expression for the mass matrix inverse

Complex - still have work to do!
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Generalized Accelerations
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Simplified expression for 

Claim:

Coriolis terms

Much simpler – has reduced products of 4 spatial operators 

down to just 2 such products!
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Derivation of simpler      expression 

Step 1:

Involves multiple operator products. 

Lets focus on simplifying this
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Derivation of simpler       expression (contd)

Step 2:

Much simpler – has reduced products of 3 spatial operators 

down to just solitary occurrences!
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Derivation of simpler     expression (contd)

Step 3:

identity
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Simplified expression for    

Operator manipulations helped simplify the generalized 

accelerations expression.

Reduced the number of   multiple operator 

products from 4 to 2. Much simpler!
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Decomposing the Forward Dynamics 
Expression
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Decomposing the     expression 

Breaking down the expression:
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Alternative expression for 

Claim:

Derivation:

O(N) recursive 

gather algorithm

Have

Have

Thus

and
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Defining and using 

Define

Claim:

Derivation:

Pre-multiplying and using 

we get

Have
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Alternative expression for 

Claim:

Derivation:

Have
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Body accelerations
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Body acceleration expression

Previously

Claim:
O(N) recursive 

scatter algorithm

Derivation:
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Generalized acceleration expression

With

Claim:

Derivation:
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O(N) Recursive Forward Dynamics
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Overall decomposed expressions

Putting it all together
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O(N) ATBI forward dynamics algorithm

gather sweep

scatter sweep
O(N) computational complexity,  

fastest available algorithm

ATBI recursion 

from before
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Structure of the ATBI O(N) recursions
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Comments on the ATBI algorithm

• The ATBI algorithm cost scales linearly with the number of 

degrees of freedom, i.e. is O(N)  – and is the fastest available 

to date

• This algorithm does not require the explicit computation of any 

of the operators

• It does not require the computation of the mass matrix 

inverse, or the mass matrix itself

• The algorithm applies to any size system

• The algorithm consists of gather & scatter sweeps, and these 

easily accommodate changes to the system from the addition 

or removal of bodies

• As we will see later, the ATBI algorithm continues to work for 

more general branched systems



35

Handling structural configuration changes

detach reattach

• Multibody methods often have to work hard to  handle structural changes – when they can

• The scatter and gather recursions however follow the instantaneous topological 

configuration (even addition and removal of bodies)

• Hence the SOA structure-based algorithms accommodate configuration changes 

automatically without missing a heartbeat!
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Alternative Expressions
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Alternative expression for body accels

Claim:

Derivation:

The second equation is obtained by multiplying the first by 
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Inter-body forces

• In the absolute coordinate methods, the inter-body forces are 

the Lagrange multipliers associated with the constraints.

• These are not computed by the O(N) algorithm, but can be 

readily computed if needed.

Claim:

Derivation:

Similarly can show second equality.
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Estimation theory parallels

causal 

filtering 

sweep

anti-causal

co-state 

sweepco-state

optimal filter 

estimate

optimal smoothed 

estimate
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Including Gravity in the ATBI Forward 
Dynamics Algorithm
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Including gravitational acceleration

The Coriolis term with gravity term is

Claim:

Define

And use in place of      in the original proof of the forward 

dynamics expression and do further simplifications. 

Derivation:
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ATBI algorithm update

Claim:

Replace with      in the original O(N) algorithm 

Derivation: (first part)

Define
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Updated inter-body force computation

Earlier 

Claim:

Derivation: (first part)
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Including external forces in the ATBI 
Forward Dynamics Algorithm
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Including external forces

The effect of external forces at nodes on the individual 

bodies can be accommodated by using the following 

modified step in the recursive algorithm:

external forces contribution for the kth body 
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Overall ATBI algorithm with gravity and external forces

external forces term 

gravity term 



Progression of mass matrix expressions and related algorithms

The progressive derivation of spatial operator expressions leads to 

family of algorithms and reduction in computational cost.
47
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Minimal coordinates and the ATBI algorithm 

• One of the claims to fame of the minimal coordinates approach 

is the remarkable existence of the O(N) ATBI algorithm – in 

contrast with the            cost of conventional methods.
• The ATBI algorithm can be derived directly – without the use of SOA 

operators. 

• First versions by Vereshchagin and Armstrong in 1970’s, and more 

general versions by Featherstone and Rodriguez in 1980s

• Several others were published soon after – and all shown to be 

essentially the same ATBI algorithm with different notation

• However, there is a lot more to minimal coordinate dynamics 

than just the ATBI algorithm

• Exploring the broader analytical structure of minimal coordinate 

dynamics, and developing a unifying approach to low-cost 

algorithms (including ATBI algorithm) is the goal of the broader 

SOA approach
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Minimal coordinates and the ATBI algorithm (contd)

• Despite its computational benefits, the ATBI algorithm is not 

used  as widely as it should be

• Without proper mathematical tools, generalizing the ATBI 

algorithms from scratch to apply to the broad class of 

multibody systems can be very daunting

• Body flexibility

• General branching

• Closed chain and prescribed motion

• Configuration changes

• The use of the ATBI algorithm has been confined by and 

large to rigid body serial chains for robotic arm applications

• SOA provides the mathematical machinery to address this 

issue, so the work is done once to learn the framework, and 

then generalizations and algorithms become easy
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Prescribed Motion 
and 

Hybrid Dynamics
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Inverse and Forward dynamics

Inverse dynamics: 

• Given the state, and generalized accelerations, use the 

equations of motion to compute the generalized forces

• N gen. accels known, N gen. forces unknown

Forward dynamics: 

• Given the state, and generalized forces, solve the equations 

of motion to compute the generalized accelerations

• N gen. forces known, N gen. accels unknown
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Hybrid dynamics

• Given the state, and generalized accelerations, and the equations 

of motion

• Assume mix of N gen. accels and gen. forces known, compute the 

complementary N gen accels and forces

• When the known are all gen. accels, we have inverse dynamics, 

and when the known are all gen. forces, we have forward 

dynamics

• Hybrid dynamics is a generalization that covers both forward and 

inverse dynamics

• The known gen. accels are also said to be undergoing 

‘prescribed motion’ in the context of forward dynamics
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Examples of Hybrid dynamics applications

• Under-actuated systems control

• Fewer actuators than dofs

• Most mobile ground robots are under-actuated

• Docking, separation, jettison configuration change scenarios, eg.

• Heat-shield separation

• Multi-vehicle tandem operation

• Reduced order modeling

• Freeze & thawing of dofs during run-time (molecular 

dynamics)

• Dofs with high-gain control

• Eg. spacecraft actuator gimbals
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Decomposition into active/passive dofs & systems

Refer to ‘prescribed’ dofs as ‘active’, and ‘non-prescribed’ 

as ‘passive’ dofs

Decompose the full 

(arm) system into 

active and passive

systems
• Overall dofs same 

as original system



55

Partitioned equations of motion

With appropriate re-indexing, the equations of motion can be 

partitioned based on the active and passive dofs as follows

known

unknown

Have known and unknown quantities on both sides of the equations of motion.

mass matrix of 

active system

mass matrix of 

passive system

cross-coupling 

terms
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Rearranged equations of motion

We can rearrange the partitioned form so that all unknowns 

are on the left, and all knowns on the right as follows

knownunknown

passive system 

mass matrix 

inverse
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ATBI recursion for passive system

The ATBI quantities for the passive system can be computed as usual 

by a gather recursion

normal ATBI steps

skip active dof

hinge
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Passive system ATBI spatial operators

The usual ATBI spatial operators – except restricted to just the 

passive dofs.

passive system 

Riccati equation
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Passive system mass matrix inversion

Since          is a mass matrix, we can factorize and invert it 

using spatial operators as usual. 

Innovations 

factorization of 

the mass matrix

mass matrix 

inverse

NE factorization of 

the mass matrix
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Expression simplifications

Claim:

Have

passive system 

mass matrix inverse

operational space 

inertia (more later)
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Derivation of          expression 
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Derivation of            expression



63

Hybrid Dynamics Solution
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Operator expressions for solution

Claim:

Have
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Derivation of        expression

Have

Thus
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Derivation of body accels expression
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Derivation of        expression

Have
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Hybrid Dynamics Algorithm
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Recall solution operator expressions

These expressions are very similar to regular ATBI forward dynamics 

and also map into similar O(N) ATBI gather/scatter recursions

active/prescribed 

gen accels term
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O(N) Hybrid dynamics algorithm

Virtually the 

same structure 

as the regular 

O(N) ATBI 

algorithm
altered steps for 

active/prescribed  

dofs
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Recall: CRB-based Inverse dynamics algorithm

• Use CRB gather algorithm to compute the CRB spatial inertias 

• Compute the y values via a gather algorithm

• Compute the generalized forces

The hybrid dynamics steps 

for the active dofs switch to 

these CRB inverse dynamics 

steps for active dofs!
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Comments on O(N) hybrid dynamics algorithms

• Very similar in structure to the gather/scatter sweeps of the 

ATBI forward dynamics algorithm

• The computational cost scales linearly with the number of dofs

• The algorithm elegantly uses ATBI forward dynamics 

algorithm steps for passive dofs, and the CRB based inverse 

dynamics algorithm steps for the active dofs

• When all dofs are passive, we get the usual ATBI forward 

dynamics, and when all are active we get the CRB inverse 

dynamics

• Can flip the prescribed mode switch at run-time, and the 

algorithm automatically accommodates this
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Example run-time change for prescribed motion

• Consider the separation or docking scenario between pair 

of vehicles

• Model the system as one system with a 6dof connection 

hinge

• When docked, set the hinge to prescribed motion with zero 

prescribed accelerations – essentially locks the hinge

• For undocking, disable the prescribed motion setting to 

allow the vehicles to move apart.
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How far have we come?
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Spatial operators (no new operators)

• Velocity expression

• Jacobian

• Mass matrix NE factorization

• Lyapunov equation for CRBs

• Mass matrix decomposition

• Riccati equation for ATBI

• Several operator identities

• Mass matrix Innovations factorization

• Mass matrix determinant

• Mass matrix inverse and factorization

spatial operators 

family

,      ,                          

,    ,            ,    ,    
Have started to build up a vocabulary of spatial operators that  can be used 

to express and manipulate the structure of dynamics quantities.

Now can see the rationale for the algebra part of SOA from the analytical 

transformations and simplifications possible using the operators.  
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Recursive Computational Algorithms

• O(N) Gather and scatter recursions pattern

• O(N) Body velocities scatter recursion

• O(N) CRBs gather recursion

• mass matrix computation

• O(N) NE scatter/gather inverse dynamics

• inverse dynamics based mass matrix

• O(N) CRBs based inverse dynamics

• O(N) ATBI gather recursion

• forward dynamics

• O(N) ATBI forward dynamics

• O(N) hybrid dynamics

Can derive such low-cost scatter/gather algorithms usually 

by examination of the spatial operator expressions.
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Summary

• Used the operator expression for the mass matrix 

inverse to develop the O(N) ATBI forward dynamics 

algorithm

• Described simple way to obtain inter-body forces if 

desired

• Developed extensions for handling gravity and 

external forces

• Developed O(N) generalized hybrid dynamics 

algorithm 

• Elegant combination of ATBI forward dynamics and 

CRB inverse dynamics
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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid 

body transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler 

mass matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward 

Lyapunov equation; mass matrix decomposition; mass matrix computation; alternative 

inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including 

gravity and external forces; inter-body forces identity
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SOA Generalization Track Topics 

8. Graph theory based structure – BWA matrices, connection to multibody 

systems

9. Tree topology systems – generalization to tree topology rigid body systems, 

SKO/SPO operators, gather/scatter algorithms

10.Closed-chain dynamics (cut-joint) – holonomic and non-holonomic 

constraints, cut-joint method, operational space inertia, projected dynamics

11.Closed-chain dynamics (constraint embedding) – constraint embedding for 

graph transformation, minimal coordinate closed-chain dynamics

12.Flexible body dynamics – Extension to flexible bodies, modal 

representations, recursive flexible body dynamics


