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ABSTRACT
NASA is developing technology to increase space-

craft on-board autonomy, in an e�ort to reduce over-

all mission cost and mission operations resources.

Achievement of this objective requires the devel-

opment of a new class of ground-based autonomy

testbeds that can enable rapid development, test, and

integration of the new autonomous spacecraft ight

software. This paper describes the development of the

Autonomy Testbed Environment (ATBE), designed

to address these needs.

1 INTRODUCTION

The Autonomy Testbed Environment (ATBE) sup-

ports spacecraft simulation over a wide range of en-

gineering platforms, functional and �delity models,

fault injection, test scenarios and duration. Conven-

tionally, such breadth of testbed functionality has

been met by the expensive and time-consuming de-

velopment of multiple specialized testbeds. In con-

trast, the ATBE testbed has been designed to be

recon�gurable to meet the development and test

needs of many di�erent kinds of users. ATBE's de-

sign enables easier maintainability and usability, and

perhaps most signi�cantly, continual evolutionary

changes in model requirements, functionality, and �-

delity. Additionally, ATBE provides a high degree

of visibility into model state variables, extendable in-

terfaces to data monitoring and plotting tools, and

simulation checkpointing.

The ATBE toolkit includes libSim, which uses a

data ow paradigm for connecting higher-level device

and subsystem models, and provides special features

for modeling faults. (Examples of libSim models in-

clude bus interfaces, device electronics, and valves.)

It also includes Dshell, a high �delity real-time dy-

namics simulation package with models for the vari-

ous actuators and sensors on a spacecraft. This pa-

per describes these tools in detail in sections 2 and 3.

See reference [1] for a broad overview of ATBE.

ATBE models are roughly categorized as real-

time, containing functions that are executed every

tick of the simulation, and non-real-time, which do

work in response to events or commands. Currently

all real-time models execute in the same thread.

Event-driven models run as separate processes and

typically communicate via messages. libSim and

Dshell models are real-time models. An example

of an event-driven model is a scene generator which

is used to simulate an on-board camera. This model

does its work in response to a \take picture" com-

mand from the ight software and may take several

minutes to create an image. Models are implemented

as non-real-time due to the nature of the device they

simulate, or to ensure that critical real-time perfor-

mance requirements of the simulator are met. Fig-

ure 1 shows an example of the kinds of models that

are included in an ATBE simulation.

The data ow simulator libSim is the highest

layer of the ATBE simulator. It contains a model

that wraps Darts/Dshell (�gure 2), issuing com-

mands to Dshell hardware models based on its

inputs and setting its outputs based on those re-

ceived from Dshell models. Event-driven models

each have corresponding simple libSim models that

send and receive messages to and from the non-real-

time processes, to incorporate the data from these

processes into the real-time core.
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Figure 1: Representative types of models in an

ATBE S/C simulation

2 libSim DATA FLOW SIMULATOR

libSim is a library to facilitate the development of

spacecraft subsystem and hardware models for a sim-

ulator using a data ow paradigm [2]. It formalizes

what constitutes a model, and provides frameworks

for both independent model development and the

connection of multiple models in a simulator. It is

implemented in C and C++, has a C functional inter-

face, and runs on both Unix and VxWorks platforms.



The free software package Tool Command Language

(Tcl) [3] is used for the command line and script in-

terface.

A libSim model consists of state variables, inputs

and outputs, an init function, and a tick function.

The init function calls libSim functions to register

the model's state/input/output variables and tick

function. The tick function is called repeatedly dur-

ing the simulation to set the values of outputs based

on the values of inputs and internal state variables.

When running in a multiple model simulator, the

outputs of one model may be hooked up to the in-

puts other models (�gure 2). libSim provides func-

tionality for specifying these connections and facili-

ties for advancing simulation time and calling model

tick functions. Each input and output can be con-

nected to only one signal; but there is no limit to the

number of inputs and outputs that can be attached

to a signal. Signals are shared bu�ers, and inputs

and outputs are pointers to these bu�ers. So when

a model writes to its output, it is directly writing

to the inputs of any connected models without over-

head due to copying or message passing. Inputs and

outputs are also time stamped, so it is possible to de-

termine and specify when this data is \fresh". The

order in which model tick functions are called is de-

termined from the dependencies implied by the data

ow. If desired, libSim models can be wrapped and

connected using other packages such as Real-Time

Innovations, Inc.'s software ControlShell or Matlab's

Simulink.

When running a stand-alone unit test for a par-

ticular model, the developer can set the value of the

inputs, take a step, and look at the values of the out-

puts. This can be done at the command line, or in a

script for automated/batch testing. The commands

giving visibility into the models are the same as for

the full-up simulator. In this mode, the user writes

a trivial main() function and links to the libSim li-

brary to get an executable.

libSim is recon�gurable in the sense that model

instantiations and connections are speci�ed in an in-

put �le that is read at run time, and may be modi�ed

without recompiling any code. Additionally, mod-

els may be deactivated (meaning their tick functions

will not be called) and reactivated during run time.

This allows alternate implementations for a device,

perhaps one being an interface to actual hardware-

in-the-loop and another being a pure software simu-

lation. It also facilitates debugging.

Models can register state variables with libSim.

By doing so, these variables will automatically have

a command line interface at run-time, allowing the

user to look at and modify their values. This pro-

vides a standard interface to the model and simpli�es

debugging. State variables can be checkpointed, to

set the initial conditions for a future run. Types al-

lowed for state variables are any basic C data type,

arrays, and C enumerations.

libSim provides special support for modeling

faults, intended to help reduce coding for implement-

ing simple fault states. The built-in faults are a

specialized form of integer enumeration states. All

fault variables may be in a \nominal" mode which is

mapped to an integer value of zero. The model de-

veloper adds other keywords to a fault variable that

map to other, non-zero, values. Each one of these val-

ues should correspond to a mutually exclusive fault

condition. For example, a valve may have a fault

state that could be set to \nominal", \stuckClosed",

or \stuckOpen".

Faults may be triggered within the model's tick

function if the model determines that some criteria

is violated. More commonly, however, faults are in-

jected by using a poke command or GUI at run-time

by the user. Faults may also be �xed (i.e., set to

\nominal") by the model in its tick function, as well

as through a run-time poke command. Special sup-

port is given for the automatic correction of faults to

help reduce repetitive coding in models. Automatic

fault correction can occur if a time out expires for

the fault, if the model receives a soft reset, and if

the model is power cycled. All of these capabilities

are optional, and may be controlled at the command

line.

Other features of libSim include a scheduler to

perform tasks at either a speci�c time or every simu-

lation step, logging routines with verbosity selectable

on a per model basis, a global database to associate

names with pointers and organize global variables,

and an extensive set of commands available to make

inquiries about the simulation and models. These

commands are useful for writing scripts and graphi-

cal user interfaces, debugging, and monitoring.

3 Dshell DYNAMICS SIMULATOR

Darts Shell (Dshell) is a multi-mission spacecraft

simulator for development, test and veri�cation of

ight software and hardware. Dshell is portable

from desktop workstations to real-time, hardware-

in-the-loop simulation environments. Dshell inte-

grates the Darts exible multi-body dynamics com-

putational engine and libraries of hardware models

(for actuators, sensors and motors) into a simula-

tion environment that can be easily con�gured and

interfaced with ight software and hardware for vari-

ous real-time and non real-time spacecraft simulation

needs.

The main goals of the Dshell environment are:

to signi�cantly reduce the software development re-

quired to interface dynamics simulators, actuator

and sensor hardware models and hardware-in-the-

loop devices; to eliminate the need for separate inter-

face development e�orts across the various testbeds

(analysis, software and real-time) within a project,

and allow easy migration of models between testbeds;

to allow the easy support of a variety of S/C con�gu-

rations and models and simulation environments for

all the phases of the mission; and to permit the easy

reuse and customization of hardware models across

various missions.
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Figure 2: Example of libSim models viewed with ControlShell's Data Flow Editor

Dshell is a library implemented in C++ may

be embedded in another simulator as described in

section 1. Or, a small \main()" routine can be writ-

ten to send data between ight software and Dshell

models, and advance simulation time. For model de-

velopment, a generic \open-loop" version of main()

is available in which the user controls time and data

to and from models. This is invaluable for writing

batch scripts to do regression testing.

Simulation time is tracked from the start of simu-

lation. An I/O step consists of an integer number of

integration steps. Darts dynamics are computed

each integration step. Input and output to and from

Dshell models is expected to occur each I/O step.

3.1 Darts { Dynamics Algorithms for Real-

Time Simulation

TheDarts dynamics compute engine [4] implements

a fast and e�cient spatial algebra recursive algo-

rithm [5,6] for solving the dynamics of exible, multi-

body, tree-topology systems. It is very general, and

is also in use for non-spacecraft applications such as

molecular dynamics [7]. Darts is a library imple-

mented in ANSI C available for Unix and VxWorks

platforms.

An analyst provides a text input �le that is read at

run time and speci�es the bodies that make up the

spacecraft: their masses, inertial and exibility prop-

erties, as well as the types of hinges that bind them

together. A hinge connects two bodies, and there are

many types available (such as pin, U-joint, gimbal,

translational, and others). Bodies may be connected

in a tree topology, with each body having a single

parent body, and the root of the tree being referred

to as the base body. The locations of named nodes

where forces may be applied or dynamics properties

should be computed are also speci�ed in a Darts in-

put �le. Because the above data is not hard-coded,

dynamics models can be easily constructed for dif-

ferent missions, and models can be changed without

necessitating the recompilation of source code.

3.2 Dshell Model Classes

Dshell provides C++ base classes for hardware de-

vice models. Actuators can impart a force on a

node of a body, such as a thruster. Sensors are at-

tached to a node of a body and make use of dynamics

calculations produced by Darts for that node. Ex-

amples of sensor models include star trackers and

gyroscopes. Motors are attached to hinges and are

used to articulate the bodies that the hinge connects.

Encoders are also attached to hinges, and are to

motors what sensors are to actuators. Dshell device

models are massless, and other than applying a force

or articulating a body, do not a�ect the dynamics of

the spacecraft. All four of these classes are derived

from a common base class (Model), which de�nes

data and methods associated with each model.

Data for Dshell models consists of parameters,

discrete states, continuous states, commands, and

outputs. Parameters are values that are set while

reading a con�guration script upon startup, but are

not changeable by the model itself. Discrete states

are initialized at startup, and may be modi�ed by

both the model and the user during run time. Con-

tinuous states are updated by the numerical in-

tegrator in Darts, and require the model builder

to provide a method for computing the derivatives

of these states. Commands are time tagged data

structures sent by ight software, and outputs are

time tagged data structures sent to ight software.

Parameters, discrete states, commands and outputs

may be of any basic C data type (such as int or

double), C enumeration, structure, or �xed-size ar-

ray. Structures may be nested, may contain arrays,

arrays of structures are permitted, and so on. Con-

tinuous states are either double or arrays of double.

There are various methods available for a Dshell

model to de�ne its behavior. Pre- and post- I/O

step methods are called at the beginning and end

of an I/O step, and are typically used for mod-

els to retrieve commands from and send data to

ight software, respectively. Pre- and post- in-

tegration step methods are called at the begin-

ning and end of an integration step, and are typ-

ically used to compute discrete states. Each inte-

gration step, an integrator calls a function to com-

pute the time derivative of the Darts state vector.

This function also calls pre- and post- derivative

methods for each Dshell model immediately before

and after computation of Darts derivatives. The

pre-derivative method is typically used for actuators



to apply forces to the nodes they are attached to.

The post-derivative method is typically used to com-

pute the time derivative of any continuous states the

model may have. The number of times these deriva-

tive methods are actually called per integration step

depends on the numerical integration algorithm se-

lected. Note that unlike libSim, Dshell models do

not interact with each other directly, so the relative

order in which their methods are executed does not

matter (�gure 3).

The base classes provide several methods useful

to a model, including methods to get the simula-

tion time, step sizes, and Darts information. These

would be called from the model's pre/post I/O step

and other methods described in the previous para-

graph.
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Figure 3: Typical data ow for a Dshell simulation

3.3 Dshell Model Libraries

Classes for actual device models are derived from any

of the four base classes described in section 3.2. The

code for model classes may be grouped into reusable

libraries, organized perhaps by mission, by vendor, or

by type of device. There are several models available

for thrusters, gyroscopes, star scanners, accelerome-

ters, and other devices used on JPL spacecraft. They

can be used as-is for quick prototype simulations, or

as a starting point for similar models on a new space-

craft.

An automatic code generator is available to sim-

plify model development. The model developer

writes a text �le that describes the model, listing

the types, names, and descriptions of the parame-

ters, states, commands, and outputs associated with

the model. A prototype graphical user interface is

available for generating this �le. The code generator

takes this �le as input, and generates a C++ header

�le and stub source �le for the model class. The de-

veloper then �lls in methods (pre/post I/O step and

the rest) as needed to de�ne the model's behavior.

Very little knowledge of C++ is needed, but it is

useful to be familiar with C.

The automatic code generator also makes an in-

terface class, speci�c to the model class the de-

veloper is de�ning (�gure 4). The developer never

changes this code and does not need to even look at

it. This class provides model-speci�c functions to is-

sue commands and retrieve outputs from a model,

code commonly needed to de�ne a text interface

to the model's data, and other methods needed by

Dshell. The command and output functions would

typically be called from the simulator or main() rou-

tine that calls other Dshell routines. They are

model-speci�c to keep them type-safe (avoiding the

use of void * pointers reduces the occurrence of some

programming errors). This also allows a simpler in-

terface for commands and outputs of basic types, and

is faster than performing any kind of marshalling or

conversion of structures. The code generated for the

interface class is meant to eliminate tedious coding

by a developer that is typically needed for a model.

It is generated in a class separate from the actual

model class to clearly delineate code the developer

should modify. This helps keep the code for the stub

model class small.
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Figure 4: Dshell class hierarchy

3.4 Dshell Run Time Environment

The input �le containing Darts information may

also contain statements to instantiate models, speci-

fying the model class and instance name. States and

parameters for a model may be initialized here as

well. Again, not hard-coding this information makes

it easier to change con�gurations without recompil-

ing code.

Like libSim, Dshell also has an extensive set of

Tcl commands which can be used to get information

about the simulation and models therein. In par-

ticular, the values of model states and parameters

can be peeked and poked from the command line,

commands to models can be issued as if they came

from ight software, and outputs from models can

be examined. There are enough commands available

to query which models are instantiated and the data

types and descriptions of model states that a graph-

ical user interface to display state data can dynam-

ically create itself, so a programmer does not need

to change GUI code if the simulation con�guration

changes or new models are added. A prototype of

such a GUI has been implemented using Tk.



Darts and Dshell model state variables can

checkpointed to a text �le containing \poke" com-

mands. This �le can be edited by the user if neces-

sary without needing to know any syntax other than

the already familiar Tcl commands. On a subsequent

run, this �le can be used to initialize states and re-

sume a previous run.

Dshell can also keep track of multiple S/C dy-

namics models. Alternate dynamics models of the

same spacecraft can be selected from (such as in-

cruise versus in-orbit models with di�erent fuel slosh

behavior, or pre- versus post- probe release). Only

one such alternate dynamics model may be active at

any given time, and Dshell device models implic-

itly interface only to the active model. Or, multiple

spacecraft can be bookkept, as in the New Millen-

nium Program's Deep Space Flight 3 formation y-

ing mission. Any combination of alternate models of

multiple spacecraft is allowed.

As with libSim andDarts models, Dshellmod-

els can be deactivated from the Tcl command line or

startup �le. This is useful for debugging, or if there

are alternate models for the same spacecraft device

(perhaps one would interface to actual hardware-in-

the-loop).

It is also possible to schedule C functions and Tcl

scripts at run time for either one-time or repeated

execution. This is very handy for debugging and

monitoring variables. It is also useful for interfac-

ing Dshell to other tools. Such interfaces have

been created to Real-Time Innovation, Inc.'s data

monitoring tool StethoScope and to JPL's 3D viewer

Dview. Interfaces to other tools can be created in a

similar manner, without having to change Dshell

code. Aside from keeping Dshell code smaller and

cleaner, it makes it easy to mix and match inter-

faces among testbeds which use di�erent monitoring

tools.

4 CONCLUSION

An adaptable spacecraft simulation testbed is essen-

tial for the design, development, testing and inte-

gration of autonomy ight software and hardware.

The testbed needs to support simulations with a wide

range of capabilities. This paper describes the recon-

�gurable ATBE simulation environment and tools

that comprise it.

Both libSim and Dshell use the same core code

for providing a text interface to their models, which

is why the capabilities for giving visibility into the

model data are similar. The main di�erences be-

tween the tools are in the methods associated with

models, and when they are called. libSim provides a

mechanism for models to share data with each other,

while Dshell provides methods to interface with the

dynamics integrator at the appropriate times.

Many models needed for simulation neither pro-

vide nor require dynamics information, but do de-

pend on and should a�ect the states of other models.

Adding inter-model communication and sorting to

Dshell was considered, but the data ow becomes

messy because Dshell models have more than one

method executed per time step. A model could con-

ceivably try to use an input value in its pre I/O step

method, for instance, but the upstream model pro-

ducing the value not do so until its post I/O step

method is called. There did not appear to be an easy

way to specify or detect such a case. Additionally it

is not clear when to do the dynamics integration in a

time step. So libSim was designed to allow a model

one \tick" function per time step.

The tools can be used together when a developer

writes a libSim model that wraps Dshell. The

\tick" function of this wrapper model calls Dshell

functions to issue commands to Dshell models, ad-

vance Dshell's notion of time, and retrieve outputs

from Dshell models. For example, the \Dynamic-

sSimulator" components shown in �gure 2 is such a

wrapper. The \PropDrvElectronics" model receives

thruster commands from ight software via a bus,

but if it is powered o� by the \PwrDistrUnit" or is

in a fault state, it will not pass these commands on to

\DynamicsSimulator" which contains thruster mod-

els that do the actual work of applying forces. Expe-

rience with New Millennium Deep Space 1 has shown

that moving fault injection and other functionality

that had traditionally been in Dshell models to

libSim has kept the Dshell models simpler and fo-

cussed on the tasks for which they are intended.

Future work will include further blending of these

tools, in part by implementing an automatic Dshell

wrapper model, so a developer does not need to write

the code described in the previous paragraph. Addi-

tionally, we are looking into how ATBE's architec-

ture and toolkit can be enhanced to provide thermal,

power, and fuel consumption modeling. The ability

to use these tools either independently or in various

combinations with one another has been valuable and

will be retained.

ATBE tools have been used on many JPL ight

projects, and are continually evolving based on ex-

perience with these projects. Darts is used by the

Cassini project development, test, and integration

teams. Dshell is used by Galileo, Mars Path�nder,

and in the Flight System Testbed on many new

projects including Stardust. libSim is in use by the

NewMillennium Program's Deep Space Flight 1. De-

velopment of Cassini High Speed Simulator is near-

ing completion and will be used during Cassini mis-

sion operations to test command sequences prior to

uplink; this simulator uses ATBE tools as well.
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