
Roams: Planetary Surface Rover Simulation Environment

A. Jain, J. Guineau, C. Lim, W. Lincoln, M. Pomerantz, G. Sohl, R. Steele
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109

Abstract
This paper describes the ongoing development of the

Roams physics-based simulator for planetary surface explo-
ration rover vehicles.Roams includes models for various
subsystems and components of the robotic vehicle includ-
ing its mechanical subsystem, an electrical subsystem, inter-
nal and external sensors, on-board resources, on-board con-
trol software, the terrain environment and the terrain/vehicle
interactions. TheRoams simulator can be used for stand-
alone simulation, closed-loop simulations with on-board
software or for operator-in-the-loop simulations.

1 Introduction
There has been significant growth in the number of space ex-
ploration missions devoted to planetary surface exploration
using mobile rover vehicles. The Mars Exploration Rover
(MER) project due to launch in 2003 is a prime example of
a current mission under development, with the Mars Science
Laboratory (MSL) representing the next generation of such
surface exploration missions. Highlights of the MSL mis-
sion include the extended mission life (over 18 months) and
the desire to increase the rover’s onboard capabilities in or-
der to reduce the amount of ground intervention needed for
the exploration activity. There is a strong need to develop
validated modeling and simulation capability for the surface
system to allow missions to carry out detailed surface sys-
tem trade studies, develop and test new rover technologies,
support the development of onboard flight software architec-
tures, develop mission operations concepts etc.

In this paper, we describe the further development of the
Roams physics-based simulator for planetary surface rovers
beyond what was previously reported in [1]. One of the goals
of Roams is to support the early development, testing and
maturation of new rover technologies for eventual transfer
for mission use.
Roams includes models for various subsystems and com-

ponents of the robotic vehicle including its mechanical sub-
system, an electrical subsystem, internal and external sen-
sors, onboard resources, on-board control software, the ter-
rain environment and the terrain/vehicle interactions. The
Roams simulator can be used for stand-alone simula-
tion, closed-loop simulations with onboard software or for
operator-in-the-loop simulations.

In this paper we will describe the current status ofRoams

as well as the future development and validation plans.

2 Roams Models
A key requirement onRoams is that it provide a high-
fidelity virtual rover that can be used to test and validate the
onboard rover control software. This implies thatRoams

implement all the interfaces to the rover hardware and the
models for the hardware. However, to support needs other
than onboard software validation,Roams also includes rep-
resentative models for onboard software components such as
navigation, locomotion and motor control algorithms. These
onboard software models allow users to useRoams with
component algorithms, eg. external planning engines can
give “go to” commands to theRoams rover without having
to integrate with low level rover navigation software.

Figure 1: Roams component sub-systems

Figure 1 describes the key sub-systems modeled within
Roams - including both the physics based models as well
as models for the onboard software. TheDynamics and
Kinematicsmodule includes a multibody kinematics and dy-
namics model of the rover. This module interacts with the
wheel/soil interactionContact modelto compute the multi-
body state of the rover. This interaction includes the use of
theTerrain datamodule which contains the terrain model, as
well as any steering/wheel motor torques being commanded
by the motor controllers. The rover multibody state is used

1

by the theSensor devicesas well as thePower modelto simu-
late the sensor and power state of the rover. The information
is also used by theNavigationandVision/Nav. sensorsmod-
ules to close the loop and provide new set points to the motor
control software. The rover state is also used to send mes-
sages to theVisualizationmodule to update the 3D graphics
visualization. The following sections describe each of these
modules in additional detail.

2.1 The Rocker/Bogey Vehicle Models
The rover vehicle modeled inRoams is the rocker/bogey
class of 6-wheeled rovers used for planetary surface explo-
ration. There are several variations on the basic design in
terms of the location of the differential, the number of steer-
able wheels and the various mechanical dimensions of the
rover. While the underlyingDarts multibody engine sup-
ports very general multibody topologies,Roams specializes
this to rocker/bogey vehicles by using parameterized tem-
plates. The templates provide entries for the basic kinemat-
ics and inertia properties of the rover, its arm (if any), inertial
sensors, number of steerable wheels etc. The templates sim-
plify the definition and addition of new rover vehicle models.
For existing rocker/bogey platforms, the templates are filled
in with numeric values specific to the rover. However, as
described later, the templates make it easy to explore rover
design space by usingRoams within Monte Carlo simula-
tions.

2.2 Mobility Configuration Kinematics
Applications such as the development of navigation and ob-
stacle avoidance algorithms do not require full dynamic sim-
ulation of the rover/terrain interaction. For these applica-
tions,Roams includes aconfiguration kinematicscapabil-
ity to provide high speed kinematic state propagation. When
operating in kinematic mode,Roams computes the height
above ground and roll/pitch angles of the vehicle’s chassis
as well as the rocker and bogey angles given the rover’s 2-D
location(x, y) and headingh.

The configuration kinematics problem requires the solu-
tion of a set of constraint equations for seven unknowns: 2
rocker angles, 2 bogey angles, chassis height, roll angle and
pitch angle. The differential rocker constraint provides a di-
rect relationship between the left and right side rocker an-
gles:

θL = −θR
Six more constraint equations are provided by assuming that
the surface of the six rover wheels are om cpmtact with the
terrain. The user can chose between two different forms of
these contact constraints inRoams.

The first form of the wheel contact constraint assumes the
point of contact is located directly beneath the wheel hub
location:

wz − rw = h(wx, wy)

where(wx, wy, wz) are the coordinates of the wheel center,
rw is the wheel radius andh relates the location(wx, wy) to
the height of the terrain. The position of the wheel center
(wx, wy, wz) is related to the unknown angles through the

rover Jacobian. This form provides good results for rover
motion on relatively flat terrain. A second form of the con-
tact constraint allows the contact point to move on the sur-
face of a parameterized wheel shape.

S = g(u, v)
Sz = h(Sx, Sy)

S⊥ × T⊥ = 0

whereS is the wheel surface parameterized by new un-
knowns u and v. The location of the contact point is
(Sx, Sy, Sz). The wheel surfacez coordinate matches the
terrain heighth at the contact point. The third constraint
equation matches the wheel surface normal (S⊥) direction
to the terrain normal (T⊥) direction. This cross product con-
straint insures that contact is made at the correct point on the
wheel surface.

These constraints are used with the Newton-Raphson
solver described in Section 3.5 to solve for the rover coor-
dinates at the new location.

2.3 Vehicle Dynamics
While kinematic state propagation is sufficient for some
tasks, others require a dynamics based simulation to accu-
rately model behavior such as sliding, slipping and sinking
of the rover on the terrain. The critical element of dynamic
simulation is the interaction between the wheel and the soil.
Once this contact force between wheel and soil has been de-
termined,Dshell/Darts provides the dynamics engine re-
quired to propagate the rover state.

Writing the static force balance for a six wheeled rover
([2] results in a under-determined set of equations for the
contact forces. A variety of means have been employed to
solve this under-determined system. It is possible to de-
compose the lateral and transverse components ([2]) of the
contact force. While this provides good solutions for small
roll angles, it is not suitable for a general 6 degre of freedon
(DOF) rover simulation. Another technique is to find a set of
contact forces which optimizes some external criteria such
as traction or energy. This optimization can be very time
consuming and does not guarantee any continuity between
solutions. A third method, which is used byRoams, is to
insert a compliant spring-damper system between the wheel
and soil.

The compliant contact model used byRoams is based on
a rigid body contact model described in ([3]). This model
handles both rolling and sliding contacts by inserting com-
pliant spring dampers in both the normal and tangential di-
rections. The transition between rolling and sliding regions
is governed by the Coulomb friction law which limits the
deflection of the spring-damper system in the tangent di-
rection.. While the Coulomb law has limited applicability
to wheel-soil interaction, the model provides a well defined
and continuous estimate of normal and tangent force at the
contact point. We are working to extend this model so that
more accurate terra-mechanics based models can replace the
Coulomb law.

2.4 Arm Configuration Kinematics
A rover arm needs to position scientific instruments near ob-
jects of interest. Typical instrument arms have four or five
degrees of freedom (DOF). MER has a 5 DOF and FIDO
has 4 DOF. The arm is defined via aRoams template model
file.
Roams includes an inverse kinematics engine for use

with arms with different degrees of freedom. The Newton-
Raphson solver described in Section 3.5 is again used to
solve for the inverse kinematics. The constraints in this case
are on the arm end-effector. The x,y,z end position of the
arm and an orientation constraint are inputs to theDshell

model.

2.5 Terrain Models
The terrain is represented by a digital elevation map (DEM).
This terrain model is used to drive the wheel/soil interac-
tion models, the navigation and hazard avoidance models
as well as theDspace visualization engine. We have de-
veloped interfaces to third party terrain synthesis software
for the generation and use of these terrain models. The ter-
rain synthesis software [4] supports the generation of terrain
models with specific statistical properties (eg. rocks/crater
distributions) as well as the fine-grain enhancement of exist-
ing terrain maps.

We are currently incorporating terrains reconstructed from
empirical terrain measurements intoRoams to support val-
idation activities.

2.6 Inertial Sensors
Roams includes models for inertial sensors such as iner-
tial measurement units (IMUs) and sun sensors. The IMU
models include models for gyroscopes and accelerometers.
Also included are models for sun sensors, inclinometers, and
wheel and steering encoders.

2.7 Motors
The wheel and steering motor models include gears at the
wheels include profile generators for the motors which take
maximum velocity and acceleration constraints. Motor con-
troller models are provided which are driven by the set points
generated by the profile generators.

2.8 Power sub-system
The power sub-system includes solar panel, sun sensor and
battery models. These systems track power available to the
rover. Parameters define the power draw of devices attached
to the rover such as wheel motors and onboard electronics.
The sun sensor provides current sun angle information to the
solar panel model which outputs power to charge the battery.

2.9 Navigation sub-system
The navigation sub-system is responsible for accepting goal
commands and generating a sequence of locomotion com-
mands, which guide the rover to the goal while avoiding haz-
ardous areas. In lieu of camera image simulation,Roams

implements models that process the terrain model informa-
tion based on the rover location and orientation to generate

the vision sensor data products needed by the navigation al-
gorithms. The rover is commanded to follow an arc for a
set distance. At the completion of this short traverse more
terrain information is gathered and the process repeats until
the rover reaches it’s desired goal or is blocked by obstacles
from achieving it’s goal. As a practical matter the goal is
not a single point, but some bounded circle around the actual
goal.

One of the navigation algorithms implemented within
Roams is the Sojourner navigation algorithm which selects a
traverse arc based on detected hazards to the left, right and
center of the rover (Figure 2).

Figure 2: Obstacle detection for Sojourner navigation
algorithm

The Gestalt navigation algorithm [5] developed for the
Mars Exploration Rover (MER) mission has also been inte-
grated intoRoams. The Gestalt algorithm generates a set of
candidate motion arcs for the rover. The set of arcs are then
ranked based upon a goodness map which is generated based
on terrain properties such as roughness, slope, the size of the
rover, and any obstacles. A single arc is selected as the ’best’
one to traverse. Figure 3 shows a graphical representation of
the goodness map overlayed on the terrain surrounding the
rover.

2.10 Locomotion sub-system

The locomotion sub-system takes traverse arc commands
generated by the navigation algorithm and in turn generates
steering and wheel motor commands needed to execute those
motions. In kinematics simulation mode, the rover is simply
placed at various points along the desired motion path un-
til the desired distance is reached. In dynamics simulation
mode, the locomotion module generates set point commands
for the motor controller to steer the rover along the desired
path. Closed loop controller models are used to drive the
steering and wheel motors along the desired trajectory. An
odometry model is used to determine when the rover has
completed the motion by looking at the amount each wheel
has rotated since the start of the command.

Figure 3: Graphical depiction of the goodness map for
the Gestalt navigation algorithm

3 Roams Design Elements
3.1 Dshell/Darts Simulation Framework
Roams is an adaptation of theDshell/Darts [6,7] multi-
mission spacecraft simulation framework and tools for the
surface rover domain.Dshell provides a framework for
development of sensor, actuator, electrical and mechanical
subsystems. Expanding these capabilities,Roams includes
models for the terrain environment, contact between the ve-
hicle’s wheels and the terrain, models for onboard software
functions including hazard avoidance and navigation.
Dshell provides a rich variety of simulation features

which are available withinRoams. Example features in-
clude plain ASCII file model files for defining simulation
configuration; usability for closed-loop simulation use; a
scripting interface; extensive peek/poke capability into simu-
lation data; data-logging and monitoring facility; checkpoint
capability etc.

3.2 Rover Model Definition
TheDshell tool uses plain ASCII data files to define the
simulation configuration at run-time - the various models to
be instantiated and their interconnections. This generic ca-
pability is specialized forRoams using templates to sim-
plify the specification of rocker/bogey rover models. The
templates allow the specification of standard kinematic and
dynamics vehicle parameters as well as those for the various
device models. The number of steerable wheels, the num-
ber of links in the instrument arm, mount locations can all
be tailored to specific rovers. The user also has the ability to
specify mathematical expressions to specify how dependent
parameters get defined. This powerful feature allows users to
useRoams to build up sophisticated rover models and use
them for exploring the design space.

3.3 Roams Configuration Modes
The rover onboard software can be regarded as a hierarchy
of functional layers. At the very bottom is the motor control

layer which controls the various steering and wheel motors.
The commands for this layer are generated by the locomo-
tion layer based on arc traverse commands it receives from
the navigation layer. The navigation layer itself responds to
goal commands from planning engines. Roams is being de-
signed to close the loop with the rover onboard software at
each of these levels (see Figure 4). To support these multiple
simulation modes, Roams includes representative models for
some of the rover onboard software functions.

Figure 4: Closing the loop at multiple levels

At the lowestmotor levelsimulation mode,Roams closes
the loop at the motor commands level. In this modeRoams

runs the full vehicle dynamics to propagate the state of the
vehicle. In this modeRoams is simulating only the hard-
ware actuators and sensors. At thenavigation levelsimula-
tion mode,Roams closes the loop at the go-to commands
from the rover software. In this modeRoams’ navigation
and locomotion models are used in the simulation. In this
mode the rover has the choice of running the simulation in
either dynamics or kinematics modes discussed in Sections
2.1 and 2.2. While the former provides higher fidelity, the
latter is significantly faster. The user has a choice of select-
ing between the Sojourner and Gestalt navigation algorithms
described in Section 2.9.

The selection between different modes is done at run-time.
This capability usesDshell’s ability to activate and deacti-
vate individual and collections of models at run-time.

3.4 Roams Run-Time Environments
Roams can be run in stand-alone mode for rover simulation.
It provides a Tcl command line interface for users to inter-
act with the simulation, or executes command scripts. There
is also aRoamsIF C++ interface available that allows ex-
ternal applications (such as rover onboard software) to close
the loop withRoams. In addition to these modes,Roams
usesDshell’s Dmex Matlab/Simulink wrapper generator
to interfaceRoams with the Simulink environment. The

Simulink environment is a popular desktop environment for
algorithm development and analysis. TheDmex wrapper
allows the use ofRoams as a SimulinkS-functionwithin it
(see Figure 5), where other S-function blocks can be devel-
oped by the user to create larger simulations.

Figure 5: Roams embedded within Simulink via the
Dmex interface

3.5 Newton-Raphson Kinematics Solver
Roams includes a generic Newton-Raphson kinematics
solver library that is used for solving the inverse kinematics
for different types of constraint problems such as configura-
tion kinematics and arm kinematics. Once we have chosen
the form of the constraint equations, we develop the con-
straint Jacobian matrix

Jc =
∂f

∂q

wheref is the set of constraint equations andq is the rover
generalized coordinates. Normally, the rover coordinates are
the various joint angles, but may also include any added un-
kowns such as the surface parameters (u andv) for the con-
tact constraint described in section 2.2. The constraint Ja-
cobian also requires terrain derivative (slope and curvature)
information in addition to the rover kinematic Jacobian pro-
vided byDarts. A Newton-Raphson iterative technique is
used to find a set of rover generalized coordinates which sat-
isfy the constraint equations. These coordinates allow us to
place the rover and arm in the correct kinematic posture on
the terrain. Generally, a solution is obtained quite rapidly in
only few iterations. However, it is possible for highly uneven
or rocky terrain to make a solution impossible.

3.6 Computational Geometry
The SWIFT++ library [8] is currently used byRoams to
compute wheel penetration distance into the terrain and the
ANN library [9] is used to determine clearances between the
rover and terrain.

SWIFT++ and Wheel-Terrain Penetration Distance:
Given a set of two or more convex, polyhedral objects,
SWIFT++ (”Speedy Walking via Improved Feature Testing
for Non-convex Objects”) provides functions to compute the
distances and contact points between pairs of objects.

In Roams, SWIFT++ objects are created to represent the
shapes of the rover wheels and the terrain. To minimize com-
putation time, only small ”patches” of the terrain underneath
the rover wheels are created and the surface of each patch
is decomposed into a set of triangular tiles (see Fig. 6). As
the rover moves along the terrain, new patches are created
and destroyed. To compute wheel penetration distance, each
wheel’s surface is represented by a cylinder, and a patch of
terrain tiles underneath the wheel is used to represent the
ground surface. Since SWIFT++ does not provide functions
to compute penetration distance, a smaller cylinder within
the wheel is created and SWIFT++ is used to find the dis-
tance and contact points between the smaller cylinder and
the terrain surface from which the wheel penetration distance
can easily be computed.

Figure 6: Model Terrain as Triangular Tiles

ANN and Clearance Sensors:A drawback to SWIFT++
is that only a small number of 3D objects can be represented
in SWIFT++ without incurring a performance penalty. Since
the computation of clearances between the rover and terrain
requires a larger area of terrain,Roams uses the ANN (”Ap-
proximate Nearest Neighbors”, [9]) C++ library to compute
the distance between a sensor node on the rover and the near-
est point on the terrain surface. The ANN library represents
objects as a ”cloud” of points (a three dimensional array of
floating point values sorted in a hash table) and provides
functions to efficiently compute the distance from a user-
specified point (e.g. a rover sensor) to the nearest point in
the cloud. Clearance sensors are placed on the four corners
of the rover to detect oncoming hazards and an additional
sensor is placed at the bottom of the rover’s belly to detect
ground clearance. The terrain surface (a two dimensional

array of floating point values) is sorted in an ANN object
and the appropriate ANN functions are called to determine
the closest point on the terrain surface to each sensor on the
rover. We have found that ANN is able to find the closest
point in an array of 65,000 terrain points in less than 4000
microseconds on a 400 Mhz Sun ULTRA10 workstation run-
ning Sparc SunOS 5.7.

3.7 Monte Carlo Simulations
Complex simulations with many possible interactions re-
quire a Monte Carlo capability to estimate the dependencies
between parameters of interest. A Monte Carlo simulation
calculates multiple scenarios of a model by repeatedly sam-
pling values from the probability distributions for the input
variables and using those values for a separate run.
Dshell/Darts contain a Monte Carlo simulation mod-

ule that is available for runningRoams’ Monte Carlo sim-
ulations. This capability is used to evaluate rover designs
and performance under different environment conditions and
scenarios.

The Monte Carlo capability is centered on a relational
database. The relational database provides a convenient way
to setup a simulation and store the results for later anal-
ysis. There are four main tables that contain information
about 1) the experiment, 2) the stage commands, 3) the re-
sult specification, and 4) the collected results. The experi-
ment table contains the experiment id, description, and the
Dshell/Darts script to run. The stage command table has
a run id, the Tcl command to run at a particular stage, and
the simulation stage when the command should run. The re-
sult specification table has fields to hold the result name, Tcl
command to run when the condition is met, and triggering
condition when the value should be collected. Finally, the
results table contains the time and run id stamped results.

The setup of a Monte Carlo experiment requires an exist-
ingRoams simulation. The top-level script is conceptually
split into multiple stages. At each stage input parameters can
be set and results collected. The staging is important because
it gives sequence control over initialization and data collec-
tion.

A process control manager spawns a job on an idle ma-
chine corresponding to a single run. Each machine accesses
the database for its setup and to store its results.

3.7.1 Dspace 3D Visualization Tool

The 3D graphics visualization component ofRoams
is the Dspace visualization system. Dspace is a
C++/OpenInventor/Tcl based visualization system that ac-
cepts Digital Elevation Maps (DEM) and OpenInventor
scenegraph based CAD files, and uses these, along with
Dshell/Darts state information, to render high-quality,
real-time scenes. Dspace receives state commands from
Dshell/Darts via the DshellDspace sub-system.

Using C++ and object oriented design principles, Dspace
has been designed to be highly flexible and run-time con-
figurable by the user, via a rich API of over 100 C++ or
Tcl accessible routines. Routines that directly support ren-
dering, such as viewport management, lighting and shading,

camera control, atmospheric conditions such as fog or haze
and scenegraph traversal, are combined withRoams spe-
cific capabilities such as DEM based terrain support, terrain
level-of- detail rendering, spacecraft attitude and articulation
and obstacle detection footprint display..

An important feature of Dspace, and one in whichRoams

takes full advantage, is the ability to display multiple graph-
ical viewports, each with a unique or with a shared scene-
graph. The sharing of scenegraphs is important toRoams

when varying viewpoints of the same scene are required,
such as a ”chase” camera fixed to a rover in one viewport,
and a ”plan” view, that allows the user to view and con-
trol the viewpoint of the entire scene via mouse interaction.
Scenegraphs unique to a given viewport are useful when a
scene must be rendered in some special way, such as the view
through an obstacle detection camera, where atmospheric
conditions and high fidelity terrain or rover models must be
used to achieve higher levels of realism than required by the
normal simulation views.

To achieve real-time or near real-time rendering perfor-
mance, Dspace takes advantage of OpenInventor’s level-of-
detail support for both DEM based terrain and for CAD
based rover models. For DEM based terrain, users spec-
ify the amount of level-of-detail subdivision and the number
of levels to be generated, and Dspace constructs a hierar-
chical scenegraph that contains the various level- of-detail
components. For CAD based rover models, users can create
multiple levels-of-detail by presenting Dspace with multi-
ple CAD files of the rover, each with a gradual reduction in
complexity. OpenInventor, at run-time, decides which level
to ”swap” in, based upon the distance of the terrain or rover
from the viewer and by utilizing predetermined distance fac-
tors provided by the user. For example, as the user changes
the viewpoint via the mouse or through the API, portions of
the terrain that are farther away from the viewer are rendered
in lower fidelity (fewer polygons), while the portions of the
terrain closest to the viewer are rendered in higher fidelity
(more polygons). This mechanism assures that terrain clos-
est (and seemingly of more interest) to the viewer is always
rendered at the highest possible fidelity. While somewhat
complex to implement, this mechanism produces a substan-
tial increase in rendering performance.

An interesting feature of this level-of-detail design, and
one that was driven by theRoams requirement to project
obstacle detection footprints onto the terrain, is the way in
which material and surface normal information is maintained
in a data structure that is global across all levels-of-detail.
During a typical simulation run,Roams can direct Dspace
to render an obstacle detection footprint onto the terrain at
any given time and location. This change in terrain color
for a specific portion of the terrain must be propagated down
to all detail levels, because for a given viewpoint, OpenIn-
ventor controls which level-of-detail is currently being ren-
dered. Making the material information global ensures that
a change in color, or some other material property, is applied
uniformly, no matter which level-of- detail is currently being
rendered.

3.7.2 DshellDspace Interface Module

DshellDspace is the subsystem by which commands are typ-
ically sent from ROAMS to Dspace. DshellDspace provides
a layer of abstraction that allows the user to organize and
structure a simulation run and provides the ”glue” that binds
Dshell/Darts information to Dspace. DshellDspace or-
ganizes simulation data into Assemblies, Graphs and Bodies,
each with a unique function and connection to Dspace, and
also provides API routines to support general Dspace func-
tionality, such as viewport management. While these general
API routines are convenient, the power of DshellDspace lies
in its organization of simulation components.

Figure 7: The DshellDspace interface module

Assemblies can be thought of as the equivalent of an
OpenInventor scenegraph and are the high-level construct
for managing simulation objects in DshellDspace. Assem-
blies maintain and manage a list of DshellDspace Graphs
that, during initialization time, is transmitted to one or more
Dspace viewports. The Assembly supports typical scene-
graph operations, such as enabling/disabling scenegraph
traversal at run-time. DshellDspace can support multiple As-
semblies, but typically the number used during a simulation
corresponds in some way to the number of active Dspace
viewports.

Graphs are always owned by an Assembly, and contain in-
formation related to the loading of OpenInventor CAD files,
terrain DEM files, texture files, graphical primitives such as
spheres,cones, cubes and lines, material properties and the
maintenance of a list of DshellDspace Bodies. Graphs can
be thought of as the equivalent of a branch in a scenegraph
tree.

If Graphs are the branches, then DshellDspace Bod-
ies are the leaves on those branches. Bodies directly
control the connection between the continuously changing
Dshell/Darts state information and how that information
is transmitted to Dspace. For example, a rover may be made
of up various parts, all of which might be articulated inde-
pendently. Chassis, rocker, bogey, axles, wheels or camera

mast, each haveDshell/Darts equivalents that are con-
tinuously modified based on state changes. DshellDspace
Bodies utilize theDshell ”watch” variable mechanism to
monitor changes in state information, typically attitude or
position, and pass the new state to Dspace. By utilizing the
watch variable mechanism, DshellDspace allows the user to
setup the connection between aDshell/Darts body and a
Dspace scenegraph item, at initialization time, and then let
DshellDspace automatically update Dspace throughout the
course of a simulation run.

Because DshellDspace maintains a hierarchical list and a
current set of states for all of the items that Dspace needs dur-
ing a simulation, Dspace can be started and then restarted,
say on a different workstation, in the middle of a simula-
tion run, without the loss of any state information, as long
as all DshellDspace Assemblies are transmitted to the newly
restarted Dspace.

4 Roams Applications
WhileRoams is currently being developed for eventual use
by NASA’s 2009 Mars Science Laboratory mission, we de-
scribe here some of the other applications whereRoams is
being used.

CLARAty [10] is a reusable rover software architecture
being developed in collaboration by several institutions in-
cluding JPL, NASA Ames, CMU and others. A goal of the
CLARAty development is to provide an open architecture
for component algorithm developers to develop and integrate
their capabilities into. While CLARAty is targeted to run on
physical rovers, closed-loop interfaces between CLARAty
andRoams have been developed to allow users to trans-
parently switch between the physical rover and simulation
testbeds. The closed-loop interfaces with CLARAty have
been developed at the navigation and the motor levels (see
Figure 4). At the highest “rover” level,Roams includes
models for the key functional elements of onboard software
so that the commanding can be at the high-level (eg. go-to
commands). At the lowest “motor” level, the interface sup-
ports commanding of individual motors inRoams with sen-
sor/encoder feedback being provided back to CLARAty. To
support the “rover” level closed-loop interface,Roams in-
cludes a variety of models for obstacle detection algorithms
and onboard navigation software. The user can select be-
tween these different algorithms at run-time to evaluate their
performance.

CLEaR [11] is a high level task planner currently un-
der development. It is being used to provide thedecision
layer within the CLARAty framework. Figure 8 shows a
screenshot of the closed-loop integration between CLEaR,
CLARAty andRoams for the development and test of au-
tonomy capabilities.

The Roams team is also collaborating with NASA
Ames’ Mission Simulation Facility (MSF) [12] to develop a
reusable simulation capability targeted to autonomy technol-
ogy development. The MSF architecture includes standard-
ized interfaces to allow local and remote model providers
and users to develop integrated simulations tailored to their

Figure 8: CLEaR, CLARAty and Roams closed loop
simulation for rover autonomy development

needs.Roams is providing a detailed rover engineering sim-
ulation capability that can be used by autonomy technology
providers to develop and mature their capabilities using real-
istic simulations for eventual infusion into missions.

The Mission Data System (MDS) project at JPL is devel-
oping the next generation flight, ground and test framework
for future space missions. TheRoams simulator is also be-
ing used by MDS in closed-loop simulations to support the
development and test of the MDS capabilities.

5 Conclusions
This paper provides a brief summary of the currentRoams

capabilities. Even asRoams continues to be developed fur-
ther, it is in use by a number of rover technology developers
to support their development. A significant element of the
currentRoams development is on validating the simulation
capabilities against experimental data. This is an important
step to maturing and benchmarkingRoams’ performance
for eventual use by missions such as the Mars Science Lab-
oratory.

Acknowledgments
The research described in this paper was performed at the Jet
Propulsion Laboratory (JPL), California Institute of Tech-
nology, under contract with the National Aeronautics and
Space Administration. We would also like to acknowledge
the support of NASA’s Mars Technology Program which has
supported the development ofRoams.

References
[1] J. Yen, A. Jain, and B. Balaram, “ROAMS: Rover

Analysis Modeling and Simulation Software,” ini-
SAIRAS’99, (Noordwijk, The Netherlands), June 1999.

[2] K. Iagnemma,Rough-Terrain Mobile Robot Planning
and Control with Application to Planetary Exploration.

PhD thesis, Massachusetts Institute of Technology,
2001.

[3] P. Kraus, A. Fredricsson, , and V. Kumar, “Modeling
of Frictional Contacts for Dynamic Simulation,” inIn-
ternational Conference on Intelligent Robot Systems
(IROS’97), (Grenoble, France), Sept. 1997.

[4] R. Gaskell, J. Collier, L. Husman, and R. Chen, “Syn-
thetic Environments for Simulated Missions,” inPro-
ceedings IEEE Aerospace Conference, (Big Sky, Mon-
tana), Mar. 2001.

[5] S. B. Goldberg, M. W. Maimone, and L. Matthies,
“Stereo vision and rover navigation software for plan-
etary exploration,” inIEEE Aerospace Conference,
vol. 5, (Big Sky, Montana, USA), pp. 2025–2036, Mar.
2002.

[6] A. Jain and G. Man, “Real–Time Simulation of the
Cassini Spacecraft Using DARTS: Functional Capabil-
ities and the Spatial Algebra Algorithm,” in5th An-
nual Conference on Aerospace Computational Control,
Aug. 1992.

[7] J. Biesiadecki, D. Henriquez, and A. Jain, “A Reusable,
Real-Time Spacecraft Dynamics Simulator,” in16th
Digital Avionics Systems Conference, (Irivine, CA),
Oct. 1997.

[8] S. A. Ehmann, “Swift++: Speedy walking via im-
proved feature testing for non-convex objects,” 1997.
URL: http://www.cs.unc.edu/ geom/SWIFT++.

[9] D. M. Mount and S. Arya, “Ann: Library for
approximate nearest neighbor searching.” URL:
http://www.cs.umd.edu/ mount/ANN.

[10] I. Nesnas, R. Volpe, T. Estlin, H. Das, R. Petras,
and D. Mutz, “Toward Developing Reusable Software
Components for Robotic Applications,” inInterna-
tional Conference on Intelligent Robot Systems (IROS),
(Maui Hawaii), Oct. 2001.

[11] T. Estlin, R. Volpe, I. Nesnas, D. Mutz, F. Fisher,
B. Engelhardt, and S. Chien, “Decision making in a
robotic architecture for autonomy,” inSixth Interna-
tional Symposium on Artificial Intelligence, Robotics
and Automation for Space (i-SAIRAS 2001), (Montreal,
CA), June 2001.

[12] L. Fluckiger and N. C., “A new simulation framework
for autonomy in robotic missions,” inInternational
Conference on Intelligent Robot Systems (IROS), (Lau-
sanne, Switzerland), Oct. 2002.

