RoAMs: Planetary Surface Rover Simulation Environment

A. Jain, J. Guineau, C. Lim, W. Lincoln, M. Pomerantz, G. Sohl, R. Steele
Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109

Abstract as well as the future development and validation plans.
This paper describes the ongoing development of the

Roawms physics-based simulator for planetary surface expl2- R0OAMS Models

ration rover vehicles.Roawms includes models for various

subsystems and components of the robotic vehicle incl Qi-k?y requirement omoaws is that it provide a .h'gh'

ing its mechanical subsystem, an electrical subsystem, inlfléjr?“ty virtual rover that can be used'to' test' and validate the

nal and external sensors, on-board resources, on-board & oard rover control software. This implies tabanms

trol software, the terrain environment and the terrain/vehié[gpéerlnefm arl]l ﬂ;]e |3terface|i to the rover hardware gnd trf:e
interactions. TheRoaMs simulator can be used for stand™C¢€!S or the hardware. However, to support needs other

alone simulation, closed-loop simulations with on-boafga" onpoard software validatioRoAns also includes rep-

software or for operator-in-the-loop simulations. resentative models for onboard software components such as
navigation, locomotion and motor control algorithms. These

) onboard software models allow users to Wseams with

1 Introduction component algorithms, eg. external planning engines can

ive “go to” commands to thBRoams rover without having

I . |
There_ has b_ee_n significant growth in the number of Space_%(fntegrate with low level rover navigation software.
ploration missions devoted to planetary surface explorati~-

using mobile rover vehicles. The Mars Exploration Rowvi
(MER) project due to launch in 2003 is a prime example
a current mission under development, with the Mars Scier fiavigation Motor Control
Laboratory (MSL) representing the next generation of su | Controliers |- [visualization

Goal Commands

surface exploration missions. Highlights of the MSL mis -

sion include the extended mission life (over 18 months) a
the desire to increase the rover’s onboard capabilities in ;
der to reduce the amount of ground intervention needed

the exploration activity. There is a strong need to devel /,

Power models
cs and

jatics

Vision/Nav.
Sensors

validated modeling and simulation capability for the surfa
system to allow missions to carry out detailed surface sy | [LBEM <
tem trade studies, develop and test new rover technolog | Terain data
support the development of onboard flight software archite N
tures, develop mission operations concepts etc. E= Sontactmodell [Sensor devices
In this paper, we describe the further development of tie
Roawms physics-based simulator for planetary surface rovers
beyond what was previously reported in [1]. One of the goals
of Roaws is to support the early development, testing and
maturation of new rover technologies for eventual transfer
for mission use. Figure 1 describes the key sub-systems modeled within
Roawms includes models for various subsystems and colReams - including both the physics based models as well
ponents of the robotic vehicle including its mechanical suis models for the onboard software. ThBgnamics and
system, an electrical subsystem, internal and external skimematicsmodule includes a multibody kinematics and dy-
sors, onboard resources, on-board control software, the tetmics model of the rover. This module interacts with the
rain environment and the terrain/vehicle interactions. Thheel/soil interactiorContact modeto compute the multi-
Roams simulator can be used for stand-alone simulaody state of the rover. This interaction includes the use of
tion, closed-loop simulations with onboard software or fehe Terrain datamodule which contains the terrain model, as
operator-in-the-loop simulations. well as any steering/wheel motor torques being commanded
In this paper we will describe the current statuRofams by the motor controllers. The rover multibody state is used

i

B

Science

Figure 1: Roams component sub-systems

by the theSensor devicess well as th€ower modeto simu- rover Jacobian. This form provides good results for rover
late the sensor and power state of the rover. The informatimotion on relatively flat terrain. A second form of the con-
is also used by thBavigationandVision/Nav. sensonsiod- tact constraint allows the contact point to move on the sur-
ules to close the loop and provide new set points to the mdface of a parameterized wheel shape.
control software. The rover state is also used to send mes-
sages to th&isualizationmodule to update the 3D graphics S = g(u,v)
visualization. The following sections describe each of these S,
modules in additional detail. S _

1 X TJ_ = 0

2.1 The Rocker/Bogey Vehicle Models _ _
where S is the wheel surface parameterized by new un-

Tlhe rO\;e6r Vihlc:e dmodeled 'RC??MS :S thf rockerf/bogey nowns v and v. The location of the contact point is
€1ass Of 5-Wnee'led rovers USed Tor planerary surtace expier Sy, S2). The wheel surface coordinate matches the

ration. There are several vgnauon; on the basic des'gr}éﬁrain heighth at the contact point. The third constraint
terms of the location of the differential, the number of stee[- uation matches the wheel surface norngal)(direction
able wheels and the various mechanical dimensions of fh&, o~ normalT(,) direction. This cross product con-

rover. While the under!y|ngi)ARTs mgltlbody ENYINE SUP- o4 aint insures that contact is made at the correct point on the
ports very general multibody topologidspams specializes wheel surface

this to rocker/bogey veh|c|(_es by using paramete_nze_d tem"I'hese constraints are used with the Newton-Raphson
plates. The templates provide entries for the basic kinemat: . . .
: S i i : . .splver described in Section 3.5 to solve for the rover coor-
ics and inertia properties of the rover, its arm (if any), mema :

Inates at the new location.
sensors, number of steerable wheels etc. The templates sim-
plify the definition and addition of new rover vehicle model . .
For existing rocker/bogey platforms, the templates are fill d3 Vehicle Dynamics
in with numeric values specific to the rover. However, ¥hile kinematic state propagation is sufficient for some
described later, the templates make it easy to explore rotasiks, others require a dynamics based simulation to accu-

design space by usingoams within Monte Carlo simula- rately model behavior such as sliding, slipping and sinking

I
=
3°
<

tions. of the rover on the terrain. The critical element of dynamic
N]])) simulation is the interaction between the wheel and the soil.
2.2 Mobility Configuration Kinematics Once this contact force between wheel and soil has been de-

Applications such as the development of navigation and dgrmined DsHELL/DARTS provides the dynamics engine re-
stacle avoidance algorithms do not require full dynamic siidired to propagate the rover state.
ulation of the rover/terrain interaction. For these applica-Writing the static force balance for a six wheeled rover
tions, Roawms includes aconfiguration kinematicsapabil- ([2] results in a under-determined set of equations for the
ity to provide high speed kinematic state propagation. Wheantact forces. A variety of means have been employed to
operating in kinematic modeRoams computes the heightsolve this under-determined system. It is possible to de-
above ground and roll/pitch angles of the vehicle’s chassiampose the lateral and transverse components ([2]) of the
as well as the rocker and bogey angles given the rover’s Z@ntact force. While this provides good solutions for small
location(z, y) and heading. roll angles, it is not suitable for a general 6 degre of freedon
The configuration kinematics problem requires the sol(DOF) rover simulation. Another technique is to find a set of
tion of a set of constraint equations for seven unknowns:.c@ntact forces which optimizes some external criteria such
rocker angles, 2 bogey angles, chassis height, roll angle asdraction or energy. This optimization can be very time
pitch angle. The differential rocker constraint provides a dionsuming and does not guarantee any continuity between
rect relationship between the left and right side rocker aslutions. A third method, which is used ByoaMs, is to
gles: insert a compliant spring-damper system between the wheel
0, = —0g and soil.

Six more constraint equations are provided by assumin tha-{he compliant contact model used Bypans is based on
q P y g rigid body contact model described in ([3]). This model

the surface of the six rover wheels are om cpmtact with the

terrain. The user can chose between two different forms ﬁ?fndles poth rolling aqd sliding contacts by inserting _com_—
. pliant spring dampers in both the normal and tangential di-
these contact constraintsiRoaMs.

The first form of the wheel contact constraint assumes t%eé:tlons' The transition between rolling and sliding regions

point of contact is located directly beneath the wheel hlsogove_rned by the C_oulomb friction law .Wh'Ch limits the_
location: eflection of the spring-damper system in the tangent di-

rection.. While the Coulomb law has limited applicability

to wheel-soil interaction, the model provides a well defined
where(w,, wy, w;) are the coordinates of the wheel centeand continuous estimate of normal and tangent force at the
r, IS the wheel radius anti relates the locatiofw,, w,) to contact point. We are working to extend this model so that
the height of the terrain. The position of the wheel centerore accurate terra-mechanics based models can replace the
(wg, wy, w,) is related to the unknown angles through th@oulomb law.

Wy — Ty = h(wy, wy)

2.4 Arm Configuration Kinematics the vision sensor data products needed by the navigation al-

A rover arm needs to position scientific instruments near difithms. The rover is commanded to follow an arc for a
jects of interest. Typical instrument arms have four or fiet distance. At the completion of this short traverse more
degrees of freedom (DOF). MER has a 5 DOF and FiD@rrain information is gathered and the process repeats until
has 4 DOF. The arm is defined vid&aaMs template model the rover reaches it's desired goal or is blocked by obstacles
file. from achieving it's goal. As a practical matter the goal is
RoaMs includes an inverse kinematics engine for ud¥otasingle point, but some bounded circle around the actual
with arms with different degrees of freedom. The Newto§9al.
Raphson solver described in Section 3.5 is again used t®ne of the navigation algorithms implemented within
solve for the inverse kinematics. The constraints in this cd8eams is the Sojourner navigation algorithm which selects a
are on the arm end-effector. The x,y,z end position of thr@averse arc based on detected hazards to the left, right and
arm and an orientation constraint are inputs tolilseiELL center of the rover (Figure 2).

2.5 Terrain Models

The terrain is represented by a digital elevation map (DEM)
This terrain model is used to drive the wheel/soil interac
tion models, the navigation and hazard avoidance mode
as well as thédspace visualization engine. We have de-
veloped interfaces to third party terrain synthesis softwar
for the generation and use of these terrain models. The te
rain synthesis software [4] supports the generation of terrai
models with specific statistical properties (eg. rocks/crate
distributions) as well as the fine-grain enhancement of exis
ing terrain maps.

We are currently incorporating terrains reconstructed fron
empirical terrain measurements ifi@AMs to support val- LRetx ety e r e
idation activities.

. Figure 2: Obstacle detection for Sojourner navigation
2.6 Inertial Sensors algorithm

Roawms includes models for inertial sensors such as iner-

tial measurement units (IMUs) and sun sensors. The IMUTh Gestalt ati laorithm 51 develooed for th
models include models for gyroscopes and accelerome’tﬁs e Gestalt navigation algorithm [5] developed for the

Also included are models for sun sensors, inclinometers, ang > Exploratlon Rover (MER) mission has also been inte-
wheel and steering encoders, grated intaRoaMs. The Gestalt algorithm generates a set of

candidate motion arcs for the rover. The set of arcs are then
2.7 Motors ranked based upon a goodness map which is generated based

The wheel and steering motor models include gears at ffgt€@in properties such as roughness, slope, the size of the
wheels include profile generators for the motors which tal@/€" and any obs_tacles. Asingle arcis gelected as the .best
maximum velocity and acceleration constraints. Motor cofine to traverse. Figure 3 shows a graphical representation of

troller models are provided which are driven by the set poir“'é.e goodness map overlayed on the terrain surrounding the
generated by the profile generators. rover.

2.8 Power sub-system .
_ 2.10 Locomotion sub-system
The power sub-system includes solar panel, sun sensor and

battery models. These systems track power available to e locomotion sub-system takes traverse arc commands
rover. Parameters define the power draw of devices attacpederated by the navigation algorithm and in turn generates
to the rover such as wheel motors and onboard electrongtgeering and wheel motor commands needed to execute those
The sun sensor provides current sun angle information to thetions. In kinematics simulation mode, the rover is simply
solar panel model which outputs power to charge the battgriaced at various points along the desired motion path un-

.. til the desired distance is reached. In dynamics simulation
2.9 Navigation sub-system mode, the locomotion module generates set point commands
The navigation sub-system is responsible for accepting gfmlthe motor controller to steer the rover along the desired
commands and generating a sequence of locomotion cqrath. Closed loop controller models are used to drive the
mands, which guide the rover to the goal while avoiding hagteering and wheel motors along the desired trajectory. An
ardous areas. In lieu of camera image simulatipanms odometry model is used to determine when the rover has
implements models that process the terrain model infornt@mpleted the motion by looking at the amount each wheel
tion based on the rover location and orientation to generhtes rotated since the start of the command.

E i s S R layer which controls the various steering and wheel motors.

The commands for this layer are generated by the locomo-
tion layer based on arc traverse commands it receives from
the navigation layer. The navigation layer itself responds to

goal commands from planning engines. Roams is being de-
signed to close the loop with the rover onboard software at

each of these levels (see Figure 4). To support these multiple
simulation modes, Roams includes representative models for
some of the rover onboard software functions.

Deceton CLARA

% Function Layer
l Rower I

\
Rotx Roty ML i im|

Hivigitor

. -~ A |
Figure 3: Graphical depiction of the goodness map for [— - =
the Gestalt navigation algorithm Wl - oo
[-, i e
3 Roawms Design Elements S
3.1 Dshell/Darts Simulation Framework ==
Roawms is an adaptation of thBsHELL/DARTS [6, 7] multi- =ttt

Motor devices T whed moburtorques

mission spacecraft simulation framework and tools for tl —

surface rover domainDsHELL provides a framework for

development of sensor, actuator, electrical and mechanical

subsystems. Expanding these capabilitiksaMs includes

models for the terrain environment, contact between the ve- Figyre 4: Closing the loop at multiple levels
hicle’s wheels and the terrain, models for onboard software

functions including hazard avoidance and navigation.

DsHELL provides a rich variety of simulation features Atthe lowestmotor levelsimulation modeRoawms closes
which are available withirRoams. Example features in-the loop at the motor commands level. In this mdtieams
clude plain ASCII file model files for defining simulatiorfuns the full vehicle dynamics to propagate the state of the
configuration; usability for closed-loop simulation use; ¥ehicle. In this modeRoawms is simulating only the hard-
scripting interface; extensive peek/poke capability into simyare actuators and sensors. At tievigation levekimula-
lation data; data-logging and monitoring facility; checkpoiriton mode,Roanms closes the loop at the go-to commands

capability etc. from the rover software. In this mod@oaMs’ navigation
and locomotion models are used in the simulation. In this
3.2 Rover Model Definition mode the rover has the choice of running the simulation in

ither dynamics or kinematics modes discussed in Sections

simulation configuration at run-time - the various models tlt and 2'.2..f_Wh|![|e tfhetforrr_}%r prowdﬁs hlghr?r_fldel;ty, :het
be instantiated and their interconnections. This generic teris significantly faster. 1he USer has a choice ot select-

pability is specialized foRoanms using templates to sim-/Ng between the Sojourner and Gestalt navigation algorithms

plify the specification of rocker/bogey rover models. Th%escribed in Section 2.9.

templates allow the specification of standard kinematic and! N'€ Selection between di'ffere-r?t modes is done at run-time.
dynamics vehicle parameters as well as those for the varidtisS capability use®snELL's ability to activate and deacti-
device models. The number of steerable wheels, the nUffite individual and collections of models at run-time.

ber of links in the instrument arm, mount locations can all

be tailored to specific rovers. The user also has the ability3e# Roams Run-Time Environments

specify mathematical expressions to specify how dependgifa s can be run in stand-alone mode for rover simulation.
parameters get defined. This powerful feature allows usergtgrovides a Tcl command line interface for users to inter-
useRoAwms to build up sophisticated rover models and usg: with the simulation, or executes command scripts. There

The DsHELL tool uses plain ASCII data files to define th

them for exploring the design space. is also aRoamsIF C++ interface available that allows ex-
. . ternal applications (such as rover onboard software) to close
3.3 Roams Configuration Modes the loop withRoawms. In addition to these modeR 0aMs

The rover onboard software can be regarded as a hieranebgsDsHELL'S DMEX Matlab/Simulink wrapper generator
of functional layers. At the very bottom is the motor contrdb interfaceRoams with the Simulink environment. The

Simulink environment is a popular desktop environment for SWIFT++ and Wheel-Terrain Penetration Distance:
algorithm development and analysis. Thetex wrapper Given a set of two or more convex, polyhedral objects,
allows the use oRoaAMs as a SimulinkS-functionwithin it SWIFT++ ("Speedy Walking via Improved Feature Testing
(see Figure 5), where other S-function blocks can be devielr Non-convex Objects”) provides functions to compute the
oped by the user to create larger simulations. distances and contact points between pairs of objects.

Edb EM Ve Deddid Fesd] Tidh

In Roams, SWIFT++ objects are created to represent the
shapes of the rover wheels and the terrain. To minimize com-

%J putation time, only small "patches” of the terrain underneath
et e the rover wheels are created and the surface of each patch
R | is decomposed into a set of triangular tiles (see Fig. 6). As
7 stering gles the rover moves along the terrain, new patches are created

and destroyed. To compute wheel penetration distance, each
wheel’s surface is represented by a cylinder, and a patch of
terrain tiles underneath the wheel is used to represent the
ground surface. Since SWIFT++ does not provide functions
to compute penetration distance, a smaller cylinder within
the wheel is created and SWIFT++ is used to find the dis-

- tance and contact points between the smaller cylinder and
e s the terrain surface from which the wheel penetration distance
o p— ' can easily be computed.

Grawvity

Figure 5: Roams embedded within Simulink via the Model Terrain as Solid Triangular Tiles
Dmex interface
Terrain patch Create solid (3D) tile
composed of flat (2D) from each surface triangle.
triangles.

3.5 Newton-Raphson Kinematics Solver

Roawms includes a generic Newton-Raphson kinemati
solver library that is used for solving the inverse kinemati
for different types of constraint problems such as configui
tion kinematics and arm kinematics. Once we have chos
the form of the constraint equations, we develop the cc

* From one vertex, drop a normal
vector away from the surface.

i i 1 + Connect the two other vertices to the
straint Jacobian matrix : Connect the
+Load tiles into SWIFT; each tile is a
6f separate SWIFT object.

C_aq

wheref is the set of constraint equations apd the rover

generalized coordinates. Normally, the rover coordinates are

the various joint angles, but may also include any added un- Figure 6: Model Terrain as Triangular Tiles
kowns such as the surface parameterar{dv) for the con-

tact constraint described in section 2.2. The constraint JaanNN and Clearance SensorsA drawback to SWIFT++
cobian also requires terrain derivative (slope and curvatugg), 4t only a small number of 3D objects can be represented
information in addition to the rover kinematic Jacobian pres s\wiFT++ without incurring a performance penalty. Since
vided byDARTS. A Newton-Raphson iterative technique ige computation of clearances between the rover and terrain
used to find a set of rover generalized coordinates which %ﬁuires alarger area of terralvpaMs uses the ANN ("Ap-

isfy the constraint equations. These coordinates allow usp%ximate Nearest Neighbors”, [9]) C++ library to compute
place the rover and arm in the correct kinematic posture @ gistance between a sensor node on the rover and the near-
the terrain. Generally, a solution is obtained quite rapidly {f; hoint on the terrain surface. The ANN library represents
only few iterations. However, it is possible for highly Uneveghiects as a "cloud” of points (a three dimensional array of

or rocky terrain to make a solution impossible. floating point values sorted in a hash table) and provides
. | functions to efficiently compute the distance from a user-
3.6 Computational Geometry specified point (e.g. a rover sensor) to the nearest point in

The SWIFT++ library [8] is currently used bRoawms to the cloud. Clearance sensors are placed on the four corners
compute wheel penetration distance into the terrain and tfehe rover to detect oncoming hazards and an additional
ANN library [9] is used to determine clearances between thensor is placed at the bottom of the rover’s belly to detect
rover and terrain. ground clearance. The terrain surface (a two dimensional

array of floating point values) is sorted in an ANN objeaamera control, atmospheric conditions such as fog or haze
and the appropriate ANN functions are called to determinad scenegraph traversal, are combined Withams spe-

the closest point on the terrain surface to each sensor ondifie capabilities such as DEM based terrain support, terrain

rover. We have found that ANN is able to find the closelvel-of- detail rendering, spacecraft attitude and articulation

point in an array of 65,000 terrain points in less than 40@dd obstacle detection footprint display..

microseconds on a 400 Mhz Sun ULTRA10 workstation run- 5 important feature of Dspace, and one in whidhaMs

ning Sparc SunOS 5.7. takes full advantage, is the ability to display multiple graph-
3.7 Monte Carlo Simulations ical viewports, each with a unique or with a shared scene-
) graph. The sharing of scenegraphs is importaritoms

Complex simulations with many possible interactions r@men varying viewpoints of the same scene are required,
quire a Monte Carlo capability to estimate the dependenciggn as a "chase” camera fixed to a rover in one viewport,
between parameters of interest. A Monte Carlo simulatigRg g "plan” view, that allows the user to view and con-

calculates multiple scenarios of a model by repeatedly saiy the viewpoint of the entire scene via mouse interaction.
pling values from the probability distributions for the inpugcenegraphs unique to a given viewport are useful when a
variables and using those values for a separate run. scene must be rendered in some special way, such as the view
DsHELL/DARTS contain a Monte Carlo simulation modthrough an obstacle detection camera, where atmospheric
ule that is available for runningoanms’ Monte Carlo sim- ¢ondgitions and high fidelity terrain or rover models must be

ulations. This capability is used to evaluate rover desigiseq to achieve higher levels of realism than required by the
and performance under different environment conditions aggkmal simulation views.

scenarios.

The Monte Carlo capability is centered on a relational To achieve real-time or near real-time rendering perfor-

database. The relational database provides a convenient {J Fl:e, Dspa::(? talées{hacé;/épﬂtage oLOtpenl'nventdorfs Ieéil;)f'
to setup a simulation and store the results for later an f |dsuppor %r Io F DEMaSbe :r;aln and for

ysis. There are four main tables that contain informati Sed rover mocets. - For Uk ased terrain, USers spec-
about 1) the experiment, 2) the stage commands, 3) the! the amount of level-of-detail subdivision and the num_ber
sult specification, and 4) the collected results. The expe? __Ievels to be generated, an_d Dspace _constructs a h'e“"Tr'
ment table contains the experiment id, description, and cal scenegraph that contains the various level- of-detail
DsHELL/DARTS script to run. The stage command table hggm_ponents. For CAD_ based rover_models, USers can Cr?a‘e
a run id, the Tcl command to run at a particular stage, a%"t'ple Ie_zvels-of-detan by preser_wtlng Dspace with r_““'t!'
the simulation stage when the command should run. The %Q CAD.f|Ies of the rover, each W'Fh a grad_ual redL_Jct|on n
sult specification table has fields to hold the result name, .Famplexny. Openinventor, at run-time, decides which level

command to run when the condition is met, and triggeri ‘swap” |n based upon.t'h('—:‘ distance of the terr_ain or rover
condition when the value should be collected. Finally, t m the viewer and by utilizing predetermined distance fac-
\..tors provided by the user. For example, as the user changes

results table contains the time and run id stamped results, X int via th th h the AP| " f
The setup of a Monte Carlo experiment requires an exi € viewpoint via the mouse or througn the » portions o
e terrain that are farther away from the viewer are rendered

ing Roams simulation. The top-level script is conceptuall fidelity (f | hile th i fth
split into multiple stages. At each stage input parameters %ovyer idelity (fewer bo ygons), while the portions ot the
Lrain closest to the viewer are rendered in higher fidelity

be set and results collected. The staging is important beca&%ea | Thi hani that terrain cl
it gives sequence control over initialization and data collec- ore po ygon_s). 'S mechanism assures that tefrain clos-
tion. est (and seemingly of more interest) to the viewer is always

A process control manager spawns a job on an idle rqu[]dered at the highest possible fidelity. While somewhat

chine corresponding to a single run. Each machine accesst plex to implement, this mechanism produces a substan-

the database for its setup and to store its results. Ual Increase in rendering performance.
An interesting feature of this level-of-detail design, and

3.7.1 Dspace 3D Visualization Tool one that was driven by thRoaMs requirement to project
The 3D graphics visualization component &oams obstacle detection footprints onto the terrain, is the way in
is the Dspace visualization system. Dspace is which material and surface normal information is maintained

C++/Openlinventor/Tcl based visualization system that an-a data structure that is global across all levels-of-detail.
cepts Digital Elevation Maps (DEM) and Openinventdduring a typical simulation runRoams can direct Dspace
scenegraph based CAD files, and uses these, along wéthender an obstacle detection footprint onto the terrain at
DsHELL/DARTS state information, to render high-qualityany given time and location. This change in terrain color
real-time scenes. Dspace receives state commands ffonma specific portion of the terrain must be propagated down
DsHELL/DARTS Vvia the DshellDspace sub-system. to all detail levels, because for a given viewpoint, Openin-

Using C++ and object oriented design principles, Dspaegentor controls which level-of-detail is currently being ren-
has been designed to be highly flexible and run-time catered. Making the material information global ensures that
figurable by the user, via a rich API of over 100 C++ a change in color, or some other material property, is applied
Tcl accessible routines. Routines that directly support ramiformly, no matter which level-of- detail is currently being
dering, such as viewport management, lighting and shadirendered.

3.7.2 DshellDspace Interface Module mast, each hav®sHELL/DARTS equivalents that are con-

) i tinuously modified based on state changes. DshellDspace
DshellDspace is the subsystem by which commands are iBies utilize theDsueLL "watch” variable mechanism to

ically sent from ROAMS to Dspace. DshellDspace providgsonitor changes in state information, typically attitude or

a layer of abstraction that allows the user to organize a&%ition, and pass the new state to Dspace. By utilizing the
structure a simulation run and provides the "glue” that bind,ch variable mechanism, DshellDspace allows the user to
DSH'ELL/DARTS.infOI’mat.iOI’] to Dspage. DshellDspace O'setup the connection betweeianELL/DARTs body and a

ganizes simulation data into Assemblies, Graphs and Bodi§gpace scenegraph item, at initialization time, and then let

each with a unique function and connection to Dspace, &jghe|iDspace automatically update Dspace throughout the
also provides API routines to support general Dspace fuRg;i,rse of a simulation run.

tionality, such as viewport management. While these generage 4 se DshellDspace maintains a hierarchical list and a
AF.)l routme; are CO”V‘?”'G”F the power of DshellDspace “@&rrent set of states for all of the items that Dspace needs dur-
in its organization of simulation components. ing a simulation, Dspace can be started and then restarted,
say on a different workstation, in the middle of a simula-
tion run, without the loss of any state information, as long
DshellDspace as all DshellDspace Assemblies are transmitted to the newly
restarted Dspace.

| — —
e o
o~ L | — 4 Roams Applications
: E Dspace While Roawms is currently _being developed for_ e\{entual use
- =z by NASA's 2009 Mars Science Laboratory mission, we de-
— = Dispace Object IDs i icati i
= pace Obj E(;rilr?;uhsirg, some of the other applications whHee s is

DDGaph

CLARAty [10] is a reusable rover software architecture
being developed in collaboration by several institutions in-
cluding JPL, NASA Ames, CMU and others. A goal of the
CLARAty development is to provide an open architecture
for component algorithm developers to develop and integrate
their capabilities into. While CLARALy is targeted to run on
Figure 7: The DshellDspace interface module physical rovers, closed-loop interfaces between CLARAty
and Roams have been developed to allow users to trans-

arently switch between the physical rover and simulation

tbeds. The closed-loop interfaces with CLARAty have

Openlnventor ;cenegraph gnd are the high-level constiyct, developed at the navigation and the motor levels (see
for managing simulation objects in DshellDspace. Asser,’:_:ur ure 4). At the highest “rover” levelRoans includes

blies maintain and manage a list of DshellDspace Graprg dels for the key functional elements of onboard software

that, during initialization time, is transmitted to one or Morg v -+ the commanding can be at the high-level (eg. go-to
Dspace viewports. The Assembly supports typical scen :

h i h blina/disabli B mands). At the lowest “motor” level, the interface sup-
graph operations, such as enabling/disabling scenegrgg s commanding of individual motors RioAams with sen-

traversal at run-time. DshellDspace can support multiple Sriencoder feedback being provided back to CLARAty. To
semblies, but typically the number used during a simulatig[]

ds i to th b f active D §port the “rover” level closed-loop interfadgpAMs in-
\(iic;rvrvepsopr(t)g S I some way fo the number of acive DSPaflides a variety of models for obstacle detection algorithms

and onboard navigation software. The user can select be-
Graphs are always owned by an Assembly, and containgiyeen these different algorithms at run-time to evaluate their
formation related to the loading of Openinventor CAD filegerformance.
terrain DEM files, texture files, graphical primitives such as ¢ gar [11] is a high level task planner currently un-
spheres,cones, cubes and lines, material properties a“ddﬂ”redevelopment. It is being used to provide theision
maintenance of a list of DshellDspace Bodies. Graphs qgper within the CLARAty framework. Figure 8 shows a
be thought of as the equivalent of a branch in a scenegrapfeenshot of the closed-loop integration between CLEaR,
tree. CLARAty and Roams for the development and test of au-
If Graphs are the branches, then DshellDspace Bddnomy capabilities.
ies are the leaves on those branches. Bodies directifhe Roams team is also collaborating with NASA
control the connection between the continuously changiAges’ Mission Simulation Facility (MSF) [12] to develop a
DsHELL/DARTS state information and how that informationmeusable simulation capability targeted to autonomy technol-
is transmitted to Dspace. For example, a rover may be madgy development. The MSF architecture includes standard-
of up various parts, all of which might be articulated indézed interfaces to allow local and remote model providers
pendently. Chassis, rocker, bogey, axles, wheels or camend users to develop integrated simulations tailored to their

DDAsexibly

PhD thesis, Massachusetts Institute of Technology,
2001.

[3] P. Kraus, A. Fredricsson, , and V. Kumar, “Modeling
of Frictional Contacts for Dynamic Simulation,” in-
ternational Conference on Intelligent Robot Systems
(IROS'97) (Grenoble, France), Sept. 1997.

[4] R. Gaskell, J. Collier, L. Husman, and R. Chen, “Syn-
thetic Environments for Simulated Missions,” Rro-
ceedings IEEE Aerospace Conferen@ig Sky, Mon-
tana), Mar. 2001.

[5] S. B. Goldberg, M. W. Maimone, and L. Matthies,
“Stereo vision and rover navigation software for plan-
etary exploration,” inlEEE Aerospace Conference
vol. 5, (Big Sky, Montana, USA), pp. 2025-2036, Mar.

Figure 8: CLEaR, CLARAty and Roams closed loop 2002.

simulation for rover autonomy development

Eoamy

[6] A. Jain and G. Man, “Real-Time Simulation of the
Cassini Spacecraft Using DARTS: Functional Capabil-

needsRoAws is providing a detailed rover engineering sim- jties and the Spatial Algebra Algorithm,” iBth An-
ulation capability that can be used by autonomy technology nual Conference on Aerospace Computational Control
providers to develop and mature their capabilities using real- Aug. 1992.
istic simulations for eventual infusion into missions.

The Mission Data System (MDS) project at JPL is devell?] J. Biesiadecki, D. Henriquez, and A. Jain, “A Reusable,
oping the next generation flight, ground and test framework ~Real-Time Spacecraft Dynamics Simulator,” 16th
for future space missions. ThHeoams simulator is also be- Digital Avionics Systems Conferencgrivine, CA),
ing used by MDS in closed-loop simulations to support the ~ OCt. 1997.

development and test of the MDS capabilities. [8] S. A. Ehmann, “Swift++: Speedy walking via im-

proved feature testing for non-convex objects,” 1997.
5 Conclusions URL: http://www.cs.unc.edu/ geom/SWIFT++.

This paper provides a brief summary of the curfBatams [9] D. M. Mount and S. Arya, “Ann: Library for
capabilities. Even aRoawms continues to be developed fur- approximate nearest neighbor searching.” URL:
ther, it is in use by a number of rover technology developers http://www.cs.umd.edu/ mount/ANN.

to support their development. A significant element of the)

currentRoams development is on validating the simulatioh0] |- Nesnas, R. Volpe, T. Estlin, H. Das, R. Petras,
capabilities against experimental data. This is an important @nd D. Mutz, “Toward Developing Reusable Software
step to maturing and benchmarkifpams’ performance Components for Robotic Applications,” ifmterna-

for eventual use by missions such as the Mars Science Lab- tonal Conference on Intelligent Robot Systems (IROS)
oratory. (Maui Hawaii), Oct. 2001.

[11] T. Estlin, R. Volpe, I. Nesnas, D. Mutz, F. Fisher,
Acknowledgments B. Engelhardt, and S. Chien, “Decision making in a
The research described in this paper was performed at the Jet robotic architecture for autonomy,” i8ixth Interna-
Propulsion Laboratory (JPL), California Institute of Tech- tional Symposium on Artificial Intelligence, Robotics
nology, under contract with the National Aeronautics and and Automation for Space (i-SAIRAS 2Q@Montreal,
Space Administration. We would also like to acknowledge CA), June 2001.

the support of NASA's Mars Technology Program which has) .))
supported the developmentBHAMS. [12] L. Fluckiger and N. C., “A new simulation framework

for autonomy in robotic missions,” imnternational
Conference on Intelligent Robot Systems (IRQRu-
References sanne, Switzerland), Oct. 2002.

[1] J. Yen, A. Jain, and B. Balaram, “ROAMS: Rover
Analysis Modeling and Simulation Software,” iin
SAIRAS’'99(Noordwijk, The Netherlands), June 1999.

[2] K. lagnemma,Rough-Terrain Mobile Robot Planning
and Control with Application to Planetary Exploration

