
A Reusable, Real-Time Spacecraft Dynamics Simulator

Je�rey J. Biesiadecki David A. Henriquez Abhinandan Jain

Jet Propulsion Laboratory/California Institute of Technology
4800 Oak Grove Drive M/S 198-235, Pasadena, CA 91109 USA

ABSTRACT

Darts Shell ( Dshell ) is a multi-mission space-
craft simulator for development, test, and veri�cation
of 
ight software and hardware. Dshell is portable
from desktop workstations to real-time, hardware-in-
the-loop simulation environments.

Dshell combines the Darts S/C 
exible multibody
dynamics computational engine with libraries of hard-
ware models (for actuators, sensors, motors and en-
coders) into an integrated simulation environment that
can be easily con�gured and interfaced with 
ight soft-
ware and hardware for various real-time and non real-
time S/C simulation needs.

Dshell is in use by several of NASA's inter-
planetary deep space missions including Galileo,
Cassini, Mars Path�nder, and several projects in
JPL's Flight System Testbed.

1 INTRODUCTION

Dshell is a high �delity, multi-mission spacecraft dy-
namics simulation package. The �ve main goals of the
Dshell environment are: 1) signi�cantly reduce the
software development required to interface dynamics
simulators, hardware models and hardware-in-the-loop
devices; 2) eliminate the need for separate interface
development e�orts across the various testbeds (anal-
ysis, software and real-time) within a project; 3) allow
easy migration of models between testbeds; 4) allow
the easy support of a variety of S/C con�gurations
and models and simulation environments for all the
phases of a mission; and 5) allow the easy reuse and
customization of hardware models across various mis-
sions.

There are speci�c classes of real-time hardware de-
vices relevant to spacecraft dynamics. Dshell groups
these dynamics-dependent models into actuator, sen-
sor, motor and encoder model classes. Actuators and
motors are those devices that a�ect the dynamics,

while sensors and encoders measure the spacecraft
state. Hardware models (e.g. gyroscopes, thrusters,
and star-scanners) are organized in libraries which can
be created or augmented by the user. Each model has
a standardized interface to the Darts computation
engine, the external simulation environment, and the
user. The object-oriented model library includes ex-
tensive instrumentation for giving a user the high visi-
bility into the simulation necessary for e�ective use as
a design, development and test tool.

Dshell hardware models are real-time because
they complete their execution each tick of simulation
time. This deterministic performance is required for
the Dshell models to be in \closed-loop" simulation
with AACS 
ight software.

Figure 1 illustrates an example of a \closed-loop"
spacecraft simulator implemented using Dshell and
libSim. libSim is a library which uses a data 
ow
paradigm for connecting higher-level device and sub-
system models, and provides special features for mod-
eling faults. A libSim model was created to encap-
sulate Dshell, so that it would be embedded in the
example simulator. This libSim wrapper makes each
Dshell model's data and text interface available to
the data 
ow of the simulation (�gure 3).

The libSim library is part of a collection of libraries
and tools to enhance and extend the Dshell simula-
tion environment (See reference [1] and [2]), but are
not required for a dynamics simulator. Dshell is
a fully capable environment for developing dynamics-
dependent hardware models and for simulating space-
craft dynamics.

2 Dshell DYNAMICS SIMULATOR

Dshell is a library implemented in C++ and may be
embedded in a higher level simulator as described in
section 1. Or, a small main() routine can be written to
send data between 
ight software and Dshell models,
and advance simulation time. For model development,



DVIEW

DARTS 
DSHELL 
LIBSIM

StethoScope

   Fault 
Injection
    GUI

FSW

Command 
     GUI

Command 
Console

Figure 1: Example spacecraft simulation

Thrust
model

   Fuel
depletion
 model

   Valve
assembly
& elect.

Electron.    Star
 tracker

 Rate
sensor

Gimbal

Valves
Elect.

Feed
System

Gimbal

 Flex.

Attitude

Power
model

DARTS

Bus

RCS

Star Tracker

Main Engine

Solar
Panels

Dshell

Electron.

Rate sensor

Thrust
model

FSW

 Scene Gen.

Optics

Camera
Instrument

Ephemeris

Vector Serv.

Spice

Telecom
Device

Telecom
Link

Transponder

Amplifiers

Antenna

GDS

Up/Dn. Link

Figure 2: Types of models in a spacecraft simulation

libSim model

Dshell model

Legend:

Fault conditions in the various
"Electronics" models can affect the
thruster commands sent to Dshell or
the attitude and rate returned to FSW

libSim Wrapper for Dshell

thrusters (location_direction):
pxpy_posz

mxpy_posz

mxmy_posz

pxmy_posz

pxpy_negx

mxpy_posx

pxmy_negx

mxmy_posx

thruster
"on/off"
commands
from FSW

Propulsion 
Drive 
Electronics star_tracker

rate_sensor

Rate 
Sensor 
Electronics

DARTS

Star 
Tracker 
Electronics

device
"on/off"
commands
from FSW Power 

Distribution 
Unit

flags indicating when the other devices are powered "on"

attitude

rate

thruster
commands
to Dshell

rate

Bus 
Transmitter

attitude
and rate
to FSW

attitude

Figure 3: Dshell wrapped by libSim



a generic \open-loop" version of main() is available in
which the user controls time and data to and from
models. This is useful for writing batch scripts to do
regression testing.

Each tick of simulation time is an I/O step for
Dshell. Inputs and outputs to and from Dshell

models are expected to occur within that tick. In
\closed-loop" simulation, the size of an I/O step is
set to the length of one 
ight software RTI. However
in \open-loop", the I/O step can be set to any inter-
val of time which satis�es the data rate requirements
of the simulator. Each I/O step consists of an integer
number of integration steps. And for each integra-
tion step, Darts computes the multi-body dynamics.
The size of an integration step is set so that numer-
ical stability is ensured.

2.1 Darts { Dynamics Algorithms for Real-
Time Simulation

The Darts dynamics compute engine [3] implements
a fast and e�cient spatial algebra recursive algo-
rithm [4,5] for solving the dynamics of 
exible, multi-
body, tree-topology systems. It is also used for non-
spacecraft applications, such as molecular dynam-
ics [6]. Darts is a library implemented in ANSI C
and is available for Unix and VxWorks platforms.

An analyst provides an input �le that is read at run
time. IfDarts is used in conjunction withDshell, all
the Darts information is written in or sourced in the
Dshell input �le. The analyst uses Darts input to
specify the bodies that make up the spacecraft, their
masses, inertial and 
exibility properties, as well as the
types of hinges that bind them together. There are
many types of hinges available to connect two bodies
(i.e. pin, U-joint, gimbal, translational, and others).
Bodies must be connected in a tree topology, with each
body having a single parent body, and the root of the
tree being referred to as the base body. The nodes
on each body are also speci�ed in the Darts input �le.
Nodes are named locations on a body where forces are
applied or dynamics properties are computed. Because
the preceding information is not hard-coded, dynamics
models can be easily constructed or edited for di�erent
missions, without necessitating the recompilation of
source code.

2.2 Dshell Model Classes

Dshell provides C++ base classes for hardware de-
vice models. Actuators can impart a force on a node

of a body, such as a thruster. Sensors are attached
to a node of a body and make use of dynamics calcu-
lations produced by Darts for that node. Examples
of sensor models include star trackers and gyroscopes.
Motors are attached to hinges and are used to articu-
late the bodies that the hinge connects. Encoders are
also attached to hinges, but are used to determine the
position of the hinge. Dshell device models are mass-
less, and other than applying a force or articulating a
body, do not a�ect the dynamics of the spacecraft.
All four of these classes are derived from a common
base class (Model), which de�nes data and methods
associated with each model (�gure 7).

Data forDshellmodels consists of parameters, dis-
crete states, continuous states, commands, and out-
puts. Parameters are values that are set while read-
ing the Dshell input �le upon startup, but are not
changeable by the model itself. Discrete states are
initialized at startup, and may be modi�ed by both
the model and the user during run time. Contin-
uous states are updated by the numerical integra-
tor in Darts, and require the model builder to pro-
vide a method for computing the derivatives of these
states. Commands are time tagged data structures
sent by 
ight software, and outputs are time tagged
data structures sent to 
ight software. Parameters,
discrete states, commands and outputs may be of any
basic C data type (such as int or double), C enumera-
tion, structure, or �xed-size array. Structures may be
nested arrays, arrays of structures, and so on. Contin-
uous states are either double or arrays of double.

There are various methods available for a Dshell
model to de�ne its behavior. startIoStep() and
endIoStep()methods are called at the beginning and
end of an I/O step, and are typically used by mod-
els to retrieve commands from and send data to 
ight
software, respectively. startIntegrationStep() and
endIntegrationStep()methods are called at the be-
ginning and end of an integration step, and are typ-
ically used to compute discrete states. Each inte-
gration step, an integrator calls a function to com-
pute the time derivative of the Darts state vector.
This function also calls preDeriv() and postDeriv()

methods for each Dshell model immediately before
and after computation of Darts derivatives. The
preDeriv() method is typically used for actuators to
apply forces to the nodes that they are attached to.
The postDeriv()method is typically used to compute
the time derivative of any continuous states the model
may have. The number of times that these derivative
methods are actually called per integration step de-
pends on the numerical integration algorithm selected.



Dshell models do not interact with each other di-
rectly, so the relative order in which their methods are
executed is of no consequence. (�gure 4).

The base classes provide several methods useful
to a model, including methods to get the simula-
tion time, step sizes, and Darts information. These
would be called from the model's startIoStep() and
endIoStep() and other methods described in the pre-
vious paragraph.

2.3 Dshell Model Libraries

Classes for actual device models are derived from any
of the four base classes described in section 2.2. The
code for model classes may be grouped into reusable
libraries, organized by mission, by vendor, or by the
type of device. There are several models available for
thrusters, gyroscopes, star scanners, accelerometers,
and other devices used on JPL spacecraft. They can
be used as-is for quick prototype simulations, or as a
starting point for developing similar models on a new
spacecraft.

An automatic code generator is available to simplify
model development and to ensure a consistent inter-
face to all the models. The model developer writes a
text �le that describes the model, listing the types,
names, and descriptions of the parameters, states,
commands, and outputs associated with the model.
The Dmodel graphical user interface is available for
generating this description �le (�gure 5).

2.4 Dshell Model Libraries

The code generator takes the model data description
�le as input, and generates a C++ header �le and stub
source �le for the model class (�gure 6). The developer
then �lls in methods (startIoStep(), endIoStep()
and the rest) as needed to de�ne the model's behavior.
Very little knowledge of C++ is needed, but it is useful
to be familiar with C.

The automatic code generator also makes an in-
terface class, speci�c to the model class that the
developer is de�ning (�gure 7). It is never neces-
sary for the developer to change this code. This class
provides model-speci�c functions to issue commands
and retrieve outputs from a model. It also generates
code commonly needed to de�ne a text interface to the
model's data, and other methods needed by Dshell.
The command and output functions would typically
be called from the simulator or main() routine that

Actuator &
Motor    

Commands Sensor &
Encoder

Data

Actuators
Motors

Sensors
Encoders

DARTS Shell (Dshell )

DARTS

Spacecraft
FSW & Test
Environment

Figure 4: Typical data 
ow for a Dshell simulation

Figure 5: GUI for Dshell model building



DshellAutoGen

Input file describing the 
data  associated with the 
model, created by 
developer with either a 
text editor or a GUI

MpfThrusterCIF.h

MpfThrusterIF.cc

Auto-code generator 
which is usually invoked 
by a Makefile 

MpfThruster.tcl
MpfThruster.h

MpfThruster.cc

C++ model class whose methods are 
filled in by developer to define the 
behavior of the model

C interface to model usable by a 
simulator that embeds Dshell

Auto-generated documentation that can 
be converted to HTML, LaTeX, and Nroff

These four files are 
typically generated in a 
temporary directory 
separate from model 
stub code

Parent class that provides a text 
interface to the model needed by Dshell 
Tcl commands

MpfThrusterIF.h

MpfThruster.pod

Developers do not modify these files:

Developers update these files:

Figure 6: Input and Output Files for the Dshell Automatic Code Generator

calls other Dshell routines. They are model-speci�c
to keep them type-safe (avoiding the use of void *
pointers reduces the occurrence of some programming
errors). This also allows a simpler interface for com-
mands and outputs of basic types, and is faster than
performing any kind of marshalling or conversion of
structures. The code generated for the interface class
is meant to eliminate tedious coding by a developer
that is typically needed for a model. It is generated in
a class separate from the actual model class to clearly
delineate code that the developer should modify. This
helps keep the code for the stub model class small.

Actuator Sensor EncoderMotor

Model

MpfThrusterIF

MpfThruster

model base classes
provide interface hooks
to DARTS and Dshell 

model-specific interface class
automatically generated, developer does not modify
provides text interface to model

model class
"stub" code automatically generated
developer fills in methods to define model behavior

Figure 7: Dshell class hierarchy

2.5 Dshell Run Time Environment

The input �le containing Darts information may also
contain statements to instantiate models, specifying
the model class and instance name. States and pa-
rameters for the model may be initialized here as well.
Again, not hard-coding this information makes it eas-

ier to change con�gurations without recompiling code.

The free software package Tool Command Language
(Tcl) [7] is used for the command line and script inter-
face. Dshell has an extensive set of Tcl commands
which can be used to get information about the simu-
lation and models therein. In particular, the values of
model states and parameters can be peeked and poked
from the command line, commands to models can be
issued as if they came from 
ight software, and outputs
from models can be examined. There are commands
available to query which models are instantiated, the
data types and descriptions of model states. A graph-
ical user interface could use the results from the query
commands to dynamically display Dshell state data.
A GUI programmer using the query commands would
not need to change any code if the simulation con�gu-
ration changes or new models are added. A prototype
of such a GUI has been implemented using Tk.

Darts and Dshell model state variables can be
checkpointed to a text �le containing \poke" com-
mands. This �le can be edited by the user if necessary
without needing to know any syntax other than the
already familiar Tcl commands. On a subsequent run,
this �le can be used to initialize states and resume a
previous run.

Dshell can also keep track of multiple Darts dy-
namics models. Alternate dynamics models of the
same spacecraft can be selected from (such as in-cruise
versus in-orbit models with di�erent fuel slosh behav-
ior, or pre- versus post- probe release). Only one such
alternate dynamics model may be active at any given



time, and Dshell device models implicitly interface
only to the active model. Or, multiple spacecraft can
be bookkept, as in the New Millennium Program's
Deep Space Flight 3 formation 
ying mission. Any
combination of alternate models for multiple space-
craft is allowed.

Dshell models can be activated or deactivated
from the Tcl command line or startup �le. This is
useful for debugging, or if there are alternate models
for the same device (perhaps one which interfaces to
actual hardware-in-the-loop).

It is also possible to schedule C functions and Tcl
scripts at run time for either one-time or repeated exe-
cution. This is very handy for debugging and monitor-
ing variables. It is also useful for interfacingDshell to
other tools. Such interfaces have been created to Real-
Time Innovation, Inc.'s data monitoring tool Stetho-
Scope and to JPL's 3D viewer Dview. Interfaces to
other tools can be created in a similar manner, with-
out having to change Dshell code. Aside from keep-
ing Dshell code smaller and cleaner, it makes it easy
to mix and match interfaces among testbeds which use
di�erent monitoring tools.

3 CONCLUSION

A reusable, real-time spacecraft simulator is essential
for the design, development, testing and integration of

ight software and hardware. Dshell was made for
just such a need. Its real-time performance and design
allows real hardware to be swapped with any Dshell
hardware model, and vice versa. This characteristic
removes domain boundaries for the types of testbeds
in which Dshell can be used. Dshell can migrate
from a poor �delity, pure software simulation, to a high
�delity, hybrid hardware and software simulation.

Currently, Dshell and the ATBE toolkit are be-
ing used in the development of Cassini High Speed
Simulator (HSS). HSS will be used during Cassini
mission operations to test command sequences prior to
uplink. It is an adaptation of Cassini's Flight Soft-
ware Development System (FSDS), which is the
testbed for Cassini's AACS 
ight software. Dshell

provides HSS with a seamless Tcl interface to its
Darts state variables and parameters, and its four
alternate spacecraft dynamics models. The Dshell

interface also provides visibility into the Dshell and
Darts data for the external monitoring tools Stetho-
Scope and Dview. The real-time graphical displays
of the dynamic state of the spacecraft allow the HSS

analyst to analyze and debug during the simulation,
and post-simulation.

Dshell has been used by several other NASA's
inter-planetary missions. Mars Path�nder used in its
test and veri�cation of its 
ight software. Galileo is
using it in mission operations. And JPL's Flight Sys-
tem Testbed uses Dshell in several of its current and
on-going projects, such as Stardust and Neptune Or-
biter.

For more information on Dshell, visit the Dshell
web site: http://dshell.jpl.nasa.gov

4 ACKNOWLEDGEMENTS

The authors would like to express their thanks for the
work performed by the other Dshell team members:
Sally Chou, James Fu, Gani Ganapathi, Chester Joe,
Patti Koenig and Ling Su.

The research described in this paper was performed
at the Jet Propulsion Laboratory, California Institute
of Technology, under contract with the National Aero-
nautics and Space Administration.

REFERENCES

[1] J. Biesiadecki, A. Jain, and M. James, \A Recon-
�gurable Testbed Environment for Spacecraft Au-
tonomy," in i-SAIRAS'97, (Tokyo, Japan), July
1997.

[2] J. Biesiadecki and A. Jain, \A Recon�gurable
Testbed Environment for Spacecraft Autonomy,"
in Simulators for European Space Programmes,
4th Workshop, (Noordwijk, The Netherlands), ES-
TEC, Oct. 1996.

[3] A. Jain and G. Man, \Real{Time Simulation of
the Cassini Spacecraft Using DARTS: Functional
Capabilities and the Spatial Algebra Algorithm,"
in 5th Annual Conference on Aerospace Computa-
tional Control, Aug. 1992.

[4] G. Rodriguez, K. Kreutz-Delgado, and A. Jain, \A
Spatial Operator Algebra for Manipulator Mod-
eling and Control," The International Journal of
Robotics Research, vol. 10, pp. 371{381, Aug. 1991.

[5] A. Jain, \Uni�ed Formulation of Dynamics for Se-
rial Rigid Multibody Systems," Journal of Guid-
ance, Control and Dynamics, vol. 14, pp. 531{542,
May{June 1991.



[6] A. Jain, N. Vaidehi, and G. Rodriguez, \A Fast Re-
cursive Algorithm for Molecular Dynamics Simula-
tions," Journal of Computational Physics, vol. 106,
pp. 258{268, June 1993.

[7] J. K. Ousterhout, Tcl and the Tk Toolkit. Addison
Wesley, 1994.


