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Abstract—This article describes the FModal tool that has been
designed to bridge the gap between the structural dynamics
and guidance and control domains to facilitate the development
and use of high-fidelity flexible body dynamics models. FModal
streamlines the process of generating modal data—including
residual vectors and modal integral terms—from component
NASTRAN structural dynamics models. The data generation
process can be tailored to meet simulation fidelity and perfor-
mance needs. FModal’s output is a portable HDF5 file with
hierarchical, well-organized, and labeled data that can be used
to automate, simplify, and speed up the creation of flexible multi-
body dynamics models—resulting in faster design iterations and
reduced costs. This paper uses an interface between FModal and
the DARTS flexible multibody dynamics tool to carry out several
numerical studies to exercise and validate the FModal pipeline.
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1. INTRODUCTION
Aerospace vehicles can involve multiple coupled rigid and
flexible bodies undergoing large articulation and other config-
uration changes. Dynamics models and system-level modes
play a critical role in guidance and control (G&C) develop-
ment for flexible body vehicles. The modal data for these
systems is derived from finite element method (FEM) struc-
tural analysis models. The development of a FEM model is
typically based on linear structural analysis and is thus limited
to a specific configuration of the vehicle. G&C systems,
however, are required to support a broad envelope of vehicle
configuration changes including large articulation of bodies,
constraint changes, attachment and detachment of bodies, etc.
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Vehicle configuration changes can significantly change the
system-level modes of a vehicle. As an illustration, consider
a simple system consisting of two identical, flexible beams
joined by a locked hinge. Figure 1 shows the system level
modal frequencies when the joint angle between the beams
is zero degrees and 45 degrees. Note that the system level
frequencies change by a noticeable amount when the joint
angle between the beams is modified. Characterizing a vehi-
cle’s system-level modal properties would seemingly require
an impractically large number of FEM solutions sampling
the configuration space for G&C development. Such a
path corresponds to the approach shown at the bottom of
Figure 2. One way to address this challenge is to utilize
multibody modeling techniques for developing G&C mod-
els. Multibody dynamics modeling methods capture system
nonlinearities accurately across time-varying system config-
urations. Reference [1] discussed the importance of capable
flexible multibody dynamics tools for (G&C) development
for handling:

• large articulation of bodies and small deformation of flexi-
ble bodies
• nonlinear and linearized dynamics modeling
• configuration changes from attachment and detachment of
bodies
• mass property changes such as from fuel depletion

Several tool options for rigid multibody dynamics are avail-
able in the community. Due to rigid body limitations,
body flexibility is often mimicked using methods such as
substructuring, i.e., approximating a flexible body via a set
of rigid bodies connected by springs and dampers. This is
the middle path shown in Figure 2. Frequent and tedious
tuning of the stiffness and damping coefficients is required to
match system-level modal responses. In the earlier two-beam
example, changing the beam angle from zero degrees to 45
degrees would require retuning the springs and dampers to
match the system modal response. This rigid multibody tool-
based modeling approach is also fragile and expensive.

This paper proposes a flexible multibody dynamics based
approach, which overcomes many of the earlier challenges,
and is depicted in the upper path in Figure 2. This approach
captures configuration-dependent, system-level modal prop-
erty changes accurately when there are a small number of
FEM models. When applied to the two-beam problem, the
system-level modal frequency changes shown in Figure 1
were reproduced automatically to within 10−7 Hz using just
a single FEM model and without requiring tuning such as
with rigid multibody models. From a G&C standpoint, this
approach enables the design and evaluation of G&C perfor-
mance over a large vehicle configuration space with minimal
need for multiple FEM models. The general impediment to
pursuing this approach has been the very limited availability
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Figure 1: Modal frequencies of two locked beams joined at zero degrees (left) and 45 degrees (right).
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Figure 2: Capable flexible multibody tools provide a path
to high-fidelity G&C dynamics models

of general purpose flexible multibody dynamics tools.

Even with the availability of a flexible multibody dynamics
tool, processing and transferring data from a FEM model
to the multibody dynamics tool is a complex process that
involves multiple steps, such as:

1. structural dynamics FEM-based modal analysis for each flex-
ible body

2. computation and transfer of a large set of quantities such as
frequencies, mode shapes, modal integrals, etc. from modal
analysis

3. use of this data to properly create and connect corresponding
flexible bodies within the multibody dynamics model

The modal data generation process requires proficiency with
both FEM and multibody software as well as the careful and
error-free generation and transfer of a large amount of data
across tools. The process can be quite challenging, slow, and
fragile for even simple flexible body models. An unsatis-
factory consequence of these difficulties has seen the G&C

community resorting to simplified and low-fidelity vehicle
dynamics models.

One of the key goals of the FModal tool described in this
article is to avoid the unnecessary devaluation of flexible
body dynamics model fidelity. FModal provides a pipeline
to bridge the gap between the structural dynamics and G&C
domains. It streamlines the process of generating modal
data from component NASTRAN structural dynamics models
for use in flexible multibody dynamics tools. It provides a
simple Python interface that allows users to easily tailor the
fidelity and performance of the model. FModal’s output is a
portable HDF5 file containing a hierarchical, well-organized,
and labeled data set that can be read by multibody tools to
obtain the body data. The FModal tool can thus be used by
G&C analysts to extract the critical data needed for flexible
multibody dynamics simulations from NASTRAN structures
models. This can speed up the process of creating flexible
body models leading to more capable and faster design itera-
tions and reduced costs.

The remainder of the article is organized as follows. Section
2 contains a description of flexible body dynamics models.
Section 3 provides an overview of the FModal pipeline.
Section 4 discusses G&C modeling workflows that use the
FModal capability. Section 5 contains a discussion of various
numerical studies that have been carried out using JPL’s
DARTS flexible multibody dynamics tool to validate the
FModal pipeline. The reader should refer to Ref. [1] for
additional details and background material beyond what is
covered in this article.

2. FLEXIBLE BODY DYNAMICS MODELS
This section briefly describes the approach for modeling the
dynamics of flexible multibody systems.
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Nonlinear Multibody Dynamics

Multibody dynamics methods are a well-studied topic within
the technical community. These methods are commonly
used to model the dynamics of a wide range of engineering
systems, including aerospace vehicles, ground vehicles, and
robotics platforms. A schematic of a generic multibody is
shown in Figure 3. The dynamics models of multibody

Figure 3: Tree-structured multibody system with cut-
joint closure constraints

systems are nonlinear, since the motions of the component
rigid and flexible are fully coupled. The primary approaches
for modeling multibody systems include minimal-coordinate
methods [2], [3] and constraint-based methods [4], [5],
[6]. The minimal coordinate methods are more complex
but provide recursive algorithms that are low-cost and better
behaved. Constraint-based methods, on the other hand, are
simpler to implement, but are computationally inefficient
and require more complex differential algebraic solvers to
manage constraint errors. Due to its advantages, the minimal
coordinate approach is pursued here.

The minimal coordinate equations of motion (EOM) of a tree-
topology flexible multibody system have the form [2]:

T = M(ϑ)ϑ̈̈̈+ C(ϑ, ϑ̇̇̇) (1)

where M(ϑ) denotes the mass matrix and C(ϑ, ϑ̇̇̇) the gy-
roscopic and Coriolis terms. The ϑ generalized coordinates
contain the hinge articulation coordinates as well as deforma-
tion modal coordinate DoFs for all the bodies in the system.
The rigid body and elastic DoFs are fully coupled. Equation 1
provides an exact model valid for large hinge articulation and
small elastic deformations of flexible bodies [1]. This model
also takes into account the deformation-dependent variation
of flexible body mass properties. So-called modal integrals
provide a cost-effective way to compute these variable ef-
fects.

For flexible multibody systems with closed-chain topology,
cut-joints are used to decompose the multibody model into
a tree-topology system (such as in Eq. 1) together with
additional inter-body, cut-joint closure constraints. A simple
example of such a decomposition is a fixed-fixed beam mod-
eled with one end attached via a locked joint and the other
end fixed via a closure constraint.

Flexible Body Data from FModal

Flexible body data, e.g., mode shapes, frequencies, and modal
integrals, for individual bodies required by the multibody
model can be derived offline from the corresponding FEM
model data for each body. FModal is a C++ and Python
toolkit designed to process NASTRAN FEM bulk data and
compute and extract said flexible body data for use in a multi-
body dynamics model. The following subsections describe
the specific flexible body data generated by FModal for a
single-component flexible body.

Mode Shapes

FModal extracts normalized component modes from a body’s
FEM data. An outline of the process is as follows (see Ref.
[1] for more details):

1. Using the nodal DoFs in the a-set2 as the boundary (interface)
DoFs, calculate the Craig-Bampton transformation [7]; the a-
set nodal DoFs can be supplied by the user or automatically
generated by the FModal software.

2. Using the Craig-Bampton system, solve for the mode shapes
using the standard eigenvalue/eigenvector problem and nor-
malize using the mass matrix.

These mode shapes diagonalize the stiffness matrix. The
rigid body modes can be easily removed using a frequency
cutoff and the remaining modes can be used to constrain the
boundary (interface) nodes. By default, these are the mode
shapes used by FModal. One can obtain free-free modes from
FModal by not including any nodes in the a-set.

Modal Integrals

Modal integrals are higher-order terms that appear in the
system’s kinetic energy and couple the rigid and flexible body
dynamics. In addition, they account for the deformation-
dependent variation in a body’s moments of inertia and the
center of mass location. Their effects can be significant for
systems that experience large angular rates and accelerations.
Modal integrals can be calculated using the mass matrix and
mode shapes; the details can be found in Appendix E of
Ref. [1]. FModal supports the computation of these often-
neglected modal integrals, which facilitates their inclusion
within dynamics models with little effort.

Residual Vectors

Reduced order dynamics models for G&C development are
often developed by truncating the set of normalized compo-
nent modes based on a cut-off frequency. Beyond the impact
on the dynamics, such truncation may cause noticeable errors
in the static deformations of flexible bodies as well. Accurate
static deformations can be important for the generation of
linearized state-space models that are often used in G&C
analyses since linearizations are typically done about static
equilibrium. The situation is similar for modal analyses.

Residual vectors (also called modal truncation vectors in the
literature) can be used to recover the static behavior at the cost
of adding DoFs to the reduced-system model. These addi-
tional DoFs, however, are typically far fewer than the number
of DoFs removed by the truncation process. Appendix A
provides an overview of the concept of residual vectors.
FModal supports the computation of residual vectors since
they can significantly improve the accuracy of determining

2In NASTRAN, the a-set is a set of nodal DoFs that the user intends to
constrain. For example, a cantilever beam that is cantilevered at node 1 would
have all six DoFs of node 1 in the a-set.
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equilibrium states for linearized models. The residual vectors
are computed for a user-specified set of nodal DoFs. Often,
these are the nodal DoFs where external forces are applied
by attached actuators to the flexible body. FModal uses this
information to modify the NASTRAN run deck to enable the
calculation of residual vectors.

3. FMODAL DESIGN
This section describes key details about the design of the
FModal tool.

FModal Pipeline

Figure 4 illustrates a typical FModal workflow [1]. FModal
imports and reads NASTRAN FEM models by parsing the
executive, case control, and bulk data sections of a NAS-
TRAN run deck for a component body. This import can
consist of complex NASTRAN run decks with many “in-
clude” statements. After importing the run deck, FModal
creates a custom NASTRAN run deck used to generate the
flexible body data needed for G&C flexible body dynamics
models. This includes normalized component mode shapes
and frequencies (see section 2), grid point locations, pose
of all coordinate systems, modal integrals (see section 2),
rigid body mass properties, coupled damping matrices, Craig-
Bampton modes, child bodies (lumped masses that were
removed and are now standalone rigid bodies), and the global
physical model in sparse matrix format. FModal output data
is stored in a portable HDF5 file format [8]. The HDF5
format is well supported by standard software languages
(e.g., Matlab, Python, Mathematica), is self-documenting,
and suitable for large data sets. An example of the groups
that make up such an HDF5 file is shown in Appendix D.

Each flexible body’s HDF5 file generated by FModal contains
the data needed to include the body in a multibody dynamics
model. The repeated use of FModal for each of the flexible
bodies streamlines the process for developing full non-linear
flexible multibody dynamics models.

FModal Software Classes

The FModal tool implements a Nastran Python class to
automate the creation of flexible body data from a NAS-
TRAN model. The Nastran class takes a user-specified
NASTRAN model, performs modal analysis based on user-
specified options (described in section 2), and saves all
critical data to an HDF5 file. This process is facili-
tated in part via NASTRAN DMAPs. Users can tailor
the output data, e.g., the inclusion of modal integrals,
via keyword arguments to the Nastran.run_1033 or
Nastran.load_op24 functions. Nastran.run_103
runs the NASTRAN 103 solution with the user-specified
options, and Nastran.load_op2 post-processes the data
from the 103 solution and packages it in an HDF5 file.
All necessary modifications to the NASTRAN model and/or
post-processing are taken care of internally by the Nastran
class. The key options for the Nastran.run_103 function
are described below:

• n_modes - Specifies the number of flexible modes calcu-
lated and stored during modal analysis.
• csid - Specifies the CSID used by NASTRAN; this is the
output coordinate system ID.

3The 103 solution is used by NASTRAN for modal analyses.
4 An OP2 file is a binary NASTRAN data file that is output when running
FModal.

• aset - A dictionary that specifies which nodal DoFs
should be added to the a-set.
• rvdof - A dictionary that specifies which nodal DoFs
should be used in the residual vector calculations.
• grdpnt - Specifies the ground point to be used.
• separateLumpedRigidBodies - A boolean that
specifies whether lumped masses should be separated from
the NASTRAN model and processed separately. The infor-
mation for these lumped masses is stored in a separate section
of the output HDF5 file and can be used to create and attach
them as rigid bodies in the multibody dynamics model.
• addLumpedRigidBodiesToAset - A boolean that
specifies whether the constrained DoFs of the separated
lumped rigid bodies’ nodes should be added to the a-set.

The key options for the Nastran.load_op2 function are
described below:

• fop2 - OP25 file name. If none is specified, a name based
on the name of the NASTRAN model is used.
• grdpnt - The ground point to use for calculations.
• modal_integral_flag - Boolean that determines
whether modal integrals are calculated or not.
• rigid_body_mode_thresh - The frequency thresh-
old used to determine if a given modal frequency is a rigid
body mode or a flexible body mode.

These functions can be used to easily create flexible multi-
body dynamics models and tailor their fidelity to meet the
user’s simulation needs by simply modifying a few Python ar-
guments. Little expert knowledge of NASTRAN is required.
An example of a Nastran run script is included in Appendix
B.

Handling Common Configuration Changes with the Multi-
body Model

Configuration changes to a vehicle from body articulation,
separation events, mass property changes, etc. affect the
system-level modal properties. Understanding their impact
on the dynamics of vehicles is important for G&C systems
since they are expected to perform across a broad range
of such vehicle configuration changes. The conventional
approach for handling configuration changes is to generate
a family of FEM data for a representative sampling of the
anticipated configurations within the design envelope. Each
such FEM data set generation requires expensive and time-
consuming structural analysis, FEM data generation, and
modal analysis solutions.

FModal provides a simpler way to generate such a family of
dynamics models across the configuration space. In this new
approach, FModal is used to separately generate the modal
data for each rigid/flexible body involved in configuration
changes. These modal data sets for the component bodies
are assembled into a multibody model, and configuration
changes are handled by changes within the multibody model.
The number of system-level structural analysis FEM models
required is significantly reduced in this approach.

The most common case of a configuration change arises from
large angle articulation of bodies, such as solar panels, scan
platforms, and engine gimbals. Such changes are easily
accommodated within multibody models via the articulation
of joints without requiring additional FEM models.

5See footnote 4.
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Figure 4: Component synthesis of spacecraft bus and solar array models using FModal

Handling Lumped Masses in a Flexible Body Model

Oftentimes, FEM models include lumped masses that un-
dergo changes or separation events over time, e.g., solid
rocket boosters (SRBs) on a launch vehicle. The FEM for
the vehicle’s core stage may have the SRBs represented as
lumped masses. To avoid the regeneration of FEM models
due to changes in these lumped masses, FModal provides an
option to separate said lumped masses from the rest of the
flexible body when generating the modal data. The multibody
model can then recreate the system by creating the flexible
body and attaching to it rigid bodies for each of the lumped
masses. Subsequent changes to these rigid bodies are easily
handled within the multibody setting.

As mentioned in the description of the FModal classes, the
separateLumpedRigidBodies and
addLumpedRigidBodiesToAset keywords can be used
to separate out the lumped masses from the flexible body. In
the launch vehicle example, the SRB lumped masses would
appear as separate, rigid bodies attached to the core stage
flexible body in the multibody dynamics model. It is easy
to change the mass of the SRBs as fuel burns and to detach
them during a separation event within the multibody model;
this avoids the need for new FEM models.

Currently, this procedure only handles CONM2 lumped
masses. It can handle lumped masses connected to a grid
point of the flexible body, or a lumped mass connected
to a grid point of the flexible body via an RBAR ele-
ment. If separateLumpedRigidBodies is enabled,
then all CONM2 entries are removed from the bulk data
file, and their mass properties and connection information—
joint type, connection point, etc.—are stored in the resul-
tant HDF5 file in the ChildBodies group. In addition, if
addLumpedRigidBodiesToAset is enabled, then the
associated DoFs of the grid point on the flexible body are
added to the a-set. This ensures that the mode shapes of the
full flexible-body-plus-rigid-child-bodies system will be cor-
rect when reconnected in the multibody dynamics simulation.

4. FMODAL MODELING WORKFLOW
This section describes notional workflows for FModal and
multibody-modeling-based flexible body dynamics develop-
ment for G&C. The goal of the workflow is to generate, using
a small amount of FEM data, high-fidelity flexible multibody
dynamics models that can cover a broad range, ideally the
entire range, of the vehicle’s configurations.

A key part of the workflow is the dynamics model develop-
ment. This will typically involve the following steps:

• Identify a reference vehicle configuration.
– Get system-level FEM data for the overall system.
– Get FEM data for component bodies. If familiar with

NASTRAN, these can be broken out from the system FEM
locally.
– For each flexible body:
∗ Extract lumped masses.
∗ Define a-set DoFs for hinges and closure constraints.
∗ Define residual vector DoFs, i.e., nodal DoFs where

forces will be applied.
∗ Define the number of modes.
∗ Run FModal to extract the flexible body data and save it

into an HDF5 file.
• (Optional) Identify additional vehicle configurations that
take into account articulation, topology, closure constraints,
force application, mass properties, etc. For each of these,
request system-level FEM data. This data will primarily be
used for validation of the multibody model and occasionally
for developing new multibody models for configurations far
from the main one.
• Assemble the multibody:

– Create flexible bodies with attached rigid bodies for the
lumped masses using the HDF5 file data.
– Connect the bodies via hinges.
– Create nodes where forces will be applied and sensing

will be done.
• Initial validation:

– Set up system coordinates to match the initial system.
– Linearize the multibody model and extract a state-space

model.
– Extract modes.
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– Compare with system modes and verify that they match
those from the system FEM model.

The previous steps are used to create a flexible body multi-
body dynamics model. Now, let’s focus on its usage. For
G&C, the usage can vary across the analysis, design, veri-
fication, and validation stages. Usually, the focus is on the
closed-loop system. This can require:

• Developing and integrating additional models for actuators,
sensors, and the environment (e.g., aerodynamics, gravity,
etc.) into the multibody model to develop a system-level
dynamics model. Such models are needed for studying servo-
elastic effects.
• Closing the loop around the control algorithms and soft-
ware to develop an overall closed-loop dynamics model. This
is the overall nonlinear system model whose design and
performance need to meet G&C requirements

Depending on the G&C development and usage phase, there
are multiple ways that this dynamics model may be used:

• Carry out time-domain simulations with the high-fidelity,
non-linear, flexible multibody model to evaluate overall sys-
tem performance. Note that within this multibody model, it
is possible to:
– Change coordinates to articulate bodies
– Apply forces
– Change mass properties
– Attach/detach bodies and change closure constraints

• Generate linearized system models that can be used to
generate Bode plots etc. for linear G&C analysis. Note that
these models are limited to the narrow configurations around
the linearization state.

Changes in vehicle configuration will require modifications
at one or more levels; in order of increasing complexity
to the developer: (1) changes made within the multibody
dynamics model, (2) changes that require rerunning FModal
and updating the multibody model, and (3) changes that
require changing the starting FEM model and the steps that
follow. Changes such as modifying mass properties, applying
different force models, or changing joint angles only require
changes to the multibody dynamics model.

Larger changes such as attaching/detaching bodies may re-
quire a new model via FModal. For example, changing
the joint that attaches two bodies from a locked joint to a
pinned joint will require rerunning FModal on the original
FEM, but with different nodal DoFs in the a-set. To allow
handling such configuration changes on the fly, the user can
run both of these cases through FModal offline, and then
change the flexible body data—mode shapes, etc.—at run-
time within the multibody dynamics simulation when the
joint type changes. While there may be cases that at first
appear to require multiple passes through FModal, this may
not always be necessary. One example is a flexible body with
an applied external force that changes its point of application
during the simulation. At first, it may seem that two models
are needed from FModal: one with residual vectors for the
DoFs associated with the first point of application and another
with residual vectors for the DoFs associated with the second
point of application. However, a better solution for this case is
to create a single model via FModal that has residual vectors
that encompass both points.

More drastic changes to the underlying flexible body may
require changing the FEM model. For example, if the fuel fill
of the core stage of a launch vehicle significantly affects the

stiffness of the core stage, then FEM files for the core stage
at different fuel fills may be needed to accurately simulate the
launch vehicle.

5. NUMERICAL RESULTS
This section describes numerical studies and cross-validation
tests that have been carried out to exercise and validate the
FModal pipeline. While the FModal-generated HDF5 files
are portable and can be used with any flexible multibody
dynamics tool, in this paper, JPL’s DARTS flexible multibody
dynamics tool is used together with FModal to carry out
these numerical studies. The following subsection provides
an overview of DARTS.

DARTS Overview

JPL’s DARTS is a general-purpose software for flexible
multibody dynamics modeling, analysis, and simulation [9].
DARTS uses minimal coordinate models based on the Spatial
Operator Algebra (SOA) methodology [2], which provides
low-cost recursive computational algorithms for solving the
EOMs.

DARTS is designed to handle rigid/flexible multibody dy-
namics, arbitrary system topologies, smooth and non-smooth
dynamics, and run-time configuration changes. In addition,
it provides a full complement of algorithms for dynamics
analysis and model-based control with fast computational
performance. While the DARTS object-oriented implemen-
tation is in C++, a rich Python interface is available for all
classes and methods in the system. This allows users full
flexibility in defining and configuring the model as desired
and modifying the model topology and properties during run-
time. DARTS is used for dynamics simulations of aerospace
vehicles, ground vehicles, robotics, and multi-scale molecu-
lar dynamics applications [10].

DARTS computational algorithms are structure-based and
utilize scatter/gather recursions that proceed across the bodies
in the system topology. This allows DARTS to be a general-
purpose tool that requires no change to the software to model
multibody systems with arbitrary numbers of bodies and
branching structure. This property also allows DARTS to
easily handle run-time structural changes in the system topol-
ogy, such as attachment/detachment and addition/removal of
bodies. Such structural changes are common in aerospace
separation and deployment scenarios and during robotics
manipulation. The algorithms accommodate such changes
with recursions simply following the new system topology.

The SOA method for the dynamics of general graph topology
flexible body systems is to use cut-joints to decompose the
system into a flexible tree topology multibody system to-
gether with a set of inter-body closure constraints as shown in
Figure 3. This method is described in chapter 11 of Ref. [2]
and is available in DARTS. This procedure also generalizes
the operational spatial inertia calculations to the articulated
body inertia quantities for flexible bodies. Details on the
validation of closed-chain dynamics for flexible multibody
systems can be found later in this paper.

ReadHDF5Flex is a Python class in the FModal module
that helps the user automate the creation of a DARTS flexible
body model from the HDF5 file generated by the Nastran
class. A similar class can be implemented to automate
this process for any multibody dynamics simulation capable
of simulating flexible bodies. ReadHDF5Flex reads the
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information from the HDF5 file and constructs a Python
dictionary which can be used to create a flexible body within
DARTS. Similar to the Nastran class, keywords can be
used to customize the output, e.g., the mass/distance units can
be transformed using user-defined parameters.

Choice of Modes

Bodies, including flexible ones, are connected via articu-
lable hinges within a multibody model. The proper use
of normalized-component modes, instead of plain free-free
modes, is especially important for such inter-connected com-
ponent bodies. The significance of this choice is demon-
strated here by considering the spacecraft bus and solar array
models shown in Figure 4. The bus model is assumed rigid,
while the solar array is a flexible body with component
NASTRAN FEM data.

A DARTS multibody model was constructed where the solar
array FEM data was processed using the FModal HDF5
output file and attached as a flexible body to a rigid bus body.
Additionally, a NASTRAN system model was constructed
where the solar array component FEM model is attached
to the rigid-body bus model. Finite differencing was used
to generate a linear dynamics model from the nonlinear
DARTS model and used to compute system modes. A figure
of merit for the DARTS model is how well it reproduces
the NASTRAN system-level mode shapes and frequencies.
Figure 5 shows system frequency comparisons of the DARTS
and NASTRAN linear models using free-free and normalized
component mode shapes for the solar array body. While
the differences are significant for the free-free modes case,
with normalized component modes, the difference is on the
order of 10−5 Hz. This comparison clearly illustrates the
importance of using normalized component modes.

Furthermore, within the DARTS model, the G&C analyst can
articulate the solar array and regenerate modal data without
running the full NASTRAN system model for the new angle.
For more information on this comparison, see Appendix C of
Ref. [1].

Validation Approach

A number of the numerical studies described in this sec-
tion compare and cross-validate the FModal/DARTS-based
multibody dynamics model results with those obtained from
alternative dynamics models of the system. Unless noted
otherwise, all of the cross-comparisons showed good agree-
ment. The specific types of comparisons carried out are listed
below:

• Derivative comparison: For a pair of models, randomly
generate an initial state (eg. position and velocity values)
and apply it to both systems, carry out derivative (e.g.,
acceleration) computations, and cross-compare the resulting
derivative values. This is repeated multiple times with differ-
ent initial states each time.
• Time-domain comparisons: For a pair of models, run
equivalent time-domain simulations. Then, compare the final
values of interest between the models. For example, given
a cantilevered beam attached to a rigid body with a pin
joint, spin the rigid body about the pin with a prescribed
acceleration for 20 seconds and cross-compare the endpoint
deflections of the free ends of the beams.
• Round-trip comparisons: For a given model, compute the
forward dynamics, followed by the inverse dynamics. Then,
verify that the forces computed by the inverse dynamics
match the input forces used for the forward dynamics.

• Modal comparisons: Compute the system-level modal
frequencies and mode shapes of the DARTS model and
compare them with those from an alternative (usually FEM)
model.
• Static response: For a pair of DARTS and NASTRAN
models, apply a load and solve for the static responses. In
DARTS, this is done by applying the load and allowing the
system to settle, whereas in NASTRAN this is done using
SOL 101.

Single Constrained/Unconstrained Body

The first and simplest validation tests carried out were for a
single beam. The cross-validation tests included:

• Derivative comparisons between a DARTS model and a
hand-derived analytical model for a free-free beam and a
cantilevered beam. These checks were done with and without
the addition of modal integrals. These tests verified that the
results of the EOMs within DARTS matched those of the
hand-derived EOMs. These comparisons were done for a
single beam for which the EOMs were straightforward to
derive by hand.
• Derivative comparisons between a DARTS model and a
symbolic EOM model for a free-free beam, a cantilevered
beam, and a pinned-free beam. The comparisons were again
done with and without the addition of modal integrals.
• Round-trip comparisons for a free-free beam in DARTS
with modal integrals and for a pinned-free beam in DARTS
with modal integrals. This test, which includes round trips
of forward and inverse dynamics, builds on the analytical and
symbolic EOM cross-validation tests described above.
• Time-domain comparison between a DARTS model and
an analytical model for a spinning free-free beam. These
were done with and without the addition of modal integrals.
In contrast with the previous validation tests which were
done for a single instant in time, this test simulates the
dynamics over a time interval and compares the results with
an analytical model.
• Time-domain comparisons between a DARTS model and
an analytical model for a cantilevered beam attached to a
rigid body spinning about a pin with a prescribed acceler-
ation. The comparisons were done with and without the
addition of modal integrals. This test is similar to the previous
one, but uses a model with a different joint for the flexible
body and includes an additional rigid body. This cross-
validates the DARTS model for a system that includes rigid
and flexible bodies. The comparison results from this case
with modal integrals enabled are shown in Figure 6. The
deflection vs. time of the analytical beam and DARTS beam
is shown on the left, and the difference between the two
systems’ deflections is shown on the right. The right-hand
plot shows that the difference in deflections is on the order
of 10−10. This good agreement between the two systems
shows the FModal pipeline creates the correct model for
a cantilevered beam attached to another body subject to
prescribed acceleration.

These tests also helped verify that the computation and trans-
fer of modal integrals from NASTRAN to DARTS are being
done correctly.

System Modes with Multiple Bodies

While the tests in the previous section were largely for single
flexible bodies, the tests described in this section involve
multiple flexible bodies—each with its own set of modal data.
The resultant system’s modal properties—modal frequencies
and mode shapes—were compared between DARTS and
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(a) Solar array processed with free-free mode shapes (b) Solar array processed with normalized component mode shapes:
fixed-free in this scenario

Figure 5: System frequency comparison between DARTS and NASTRAN using free-free and fixed-free mode shapes
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Figure 6: (Left) Deflection of the analytical beam and DARTS beam (Right) Difference in deflections between the
analytical and DARTS models

alternative models.

• Modal comparison between a double-length free-free beam
model in NASTRAN and a model of two single-length beams
locked together in DARTS. The two single beams locked to-
gether represent a two-body equivalent system to the double-
length beam. This provides a basic test that shows DARTS is

able to correctly join multiple flexible bodies.
• Modal comparison between a double-length beam model
where the two beams are joined together at a 45-degree angle
in NASTRAN and an equivalent model in DARTS using two
single-length beams locked together at a 45-degree angle.
This test is similar to the previous one, except the system is
connected differently. Note, that this difference changes the
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system frequencies noticeably: the first frequency is nearly
doubled (see Figure 1). The two single beams used in the
DARTS model are the same as in the previous validation
script, i.e., the models produced by FModal are the same in
both cases, but are joined at different angles. This provides
a basic test that the multibody system can undergo large ar-
ticulation at the joints and still correctly recover the system’s
flexible body modes.
• Modal comparison between DARTS and NASTRAN for
two beams pinned together. The purpose of this test is similar
to the first, except that the model complexity is increased by
using a joint between the flexible bodies that allows for large
angle articulation.
• Modal comparison between a double-length cantilever
beam in NASTRAN and two single-length beams in a
DARTS model, where one end of a single-length beam is
fixed to a wall and its other end to the second single-length
beam. This test has a similar goal to the previous two but
with increased complexity from adding an extra joint. Figure
7 shows the first six modes for NASTRAN (left) and DARTS
(right). Qualitatively, the mode shapes in DARTS look the
same as the mode shapes in NASTRAN. Quantitatively, the
Frobenius norm of the difference between the mode shape
matrix in DARTS vs. NASTRAN is less than 6 × 10−6, and
the absolute difference in the modal frequencies is less than
5× 10−6.

A conclusion from the above cross-validation results is that
the FModal/DARTS model can be used to accurately extract
system mode shapes and frequencies using component body
models for different rigid-body joint angle configurations.
Thus, for example, one can extract the mode shapes and
frequencies of a rocket with the engines at different gimbal
angles via a simple for-loop in Python. This FModal/DARTS
process is much simpler compared with an alternative process
based on NASTRAN alone. The latter process requires:
(1) modifying the NASTRAN bulk data file for each of
the gimbal angle configurations of interest; (2) running a
NASTRAN modal analysis for each of these cases; and (3)
extracting the mode shapes and frequencies for each case.

Configuration Changes

The goal of the cross-validation tests so far has been to verify
that DARTS correctly assembles a multibody model from
component flexible dynamics models. The cross-validation
test described below verifies that changes to mass properties
and separation events are handled correctly by DARTS as
well.

This test consisted of a modal comparison between
FModal/DARTS and NASTRAN for a free-free beam with
a detachable lumped mass. The DARTS multibody model
was composed of a flexible body with a child rigid body for
the lumped mass. Figure 8 shows the first six modes for
this validation test for NASTRAN (left) and DARTS (right).
Qualitatively, the mode shapes in DARTS look the same as
the mode shapes in NASTRAN. Quantitatively, the Frobenius
norm of the difference between the mode shape matrix in
DARTS vs. NASTRAN is less than 5×10−6, and the absolute
difference in the modal frequencies is less than 5× 10−6.

Furthermore, this verifies that the deformable body will
have the correct mode shapes before and after configura-
tion changes arising from mass modifications or separation
events. The ability to handle such configurations within
an FModal/DARTS-based multibody model is much simpler
than the multiple NASTRAN runs that would be required

otherwise.

Closure Constraints

These tests validate that closed-chain system dynamics
involving flexible bodies are being handled correctly by
DARTS. Cut-joints are used to decompose the system into a
tree topology system together with closure constraints during
the overall solution process. Thus, a fixed-fixed beam closed-
chain system is modeled as a fixed-free beam tree topology
system with a cut-joint closure constraint at one of the ends.

• Modal comparison between DARTS and NASTRAN for a
fixed-fixed beam. As mentioned above, a fixed-fixed beam
requires a cut-joint closure constraint at one of the ends in
order to obtain a tree-topology system. This test verifies that
DARTS can correctly model the mode shapes and frequencies
of a fixed-fixed beam. Figure 9 shows the first six modes
for the validation test involving the modal comparison of
a fixed-fixed beam: NASTRAN (left) and DARTS (right).
Qualitatively, the mode shapes in DARTS look the same as
the mode shapes in NASTRAN. Quantitatively, the Frobenius
norm of the difference between the mode shape matrix in
DARTS vs. NASTRAN is less than 2×10−6 and the absolute
difference in the modal frequencies is less than 1× 10−8.
• Derivative comparisons between two DARTS systems.
The system models used here were (1) a cantilevered beam
created using a locked hinge and (2) a cantilevered beam
created by adding a closure constraint to a free-free beam. An
earlier test verified that the DARTS cantilevered beam EOMs
were correct without closure constraints. This test verifies
that the equivalent model created using closure constraints
produces the same results.
• Derivative comparisons between two DARTS systems: (1)
a cantilevered beam with a ball joint (2) a free-free beam
with a ball joint closure constraint. This test is similar to the
previous one but differs in the use of a different hinge/closure
constraint type. This test further validates that EOMs using
flexible body closure constraints in DARTS are correct.
• Derivative comparisons between two DARTS systems: (1)
a double-length cantilevered beam created using locked joints
(2) a double-length cantilevered beam created by adding
locked closure constraints to two free-free single-length can-
tilever beams. This test is similar to the previous two, but uses
different hinge/closure constraint types and adds a flexible
body. This adds more complexity and further verifies the
EOMs using flexible body closure constraints in DARTS.

Validating the flexible body closure constraints means that
one can constrain flexible bodies any way they like, i.e., they
are not limited to tree topology systems.

Residual Vectors

The tests in this section validate that residual vectors are suc-
cessfully computed in NASTRAN and transferred to DARTS
via the FModal pipeline.

• Modal comparison between NASTRAN and DARTS for
a single free-free body. This validates that data is being
transferred properly from NASTRAN to DARTS. This test
validates the first step in adding residual vectors to DARTS:
successfully calculating the information in NASTRAN and
transferring the data correctly.
• Static response comparison for a cantilevered beam with a
force applied at the free end. This comparison is done using
(1) the full system in NASTRAN, (2) the DARTS system with
17 normal modes, and (3) the DARTS system with 10 normal
modes plus 7 residual vectors. The validation is done by
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Figure 7: System mode shapes NASTRAN (left column) vs. DARTS (right column) for a double-length cantilevered
beam

ensuring that the static response of system (3) is sufficiently
close to system (1), and that system (3) is closer to (1) than
(2). While the previous test verified the correct calculation
and transfer of data, this test checks the impact of the residual
vectors. Figure 10 shows the results of these two tests.
The DARTS static solution with residual vectors is closer to
the NASTRAN solution than without residual vectors. This
validates that the residual vectors were computed correctly
and transferred to DARTS correctly.

6. CONCLUSION
Reference [1] showed that deriving G&C models that include
flexible bodies by incorporating flexible multibody dynamics
as an intermediate step provides significant benefits over the
conventional approaches. However, creating the necessary
flexible body models for the flexible multibody dynamics
simulation is a challenge. The FModal pipeline addresses this
challenge by providing an easy-to-use toolset that allows one
to quickly incorporate and iterate on flexible body models
for dynamics simulations without having to be an expert in
structures modeling. Even typically-neglected effects such
as modal integrals can be included by simplify modifying
an argument passed to a Python function. Moreover, the
pipeline is general, i.e., it can be applied to an arbitrary
NASTRAN model. The generated HDF5 file can be used
by any multibody dynamics tool. In addition to describing
the tool, some of the numerical studies used to validate the
tool have been discussed. The FModal pipeline is in use

by a range of projects whose FEM models vary from small
kilobyte-sized models of simple beams to large spacecraft
models whose FEM models are hundreds of gigabytes large.

Some additional features currently under development are
described here. Thus far, validation tests for flexible body
closure constraints have only been done with single-point
constraints. Future work will validate multi-node closure
constraints between flexible bodies. Section 3 discussed
separating lumped masses connected via RBAR elements.
However, lumped masses can also be connected via RBE
elements, i.e., RBE1, RBE2, or RBE3. Adding support
for lumped masses connected via RBE elements requires
multi-node flexible body closure constraints. Hence, once
multi-node flexible body closure constraints are validated,
support for lumped masses connected via RBE elements can
be added to FModal. Geometric stiffening due to inertial
loads is another planned feature. A method [11], [12] for
incorporating geometric stiffening due to inertial loads is
being implemented within the FModal pipeline. Testing and
validation of this feature is currently in progress and will be
reported in the future.
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APPENDICES

A. RESIDUAL VECTOR DESCRIPTION
This appendix describes the concept of residual vectors and
how they can help recover the static solution when a truncated
set of modes is used. The FModal tool directly utilizes NAS-
TRAN’s residual vector procedures whose implementation
may differ from the derivation shown here.

To understand how residual vectors work, first consider the
nodal flexible body system [13]

Mẍ+ Kx = Pr(t) (2)

where M is the mass matrix, K is the stiffness matrix, and
x are the nodal degrees of freedom. Typically, the right
side of this equation contains a single term for the forces;
however, here, the forces are split up into their directions,
P, and magnitudes r(t). This is convenient as FEM models
often apply forces on specific nodal DoFs; this information
is captured in the columns of P. The dynamic information,
the changing magnitude of the force over time, is captured by
r(t).

This equation can be written in modal form using the trans-
formation x̄ = Πη. In this transformation, Π are a truncated
set of modes, so the x̄ deformations are a subspace of the
x deformations, and thus, cannot represent all possible x
deformations.

ΠTMΠη+ ΠTKΠη = ΠTPr(t)

Iη+ ζη = ΠTPr(t)

In the above, recall that the modes are normalized with
respect to the mass matrix.

Next, pre-multiply this system byMΠ to transform the modal
forces into physical forces (see [13] and Appendix A of [14])
and simplify

M ¨̄x+ Kx̄ =MΠΠTPr(t).

Comparing this with the original system (Eq. 2), notice that
the differences are the use of the barred quantities (x̄ vs. x)
and the forces on the right-hand side. Solving for the static
solution of each of these systems yields the following:

x = K−1Pr(t)

x̄ = K−1MΠΠTPr(t)

The difference between the two static solutions is

x− x̄ = K−1
(
P −MΠΠTP

)
r(t)

= Rr(t)
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Figure 9: System mode shapes NASTRAN (left column) vs. DARTS (right column) for a fixed-fixed beam
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where R = K−1
(
I − MΠΠT

)
P. R is the residual static

response, i.e., it maps the external forces to the difference
between the static solution of the full and truncated systems.

In other words, appending R to the original list of mode
shapes would allow one to recover the linear static solution
of the original, full DoF system, while only adding a number
of DoFs equal to the number of columns in P. However, in

its current form, R cannot be appended to the list of mode
shapes. The reason is that it lacks the required properties of
the mode shapes, namely (1) they diagonalize the stiffness
matrix and the diagonal entries are equal to the square of the
modal frequencies and (2) they are normalized with respect
to the mass matrix such that ΠTMΠ = I.

Notice that to be able to recover the linear static response of
the original full DoF system, one does not necessarily need
to append R. Rather, one could append RΓR, where ΓR is any
full-rank matrix. This is because RΓR, where ΓR is full-rank,
will still span the same column space as the original R. This
problem looks similar to the normalized component modes
used earlier, where R takes the place of the Craig-Bampton
transformation and ΓR takes the place of the Craig-Bampton
mode shapes. Moreover, solving the problem in this way will
yield mode shapes that have the desired diagonalization and
normalization properties. Therefore, one solves the typical
eigenvalue/eigenvector problem for the following system

RTMRΓRηR + RTKRΓRηR = RTPr(t)

i.e.,
ω2

RR
TMRΓR = RTKRΓR

where ω2
R are the eigenvalues and ΓR are the eigenvectors.

Then, the residual vectors of the system are ΠR = RΓR and
the associated frequencies are ωR. These can be appended
to the original set of normalized component mode shapes,
and this new set of mode shapes will satisfy the two required
properties mentioned earlier. Moreover, this new set of modes
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will be able to recover the linear, static solution of the original
full DoF system.

B. EXAMPLE NASTRAN RUN SCRIPT
This appendix contains an example Python script that uses
the Nastran class to compute the first 30 flexible mode
shapes/frequencies and modal integrals of a cantilevered
beam. The results are stored in an HDF5 file that can be used
to create a DARTS flexible body via the ReadHDF5Flex
class.

1 """ This script creates the
SimpleBeamFixed.h5 file. """↪→

2

3 import os
4 from FModal.Nastran import Nastran
5

6 nModes = 30
7

8 fileNameH5 = "SimpleBeamFixed.h5"
9 fileNameDat = "SimpleBeamFixed.dat"

10

11 nast = Nastran()
12 nast.read(fileNameDat) # Read in the DAT

file↪→

13 nast.executable_path =
os.getenv("MSC_NASTRAN_2019_PATH") #
Set the NASTRAN executable path

↪→

↪→

14 nast.run_103(n_modes=nModes, aset={1:
123456}) # Add node one to the a-set
since it will be fixed in the
multibody dynamics simulation

↪→

↪→

↪→

15 nast.load_op2(modal_integral_flag=True)
# Enable modal integrals↪→

16 nast.write_hdf5(fileNameH5) # Create the
HDF5 file↪→

C. SINGLE-LENGTH BEAM DAT FILE
DESCRIPTION

This appendix describes the single-length beam NASTRAN
file used in many of the validation scripts. The validation
scripts that use a double-length beam use two of these single-
length beams connected together.

The single-length beam NASTRAN file consists of 101
equally spaced grid points along the x-axis from 0 to 9 meters.
An example of one of these grid points is shown below:

1 GRID, 1, 0, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0↪→

Each adjacent grid point is connected by a CBEAM element.
The CBEAM elements are all identical except for the grid
points they connect to. An example of one of these elements
connecting grid points 1 and 2 is shown below:

1 CBEAM, 11, 50002, 1, 2, 0.0000E+00,
1.0000E+00, 0.0000E+00↪→

2 , 0, 0, 0.0000E+00, 0.0000E+00,
0.0000E+00, 0.0000E+00, 0.0000E+00,
0.0000E+00

↪→

↪→

Each CBEAM element uses a PBEAM property card (number
50002) in its description, and this PBEAM property card
utilizes a MAT1 material card (number 1) in its description.
The PEAM and MAT1 cards used are shown below.

1 $*
2 $* MATERIAL CARD
3 $*
4 MAT1, 1, 2.000+9, 775193798.449612,

, 8000.0, 12.000-6, 21.85000, 0.0↪→

5

6 $*
7 $* PROPERTY CARD
8 $*
9 PBEAM, 50002, 1, 2.000E-02,

6.6666667E-05, 1.6666667E-05,
0.0000E+00, 8.33333333E-05,
0.0000E+00

↪→

↪→

↪→

10 , 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.0000E+00, 0.0000E+00,
0.0000E+00, 0.0000E+00, 0.0000E+00

↪→

↪→

11 , 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.0000E+00, 0.0000E+00,
0.0000E+00, 0.0000E+00, 0.0000E+00

↪→

↪→

12 , 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.0000E+00, 0.0000E+00,
0.0000E+00, 0.0000E+00, 0.0000E+00

↪→

↪→

D. SAMPLE FMODAL HDF5 OUTPUT FILE
This section lists content from an example HDF5 output file
produced by FModal. The groups of the HDF5 file associated
with the DAT file described in Appendix C with the first node
placed in the a-set are shown in Figure 11. Some of the
groups (e.g., GridPosition) have not been expanded due to
space limitations.
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