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ABSTRACT

In this paper, we describe the PyCraft computational workbench for studying and evaluating complex,
system level dynamics properties of multibody systems. Examples of such dynamics properties are the
system mass matrix, Jacobians and sensitivities of these quantities that are important for design and
optimization of dynamics properties, as well as for controller development. In this paper we describe
the C++/Python PyCraft workbench which builds upon rich mathematical operator methods from the
Spatial Operator Algebra (SOA) that have been used for analysis and algorithm development for multi-
body dynamics. Mathematical operator expressions can be literally transcribed to the PyCraft com-
mand line to allow the easy evaluation of complex dynamics quantities. Several examples illustrating
operator based analysis and corresponding PyCraft execution are included.

1 Introduction

The multibody research community has devoted much attention to the development of fast, accurate and stable
methods for solving the equations of motion at the heart of dynamics simulations. In this paper, we address
a complementary problem that has received much less attention - that of studying and evaluating system level
dynamics properties of multibody systems. Examples of such properties are the system mass matrix, Jacobians and
sensitivities of these quantities that are important for robotics, the design and optimization of dynamics properties,
development of variational integrators and for controller development. Instead of brute force numerical methods,
in this paper we describe an elegant and general framework for computing system dynamics properties that exploits
the rich analytical structure of the underlying system dynamics. The framework defines a concise and expressive
vocabulary of operator quantities that can be used to analytically describe a very broad class of system dynamics
quantities, use them to carry out mathematical analysis, and to use a computational workbench for interactively
evaluating these complex quantities based on the analytical expressions.

The family of operators mentioned above are from the Spatial Operator Algebra (SOA) framework for multi-
body dynamics [1, 2]. The SOA is based on a minimal coordinates dynamics representation, and shows that a
family of spatial operators can be used to elegantly describe multibody quantities, reveal their underlying struc-
tural patterns [3], and carry out analysis and computations with them. For example, the mass matrix M for any tree
topology system can be expressed as

M=HφMφ∗H∗ (1)

where the block-diagonal H and M operators contain hinge articulation and body spatial inertia elements respec-
tively, while the elements ofφ define rigid body transformations between pairs of bodies. Beyond the elegance and
compactness of such expressions, the spatial operators have important analytical properties that allow us to carry
out further mathematical analysis. In particular, the φ operator has the form φ= (I−Eφ)

−1, where Eφ is another
operator whose non-zero block elements correspond to the adjacency matrix for the directed graph that describes
the multibody system’s topology. Exploiting such analytical structure, the SOA shows that the mass matrix can be



analytically inverted as illustrated by the following expressions:

M=HφMφ∗H∗

= [I+HφK]D[I+HφK]∗

[I+HφK]−1 = I−HψK

M−1 = [I−HψK]∗D−1[I−HψK]

(2)

The above expressions use just one additional operator P referred to as the articulated body inertia operator, and the
derived operators D =HPH∗, G = PHD−1, K = EφG, Eψ = Eφ(I−GH) and ψ = (I−Eψ)

−1. Eq. 2 illustrates
both the expressiveness of the operator vocabulary, as well as the types of analysis that can be carried out with
them. As is typical of such operator based structural properties, the Eq. 2 analytical expression for the mass matrix
inverse is very general and holds for branched-topology systems of arbitrary size. Moreover, the bodies can be
rigid as well as flexible. The constraint embedding technique [2] extends these tree-topology operator techniques
to closed-loop graph systems as well [4].

While such analytical structure of system level dynamics properties can be studied via operators, another
benefit of the operator expressions lies in the fact that these expressions directly lead to low-order recursive com-
putational algorithms. The adjacency matrix structure of the Eφ and Eψ operators allows expressions such as φx,
φ∗x, ψx and ψ∗x to be carried out viaO(N) recursive algorithms without requiring the explicit computation of φ
or ψ! The well known O(N) articulated body recursive algorithm for solving the equations of motion is a direct
consequence of using this property with the Eq. 2 expression for the mass matrix inverse. Similarly, low-order
algorithms for the operational space inertia, mass matrix sensitivity etc have been derived using spatial operators
[2]. Figure 1 illustrates the use of SOA as a general purpose framework for supporting the analysis and algorithmic

Fig. 1: The SOA operators provides a mathematical vocabulary for addressing analysis and algorithmic needs for a broad class of multibody systems.

needs for variety of classes of multibody systems.
We have developed an object-oriented toolbox called PyCraft in C++/Python for the computation of system

level dynamics properties using the operator notation. PyCraft implements C++ classes for spatial operators that
can be used for the computational evaluation of complex system dynamics properties described via mathematical
operator expressions such as the above. A Python interface to the C++ classes allows the interactive, command-
line evaluation of these operator expressions for a multibody model. Thus for instance, with ‘g’ representing
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the C++/Python multibody model object, the mass matrix and its inverse in Eq. 1 and Eq. 2 can be numerically
evaluated from the Python command line using the following Python statements:

>>> MassMatrix= H(g)∗Phi(g)∗M(g)∗PhiStar(g)∗HStar(g)
>>> InnovFactorInv= Id(g)−H(g)∗Psi(g)∗K(g)
>>> MassmatInv= InnovFactorInv.getTranspose()∗Dinv(g)∗InnovFactorInv
>>> assert(MassMat∗MassmatInv).isIdentity()

Note the similarity between the mathematical operator expressions and the PyCraft command line expression
syntax. Each of the H(.) etc represent classes for the corresponding SOA operator. The family of operator classes
can be used for any desired system level dynamics computation.

The PyCraft implementation is general enough where ‘g’ can in fact be any connected sub-tree of the multi-
body system. This can be useful for example for analyzing the dynamics of individual limbs in multi-limb robots.
The overloaded ‘*’ operations among the spatial operator objects take advantage of the structure-based low-order
recursive algorithms that are applicable for efficient computation.

This paper provides an overview of the operator based analytical approach and the computational architecture
of PyCraft for evaluating system dynamics properties and several examples of its use. This approach is especially
powerful since the operator expressions remain unchanged across the entire class of tree-topology systems. We
believe that PyCraft will provide an easy way to bridge the gap between theory and computation and thus support
analytical and algorithm development and validation for multibody systems.

Section 2 reviews spatial operators and introduces some basic ones needed to define the mass matrix. Section
3 describes C++ and Python classes for these operators that allows the use of the operators interactively, and
via scripts. Having established the basic concepts of the spatial operators and the PyCraft software architecture,
Section 4 describes additional spatial operators and their use for more advanced computations. Section 5 describes
the further application to the sensitivities of dynamics quantities.

2 Spatial Operators

For notational simplicity, we will focus our exposition of spatial operators on a serial chain system with n rigid
bodies and N degrees of freedom. All the concepts however do extend to general tree systems. To introduce spatial
operators, we begin with the following base-to-tip recursion that can be used to compute the V(k) spatial velocities
for each of the bodies. 

V(n+1) = 0

for k = n · · ·1
V(k) = φ∗(k+1,k)V(k+1)+H∗(k) θ̇̇̇(k)

end loop

(3)

In the above, φ∗(k+1,k) denotes the rigid body transformation matrix between the (k+1)th and kth bodies, and
H∗(k) the joint map matrix for the kth body:

φ(x,y)
4
=

(
I3 l̃(x,y)
03 I3

)
∈R6×6 and H∗(k) =

[
h(k)

0

]
∈R6 (4)

The ˜ operation denotes the conversion of a 3-vector into its 3×3 skew-symmetric cross-product matrix. Now we
introduce stacked vectors required to define system level relationships. We begin by defining the stacked vectors
V and θ as

V
4
= col

{
V(k)
}n
k=1

=


V(1)
V(2)

...
V(n)

 ∈R6n, and θ
4
= col

{
θ(k)
}n
k=1

=


θ(1)
θ(2)

...
θ(n)

 ∈RN (5)
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The V stacked vector consists of the component body-level V(k) spatial velocity vectors assembled into a sin-
gle large vector. Correspondingly, the θ stacked vector consists of the component body-level θ(k) generalized
coordinates assembled into a single large vector.

Continuing on, define the block-diagonal H spatial operator as

H
4
= diag

{
H(k)

}n
k=1

=


H(1) 0 . . . 0

0 H(2) . . . 0
...

...
. . .

...
0 0 . . . H(n)

 ∈RN×6n (6)

Now define the strictly block lower-triangular spatial operator Eφ as:

Eφ
4
=



0 0 0 0 0
φ(2,1) 0 . . . 0 0

0 φ(3,2) . . . 0 0
...

...
. . .

...
...

0 0 . . . φ(n,n−1) 0


∈R6n×6n (7)

The Eφ operator has special structure, and is in fact an example of a spatial kernel operator (SKO) defined and
discussed in reference [2]. Briefly, the sparse structure of an SKO matrix is that of the adjacency matrix for
the multibody topology where the elements of the matrix are square matrices. For the Eφ matrix, the non-zero
entries are the 6× 6 φ(i, j) rigid body transformation matrices for connected bodies. The sparse structure of Eφ
in Eq. 7 is that for a serial chain topology system. For more general branched tree topology systems, there can
be additional non-zero entries corresponding to the topology’s adjacency matrix. The SKO nature of this operator
is the essential basis for the rich analytical structure for operators as well as the family of low-cost recursive
computational algorithms that follow from them.

Combining Eq. 3, Eq. 6 and Eq. 7, we obtain the relationship

V= E∗φV+H∗ θ̇̇̇ (8)

Since Eφ is an SKO operator, it is always nilpotent, and its 1-resolvent (I−Eφ) is always invertible. Such inverses
of the 1-resolvent of SKO operators are referred to as spatial propagation operators (SPO) operators [2]. The SPO
operator corresponding to Eφ is denoted φ ∈R6n×6n and is given by

φ
4
= (I−Eφ)

−1 = I+Eφ+E2
φ+ · · · +En−1

φ (9)

Now that we have an expression for the inverse of (I−Eφ), we use it to obtain the following explicit expression
for the the V spatial velocity stacked vector:

V
8
= (I−E∗φ)

−1H∗ θ̇̇̇
9
= φ∗H∗ θ̇̇̇ (10)

This is a system level relationship using spatial operators corresponding to the component level one in Eq. 5. Note
that from the Eq. 5 recursion it is clear that all of the body spatial velocities can be computed in a base to tips
recursion sequence with O(N) computational cost. However, the V = φ∗H∗ θ̇̇̇ expression in Eq. 10 suggests the
higher O(N2) cost since it involves a matrix/vector product. The fact that this is not so, is due to the special
property of SPO operators where products such as φx and φ∗x, where x is a stacked vector, can always be carried
out by O(N) tip-to-base (gather) and base-to-tip (scatter) recursions respectively!
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2.1 Jacobian matrix

The Jacobian matrix [5] provides a mapping from the generalized velocities to the spatial velocities of one or more
nodes in the multibody system and plays an important role in robotics. The spatial velocity of node O0

k on the kth

body is given by
V
(
O0
k

)
= φ∗(k,O0

k)V(k) (11)

In the stacked notation, we define the pickoff operator B to map the link spatial velocities into the node velocities
as follows:

Vnd
11
= B∗V where B

4
=



0
...

φ(k,O0
k)

...
0


∈R6n×6 (12)

Thus
Vnd = J θ̇̇̇ where J

4
= B∗φ∗H∗ ∈R6nnd×N (13)

The above describes the analytical expression for the J Jacobian in terms of spatial operators.

2.2 Mass matrix

With m(k), p(k) and J (k) denoting the mass, first moment and second moment of inertia respectively for the
kth body, the spatial inertia for the body is defined as

M(k)
4
=

(
J (k) m(k) p̃(k)

−m(k) p̃(k) m(k)I

)
∈R6×6 (14)

Once again, stacking up these quantities for all the bodies leads to the block-diagonal, symmetric and positive
semi-definiteM spatial inertia spatial operator defined as

M
4
= diag

{
M(k)

}n
k=1
∈R6n×6n (15)

Using these spatial operators, it can be shown using SOA methods that the system mass matrix M has the following
operator product form [2]:

M(θ) =HφMφ∗H∗ ∈RN×N (16)

This factored form of the mass matrix is referred to as the Newton–Euler Operator Factorization of the mass
matrix [2]. The mass matrix features in the system level equations of motion that has the following form:

Mθ̈+C= T where C=Hφ(b+Mφ∗a) (17)

Here C denotes the overall vector of Coriolis, gyroscopic and gravitational terms, while b and a denote the stacked
vectors of the link level velocity dependent terms.

3 PyCraft Software C++ Classes

Having described spatial operator expressions for some o the system level quantities, we now begin a discussion of
the object oriented PyCraft software whose purpose is to allow the evaluation and computation of spatial operator
expressions. PyCraft builds upon the DARTS software [6] for solving the equations of motion using minimal
coordinates representation and algorithms for the multibody system. PyCraft makes use of the DARTS class
instance ‘g’ for the underlying multibody system.

The following describes the base classes for stacked vectors and spatial matrix operators.
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SpatialVector: This is a base class for stacked vectors and consists of a map of body objects to vectors. The
SpatialVector V is for the stacked vector of spatial velocities V. V[o] returns the 6-dimensional spatial
velocity for body o.

SpatialMatrixOperator: This is a base class for all spatial operators, and consists of matrix elements in-
dexed by row and column elements consisting of multibody body or node objects. Thus for example, the
SpatialMatrixOperator phi denotes the φ spatial operator, and phi[o][p] returns the 6× 6 φ(o,p)
matrix for the o and p bodies.

SpatialSquareMatrixOperator: This class is a specialization of the SpatialMatrixOperator class, where
the row and column indices are the same. Thus the operator is square in the indices though the element
matrices are not required to be square.

SpatialDiagonalMatrixOperator: This class is a specialization of the SpatialSquareMatrixOperator

class, where only the diagonal elements are non-zero.

The constructors for each of these classes take a multibody subgraph g instance argument. These matrix vector
classes have the normal arithmetic “+”, “*” etc operators available that follow the expected rules for taking products
of matrices and matrix/vectors with compatible indices. These operations are only permitted among operators
sharing the same subgraph. Since many spatial operators are sparse, these operators only store non-zero elements,
and any entry not explicitly defined is assumed to be zero by default.

Using these base classes, we next describe derived PyCraft classes for the basic kinematics and mass properties
of the g multibody system:

IdClass : This class derived from SpatialDiagonalMatrixOperator corresponds to the identity operator.

HStarClass : This is the operator class derived from SpatialDiagonalMatrixOperator for the H∗ spatial
operator. Additionally the HClass class derived from HStarClass is for instances of the H operator.

MClass : This operator class corresponds toM and is derived from SpatialDiagonalMatrixOperator.

The SKO operator for g defines kinematic properties as well as the topology of the system. As discussed earlier,
closely associated with an SKO operator is its SPO operator. The following PyCraft classes are used for creating
instances of the family of SKO and SPO operators:

SKO operator classes: SKOClass is the base class for SKO operators and is derived from
SpatialSquareMatrixOperator. The EPhiClass operator for Eφ is derived from the SKOClass class.
The SKOStarClass class for the transpose of an SKOClass operator is derived from the
SpatialSquareMatrixOperator class and takes the SKOClass instance as a constructor argument.

SPO operator classes: SPOClass is the base class for SPO operators and is derived from
SpatialSquareMatrixOperator. Its constructor takes an SKOClass operator instance argument. SPOStarClass
is the class for the transpose of SPO operators and is derived from SpatialSquareMatrixOperator. Its
constructor takes an additional SKOClass operator instance argument.

The special property of SPO operators, that products such as φx and φ∗x with vectors can be carried out via low-
cost O(N) gather and scatter recursions are exploited by implementing operator * methods for the SPOClass

and SPOStarClass classes which implement these low-cost algorithms for products with vectors.
The additional BStarClass is defined for the B∗ pickoff operator. The constructor for this class takes a list

of node instances as an additional argument.
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3.1 Python Interface

For more convenient use, PyCraft includes a Python interface for the C++ classes described above. As illustrated
in Figure 2, the Python interface is auto-generated using the SWIG tool [7], and exactly mirrors the C++ class API.
The Python interfaces allows the use of the operators and their methods from the Python command line as well as
from within scripts. Using the Python interface, the following sequence of Python statements creates instances of

Fig. 2: PyCraft’s Python bindings for the underlying C++ operator classes are auto-generated using the open source SWIG tool.

the basic operators that define the g multibody system’s articulation, kinematic, topology and mass properties.

Listing 1: Basic operators for the multibody system

>>> H = HClass(g) # instance of H operator (Eq. 6)

>>> ephi = EPhiClass(g) # instance of Eφ operator (Eq. 7)

>>> M = MClass(g) # instance of M operator (Eq. 15)

As a next step, we define some additional operators, and use them to evaluate the system level Jacobian and mass
matrix for the multibody system.

Listing 2: Evaluation of the Jacobian and the mass matrix M

>>> Hst = HStarClass(g) # instance of H∗ operator (Eq. 6)

>>> phi = SPOClass(ephi) # instance of φ operator (Eq. 9)

>>> phistar = SPOStarClass(ephi) # instance of φ∗ operator (Eq. 9)

>>> bstar = BStarClass(g, nodes) # instance of B operator (Eq. 12)

>>> Jac = bstar * phistar * Hst # evaluate the J Jacobian (Eq. 13)

>>> massmat = H * phi * M * phistar * Hst # evaluate the M mass matrix (Eq. 16)

>>> marray = massmat.asArray() # get M matrix content as an numpy array

The SpatialMatrixOperator::asArray() method used at the end returns a Python numpy array instance with
the values for the mass matrix.
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The inverse dynamics problem requires the evaluation of Eq. 17 to obtain T for specified θ̈ generalized accel-
erations. Focusing on just the Mθ̈ product for the moment, we can evaluate this product in PyCraft as follows:

Listing 3: Inverse dynamics computation

>>> T = H * phi * M * phistar * Hst * thetaddot # evaluate Mθ̈ for inverse dynamics (Eq. 17)

Since PyCraft implements SPO/vector products via O(N) recursions, the above inverse dynamics computation
ends up also being of O(N) computational cost. In fact this procedure is precisely the well-known, optimal
Newton-Euler inverse dynamics algorithm [8].

3.2 Mass matrix decomposition

Having introduced the basic spatial operators, we now look at examples of analysis that can be carried out using
spatial operators, and the use of PyCraft for evaluating the resulting operator expressions.

Using SOA operator techniques, it can be shown that φMφ∗ can be decomposed into the following sum [2]

φMφ∗ = φR+Rφ∗−R (18)

where R
4
= diag

{
R(k)

}n
k=1
∈ R6n×6n is a block-diagonal, symmetric, positive semi-definite operator with the

R(k) block diagonal entries defined via the following tip-to-base gather recursion:
R(0) = 0

for k = 1 · · ·n
R(k) = φ(k,k−1)R(k−1)φ∗(k,k−1)+M(k)

end loop

(19)

R(k) is the composite body inertia [9] for the kth body and represents the spatial inertia of the kth, and all its
outboard bodies regarded as a single composite body.

The decomposition result in Eq. 18 is in fact a general result that applies to any operator product of the form
AXB∗ where A and B are SPO operators and X is an arbitrary (but compatible) diagonal matrix. In this disjoint
partitioning of φMφ∗, the first term is lower triangular, the second term is upper triangular and the last term on
the right hand side is block diagonal. Based on this decomposition and Eq. 16, the mass matrix can be decomposed
into diagonal and triangular terms as follows:

M=H(φR+Rφ∗−R)H∗ (20)

At the operator level, it is easy to verify that R is in fact a solution to the following forward Lyapunov operator
equation:

M= R−EφRE
∗
φ (21)

Due to this general property of SKO and SPO operators, the SKOClass class has the
SKOClass::LyapunovRecursion(SpatialDiagonalMatrixOperator) method that returns the
SpatialDiagonalMatrixOperator solution to the forward Lyapunov equation. In other words

Listing 4: Composite Rigid Body Inertia R

>>> R = ephi.LyapunovRecursion(M) # instance of R operator (Eq. 19)

The procedure for computing the mass matrix based on the decomposition in Eq. 20 is the optimal O(N2) com-
posite rigid body inertia based algorithm for computing the mass matrix [9]. Our derivation using SOA techniques
uses spatial operators to analyze and take advantage of the structure of the mass matrix to develop the low cost
technique.
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In PyCraft we can compute M via the brute force composition of operators shown in Listing Eq. 2. Alterna-
tively we can use the Eq. 20 operator expression that uses the faster composite rigid body decomposition based
algorithm as follows:

Listing 5: CRB decomposition of the mass matrix

>>> massmat = H * (phi * R + R * phistar - R) * Hst # the mass matrix M (Eq. 16)

We can validate the correctness of this alternative method for computing the mass matrix by comparing it with
the results from the procedure in Listing 2. Such cross-verification is an illustration of the use of PyCraft for the
numerical validation of analytical results in a simple and easy manner. As seen earlier, the PyCraft statements
very closely parallel the analytical operator expressions being evaluated. For all practical purposes, we are able to
literally transcribe complex spatial operator expressions into a PyCraft environment in order to evaluate them.

4 Articulated Body Spatial Operators

Now define the block diagonal operator P as

P
4
= diag

{
P(k)
}n
k=1

∈R6n×6n (22)

where the P(k) articulated body inertia elements are defined via the following articulated body tip-to-base gather
recursion: 

P+(0) = 0, τ(0) = 0
for k = 1 · · ·n
ψ(k,k−1) = φ(k,k−1)τ(k−1)

P(k) = φ(k,k−1)P+(k−1)φ∗(k,k−1)+M(k)

D(k) =H(k)P(k)H∗(k)

G(k) = P(k)H∗(k)D−1(k)

K(k+1,k) = φ(k+1,k)G(k)

τ(k) = I−G(k)H(k)

P+(k) = τ(k)P(k)

end loop

(23)

Define the following additional spatial operators:

D
4
= diag

{
D(k)

}n
k=1

=HPH∗ ∈RN×N

G
4
= diag

{
G(k)
}n
k=1

= PH∗D−1 ∈R6n×N

K
4
= EφG ∈R6n×N

τ
4
= diag

{
τ(k)
}n
k=1

= GH ∈R6n×6n

τ
4
= diag

{
τ(k)
}n
k=1

= I−τ ∈R6n×6n

P+ 4
= diag

{
P+(k)

}n
k=1

= τPτ∗ = τP= Pτ∗ ∈R6n×6n

Eψ
4
= Eφτ ∈R6n×6n

(24)
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The P operator is in fact a solution to the following Riccati equation:

M= P−EψPE
∗
ψ = P−Eφ(I−PH∗(HPH∗︸ ︷︷ ︸

D

)−1

︸ ︷︷ ︸
G

H

︸ ︷︷ ︸
τ

)

︸ ︷︷ ︸
τ

P

︸ ︷︷ ︸
P+

E∗φ+M

(25)

The structure of Eψ is identical to that of Eφ, and the pair only differ in the actual value of the non-zero elements.
Indeed, Eψ is an SKO operator in its own right. Its corresponding SPO operator is ψ= (I−Eψ)

−1. The structure
of ψ is identical to that of φ and the pair only differ in the values of their elements.

The new articulated body operator class in PyCraft is PClass derived from SpatialDiagonalMatrixOperator

for P, with diagonal elements defined by the Riccati equation recursion. Thus

Listing 6: Articulated body operator P

>>> P = PClass(g) # instance of P operator (Eq. 22)

The other articulated body operators can be evaluated via the following PyCraft statements:

Listing 7: Articulated body operators

>>> D = H * P * Hst # evaluate D (Eq. 24)

>>> Dinv = D.inverse() # evaluate D−1 (Eq. 24)

>>> G = P * Hst * Dinv # evaluate G (Eq. 24)

>>> K = ephi * G # evaluate K (Eq. 24)

>>> tau = G * H # evaluate τ (Eq. 24)

>>> Id = IdClass(g) # the identity operator

>>> taubar = Id - tau # evaluate τ (Eq. 24)

Except for K, all of the operator instances above are block-diagonal. The Eψ operator has its own class EPsiClass
derived from the SKOClass class with elements from the (ephi * taubar) product.

Listing 8: The ψ family of SKO ans SPO operators

>>> epsi = EPsiClass(g) # instance of Eψ operator (Eq. 24)

Since Eψ is an SKO operator, we can define the corresponding SPO and other related operators for it as follows:

Listing 9: The ψ family of SKO and SPO operators

>>> psi = SPOClass(epsi) # instance of ψ= (I−Eψ)
−1 operator

>>> psistar = SPOStarClass(epsi) # instance of ψ∗ operator

psi is structurally very similar to phi with differences being in the specific values of the non-zero elements.

4.1 Example operator identities

One of the advantages of spatial operators is their rich mathematical structure which allows us to derive new ana-
lytical relationships and simplifications of complex expressions. The following operator identities are illustrative
examples of this [2]:
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1.
[I−HψK]Hφ=Hψ

φK[I−HψK] =ψK

[I+HφK]Hψ=Hφ

ψK[I+HφK] = φK

(26)

2.
HψMψ∗H∗ =D (27)

Notice the strong similarity between the expression in Eq. 27 and the expression for the mass matrix in Eq. 16.
While we are able to mathematically establish these identities, the PyCraft classes allow us to actually compute
and verify them as follows:

Listing 10: Operator identity

>>> assert ((Id - H * psi * K) * H * phi - H * psi).isZero() # verify Eq. 26 identity

>>> assert (D - H * psi * M * psistar * Hst).isZero() # verify Eq. 27 identity

Once again we see that it is easy to transcribe and execute mathematical expressions within PyCraft.

4.2 Mass matrix inversion

One of the seminal results from the SOA spatial operator methodology has been that the mass matrix can be
analytically factorized, and even inverted for arbitrary tree systems. This first step towards this consists of yet
another factorization of the mass matrix shown below [2]:

M= [I+HφK]D[I+HφK]∗ (28)

This Innovations factorization has the advantage that its factors are square. We can validate this analytical
expression by comparing the numerical values with the values obtained from either of the two earlier procedures
for computing the mass matrix.

Listing 11: Innovations factorization of the mass matrix

>>> InFac = Id + H * phi * K # Innovations factor [I+HφK] (Eq. 28)

>>> massmat = InFac * D * InFac.getTranspose() # Innovations factorization of M (Eq. 28)

The next operator level result is the following analytical expression for the inverse of the [I+HφK] factor [2]:

[I+HφK]−1 = I−HψK (29)

Once again, this relationship can be evaluated and verified easily within PyCraft as follows:

Listing 12: Innovations factor inverse

>>> InFacInv = Id - H * psi * K # evaluate [I−HψK]

>>> assert (InFac * InFacInv).isIdentity() # verify Eq. 29 identity

Putting together the above pair of results, immediately leads to the following closed form expression for the mass
matrix inverse:

M−1 = [I−HψK]∗D−1[I−HψK] (30)

The PyCraft steps for evaluating this expression are simply:
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Listing 13: Mass matrix inverse

>>> massmatInv = InFacInv.getTranspose() * Dinv * InFacInv # evaluate M−1 (Eq. 30)

>>> assert (massmat * massmatInv).isIdentity() # verify that this is inverse of M

4.3 Solving the equations of motion

Solving the equations of motion is one of the key problems in simulating system dynamics. The O(N) articulated
body forward dynamics algorithm is based on the expression for the mass matrix inverse derived in Eq. 30. Using
this in Eq. 17 leads to the following operator expression for θ̈:

θ̈=M−1(T−C) = [I−HψK]∗D−1[T−Hψ(KT+Pa+b)︸ ︷︷ ︸
z︸ ︷︷ ︸

ε

]

︸ ︷︷ ︸
ν

−K∗ψ∗a

(31)

Due to the SPO nature of ψ, the matrix/vector products in the above expression can be carried out recursively
at O(N) cost, and forms the basis for the optimal O(N) forward dynamics algorithms. Once again, the above
algorithm can be evaluated within PyCraft via the following:

Listing 14: O(N) AB forward dynamics

>>> z = psi * (K * T + P * a + b) # evaluate z (Eq. 31)

>>> eps = T - H * z # evaluate ε (Eq. 31)

>>> nu = Dinv * eps # evaluate ν (Eq. 31)

>>> alpha = psistar * (Hst * nu + a) # evaluate α (Eq. 31)

>>> thetaddot = nu - G.getTranspose() * ephistar * alpha # evaluate θ̈ (Eq. 31)

4.4 Operational Space Inertia

The operational space inertia is an important quantity for robotics control [10]. It is defined via its inverse which
is given by

Λ
4
= JM−1J∗ ∈R6nnd×6nnd (32)

Quantities such as the operational space inertia also show up when solving closed-chain and contact dynamics
equations of motion [2]. Recalling the J=B∗φ∗H∗ Jacobian matrix expression from Eq. 13 leads to the following
expression for Λ:

Λ
32
= JM−1J∗

13
= B∗φ∗H∗(I−HψK)∗D−1(I−HψK)HφB (33)

The use of the (I−HψK)Hφ=Hψ identity from Eq. 26 results in the following simpler expression:

Λ=B∗ΩB, where Ω
4
= ψ∗H∗D−1Hψ ∈R6n×6n (34)

For serial chain systems, SOA spatial operators can be used to show that the operational space compliance matrix
Ω can be decomposed into the following sum of component terms [2]:

Ω=ψ∗Υ+Υψ−Υ (35)

where Υ is a block diagonal operator whose diagonal elements are defined by the following base-to-tip scatter
recursion:

Υ(k) =ψ∗(k+1,k)Υ(k+1)ψ(k+1,k)+H∗(k)D−1(k)H(k) (36)
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It is easy to verify that the above recursion is equivalent to Υ being a solution to the following backward Lyapunov
equation:

H∗D−1H= Υ−E∗ψΥEψ (37)

This backwards Lyapunov equation is the dual of the forward Lyapunov equation encountered earlier for SKO
operators. The importance of the decomposition in Eq. 35 is that it provides a much lower cost algorithm for
computing Ω and the operational space inertia compared with the brute force method for evaluating via Eq. 32
[2, 11]. This is one more example of the use of SOA spatial operators based analysis to understand the structure of
complex dynamics quantities to generate simpler expressions as well as lower-cost computational algorithms.

Analogous to the SKOClass::LyapunovRecursion() method for the forward Lyapunov equation in PyCraft,
the SKOStarClass::LyapunovRecursion() method returns the solution to the backward Lyapunov equation as
follows:

Listing 15: Backward Lyapunov recursion for Υ

>>> Y = epsistar.LyapunovRecursion(Hst * Dinv * H) # instance of Υ operator (Eq. 36)

Using this, it is easy to verify the expression for the operational space compliance matrix decomposition in PyCraft
via:

Listing 16: Decomposition of the operational space compliance matrix

>>> Omega = psistar * Hst * massmatInv * H * psi # evaluate Ω (Eq. 34)

>>> assert (Omega - (psist * Y + Y * psi - Y)).isZero() # verify Eq. 35 identity

A further application of the operational space inertia related decomposition is in deriving an operator decomposi-
tion of the mass matrix inverse M−1 and using it to develop a lower cost computational algorithm for its evaluation.
The reader is referred to reference [2] for further details.

5 Operator sensitivities

Now we turn to the topic of computing gradients of various dynamics quantities. We do not have to look too far
to see a need for these, since even the Coriolis vector C in the equations of motion can be shown to be defined
via Christoffel symbols of the first kind which are defined in terms of the gradients of the mass matrix elements as
follows [2]1:

Ci(j,k)
4
=

1
2

[
∂M(i, j)
∂θ(k)

+
∂M(i,k)
∂θ(j)

−
∂M(j,k)
∂θ(i)

]
for i, j,k= 1 · · ·n (38)

For notational simplicity, the operator analysis in this section assumes that the multibody system has rotational,
single degree of freedom hinges. The more general treatment is described in reference [2]. We begin with defining
the following matrix related to the H∗(k) joint map matrix:

H̃∗(k) =

(
h̃(k) 0

0 h̃(k)

)
∈R6×6 (39)

Using this component level, matrix, for the ith body define the following block-diagonal operators H̃
ω

�i , H̃
ω

≺i

and H̃
ω

=i that are very closely related to the H∗ joint map operator.

H̃
ω

�i = diag
{
H̃∗(k)1[k�i]

}n
k=1

H̃
ω

≺i = diag
{
H̃∗(k)1[k≺i]

}n
k=1

H̃
ω

=i = diag
{
H̃∗(k)1[k=i]

}n
k=1

(40)

1The notation, [ij,k], is also often used for Ck(i, j) in the literature for Christoffel symbols of the first kind.
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H̃
ω

=i has only a single non-zero entry along the diagonal at the ith slot, while H̃
ω

≺i has non-zero elements from
the first to the ith (but not including the ith position), while H̃

ω

�i has non-zero elements from the first to the ith

position.
We can now develop operator expression for the partial derivatives of spatial operators with the goal of being

able to analytically compute the gradient of the mass matrix [2]. Assuming that we are taking the gradient with
respect to to the ith coordinate, the following describe operator expressions for the gradients of basic spatial
operators2:

[Eφ]θi = H̃
ω

�iEφ−Eφ H̃
ω

≺i (41a)

[φ]θi = φ H̃
ω

�iφ−φ H̃
ω

�i (41b)

[H∗]θi = H̃
ω

≺iH
∗ (41c)

[M]θi = H̃
ω

�iM−M H̃
ω

�i (41d)

Going further, the sensitivity of the mass matrix with respect to a generalized coordinate can be analytically shown
to be [2]:

Mθi =Hφ
[
H̃
ω

=iφM−Mφ∗ H̃
ω

=i

]
φ∗H∗ (42)

This expression is structurally strikingly similar to the expression for the mass matrix itself. PyCraft implements
the classes H iClass , Hs iClass and Hd iClass derived from the HStarClass class for the H̃

ω

�i , H̃
ω

≺i

and H̃
ω

=i operators respectively. The constructors for these classes take the body object argument with respect
to whose coordinates the sensitivity computations are desired. Thus assuming that we are taking derivatives with
respect to the coordinates of the third body we create the following instances in PyCraft:

Listing 17: Sensitivity related basic classes

>>> Hi_3 = H_iClass(g, bd3) # instance of H̃
ω

�i operator

>>> Hsi_3 = Hs_iClass(g, bd3) # instance of H̃
ω

≺i operator

>>> Hdi_3 = Hd_iClass(g, bd3) # instance of H̃
ω

=i operator

Using these we can evaluate basic operator sensitivities as follows:

Listing 18: Derivative of basic spatial operators

>>> phi_3 = Hdi_3 * phi * Hdi_3 - phi * Hdi_3 # evaluate [φ]θi (Eq. 41a)

>>> M_3 = Hdi_3 * M - M * Hdi_3 # evaluate [M]θi (Eq. 41d)

The gradient of the mass matrix can be evaluated in PyCraft as follows:

Listing 19: Derivative of the mass matrix

# evaluate Mθ3 (Eq. 42)

>>> massmat_3 = H * phi * ( Hdi_3 * phi * M - M * phistar * Hdi_3) * phistar * Hst

We can verify that the various analytical expressions for the gradients are indeed correct by comparing with nu-
merically computed derivatives of the operators and other quantities using small perturbations of the coordinate
value.

2The notation [X]θi
denotes ∂X∂θi

.
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5.1 Articulated body sensitivities

We now take the story further by focusing on the gradients of the articulated body inertia operators discussed in
Section 4. For this we introduce a new diagonal operator λ̌θi as the solution to the following forward Lyapunov
equation for Eψ:

λ̌θi −Eψλ̌θiE
∗
ψ = H̃

ω

=iP−P H̃
ω

=i (43)

As seen earlier, the solutions to the forward Lyapunov equation can be computed via a gather tip-to-base recursion
analogous to the one in Eq. 19. We continue to assume that we are taking gradients with respect to to the third
body’s coordinate, and in this case the following PyCraft expression creates an instance of λ̌θ3 :

Listing 20: Forward Lyapunov solution for λ̌θ3

>>> lambda_3 = epsi.LyapunovRecursion(Hdi_3 * P - P * Hdi_3) # evaluate λ̌θ3 (Eq. 43)

The new λ̌θ3 spatial operator can be used to derive analytical expressions for the sensitivity of articulated body
quantities [2] as shown below:

Dθi = H λ̌θiH
∗ (44a)

[D−1]θi = −D−1H λ̌θiH
∗D−1 (44b)

[G]θi = τ λ̌θiH
∗D−1 + H̃

ω

≺iG (44c)

[τ]θi = τ λ̌θiH
∗D−1H+ H̃

ω

≺i τ−τ H̃
ω

≺i (44d)

τθi = −[τ]θi (44e)

[Eψ]θi = H̃
ω

�iEψ−Eψ H̃
ω

≺i −Eψ λ̌θiH
∗D−1H (44f)

Once again, these expressions can be directly transcribed into PyCraft for evaluation as illustrated below:

Listing 21: Evaluation of articulated body sensitivities

>>> D_3 = H * lambda_3 * Hst # evaluate Dθ3 (Eq. 43)

>>> G_3 = taubar * lambda_3 * Hst * Dinv + Hs_3 * G # evaluate Gθ3 (Eq. 43)

5.2 Mass matrix factor sensitivities

Building upon the articulated body sensitivities, the following are analytical expressions for the Innovations factors
of the mass matrix and its inverse [2]:

[I+HφK]θi =Hφ
[
H̃
ω

=i φ̃P+τ λ̌θi

]
H∗D−1 (45)

[I−HψK]θi =−Hψ

[
H̃
ω

=iφK+τ λ̌θiH
∗D−1

]
(I−HψK) (46)

The PyCraft implementation of these sensitivity expressions is as follows:

Listing 22: Sensitivity of mass matrix factors

# evaluate [I+HφK]θ3 (Eq. 45)

>>> InFac_3 = H * phi * ( Hd_3 * phitilde * P + taubar * lambda_3 ) * Hst * Dinv

# evaluate [I−HψK]θ3 (Eq. 46)

>>> InFacInv_3 = -H * psi * ( Hd_3 * phi * K + taubar * lambda_3 * Hst * Dinv ) * InFacInv
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The Innovations factor related sensitivities play an important role in the development of diagonalized dynamics
models for the system [2, 12].

5.3 Fixman potential

As a final example, we look at the problem of computing the Fixman potential which arises in the context of
molecular dynamics simulations. Fixman [13] showed that the introduction of hard holoniomic constraints in
molecular dynamics models introduces statistical biases in the resulting ensemble averages of quantities computed
using such models. Fixman proposed a solution for correcting such biases by adding the following compensating
potential Uf (referred to as the Fixman potential) to eliminate the biases:

Uf
4
= log {det {M}} (47)

Including this potential in a molecular dynamics simulation actually requires the gradient of the potential in order
to apply the resulting forces on the molecules. Despite its elegance, the use of the Fixman potential has remained
impractical to implement for decades because of the lack of tractable techniques for evaluating the Fixman potential
and its gradient. This problem has been addressed using spatial operator techniques, and these have been used to
analyze and successfully derive the following simple expression for the Fixman potential gradient[14]:

∂ log {det {M}}

∂θi
= 2Trace

{
P(i)Υ(i)H̃∗(i)

}
(48)

Evaluation of this expression in PyCraft is straightforward as follows:

Listing 23: Fixman potential

>>> grad_fixman_3 = 2 * Trace{P(3) * Y(3) * Hd_3(3)} # evaluate
∂ log{det{M}}

∂θ3
(Eq. 48)

6 Conclusions

This paper describes the PyCraft workbench for computing system level dynamics properties of multibody sys-
tems. PyCraft is based upon the SOA spatial operator methods that provide a rich mathematical vocabulary and
analysis framework for describing a large variety of dynamics quantities. Examples of these range from system
Jacobians, the mass matrix, the mass matrix inverse, the operational space inertia, operator sensitivities as well
as the development of a range of recursive, low-cost computational algorithms. The effectiveness of the spatial
operator approach lies in their ability of to address a large spectrum of dynamics computations in a concise and
compact manner using just a handful of spatial operators. PyCraft is a C++/Python environment that allows the
direct evaluation of dynamics quantities using statements that very closely mimic the mathematical operator ex-
pressions. One of the interesting aspects of PyCraft is that while it can be used for the overall multibody dynamics
properties, it can also be applied to any connected subgraph of the multibody system (eg. limbs, legs etc.). The Py-
Craft workbench allows the easy evaluation and computation of complex dynamics quantities, and thus facilitates
the development and validation of new analytical expressions.

While this paper has focused on multibody systems with rigid component bodies, the SOA methods have
been shown to generalize to a much broader class of multibody systems including those with flexible bodies,
flexible hinges and under-actuated systems. Remarkably, the operator expressions remain unchanged, even though
the component elements of the operators change for the new types of systems. Thus we anticipate that future
extensions of PyCraft to handle such broader classes of systems will leave its overall usage described here largely
unchanged.

Another important area of extension is to closed-graph multibody systems. The approach with promise for
this is one that builds upon the constraint embedding (CE) techniques. The CE techniques have been shown to
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allow the transformation of closed-graph systems into tree-topology systems using aggregated compound bodies
[2]. After such a transformation, the spatial operator techniques for tree systems readily extend to closed-graph
systems as well. We believe that extension of the current PyCraft classes to handle compound bodies will thus
allow its use to closed-chain systems.
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