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1 Introduction

Integrated simulation capabilities that are high-fidelity, fast, and have scalable architecture are essential to support
autonomous vehicle design and performance assessment for the U.S. Army’s growing use of unmanned ground
vehicles (UGVs). With increased onboard autonomy, advanced vehicle models are needed to analyze and optimize
control design and sensor packages over a range of urban and off-road scenarios. Recent work at US Army TARDEC
has attempted to develop a high-fidelity mobility simulation of an autonomous vehicle in an off-road scenario using
integrated sensor, controller, and multi-body dynamics models [1]. The conclusion was that (a) real-time simulation
was not feasible due to the complexity of the intervening formulation, (b) models had to be simplified to speed up the
simulation, (c) interfacing the sensors was exceedingly difficult due to co-simulation, (d) the controls developed were
very basic and could not be optimized, and (e) a rigid terrain model was used.

The research described in this paper is from a collaborative project between US Army TARDEC and NASA Jet
Propulsion Laboratory (JPL) to develop an advanced UGV mobility testbed using JPL’s ROAMS vehicle modeling ca-
pability [2] and to address the aforementioned issues in meeting the US Army’s UGV modeling and simulation needs.
The ROAMS ground vehicle simulation framework can support tasks ranging from real-time embedded hardware-
in-the-loop testing to large-scale Monte Carlo simulation based parametric studies. ROAMS has been successfully
used at JPL in several space mission-critical scenarios for NASA across multiple domains (cruise/orbiter, landers,
and rovers). ROAMS is unique in its integrated approach to handling the high-fidelity dynamics, sensors, environ-
ment, control, and autonomy models that are required for such highly complex missions and are key attributes of
future Army unmanned ground vehicles.

Figure 1: HMMWV UGV simulator: The image on the left depicts an urban driving scenario which exercises the
vehicle’s autonomous way-point and road following software. The image on the right shows the same vehicle in an
off-road scenario with obstacle avoidance capability.

In this project we have adapted the ROAMS vehicle simulation framework to have the following attributes: the
model of a common military vehicle (the HMMWV), multibody dynamics based on the fast recursive order-N spatial
algebra formulation, wheeled locomotion capability, sensor models (cameras, GPS, radar, LIDAR) and actuators, off-
road deformable terrains with vehicle - soil interaction terramechanics models, drive-to-goal locomotion planning with
obstacle avoidance, drive/steer to maintain vehicle stability while following a prescribed path and avoiding obstacles,
and 3D real-time graphics visualization and data logging capability [3]. The simulator supports both urban and
off-road driving scenarios as illustrated in Figure 1.

In this paper we will describe the current status of the UGV simulator - its capabilities, performance benchmark-
ing, validation and evaluation results. The paper also provides an overview and update on current work to enable the
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modeling of semi-autonomous vehicle operation which includes integration of the following items: a sophisticated
autonomous navigation algorithm with obstacle avoidance, a driver model capable of simulating the input of a human
teleoperator, and a shared-control algorithm capable of combining simulated human and autonomous inputs.

2 UGV Autonomy Software

Currently fielded Army unmanned ground vehicles (UGV) are operated remotely by humans who control all actions
taken by the UGV. Human teleoperation of UGVs is negatively affected by the effects of latency and reduced situa-
tional awareness, while autonomous algorithms still suffer from mission-threatening failure under complex scenarios
[4–8]. Because of these drawbacks, the use of shared control methods which blend the strengths of both humans
and automation is an area of significant research interest to the Army going forward [9–11]. The Army is interested
in using modeling and simulation to enable evaluation of UGV mobility across the full range of shared control options
from full teleoperation to full autonomy without having to engage in expensive human testing. New capabilities cur-
rently being implemented into ROAMS to model shared control are aimed to keep it at the leading edge of simulation
capabilities.

Figure 2: Schematic of the ROAMS simulation of a semi-autonomous UGV adapted from reference [12].

A high-level block diagram of the components necessary for a shared control system is shown in Figure 2.
While a long-term goal is to eventually have a suite of models/algorithms to choose from for each of the different
components, the current effort involves integration of initial capabilities in each area. This includes the following
items: an autonomous navigation algorithm with obstacle avoidance, a driver model capable of simulating the input
of a human teleoperator, and a shared-control algorithm capable of combining simulated human and autonomous
inputs to model semi-autonomous shared vehicle control.

2.1 Autonomous Navigation Algorithm

The autonomous navigation algorithm being integrated into ROAMS has been developed at the University of Michi-
gan Automotive Research Center (ARC) with TARDEC funding [13]. A block diagram of the algorithm flow is shown
in Figure 3. The algorithm uses LIDAR as the obstacle detection sensor, incorporates a multi-stage Model Predic-
tive Control (MPC) formulation, and is specifically designed to be able to handle large vehicles such as a HMMWV
operating at high speeds (20-60 mph). It primarily seeks to minimize the travel time to a desired destination location
while avoiding obstacles and ensuring vehicle safety, which in practice is defined as avoiding any single wheel liftoff
condition. The inherent vehicle dynamic limitations that could lead to wheel lift-off are incorporated into the algo-
rithm in the form of constraints in the optimization formulation which limit the maximum vehicle speed and steering
angle control commands generated given the current system state. These constraints are pulled from pre-computed
lookup tables produced by a high-fidelity vehicle dynamics model, thus avoiding the need to run such a model in
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Figure 3: Block diagram of MPC autonomous navigation algorithm from reference [13].

real-time. The algorithm can also incorporate into the optimization known (or estimated) latencies in the vehicle
sensing and control actuation systems and mitigate the negative effects of such delays as long as the LIDAR has
sufficient range.

2.2 Driver Model

The driver model being integrated is a modified version of a highway driver model developed at Drexel University
and implemented in the ACT-R cognitive architecture [14]. ACT-R (short for Adaptive Control of Thought-Rational)
is a high level model of human cognition embedded into a computational framework [15]. The driver model is a
specialized task model written in the ACT-R language which simulates the sensory/motor performance of a human
driver. Figure 4 presents a simplified picture of how the model tracks the movement of the drivers eyes as they move

Figure 4: Diagram illustrating simplified functional breakdown of human driving model

between two points (near,goal), processes the visual input, extracts information from the visual field, and maps it
into control inputs. At present the driver model can simulate a teleoperator trying to follow a predefined path under
different latency conditions. It produces steering and throttle control inputs that can be directly applied to the vehicle
model. Adding an interface to the general ACT-R architecture into ROAMS as is being done in the current project will
allow new cognitive task models to be added in the future which can simulate other aspects of operator performance.
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2.3 Shared Control Algorithm

The shared control algorithm being integrated was developed at MIT and performs a proportional blending of the
control inputs provided by the autonomous algorithm and the human driver model as shown in Figure 5 [12]. A

Figure 5: Diagram on the left illustrates proportional blending of human and autonomous input +commands into
generated shared control commands. On the right are example blending functions for the generation of shared
control commands.

blending value k is computed by the algorithm with k = 0 representing pure teleoperation where only the operator
control input is applied and k = 1 representing pure autonomous operation. The exact value of k used depends
on the computation of a threat metric which is meant to represent how close the system is to a mission ending
failure (such as vehicle rollover). As the computed threat increases, so does the value of k, but the exact nature
of the k(threat) function is configurable. It can be based on one or more system state variables and can vary
from a simple linear relationship to more complicated monotonically increasing functions depending on desired
performance considerations. For example, the diagram on the right of Figure 5 illustrates two potential sharing laws,
one that increases linearly with threat (Sharing Law 1), and another that asserts autonomous control over the shared
output commands more slowly as threat increases (Sharing Law 2).

3 UGV Dynamics Model

An emphasis of this research is to achieve close to real-time dynamics performance for allowing the closed-loop
testing of unmanned ground vehicles (UGV) for urban as well as off-road scenarios. The overall vehicle simulator
performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics
and the sensor models. Our modeling approach is tailored to support accurate dynamics model for ground vehicles
with complex suspension dynamics while meeting the computational performance goals.

The simulator’s architecture allows the seamless selection of different fidelity levels and model parameters across
the full modeling suite, and more importantly, provides analysts with a modular way to swap component models for
changing vehicle/control/sensor behavior. A critical aspect of our UGV simulator is its use of the recently developed
constraint embedding technique for modeling the dynamics of the HMMWV suspension system which consists of a
double wishbone suspension at each wheel of the vehicle. Not only does the constraint embedding approach reduce
the size of the dynamics model, but it also leads to an over 100x speed up over conventional dynamics modeling
methods as measured in benchmark tests.

The UGV simulation architecture represents a shift in paradigm by empowering analysts with full visibility and
control in tailoring key elements of the simulator. This scalable architecture allows the adaptation and tuning of
simulation fidelity across a very broad range (e.g. rigid/flex-body dynamics, sensor fidelity, dynamics/kinematics
modes) needed for the multi-layered testing of complex autonomy behaviors. The modular design also allows the
insertion and closing the loop with vehicle autonomy modules and sensor packages for the evaluation of system
level performance and carrying out trade studies to optimize design metrics without sacrificing essential fidelity
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characteristics. This feature is in contrast with alternative approaches that provide narrow capabilities for specialized
aspects such as sensor fidelity, vehicle dynamics, or behavioral models that address only a narrow slice of vehicle
autonomy simulation needs. This simulation approach has been successfully used by analysts across multiple NASA
centers for a variety of problems.

The details of the vehicle dynamics and sensor modeling have been described in reference [3] and we provide
a brief overview here. We describe in more detail our recent work in extending the tire/soil interaction models to
include hard/soft tire and terrain model dynamics within the UGV simulator.

3.1 Vehicle Modeling

We describe here the multibody dynamics modeling approach for our reference 4-wheeled vehicle, which has a dou-
ble wishbone suspension and associated spring-damper unit at each wheel (Figure 6).

Figure 6: The double wishbone suspension for
a single wheel.

Each of these wheel suspensions contains a number of articulated
bodies with multiple kinematic closed loops. Due to the constraints,
each suspension has only a single effective degree of freedom.

The standard approach for modeling closed-chain system dy-
namics [16] decomposes the system into a a set of independent
bodies, and appends the closed-chain bilateral constraints to the
equations of motion. A drawback of this absolute coordinates ap-
proach (also referred to as the fully augmented (FA) approach) is
the high computational cost for solving the equations of motion.
Another serious drawback is the constraint violation error drift that
arises during the integration of the multibody dynamics equations of
motion. This error drift is usually handled by the use of a differential-
algebraic equation (DAE) solver and error correction algorithms to
manage the constraint error over time, adding even more com-
putational cost and accuracy error to the dynamics solution. Our
real-time performance needs require us to find alternative solutions
to overcome these major computational drawbacks of the conven-
tional approach.

Instead of the absolute coordinates dynamics formulation, we
use a minimal coordinates approach for the dynamics modeling. One advantage of the minimal coordinates approach
is that the size of the dynamics model is significantly smaller. Moreover, the minimal coordinates model allows us to
use structure-based low-cost recursive dynamics algorithms [17] whose computational cost scales only linearly with
the number of degrees of freedom.

An area that required special attention was the handling of the closed-loop constraints within the wheel suspen-
sions which are not supported by the recursive dynamics algorithms. For this, we turned to the recently developed
constrained embedding (CE) techniques developed using the spatial operator algebra (SOA) methodology [17, 18].
The constraint embedding technique uses graph transformation techniques to convert the multibody systems with
graph topologies into ones with tree topology, and thereby once again allowing the direct use of the O(N) recursive
algorithms for solving the system dynamics. The CE graph transformation process converts all constraint loops into
variable configuration compound bodies which have the same number of degrees of freedom as the number of inde-
pendent degrees of freedom for the loops they replace. These compound bodies locally handle their internal degrees
of freedom and constraint, effectively hiding them from the dynamics solver. Thus the resulting system topology is
once again a tree with only inter-body hinges and no bilateral constraints.

Besides allowing the use of the recursive O(N) tree algorithms, this formulation allows the use of simpler ODE
integrators instead of DAE integrators. Moreover no additional error control techniques are needed. The SOA
methods allow us to simplify and implement CE algorithms and handle the aggregated bodies with configuration
dependent geometry. While the CE method shares the minimal coordinates attribute with projection dynamics tech-
niques [16, 19], its advantage lies in the preservation of the system’s tree topology structure that is necessary for
the use of the structure-based recursive algorithms. The CE approach for the multibody modeling of the vehicle
and suspension dynamics is described in detail in reference [20]. Table 3.1 (from reference [3]) summarizes the
speed comparison between the FA and CE vehicle dynamics solution methods. Also included in the table is the tree
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augmented (TA) method which also exploits recursive minimal coordinate techniques but still has to work with explicit
closed-loop constraints. The FA dynamics model is over 14 times larger and 120 times slower than the CE model.

Method Number of degrees of freedom Number of constraints Overall size Simulation time ratio

CE 15 0 15 1

TA 45 30 75 4.1

FA 216 201 417 120.0

Table 1: A comparison of the dynamics model size and computational speed for the FA, TA and CE formulations for
the HMMWV vehicle.

The use of advanced dynamics techniques such as CE have been critical to achieving the simulation performance
needed for our UGV testbed. To the best of our knowledge, this is the first instance of the application of these
new techniques for modeling complex vehicle system dynamics without sacrificing dynamics fidelity. We have made
considerable improvements recently to increase the CE algorithm speed even further, and the updated benchmark
performance results can be found in reference [20].

3.2 Modeling rigid wheel on soft soil

We are using the Bekker approach for modeling the dynamics model of a rigid wheel interacting with soft soil [21–23]
and provide a brief overview of the model here. Bekker’s relationship between static sinkage and normal stress is

Figure 7: Figures showing the geometry of wheel sinkage (left) and stress distribution under the wheel (right) from
reference [24].

σ(h) =

(
kc

b
+ kφ

)
hn (1)

where b denotes the wheel width. The entry and exit angles (Figure 7) are related to the total sinkage and exit
penetration as follows

θf = arccos(1 − h/Rul) and θr = arccos(1 − he/Rul) (2)

The exit penetration hr depends on the elastic stiffness Ks of the soil. The angle of maximum stress θm is

θm = (a0 + a1SL)θf (3)
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The wheel normal normal stress distribution σ(θ) is

σ(θ) =

{
(kc
b

+ kφ) (Rul (cos(θ) − cos(θf)))
n for θm 6 θ < θf

(kc
b

+ kφ)
(
Rul

(
cos

(
θf −

(θ−θr)
(θm−θr)

(θf − θm)
)
− cos(θf)

))n
for θr 6 θ < θm

(4)

With τmax(θ) = c+σ(θ) tan(φ). the shear stresses in the longitudinal direction τx(θ) and the lateral direction τy(θ)
are

τx(θ) = τmax(θ)
(

1 − exp− |jx(θ)|
kx

)
and τy(θ) = τmax(θ)

(
1 − exp−

|jy(θ)|

ky

)
(5)

where the longitudinal and lateral shear displacements jx(θ) and jy(θ) respectively are [23]

jx(θ) = Rul(θf − θ) −
vx

Ω
(sin(θf) − sin(θ) and jy(θ) =

vy

Ω
(θf − θ) (6)

and the longitudinal and lateral shear modulus kx and ky respectively are

kx = kx0 + kx1α, ky = ky0 + ky1α (7)

The components of the force vector f(θ) = [fx, fy, fz]∗ are given by

fx(θ) = Rul(τx(θ) cos(θ) − σ(θ) sin(θ)) (longitudinal force)

fy(θ) = Rulτy(θ) (lateral force)

fz(θ) = Rul(τx(θ) sin(θ) + σ(θ) cos(θ)) (vertical load)

(8)

The overall force F and moment M at the wheel center are

F = b

∫θf
θr

f(θ)dθ, M = b

∫θf
θr

(R(θ)× f(θ))dθ (9)

The components of M are referred to as the overturning moment, the rolling resistance moment and the aligning
moment.

3.3 Modeling soft tire on rigid terrain

This section presents the Fiala model for modeling the dynamics interaction of a deformable soft tire with rigid terrain
such as paved roads. The Fiala tire model, developed by Fiala in 1954 is a simplified model that does not require
extensive and complicated physical tests to determine the necessary parameters.

Figure 8: The figure on the left illustrates the tire normal force computation model, and the one of the left key wheel
kinematic parameters from reference [25].

The normal force Fz, as shown in Figure 8 is:

Fz = max((ktδ+ ctδ̇), 0) (10)
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The maximum function ensures that the normal force is zero when the tire is not in contact with the ground.
Given the longitudinal speed vx, the tire loaded radius Rl, and the tire angular speed Ω, also shown in Figure 8,

the tire longitudinal deflection (slip) SL is [26, 27]:

SL =

{
1 − vx

RlΩ
= 1 − Re

Rl
for vx < RlΩ (driving) or Re < Rl

RlΩ
vx

− 1 = Rl
Re

− 1 for vx > RlΩ (braking) or Re > Rl
(11)

Slip value of 0 implies no slippage. The limiting value of 1 corresponds to zero longitudinal velocity with non-zero
angular velocity (i.e. spinning in place), while the limiting value of -1 corresponds to zero angular velocity with
non-zero longitudinal velocity (i.e. pure sliding).

The transversal deflection α or lateral slip angle and the lateral slip coefficient Sα are

Sα = tan(α) =
−vy
vx

(12)

The comprehensive slip ratio SLα
SLα =

√
S2
L + S

2
α (13)

The instantaneous value of the coefficient of friction µ is obtained by linear interpolation between µ0 and µ1 using
SLα as follows:

µ = µ0 − SLα(µ0 − µ1) (14)

The critical value of longitudinal slip ratio S∗L below which the tire is in elastic deformation state, and beyond which
the tire is in full longitudinal sliding:

S∗L =

∣∣∣∣ µFz2CS

∣∣∣∣ (15)

The critical value of lateral slip angle α∗ below which the tire is in elastic deformation state, and beyond which the
tire is in full lateral sliding state:

S∗α = tan(α∗) =
∣∣∣∣3µFzCα

∣∣∣∣ (16)

The slip angle intermediate parameter H which is negative during full lateral slippage and non-negative otherwise:

H = 1 −
Cα|Sα|

3µ|Fz|
= 1 −

∣∣∣∣SαS∗α
∣∣∣∣ (17)

The force and moment expressions for the Fiala tire model [28] are as follows. The longitudinal force (or drawbar
pull) is:

Fx = −

{
CSSL for |SL| < S∗L (elastic deformation)

sgn(SL)
(
µFz −

(µFz)
2

4|SL|CS

)
for |SL| > S∗L (full longitudinal slip)

(18)

The transverse force is:

Fy = sgn(α)

{
−µ|Fz|(1 −H3) for |α| < α∗ (elastic deformation)
−µ|Fz| for |α| > α∗ (full lateral slip)

(19)

The overturning moment is Mx = 0. The lateral moment is

My =

{
−CrFz for Ω < 0 (rolling forwards)
CrFz for Ω >= 0 (rolling backwards)

(20)

Finally, the normal (aligning) moment is:

Mz =

{
2R2µ|Fz|(1 −H)H3 sgn(α) for |α| < α∗ (elastic deformation)
0 for |α| > α∗ (full lateral slip)

(21)

This takes into account the effect of the pneumatic trail.
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3.4 Modeling soft tire on soft soil

As illustrated in Figure 9, a tire on soft soil incurs tire deformation as well as sinkage. We use the surrogate circle

X Y

h

δ

Rs

Rul

Figure 9: Surrogate circle for tire on soft
soil.

approach [24, 29–33] to better approximate the tire contact surface with
the ground. The surrogate circle is assumed to pass through the entry
and exit points of contact with the terrain, and furthermore be tangential
to the ground at the exit point. The relationship of the surrogate circle
radius Rs to the Rul, the tire deformation δ and sinkage h can be obtained
using the following series of chord/radius expressions from Figure 9:

X2 = δ(2Rul − δ)

Y2 = (δ+ h)(2Rul − δ− h)

(X+ Y)2 = h(2Rs − h)

⇒
√
h(2Rs − h) =

√
δ(2Rul − δ) +

√
(δ+ h)(2Rul − δ− h)

(22)

Assuming that Rs,Rul � δ,h, the above reduces to the following simpler
approximate relationship [30] √

Rs

Rul
≈
√

1 +
δ

h
+

√
δ

h
(23)

The surrogate circle radius Rs is used in the Bekker model to compute the forces and moments on the wheel. To
determine the δ and h values, The condition that the normal load Fz from the Bekker model (using the surrogate
circle radius) Eq. 9 should equal the normal load from the tire deformation Eq. 10. Thus, given δ + h from the
system kinematic state, the tire deflection δ and soil sinkage h values are determined iteratively subject to satisfying
the normal loads equality and the supporting circle radius expression in Eq. 23.

4 Results

Figure 10: Vehicle paths for double lane change maneuver, and the roll angles and rates from the ADAMS and
ROAMS simulations.

The results to date show that the ROAMS HMMWV simulator can model high fidelity multibody dynamics, terrain,
sensors, actuators, control and navigation algorithms in urban and off-road scenarios at speeds that are beneficial
for autonomous UGV analysis and design purposes.

As an example, a simulation of a HMMWV in a NATO double lane-change (DLC) scenario was run using both
ROAMS and MSC ADAMS, a industry standard high-fidelity modeling and simulation environment. Figure 10 and
11 show the vehicle paths simulated in the two environments and comparisons of the computed values for various
dynamics parameters. The two paths are not exactly identical, therefore the dynamics results should not be exact
matches but the results represent a good match in a qualitative sense as well as in computed parameter magnitude
as shown in Figure 12.
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Figure 11: Comparison of the vehicle lateral acceleration, and the front and rear tire normal forces from the ADAMS
and ROAMS simulations.

Figure 12: Simulation comparison.

The ROAMS and ADAMS results were generated on a sin-
gle core of an Intel Core I7-2600 CPU at 3.4 GHz. Even without
significant attempts to optimize performance, Table 12 shows that
ROAMS on a single core ran at 3.4x real-time and was 2.5x faster
than ADAMS with comparable dynamic fidelity. The ROAMS sim-
ulator included vehicle dynamics as well as simulations of sensors
such as cameras, lidar and GPS units while ADAMS simulated only
the vehicle dynamics. This demonstrates that the closed-loop per-
formance evaluation and testing of onboard UGV autonomy for the
U.S. Army vehicles can be carried out in simulation by ROAMS with-
out having to sacrifice crucial vehicle dynamics fidelity for the sake
of performance speed. The performance of ROAMS will continue
to be improved based on further optimization.

5 Conclusions

This paper provides an overview of the ROAMS UGV simulator and an update on current work to add new capabilities
to the software. These new capabilities include improved terramechanics models as well as algorithms for modeling
semi-autonomous control of UGVs. These enhancements will allow ROAMS to help meet the Army’s UGV modeling
and simulation needs. Testing and evaluation have shown that ROAMS can provide closed-loop simulation of UGV
systems for the Army without having to sacrifice crucial vehicle dynamics fidelity for the sake of performance speed.
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