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In this paper, nonsmooth contact dynamics of articulated rigid multibody systems is for-
mulated as a complementarity problem. Minimal coordinate (MC) formulation is used to
derive the dynamic equations of motion as it provides significant computational cost ben-
efits and leads to a smaller-sized complementarity problem when compared with the fre-
quently used redundant coordinate (RC) formulation. Additionally, an operational space
(OS) formulation is employed to take advantage of the low-order structure-based recur-
sive algorithms that do not require mass matrix inversion, leading to a further reduction
in these computational costs. Based on the accuracy with which Coulomb’s friction cone
is modeled, the complementarity problem can be posed either as a linear complementar-
ity problem (LCP), where the friction cone is approximated using a polygon, or as a non-
linear complementarity problem (NCP), where the friction cone is modeled exactly. Both
formulations are studied in this paper. These complementarity problems are further
recast as nonsmooth unconstrained optimization problems, which are solved by employ-
ing a class of Levenberg–Marquardt (LM) algorithms. The necessary theory detailing
these techniques is discussed and five solvers are implemented to solve contact dynamics
problems. A simple test case of a sphere moving on a plane surface is used to validate
these solvers for a single contact, whereas a 12-link complex pendulum example is cho-
sen to compare the accuracy of the solvers for the case of multiple simultaneous contacts.
The simulation results validate the MC-based NCP formulations developed in this paper.
Moreover, we observe that the LCP solvers deliver accuracy comparable to that of the
NCP solvers when the friction cone direction vectors in the contact tangent plane are
aligned with the sliding contact velocity at each time step. The theory and simulation
results show that the NCP approach can be seamlessly recast into an MC OS formula-
tion, thus allowing for accurate modeling of frictional contacts, while at the same time
reducing overall computational costs associated with contact and collision dynamics
problems in articulated rigid body systems. [DOI: 10.1115/1.4033520]

1 Introduction

Over the past two decades, researchers have been developing
complementarity-based formulations to solve contact and colli-
sion dynamics problems. Complementarity-based methods are an
alternative to classical penalty-based methods which rely on a vir-
tual spring–damper model to apply restoring forces at the point of
deepest penetration between bodies in contact [1]. Penalty-based
methods notoriously suffer from oscillatory effects and become
numerically unstable when bodies collide with a high velocity.
Small time steps and excessively damped implicit integrators are
used to counter these problems, which makes the method slow
and computationally expensive [2].

On the other hand, complementarity-based methods assume
that the bodies are perfectly rigid and compute contact forces at
each time step to prevent interpenetration. Complementarity
methods use impulsive dynamics to handle collision and contact
interactions. They avoid small time steps and numerical stiffening
issues encountered with penalty methods by impulsively
“stepping” over nonsmooth events [3]. There are two variants of
the complementarity formulation: one variant uses an exact model
of the friction cone which leads to an NCP, and the second variant
employs a polyhedral approximation of the friction cone to yield a
simpler LCP.

Considerable research effort [1,3,4] has been devoted into pos-
ing contact dynamics problems as solvable LCPs. The LCP
method can however lead to inaccuracies as it relies on a discre-
tized approximation of the friction cone. Increasing the accuracy
of the LCP solution requires increasing the number of sides of the
polygon used to approximate the friction cone, which leads to an
increase in the number of ancillary variables in the problem.
Increasing the number of these ancillary variables leads to a
larger-sized LCP problem, and consequently, an increase in the
computational cost. Moreover, the degree of alignment of the fric-
tion cone direction vectors in the contact tangent space with the
tangential friction impulse has a significant effect on the accuracy
of the solution [1]. In contrast, the NCP method does not require
the use of direction vectors and has only three unknown variables
per contact leading to a more compact formulation compared to
the LCP approach [2].

Finding the solution to these complementarity problems is in
general a nontrivial problem. Classical approaches to solving
LCPs include pivoting methods such as Lemke’s or Dantzig’s
algorithm [5], whereas iterative methods such as projected succes-
sive over-relaxation or projected Gauss–Seidel methods [6] are
used to solve NCPs. More recent approaches (including the
approach in this paper) recast these complementarity problems as
nonsmooth unconstrained optimization problems, which are then
solved using LM type of algorithms. This approach of reformulat-
ing the complementarity problem as an unconstrained optimiza-
tion problem has been shown to perform exceedingly well [7–11].

For multilink systems, there are currently two main approaches
to handle contact and collision dynamics problems: the classical
RC formulation [4,12] and the MC formulation [3,13]. In the RC
formulation, absolute coordinates are used to describe the motion
of each link in the multilink robotic system. Each link in the
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system is treated as an independent body, and each interlink hinge
is modeled explicitly as a bilateral constraint. On the other hand,
in the MC formulation, the hinge (bilateral) constraints are auto-
matically eliminated by choosing a minimal set of coordinates,
which are used to describe the motion of the multilink robotic sys-
tem. Any bilateral constraints that remain in the formulation arise
only from loop-closure constraints, thereby leading to a smaller
set of bilateral constraints when compared with the RC formula-
tion. Note that in this paper, we focus on multibody systems with
bilateral constraints and not on systems, such as granular material,
which have no bilateral constraints and for whom there is no dis-
tinction between the RC and MC approaches.

In a recent paper, Jain [3] has demonstrated that the costs per-
taining to these formulations can be categorized into two types—
the cost of setting up the complementarity problem and the cost of
solving the complementarity problem. Although, the complemen-
tarity problem for the RC formulation is easy to set up, it is com-
putationally more expensive to solve since its size depends on the
number of unilateral and bilateral constraints and the number of
links in the system, which can be large. On the other hand, the
MC formulation requires more work to set up the complementar-
ity problem, but the size of the complementarity problem is much
smaller since it depends only on the number of unilateral and
bilateral constraints (and is independent of the number of links in
the system). Thus, the reduction in the complementarity problem
size shifts the computational burden from solving the complemen-
tarity problem to that of setting it up. By introducing certain low-
order structure-based recursive algorithms (collectively referred
to as OS algorithms) that do not require mass matrix inversion,
Jain et al. [3,14] have shown that the MC approach leads to lower
overall costs, with low costs for setting up as well as solving the
complementarity problem. Because of these cost savings, when
the MC OS formulation is applied to articulated rigid body sys-
tems, it leads to lower computational times when compared with
the RC formulation [3]. Moreover, the constraint error manage-
ment required for bilateral constraints needs to be enforced on a
smaller set of constraints in the MC case as compared with the
RC. Given these advantages and cost benefits, in this paper, we
choose the MC OS formulation to study contact and collision dy-
namics problems in articulated rigid body systems.

The central focus of the present paper is to compare and con-
trast the linear and nonlinear complementarity approaches to solv-
ing contact dynamics problems in the context of MC OS
formulation. Anitescu and Potra [4] and Trinkle et al. [1,12] for-
mulate the contact dynamics problem as a mixed LCP (MLCP, a
complementarity problem is termed mixed when both unilateral
contact constraints and bilateral constraints are present in the dy-
namics formulation) but they use the RC formulation. Todorov
et al. [2], on the other hand, formulate the contact dynamics prob-
lem as an MC NCP (although, as we will discuss later, they avoid
having to solve an NCP through a suitable parameterization), but
rely on expensive steps involving mass matrix inverses to set up
the complementarity problem. Jain et al. [3,14] evaluate the
MLCP approach in the framework of MC, but the MLCP is solved
using the PATH solver [7] alone.

One of the contributions of this paper is to explore
optimization-based approaches for solving the MC MLCP prob-
lem. In addition, we extend the MC OS MLCP formulation [3,14]
by employing Todorov’s approach [8], and consequently, elimi-
nating the approximations associated with the discretization of the
friction cone. In the process, we develop two linear and two non-
linear complementarity solvers, whose accuracy is analyzed for
problems involving a single contact as well as multiple simultane-
ous contacts. Similar work comparing different linear and nonlin-
ear complementarity solvers has been performed by Lacoursiere
et al. [15] but they employ the RC formulation and a proximal
function-based NCP solver [16].

Figure 1 depicts the various contact dynamics solver options
studied in this paper. As discussed earlier, contact and collision
dynamics problems are modeled using the MC OS formulation

and complementarity methods in the current study. Depending on
the accuracy with which the friction cone is modeled, one ends up
with an MLCP if the friction cone is approximated and a mixed
NCP (denoted as MNCP) if the approximations are avoided. To
solve the MLCP, the PATH solver [7] has been used in the litera-
ture [3]. Alternatively, one can make use of the penalized
Fischer–Burmeister (PFB) function [17] to recast the MLCP as a
set of nonlinear equations. On the other hand, of the many techni-
ques available in the literature to solve an MNCP (Todorov’s
approach [8], proximal function-based approach [16], differential
variational inequality approach [18], etc.), we focus our attention
on Todorov’s approach. A neat feature of Todorov’s approach is
that it reformulates the MNCP problem into an unconstrained
(nonsmooth) optimization problem. Ultimately, all of the MNCP
approaches lead to a system of nonlinear nonsmooth equations
that need to be simultaneously solved. To numerically solve these
nonlinear systems of equations, iterative solvers are commonly
employed in the literature. These iterative solvers can be loosely
classified as optimization-based solvers and nonoptimization-
based solvers (for example, classical iterative solvers such as
Gauss–Seidel and projected SOR methods). In the present study,
we focus on optimization solvers and implement two variations of
the LM algorithm [19] (the regular LM solver (RLM) [20] and the
projected LM solver (PLM) [10]) to solve unconstrained

Fig. 1 Overview of the five contact dynamic solvers studied in
this paper. Acronyms listed in the figure are defined in the No-
menclature section. The figure details the design choices that
have been made while developing each of the five solvers. Con-
tact dynamics problems are approached using the MC OS for-
mulation and cast as a complementarity problem. Both linear
and nonlinear complementarity formulations are studied.
Among the many nonlinear complementarity formulations avail-
able in the literature, we consider Todorov’s approach in the
present study for its simplicity and ease of implementation,
whereas the prox formulation, which is also widely used in the
literature, is tabled for a future course of study.
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optimization problems. Thus, in summary, we develop five con-
tact dynamics solvers in this study, namely, the MLCP–PATH
solver, the MLCP–PFB–RLM solver, the MLCP–PFB–PLM
solver, the MNCP–RLM solver, and the MNCP–PLM solver (see
Nomenclature section for a description of these solvers).

This paper is organized as follows. In Sec. 2, we begin by intro-
ducing some fundamental concepts in contact and collision dy-
namics such as complementarity problems, constraints, dynamics
formulations, Coulomb friction modeling, etc. In Sec. 3, MC for-
mulation is used to formulate the dynamics as an MLCP by
approximating the friction cone using a polyhedral approximation.
This MLCP is further recast as an optimization problem by utiliz-
ing the PFB function. In Sec. 4, MC formulation is once again
used along with an exact representation of the friction cone to for-
mulate the dynamics as an MNCP and this is done by employing
Todorov’s implicit approach. Furthermore, the optimization refor-
mulation of the MNCP is also discussed. In Sec. 5, the uncon-
strained optimization algorithms are introduced and two variants
of the LM-type of algorithms are discussed. In Sec. 6, the five
contact dynamics solvers developed in this study are validated
using the example of a sphere moving on a fixed horizontal plane,
for which closed-form analytical solutions are available [1]. Sub-
sequently, the example of a 12-link pendulum falling under grav-
ity and colliding with its surrounding environment is used to
compare and contrast the speed and accuracy of the five solvers.
Finally in Sec. 7, we present our conclusions.

This paper is a revised and extended version of an earlier con-
ference paper [21]. We have extended our previous work by add-
ing a new section (Sec. 2.7) on the time evolution of nonsmooth
dynamical systems. Next, in Sec. 2.2.2, we introduce the PFB
function and contrast its performance against the regular
Fischer–Burmeister (FB) function. Finally, the section on results
and simulations has been rewritten with the addition of new fig-
ures and illustrations that provide a deeper insight into the advan-
tages (and disadvantages) of the linear and nonlinear
complementarity approaches to solving contact/collision dynam-
ics problems.

2 Preliminaries

In this section, we review some fundamental concepts in con-
tact and collision dynamics theory. The material has been adopted
from Refs. [3,9,13,14,17,22–24]. We refer the interested reader to
these references for a more in-depth handling of the subject matter
presented herein.

2.1 Linear and Nonlinear Complementarity Problems.
The NCP [5] seeks a vector z 2 <n satisfying the following sys-
tem of equations and inequalities:

zi � 0; fiðzÞ � 0

zi � fiðzÞ ¼ 0 for i ¼ 1; 2; ::: ; n
(1)

where f : <n ! <n is any smooth nonlinear function. The mixed
nonlinear complementarity problem (MNCP) is defined by the
mapping f : <n ! <n, lower bounds li 2 < [ f�1g, and upper
bounds ui 2 < [ fþ1g, where the solution of the MNCP is a
vector z 2 <n such that for each i 2 f1; 2; ::: ; ng, one of the fol-
lowing alternatives holds:

fiðzÞ � 0 for zi ¼ li

fiðzÞ � 0 for zi ¼ ui

fiðzÞ ¼ 0 for li < zi < ui

(2)

The NCP and the MNCP problems reduce to the LCP and the
MLCP problems, respectively, when f is an affine function of
z, i.e.,

fðzÞ ¼Mzþ q (3)

where M is an n� n matrix and q is an n-vector [5].

2.2 NCP Functions. To cast the nonlinear complementarity
conditions (see Eq. (1)) as an equivalent nonlinear (nonsmooth)
equation, NCP functions [25] (not to be confused with the nonlin-
ear complementarity problem) are used in the literature, which
have the property that

uða; bÞ ¼ 0 () a � 0; b � 0; ab ¼ 0 (4)

The equivalence condition guarantees that if a solution to the non-
linear equation u is found, then it is also a solution to the NCP,
assuming of course that the complementarity problem is solvable.

2.2.1 FB Function. Among the many NCP functions available
in the literature (see Ref. [25] for a comparative study of popular
NCP functions), the FB function [26] is probably the most widely
used NCP function because of its desirable properties. The expres-
sion for the FB function is given by

/FB :¼ /iðzi; fiðzÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

i þ f2
i ðzÞ

q
� zi � fiðzÞ (5)

where a :¼ zi and b :¼ fiðzÞ in Eq. (4). The FB function has the
property that the square of Eq. (5) is continuously differentiable
[23]. This fact can be used to reformulate the set of nonlinear
equations as an unconstrained optimization problem with a cost
function w : <n ! <þ given by

w z; fð Þ ¼ 1

2

Xn

i¼1

/2
i zi; fið Þ (6)

Minimizing the cost function w gives us the solution to the system
of nonlinear equations / :¼ colf/iðzi; fiðzÞg ¼ 0, which owing to
Eq. (4) yields the solution to the complementarity problem.

To solve an MNCP, the NCP function /i takes the form [27]

/i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

i ðzÞ þ z2
i

q
� zi � fiðzÞ if li ¼ 0 andui ¼1

�fiðzÞ if li ¼�1andui ¼þ1

(

(7)

where li ¼ 0 and ui ¼ 1 correspond to complementarity condi-
tions, and li ¼ �1 and ui ¼ 1 correspond to equality conditions.
The cost function for the mixed complementarity problem remains
the same as Eq. (6).

2.2.2 PFB Function. One of the criticisms of the FB NCP
function is that it is too flat in the positive orthant, which is the
main region of interest for complementarity problems [17]. To
comprehend this, consider a simple example with a single con-
straint: n¼ 1 and fðzÞ ¼ 0:1 in Eq. (1) [17]. Clearly, z� ¼ 0 is a
unique solution to this complementarity problem. However, sup-
pose that a wild guess zguess ¼ 1020 is chosen. When this guess is
substituted into Eqs. (5) and (6), due to round off and cancelation
errors, the cost function w takes a very small function value. This
can trick the optimization process into wrongly assuming that it is
close to the solution, when in reality zguess is far away from z�.

To overcome this drawback, Chen et al. [17] proposed the PFB
function

/PFB :¼ /iðzi; fiðzÞÞ
¼ k f�/FBðzi; fiðzÞÞg þ ð1� kÞ f/þðzi; fiðzÞÞg

(8)

where

/þða; bÞ ¼ aþbþ ¼ maxð0; aÞ �maxð0; bÞ

/FB is given by Eq. (5), and 0 < k < 1 is an arbitrary but fixed pa-
rameter. Thus, the PFB function /PFB is a convex combination of
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/FB and /þ, where /þ penalizes the violations of the complemen-
tarity condition in the positive orthant. Note that the FB function
contains a negative sign in the PFB formulation (see Eq. (8)) and
the justification for this is presented in a lemma detailed in Ref.
[27]. The PFB function reduces to the (negative of the) standard
FB function for k¼ 1.

To solve an MNCP, /i takes the form

/i ¼
kf�/FBðzi; fiðzÞÞgþ
ð1� kÞf/þðzi; fiðzÞÞg

( )
if li ¼ 0 andui ¼1

�fiðzÞ if li ¼�1andui ¼þ1

8>><
>>:

(9)

The cost function w for these complementarity problems (i.e.,
Eqs. (8) and (9)) is, once again, given by Eq. (6). The results in
this subsection hold true for LCPs and MLCPs as well. For both
of these cases, the function fðzÞ is an affine function of z (see
Eq. (3)) as discussed earlier.

2.3 Constraints. In contact dynamics, the constraints
between rigid links can be either bilateral constraints (for exam-
ple, hinge constraints) defined by equality relationships of the
form

bðx; _x; tÞ ¼ 0 (10)

or unilateral contact constraints that are defined by inequality
relationships of the form

dðx; tÞ � 0 (11)

where x denotes the vector of generalized coordinates of the sys-
tem and t denotes time [13].

Equation (11) represents the nonpenetration condition between
the surfaces of rigid bodies. The function dðx; tÞ is referred to as
the distance or gap function in the literature. Contact is said to
occur when dðx; tÞ ¼ 0. At the contact point, assuming sufficient
smoothness, the surface normals are parallel for the bodies in con-
tact. For a pair of bodies A and B in contact, the ith contact normal
ĝðiÞ is defined as pointing from body B towards body A, such that
the motion of A in the direction of the normal leads to a separation
between the bodies [13]. A unilateral constraint is said to be active
when there is contact, and the contact persists, i.e.,

dðx; tÞ ¼ _dðx; tÞ ¼ €dðx; tÞ ¼ 0 (12)

The contact is said to be inactive when Eq. (12) is violated. Con-
tact separation occurs when the relative linear velocity of the con-
tact points along the normals becomes positive and the contact
points drift apart. A separating constraint is in the process of los-
ing contact and transitioning to an inactive state. At the start of a
separation event, we have

dðx; tÞ ¼ _dðx; tÞ ¼ 0 and €dðx; tÞ � 0 (13)

Only active unilateral constraints generate constraint forces on the
system [3].

2.4 Multibody Dynamics Formulations. In this subsection,
we study three approaches for modeling the dynamics of multilink
systems (that may possibly include closed-chain topologies). The
three approaches illustrated here encompass the spectrum of mod-
eling options available in the literature for analyzing the dynamics
of multibody systems [28]. As mentioned earlier, the distinction
between these approaches disappears for systems without any
bilateral constraints and for those systems that contain a large
number of independent bodies such as granular material, stack of

bricks, etc. In this paper, we are focusing on multilink systems
with nonzero bilateral constraints.

2.4.1 RC Formulation. Classically, the dynamics of multi-
body systems are modeled using the RC formulation [1,13]. The
RC formulation treats all bodies in the multilink system as inde-
pendent (see Fig. 2) and has 6n degrees-of-freedom for an n-link
system (the number of coordinates may be greater than 6n if coor-
dinates such as quaternions are used for rotations). This system is
further subject to unilateral contact constraints and explicit bilat-
eral constraints. These bilateral constraints are associated with the
interlink hinges which restrict the relative motion between the
bodies.

The cost of setting up the complementarity problem in the RC
formulation is of O(n), and the size of the complementarity prob-
lem depends on the number of links n, the number of unilateral
contact constraints, and the number of bilateral constraints. The
advantages of this method include the relative ease with which the
equations of motion can be set up, and the fact that the mass ma-
trix of the system is block diagonal and constant, facilitating the
use of sparse matrix solution techniques for solving the equations
of motion. However, when articulated rigid body systems contain-
ing a large number of hinge constraints are considered, the large
number of redundant coordinates present in the formulation, the
need for constraint error management at each integration time
step, and the use of differential–algebraic solvers work against the
RC formulation.

2.4.2 MC Formulation. An alternative to the RC formulation
is the MC formulation [3,13], where the interlink bilateral con-
straints are automatically eliminated by using a minimal set of
coordinates that parameterize the permissible motion of the hinges
(see Fig. 3). The number of coordinates associated with the hinge
matches the number of degrees-of-freedom of the hinge. The sys-
tem is therefore regarded as being composed of a tree-topology
subsystem together with a minimal set of bilateral constraints aris-
ing from the remaining loop-closure constraints.

The advantage of the MC formulation is that the size of the
complementarity problem is independent of the number of links n
in the system and depends only on the number of unilateral and
the number of bilateral constraints. Furthermore, the number of
bilateral constraints in the MC case is much smaller (when com-
pared with that of RC) as only loop-closure constraints enter the
formulation. The underlying mathematical formulation is still of a
differential–algebraic nature and constraint error management is
still required, albeit for the smaller set of bilateral constraints.

Fig. 2 RC formulation. Absolute coordinates are used to char-
acterize each link in the system. Each interlink hinge is mod-
eled explicitly as a bilateral constraint as illustrated. Figure
adapted from Ref. [3].
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The reduction in size of the complementarity problem shifts the
burden from solving the complementarity problem to setting up the
complementarity problem [3]. To set up the complementarity prob-
lem, the mass matrix of the system needs to be inverted, and given
that the mass matrix in the MC case is dense and configuration de-
pendent, the computational cost of its inverse can be considerable.
However, by taking advantage of low-order spatial operator algo-
rithms (called as OS algorithms) that do not require mass matrix
inversion to solve for the system dynamics, the set up cost of the
complementarity problem can be reduced to O(n) complexity,
where n here refers to the number of minimal coordinates.

The benefits of the MC OS approach come to the fore when
considering articulated rigid body systems. Jain [3] demonstrated
that the size of the MLCP as well as the time taken to solve the
MLCP increases proportional to the number of links in the system
for the RC MLCP approach, whereas the size of the MLCP in the
MC OS (MC-OS MLCP) approach remains the same regardless of
the number of links in the system. Thus, the MC approach along
with the OS formulation results in lower overall costs for setting
up the complementarity problem and for solving it. We take a
closer look at the approach in Sec. 2.5.

2.4.3 Constraint Embedding (CE) Formulation. Although not
the focus of the current paper, for the sake of completeness, we
briefly introduce a third formulation, referred to as the CE formu-
lation [22,28] for modeling dynamics of multibody systems that
include closed-chain topologies. The CE formulation uses the MC
approach as its starting point and eliminates loop-closure bilateral
constraints that are left over in the MC formulation by aggregating
the bodies affected by the closure constraint as compound bodies
(see Fig. 4).

The system is therefore effectively a tree topology with neither
the hinge constraints nor the loop-closure constraints entering the
formulation. The CE formulation requires additional steps to set
up compared to the MC formulation. However, unlike the MC for-
mulation, the nature of the underlying mathematical formulation
of the CE method is that of ordinary differential equations (instead
of differential–algebraic equations like in the MC case), and con-
straint error management techniques are not required as bilateral
constraints do not enter the formulation. The preservation of the
tree-topology facilitates the use of structure-based tree algorithms
that translate into faster computational times for the CE formula-
tion when compared with the MC formulation [28].

2.5 MC Formulation: A Closer Look. Let N denote the
number of degrees-of-freedom of the tree subsystem. The

equations of motion [3] for the tree-topology subsystem are
given by

MðhÞ €h þ Cðh; _hÞ ¼ s (14)

where h 2 <N is the vector of hinge coordinates,MðhÞ 2 <N�N
is the configuration-dependent, symmetric, and positive-definite
inertia matrix, Cðh; _hÞ 2 <N is the vector of Coriolis, gyroscopic,
and gravitational forces acting on the system, and s 2 <N denotes
the vector of applied generalized forces.

2.5.1 Bilateral Constraints. Let nb denote the dimension of
bilateral constraints arising from loop closures in the system.
Since nb in the MC approach corresponds only to the loop-closure
constraints, this number is much smaller than the nb in the RC
approach. There exists a full-rank matrix Gbðh; tÞ 2 <nb�N and a
vector UðtÞ 2 <nb that defines the velocity domain constraint
equation, which can be expressed as

Gbðh; tÞ _h ¼ UðtÞ (15)

The bilateral constraints effectively reduce the independent
degrees-of-freedom of the system from N to N � nb. The smooth
dynamics of closed-chain systems can be obtained by modifying
the tree system dynamics in Eq. (14) to include the effect of the
bilateral constraints via Lagrange multipliers, k 2 <nb , as follows:

MðhÞ €h þ Cðh; _hÞ � GT
b ðh; tÞk ¼ s

Gbðh; tÞ _h ¼ UðtÞ
(16)

where �GT
b ðh; tÞk term in the first equation of Eq. (16) represents

the internal constraint forces arising from the loop-closure
constraints.

2.5.2 Unilateral Constraints. We now introduce unilateral
contact constraints in this formulation. Let nu denote the number
of unilateral contact nodes and �u 2 <3nu denote the vector of rel-
ative linear velocities across the contact nodes. The mapping
between the contact velocities �u and the body spatial velocities _h
is defined by a matrix Gu 2 <3nu�N such that

�u ¼ Gu
_h (17)

The matrix Gu also maps the impulses at the contact node pairs,
Fu 2 <3nu , to the corresponding generalized impulses, pu 2 <N ,
by means of the following dual mapping:

Fig. 3 MC formulation. A minimal set of coordinates are used
to characterize the dynamics of the system, which is obtained
by eliminating all the interlink bilateral constraints. Only loop-
closure constraints remain in the formulation. Figure adapted
from Ref. [3].

Fig. 4 CE formulation. This formulation is an extension to the
MC formulation, where not only the interlink hinge constraints
but also the loop-closure constraints are eliminated. Bodies
affected by eliminating the closure constraints are aggregated
and modeled as compound bodies. Figure adapted from Ref. [3].
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pu ¼ GT
u Fu (18)

The smooth dynamics equations of motion in Eq. (16) can be
extended to include the effect of these contact impulses pu as
follows:

M �GT
b

Gb 0

� �
€h
k

" #
¼ ðs� CÞ þ pu=�t

U

� �
(19)

where U ¼ U � ðtÞ � _Gb
_h 2 <nb and �t is the time step. The con-

version of impulses into forces above assumes the use of first-
order time integration, which we will discuss in Sec. 2.7. Note
that to solve for the equations of motion, we need to determine the
unknown impulses, Fu, at the contact node pairs.

2.6 Contact Impulses and Coulomb Friction Modeling. To
describe the rolling and sliding phenomena at the ith active con-
tact constraint node, the three-dimensional contact impulse vector
FuðiÞ 2 <3 and contact velocity vector �uðiÞ 2 <3 can be decom-
posed into normal and tangential components as [3]

FuðiÞ ¼ FnðiÞ ĝðiÞ þ FT
t ðiÞ t̂ðiÞ

¼ FnðiÞ ĝðiÞ þ ½FfðiÞ FoðiÞ �
f̂ðiÞ
ôðiÞ

" #

¼ FnðiÞ ĝðiÞ þ FfðiÞ f̂ðiÞ þ FoðiÞ ôðiÞ

(20)

�uðiÞ ¼ �nðiÞ ĝðiÞ þ �T
t ðiÞ t̂ðiÞ

¼ �nðiÞ ĝðiÞ þ ½ �fðiÞ �oðiÞ �
f̂ðiÞ
ôðiÞ

" #

¼ �nðiÞ ĝðiÞ þ �fðiÞ f̂ðiÞ þ �oðiÞ ôðiÞ

(21)

where ĝðiÞ is the contact normal; t̂ðiÞ is the tangent plane vector in
the contact tangent plane, which is further spanned by two

orthogonal vectors f̂ðiÞ and ôðiÞ. FnðiÞ 2 < represents the normal

component of the contact impulse, and FtðiÞ ¼ ½ FfðiÞ FoðiÞ �T 2
<2 is the tangential (friction) component of the contact impulse

(where FfðiÞ and FoðiÞ are components of FtðiÞ along the f̂ðiÞ and

ôðiÞ directions, respectively). Similarly, �nðiÞ 2 < and �tðiÞ ¼
½ �fðiÞ �oðiÞ �T 2 <2 represent the normal and tangential compo-
nents of the linear relative velocity of the body at the ith contact
pair. Specifically, �nðiÞ denotes the relative velocity which is nor-
mal to the contact point, and �tðiÞ represents the relative velocities
that are unconstrained but are resisted by friction.

As discussed earlier, an active ith contact is defined by dðiÞ ¼ 0
(the bodies are touching) and �nðiÞ ¼ 0. Moreover, the contact is
said to be sliding [12] when

�nðiÞ ¼ 0 and �tðiÞ 6¼ 0 (22)

On the other hand, the contact is said to be rolling [12] when

�nðiÞ ¼ �tðiÞ ¼ 0 (23)

Having defined the concepts of rolling and sliding, we can now
state Coulomb’s law of friction [8] as

FnðiÞ � 0; �nðiÞ � 0; FnðiÞ �nðiÞ ¼ 0

�tðiÞ parallel to FtðiÞ; h�tðiÞ;FtðiÞi � 0

jjFtðiÞjj � lðiÞFnðiÞ
(24)

The first line of Eq. (24) states that the normal force and the nor-
mal contact velocity cannot both be simultaneously positive. The
normal force is zero when the bodies are separating and positive

when there is sustained contact. The second line of Eq. (24)
implies that if there is sliding between the bodies in contact, then
the tangential friction impulse should lie in a direction that is op-
posite to the tangential relative linear velocity. This statement is
also referred to as the principle of maximum dissipation. The third
line states that the tangential friction impulse must lie inside the
friction cone. The tangential friction impulse is on the boundary
of the cone when the bodies are sliding and in the interior of the
cone when the bodies are rolling. The coefficient of friction is
denoted by l. Notice that only the first line of Eq. (24) is a strict
complementarity condition whereas additional work needs to be
done to bring the other two conditions into the complementarity
framework.

2.7 Time Evolution of Nonsmooth Dynamical Systems.
Integration schemes for time evolution of nonsmooth mechanical
systems can be classified into two categories: event-driven
schemes and time-stepping schemes [29]. Event-driven schemes
separate motion into piecewise smooth and nonsmooth intervals.
These schemes are fairly accurate, but are not well suited when
there are frequent transitions between the intervals in a short
amount of time [16]. Time-stepping schemes, on the other
hand, need no such separation of motion into smooth and non-
smooth intervals and handle impacts and impact-free motion
within the same time step. Infinite switching sequences are often
handled within one single time increment [24]. Although these
schemes are only first-order accurate, they are extensively used in
the literature because of their robustness and ease of
implementation.

There are many different time-stepping schemes that are avail-
able in the literature for handling time integration of nonsmooth
systems (see Refs. [24] and [29]). Here, we review two of the
most widely used schemes: semi-implicit Euler’s scheme [1,3]
and Moreau’s midpoint rule [24,30]. The superscripts þ, m,
and� denote the value of the mathematical quantity at the start,
middle, and end of the time step, respectively.

2.7.1 Semi-Implicit Euler’s Scheme. The semi-implicit
Euler’s scheme [1,3] is a first-order symplectic time-stepping
scheme. For a step size �t, let h� ¼ hðtÞ denote the value of h at
the start of the time step, and hþ ¼ hðtþ�tÞ denote the value of
h at the end of the time step. A similar notation is followed for
defining the generalized velocities _h

þ
and _h

�
. The quantities

M� ¼Mðh�Þ, C� ¼ Cðh�; _h
�Þ; s, Gu, and Gb are all calculated

at the beginning of the time step and are assumed to be constant
over the entire time step. With these quantities known, our goal is
to derive approximations for the generalized velocities, _h

þ
, at the

end of the time step. This is given by [3]

_h
þ ¼ _h

� þ €h �t

¼ _h
� þ fM�g�1ðs� C� þ GT

u Fu þ GT
b kÞ�t

(25)

At any given time step, a check is made to find out if there are any
bodies in contact or are interpenetrating. If there are no bodies in
contact or are interpenetrating, then the contact forces, Fu, are
zero and we have smooth motion. On the other hand, if there are
bodies in contact or are interpenetrating, then the calculations are
reverted to the start of the time step, a complementarity problem
is solved to find the contact forces, which are then used to propa-
gate the velocities forward (see Eq. (25)). These contact forces are
assumed to be constant over the entire step size, and thus, small
time steps are required for accurate results. With an estimate for
_h
þ

at our disposal, the positions are propagated as follows [3]:

hþ ¼ h� þ _h
þ

�t (26)

2.7.2 Moreau’s Midpoint Rule. Moreau’s midpoint rule
[24,30] is extensively used in the literature in conjunction with the

021004-6 / Vol. 12, MARCH 2017 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/com

putationalnonlinear/article-pdf/12/2/021004/6108788/cnd_012_02_021004.pdf by Jet Propulsion Lab user on 30 January 2020



proximal function method. But the time-stepping scheme can be
modified, as shown below, for use with complementarity formula-
tions similar to the ones described in this paper.

Unlike semi-implicit Euler’s scheme where the states at the end
of the time step are estimated using values at the beginning of the
step, Moreau’s scheme first estimates the midpoint positions as

hm ¼ h� þ 1

2
�t

_h
�

(27)

and then estimates the positions and velocities at the end of the

time step (i.e., hþ and _h
þ

) by using values of the estimated mid-
point positions (hm), and the velocities at the beginning of the

time step ( _h
�

) as shown below

_h
þ ¼ _h

� þ €h �t

¼ _h
� þ fMmg�1ðs� Cm;� þ GT

u Fu þ GT
b kÞ�t

(28)

and

hþ ¼ h� þ
_h
þ þ _h

�

2
�t (29)

where the quantities Mm ¼MðhmÞ; Cm;� ¼ Cðhm; _h
�Þ; s; Gu,

and Gb are all computed using hm and _h
�

. The unknown quanti-
ties that remain in Eqs. (28) and (29) are hþ; _h

þ
, and Fu.

To make the scheme explicit, one can first compute the contact
forces (as in the semi-implicit Euler’s scheme) by solving the
complementarity problem. The only difference between the
Euler’s scheme and this explicit method is that the complementar-
ity problem is solved with the mass matrix and other requisite
quantities evaluated using the midpoint position estimates and the
velocities at the beginning of the time step (instead of using both
positions and velocities at the beginning of the time step as in
semi-implicit Euler’s scheme). The rest of the procedure remains
the same as the Euler’s scheme with the exception that Eq. (29) is
used to compute the positions instead of Eq. (26).

On a separate note, the implicit counterparts of Euler’s scheme
and Moreau’s schemes typically allow for the use of larger time
steps for the same level of accuracy as compared to the explicit
ones. To make these schemes implicit, consider Eq. (25) for
Euler’s case (or Eq. (28) for Moreau’s case). These equations rep-
resent a set of nonlinear equations with unknowns _h

þ
and Fu that

can be iteratively solved to find the unknown quantities [30]. This
iterative procedure can be more expensive since we may need to
solve multiple complementarity problems to arrive at the solution
for a single time step. The positions are, once again, propagated
using Eq. (26) for Euler’s case (and Eq. (29) for Moreau’s case).

The final form of the MLCP (see Eq. (43)) and the MNCP (see
Eq. (55)) depends on the specific choice of the state propagation
scheme that is employed (see Eqs. (37) and (54) where the time
discretization is introduced into the MLCP and MNCP formula-
tions, respectively). In the present paper, we use the semi-implicit
Euler’s scheme to develop these expressions, though it should be
straightforward to adapt this procedure to alternate state propaga-
tion schemes (such as Moreau’s midpoint rule and Moreau–Jean
schemes).

3 Discretized Friction Cone MLCP Formulation

In this section, we summarize the MC MLCP formulation for
contact and collision dynamics [3,14]. Coulomb’s friction condi-
tions (described in Sec. 2.6) are inherently nonlinear. However,
one can linearize these conditions by approximating the friction
cone using a pyramid [1]. This allows us to formulate the contact
dynamics problem as a mixed linear complementarity problem
(MLCP).

For a unilateral contact, Fig. 5 depicts a circular friction limit
set (denoted by the circle) of radius lFn in the contact tangent

plane. The circular set is approximated by a convex polygon
(illustrated by the dashed lines), which is spanned with the help of
direction vectors (as illustrated by the solid arrows). The number
of direction vectors and their orientations in the contact tangent
plane can be arbitrary. However, by choosing these direction vec-
tors and their orientations (as discussed later on in this section),
one can help mitigate some of the errors associated with the dis-
cretization of the friction cone.

3.1 Friction Cone Discretization. Consider that the friction
cone at the ith contact is approximated by a friction polyhedron

consisting of a finite number nf of unit direction vectors d̂jðiÞ in
the tangent plane. For notational simplicity, we assume that nf is
the same across all the contact points. The tangential friction
impulse for the ith contact is expressed as the linear combination
of these direction vectors as [3]

FtðiÞ̂tðiÞ ¼
Xnf

j¼1

bjðiÞd̂jðiÞ ¼ DðiÞbðiÞ (30)

where

DðiÞ ¼ d̂1ðiÞ; d̂2ðiÞ; … ; d̂nf
ðiÞ

h i
2 <3�nf

and

bðiÞ ¼ colfbjðiÞgnf

j¼1 2 <nf

Combining Eqs. (20) and (30), we have

FuðiÞ ¼ DðiÞbðiÞ (31)

where

DðiÞ ¼ ½ ĝðiÞ; DðiÞ � 2 <3�ðnfþ1Þ

and

bðiÞ ¼ FnðiÞ
bðiÞ

� �
2 <nfþ1

During sliding, the bjðiÞ component is nonzero and is equal to
lðiÞFnðiÞ for just the single direction j that corresponds to the

Fig. 5 Approximating the friction cone by a friction polyhedron
using a finite number of direction vectors. The polygon is
spanned by the direction vectors as illustrated in the figure. For
each direction vector in the set, we include the opposite direc-
tion vector as well, so that the entire friction cone is spanned
by the direction vectors (as opposed to a sector of the cone).
Figure adapted from Ref. [3].
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closest direction opposing the tangential relative linear velocity.
Denoting rðiÞ ¼ k�tðiÞk

bkðiÞ ¼
lðiÞFnðiÞ; if rðiÞ > 0 and k ¼ j

0; if rðiÞ > 0 and k 6¼ j

�

The sliding and rolling contact relationships of Eq. (24) can now
be rephrased as the following complementarity conditions [3]:

ĝTðiÞ�þu ðiÞ?FnðiÞ
rðiÞEðiÞ þ DTðiÞ�þu ðiÞ?bðiÞ
lðiÞFnðiÞ � ETðiÞbðiÞ?rðiÞ

(32)

where EðiÞ ¼ colf1gnf

j¼1 2 <nf and the component of the relative

linear velocity along the contact normal is �þn ðiÞ ¼ ĝTðiÞ�þu ðiÞ,
where the superscriptþ (�) denotes the value of the quantity just
after (before) the application of an impulse. Using Eq. (31), the
above complementarity conditions can be more compactly
expressed as

ÊðiÞrðiÞ þ DT ðiÞ�þu ðiÞ?bðiÞ

EðiÞbðiÞ?rðiÞ (33)

where

ÊðiÞ ¼ 0

EðiÞ

� �
2 <nfþ1

and

EðiÞ ¼ lðiÞ;�ETðiÞ
� �

2 <1�ðnfþ1Þ

At the system level, these conditions across all the contacts can be
expressed as [14]

Êrþ DT�þu ?b

Eb?r
(34)

where

b ¼ colfbðiÞgnu

i¼1 2 <nuðnfþ1Þ

r ¼ colfrðiÞgnu

i¼1 2 <nu

D ¼ diagfDðiÞgnu

i¼1 2 <3nu�nuðnfþ1Þ

Ê ¼ diagfÊðiÞgnu

i¼1 2 <nuðnfþ1Þ�nu

E ¼ diagfEðiÞgnu

i¼1 2 <nu�nuðnfþ1Þ

and

�þu ¼ colf�þu ðiÞg
nu

i¼1 2 <3nu

Furthermore, the contact impulses at the system level can be writ-
ten as [3]

Fu ¼ Db (35)

where

Fu ¼ colfFuðiÞgnu

i¼1 2 <3nu

In principle, there are no restrictions on the number of direction
vectors that can be chosen or their orientation in the contact tan-
gent plane. Reducing the number of direction vectors reduces the
size of the LCP problem but increases the approximation error.
However, when choosing direction vectors, one can help reduce
the approximation errors for the MLCP case by

(a) aligning one of the direction vectors in our set at each time
step to coincide with the opposite of the tangential relative
linear velocity vector at that time step (i.e., ���t ). This
ensures that at least one of the direction vectors lines up
closely with tangential friction impulse (Fþt ), thereby
reducing approximation errors (see Eq. (30)).

(b) including the opposite direction vector in the set for each
direction vector chosen as this helps span the entire friction
cone. As a consequence of this, one of the direction vectors
is also close in direction to the tangential sliding velocity
(i.e., �þt ) (see Eq. (32)).

It should be noted, however, that these measures only mitigate
the approximation errors arising from the misalignment of direc-
tion vectors and the tangential friction impulse, but do not entirely
eliminate them. This is one of the main drawbacks of the linear
complementarity approach. We discuss these issues more rigor-
ously in Sec. 6.

3.2 Setting Up the MLCP. We now set up the OS MLCP
formulation [3,13]. Equation (19) can be rearranged as

GbM�1 ½s� C þ GT
b kþ GT

u Db=�t � � U ¼ 0

GbM�1GT
b pb þ GbM�1GT

u Dbþ af
b �t ¼ 0

(36)

where

pb ¼ k�t

and

af
b ¼ GbM�1ðs� CÞ � U

The relative linear acceleration of the contact nodes, _�u, is
obtained by differentiating Eq. (17) with respect to time. Employ-
ing the semi-implicit Euler’s scheme (see Sec. 2.7.1), �þu can be
computed using _�u as follows:

�þu ¼ ��u þ _�u�t ¼ ��u þ ðGu
€h þ _Gu

_hÞ�t

¼ ��u þ GuM�1GT
b pb þ GuM�1GT

u Dbþ af
u�t

(37)

where

af
u ¼ GuM�1ðs� CÞ þ _Gu

_h

Denoting nc as the number of the combined set of nodes associ-
ated with the unilateral and bilateral constraints of the system, the
spatial velocities of these nodes are given by the stacked vector
Vc 2 <6nc , which is related to _h by

Vc ¼ J _h (38)

where J 2 <6nc�N is the Jacobian of the constraint nodes. Now,
there exist matrices Qu 2 <3nu�6nc and Qb 2 <3nb�6nc such that

�u ¼ QuVc ¼ QuJ _h (39)

and

U ¼ QbVc ¼ QbJ _h (40)

Comparing Eq. (39) with Eq. (17) and Eq. (40) with Eq. (15), we
obtain

Gu ¼ QuJ (41)

and
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Gb ¼ QbJ (42)

Denoting K ¼ JM�1J T 2 <6nc�6nc , Eqs. (34)–(37) can be
expressed as [3]

QbKQT
b pb þQbKQT

u Dbþ af
b�t ¼ 0

DTQuKQT
b pb þ DTQuKQT

u Dbþ Êrþ DTðaf
u�t þ ��u Þ?b

Eb?r ð43Þ

or more compactly as

fðzÞ ¼Mzþ q (44)

where

M ¼
XKXT E1

E2 0

2
4

3
5

z ¼

pb

b

r

2
6664

3
7775

q ¼

af
b�t

DTðaf
u�t þ ��u Þ

0

2
6664

3
7775

X ¼
Qb

DTQu

2
4

3
5

E1 ¼
0

Ê

2
4

3
5

E2 ¼ 0 E
� �

Equation (44) is a ðnb þ nuðnf þ 2ÞÞ sized MLCP where the first
equation is an equality condition while the bottom two equations
are linear complementarity conditions. Structure-based OS recur-
sive algorithms of order OðN Þ þ Oðn2

cÞ can be used to compute
the configuration dependent matrix K as shown in Refs. [3,13,22].

Previous investigators employed the PATH solver [7] to solve
the MLCP (described by Eq. (44)). Jain [3] has implemented such
a solver in his study, which we refer to as the MLCP–PATH
solver in this paper. Part of the focus of this paper is to explore
alternate methods to solve the MLCP besides using the PATH
solver (see Sec. 3.3 where the FB and PFB functions are used to
cast the MLCP as an unconstrained optimization problem).

3.3 Casting the MLCP as an Optimization Problem. As
discussed in Sec. 2.2, the mixed linear complementarity condi-
tions of Eq. (44) can be reformulated as a system of nonlinear
nonsmooth equations using NCP functions [10,23,25]. The result-
ing nonlinear equations can be further recast as an unconstrained
minimization problem. This allows us to employ the multitude of
optimization solvers available for solving such problems. The
optimization solvers require a cost function (and its gradient) to
find the minimum point. Depending on the specific choice of the
NCP function, the expressions for these quantities vary, and in
what follows below, we provide these quantities for the FB func-
tion and its penalized counterpart.

3.3.1 FB Function. For the MLCP described by Eq. (44), the
cost vector (/ ¼ colf/ig) for the FB formulation is calculated

using Eq. (7), its cost function w using Eq. (6), and its gradient by

rw ¼ /TJ, where J is the Jacobian matrix, whose entries Jij ¼
½@/i=@zj� are given by

(a) If li ¼ 0 and ui ¼ 1, then

@/i

@zi

¼
zi þ fi Mii

kzi; fi zð Þk � 1�Mii; if kzi; fi zð Þk 6¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

ii

q
� 1�Mii; if kzi; fi zð Þk ¼ 0

8>><
>>:

and

@/i

@zj

¼
fi Mij

kzi; fi zð Þk �Mij; if kzi; fi zð Þk 6¼ 0

0; if kzi; fi zð Þk ¼ 0

8<
:

(b) If li ¼ �1 and ui ¼ 1, then ð@/i=@zjÞ ¼ �Mij.

3.3.2 PFB Function. On the other hand, for the PFB function
formulation, the cost vector / for the MLCP (described by
Eq. (44)) is computed using Eq. (9), the cost function w using
Eq. (6), and its gradient by rw ¼ /TJ, where the procedure illus-
trated in Ref. [17] (and reproduced here for convenience) is
adopted to compute the Jacobian matrix J.

(a) If li ¼ 0 and ui ¼ 1, then formulate sets S1 ¼ fi j zi ¼
fiðzÞ ¼ 0g and S2 ¼ fi j zi > 0; fiðzÞ > 0g. Construct an n-
vector y such that yi ¼ 0 for i 62 S1, and yi ¼ 1 for i 2 S1.
Let Ji ¼ ½ ð@/i=@z1Þ � � � ð@/i=@zjÞ � � � ð@/i=@znÞ� denote
the ith row of the Jacobian matrix J and ei denote the ith
row of the identity matrix.
Then, if i 2 S1

Ji ¼ k 1� yi

k yi; rfi zð ÞTy k

� 	
eT

i

þ k 1� rfi zð ÞTy

k yi; rfi zð ÞTy k

 !
rfi zð ÞT (45)

Next, if i 2 S2

Ji ¼ k 1� zi

kzi; fi zð Þk

� 	
þ 1� kð Þ fi zð Þ

� �
eT

i

þ k 1� fi zð Þ
kzi; fi zð Þk

� 	
þ 1� kð Þ zi

� �
rfi zð ÞT

(46)

Alternatively, if i 62 S1 [ S2

Ji ¼ k 1� zi

kzi; fi zð Þk

� 	
eT

i

þk 1� fi zð Þ
kzi; fi zð Þk

� 	
rfi zð ÞT (47)

(b) If li ¼ �1 and ui ¼ 1, then

Ji ¼
@/i

@z1

� � � @/i

@zj

� � � @/i

@zn

� �

¼ �Mi1 � � � �Mij � � � �Min

� � (48)

Note that for k¼ 1, the formulation above reduces to (the negative
of) the standard FB function formulation.

In our investigations, we found that for certain values of k, the
PFB function performs better (converges to the solution in lesser

Journal of Computational and Nonlinear Dynamics MARCH 2017, Vol. 12 / 021004-9

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/com

putationalnonlinear/article-pdf/12/2/021004/6108788/cnd_012_02_021004.pdf by Jet Propulsion Lab user on 30 January 2020



number of iterations) whereas for others, it performs worse than
the standard FB function. The optimal value of this parameter k is
dependent on the problem at hand. When performing contact dy-
namics simulations over a time interval, multiple (different) com-
plementarity problems need to be evaluated over a series of time
steps. To choose an optimal value of k for all of these steps can
be challenging and the choice is often made through trial and
error (as has been done in this paper). However, when the value
of k is appropriately chosen, the PFB function takes considerably
lesser number of iterations to converge to the (respective) solu-
tions at each time step (and over the duration of the simulation)
when compared with the standard FB function.

With this optimization reformulation (using either the standard
FB function or the PFB function), unconstrained minimization
algorithms (see Sec. 5) can be employed to compute the minimum
point, and hence the solution to the MLCP problem.

4 Exact Friction Cone MNCP Formulation

We now turn our attention to a nonlinear complementarity for-
mulation of contact dynamics that avoids the friction cone approx-
imations required by the LCP formulation. Our objective is to use
the low-cost MC OS formulation and avoid the friction cone
approximations by recasting the dynamics as an MNCP. The
MNCP formulation, unlike the MLCP formulation, models the
friction conditions exactly.

4.1 Exact Modeling of Friction Cone. Until now, we have
only dealt with an approximate model of the friction cone. How-
ever, to model the friction cone exactly, an alternative approach is
required that captures Coulomb’s friction conditions (see
Eq. (24)) exactly. Of the many approaches available in the litera-
ture that accurately capture Coulomb’s phenomena [8,16,18], we
employ Todorov’s implicit approach [2,8]. The appealing features
of Todorov’s approach include its simplicity and ease of imple-
mentation coupled with the fact that the need to solve an MNCP is
bypassed by reformulating the MNCP as a set of nonlinear equa-
tions through a suitable parameterization. A method similar to
Todorov’s approach has also been postulated by Drumwright and
Shell [31].

Realizing that the contact relative linear velocity �uðiÞ and
the contact impulse FuðiÞ at the ith active contact constraint node
are not independent but are instead coupled through laws of con-
tact and friction, Todorov [8] parameterizes both FuðiÞ and �uðiÞ
using an unconstrained nonphysical variable zðiÞ given by

zðiÞ ¼
zfðiÞ
zoðiÞ
znðiÞ

2
4

3
5 2 <3

The normal force FnðiÞ and normal velocity �nðiÞ are encoded by
znðiÞ as [8]

FnðiÞ ¼ maxð0;�znðiÞÞ
�nðiÞ ¼ maxð0; znðiÞÞ

(49)

On the other hand, the tangential force

FtðiÞ ¼
FfðiÞ
FoðiÞ

� �
2 <2

and the tangential velocity

�tðiÞ ¼
�fðiÞ
�oðiÞ

� �
2 <2

are encoded by the tangential components of zðiÞ, i.e.,

ztðiÞ ¼
zfðiÞ
zoðiÞ

� �
2 <2

as

FtðiÞ ¼ �sðiÞztðiÞ
�tðiÞ ¼ ½1� sðiÞ�ztðiÞ

(50)

where

s ið Þ ¼ min 1;
l ið Þ Fn ið Þ
kzt ið Þk

 !

The role of these parameters can be understood as follows:

(1) Nonpenetration condition: The nonpenetration condition
requires one of FnðiÞ or �nðiÞ to be positive, while the other
to be zero (see first line of Eq. (24) and its equivalent para-
metric representation in Eq. (49)). A pictorial representa-
tion of Eq. (49) is shown in Fig. 6. When znðiÞ > 0, the ith
contact constraint is inactive, and znðiÞ represents the non-
zero relative normal linear velocity �nðiÞ ¼ znðiÞ, with the
normal force FnðiÞ ¼ 0. Consequently, FtðiÞ ¼ ½0; 0�T
because there is no contact. On the other hand, when
znðiÞ < 0, the contact constraint is active, and znðiÞ repre-
sents the nonzero normal force FnðiÞ ¼ �znðiÞ with the nor-
mal velocity �nðiÞ ¼ 0. Thus, znðiÞ characterizes the
nonpenetration condition and the complementarity relation
between the variables FnðiÞ and �nðiÞ.

(2) Rolling contact: When the ith contact is active (i.e., znðiÞ <
0; FnðiÞ ¼ �znðiÞ and �nðiÞ ¼ 0), and sðiÞ ¼ 1 (i.e., when
kztðiÞk � lðiÞFnðiÞ), the contact is said to be rolling. Since
sðiÞ ¼ 1 for a rolling contact, �tðiÞ ¼ ½0; 0�T and FtðiÞ ¼
�ztðiÞ in accordance with Eq. (50). Furthermore, since
kztðiÞk ¼ k � FtðiÞÞk � lðiÞFnðiÞ, we stay inside the circu-
lar friction limit circle as depicted in Fig. 7. Thus, the roll-
ing conditions described in Sec. 2.6 have been
parametrically represented in terms of the unconstrained
variable zðiÞ.

(3) Sliding contact: When the ith contact is active (i.e., znðiÞ <
0; FnðiÞ ¼ �znðiÞ and �nðiÞ ¼ 0), and sðiÞ < 1 (i.e., when
kztðiÞk > lðiÞFnðiÞ), the contact is said to be sliding. Since
0 < sðiÞ < 1 for a sliding contact, the tangential contact ve-
locity �tðiÞ ¼ ð1� sðiÞÞ ztðiÞ and the tangential friction
impulse FtðiÞ ¼ �sðiÞ ztðiÞ always lie in opposite directions
as required. Furthermore, kFtðiÞk ¼ lðiÞ FnðiÞ, which
means that we are on the boundary of the friction cone as
depicted in Fig. 8. The remainder of the ztðiÞ vector is inter-
preted as the sliding velocity �tðiÞ. Thus, the sliding

Fig. 6 Nonpenetration conditions. The unconstrained variable
znðiÞ captures the complementarity relationship between the
normal friction impulse FnðiÞ and the normal contact velocity
mnðiÞ. Figure adapted from Ref. [8].
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conditions discussed in Sec. 2.6 have also been parametri-
cally formulated in terms of the unconstrained variable zðiÞ.

For an in-depth discussion of Todorov’s approach, the inter-
ested reader is referred to Ref. [8]. The set of equations – Eqs.
(49) and (50) – which model Coulomb’s friction conditions
exactly can be more compactly expressed as [8]

�uðiÞ ¼ FuðiÞ þ zðiÞ (51)

In summary, Todorov’s implicit approach involves designing
functions FuðiÞ and �uðiÞ (as described by Eqs. (49) and (50)) in
terms of an unconstrained nonphysical variable zðiÞ such that Cou-
lomb’s friction conditions (given by Eq. (24)), which are inherently
nonlinear, are precisely captured for any zðiÞ. Through this parame-
terization via FuðiÞ and �uðiÞ, one is essentially left with a system
of nonlinear nonsmooth equations in terms of unconstrained zðiÞ,
which can be solved by employing the multitude of nonlinear opti-
mization routines available in the literature. The procedure to do
this is illustrated in Secs 4.2, 4.3, and 5.

4.2 Setting Up the MNCP. We now develop the MC OS
MNCP formulation using Todorov’s approach. Using the system
level contact impulse, Eq. (19) can be rearranged as

GbM�1GT
b pb þ GbM�1GT

u Fu þ af
b �t ¼ 0 (52)

which can be further simplified using Gu ¼ QuJ and Gb ¼ QbJ as

QbKQT
b pb þQbKQT

u Fu þ af
b�t ¼ 0 (53)

Employing the semi-implicit Euler’s scheme (see Sec. 2.7.1), the
relative linear velocity of the contact nodes post application of the
contact impulse (i.e., �þu ) is given by

�þu ¼ ��u þ _�u�t ¼ ��u þ ðGu
€h þ _Gu

_hÞ�t

¼ ��u þ GuM�1GT
b pb þ GuM�1GT

u Fu þ af
u�t

¼ ��u þQuKQT
b pb þQuKQT

u Fu þ af
u�t

(54)

Using Eq. (51), Eqs. (53) and (54) can be rewritten as

Ub ¼ QbKQT
b pb þQbKQT

u FuðzÞ þ af
b�t ¼ 0

Uu ¼ QuKQT
b pb þ ðQuKQT

u � IÞ FuðzÞ � zþ af
u�t þ ��u ¼ 0

(55)

which can be expressed in matrix form as

Uðpb; zÞ ¼
Ub

Uu

" #

¼ QbKQT
b QbKQT

u

QuKQT
b ðQuKQT

u � IÞ

" #
pb

FuðzÞ

" #

þ
af

b�t

af
u�t þ ��u � z

" #
(56)

where U is called the residual and I is the identity matrix. As men-
tioned earlier, the computational cost for evaluating the
configuration-dependent K matrix in the above expressions can be
significantly reduced by using structure-based OS recursive algo-
rithms [3,13,22].

4.3 Optimization Reformulation of the MNCP. The prob-
lem now reduces to solving a set of nonlinear nonsmooth equa-
tions U¼ 0, which can be reformulated as an unconstrained
minimization problem with the cost function given by

w ¼ 1

2
UTU (57)

The gradient of the cost is rw ¼ UTJ where the Jacobian J can be
computed as

J ¼

@Ub

@pb

@Ub

@z

@Uu

@pb

@Uu

@z

2
666664

3
777775

¼
QbKQT

b QbKQT
u

QuKQT
b QuKQT

u � I

 �

2
64

3
75

I 0

0
@Fu

@z

2
664

3
775þ

0 0

0 �I

2
4

3
5
(58)

where

Fig. 7 Rolling conditions. The dotted line denotes z
t
ðiÞ, the

solid line denotes the tangential friction impulse FtðiÞ, whereas
the circle represents the circular friction limit set. For an
(active) rolling contact, the tangential friction impulse (whose
direction is opposite to that of ztðiÞÞ lies inside the friction
cone, and the tangential contact velocity mtðiÞ is zero. The roll-
ing conditions can thus be parameterized in terms of zðiÞ. Fig-
ure adapted from Ref. [8].

Fig. 8 Sliding conditions. The dotted line denotes z
t
ðiÞ, the

(dark) solid line denotes the tangential friction impulse vector
FtðiÞ, the (light) solid line denotes the tangential contact veloc-
ity vector mtðiÞ, whereas the circle represents the circular fric-
tion limit set. For an (active) sliding contact, FtðiÞ and mtðiÞ
should lie in opposite directions. The vector ztðiÞ is partitioned
into FtðiÞ and mtðiÞ. When the contact is sliding, FtðiÞ lies on the
boundary of the friction cone, whereas the remainder of the
vector ztðiÞ is interpreted as the sliding velocity mtðiÞ. The slid-
ing conditions can thus be parameterized in terms of zðiÞ. Fig-
ure adapted from Ref. [8].
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@Fu

@z
¼ diag

@Fu 1ð Þ
@z 1ð Þ

;
@Fu 2ð Þ
@z 2ð Þ

; � � �
@Fu nuð Þ
@z nuð Þ

 !

and nu is the number of unilateral contacts at the current integra-
tion time step. Focusing on a single contact (and dropping the
index) for convenience, the expression for an individual 3� 3
block matrix is given by

@Fu

@z
¼ @

@z

Ff

Fo

Fn

2
64

3
75 ¼

@Ff

@zf

@Ff

@zo

@Ff

@zn

@Fo

@zf

@Fo

@zo

@Fo

@zn

@Fn

@zf

@Fn

@zo

@Fn

@zn

2
6666666664

3
7777777775

(59)

where the entries of the matrix @Fu=@z are as follows:

@Ff

@zf

¼
�s if

lFn

kzf ; zok
� 1

�sz2
o

kzf ; zok
2

if
lFn

kzf ; zok
< 1

8>>>><
>>>>:

@Ff

@zo

¼
0 if

lFn

kzf ; zok
� 1

szozf

kzf ; zok
2

if
lFn

kzf ; zok
< 1

8>>>><
>>>>:

@Ff

@zn

¼

0 if
lFn

kzf ; zok
� 1

�l
@Fn

@zn

zf

kzf ; zok
if

lFn

kzf ; zok
< 1

8>>>>>><
>>>>>>:

@Fo

@zf

¼
0 if

lFn

kzf ; zok
� 1

szfzo

kzf ; zok
2

if
lFn

kzf ; zok
< 1

8>>>><
>>>>:

@Fo

@zo

¼
�s if

lFn

kzf ; zok
� 1

�sz2
f

kzf ; zok
2

if
lFn

kzf ; zok
< 1

8>>>><
>>>>:

@Fo

@zn

¼

0 if
lFn

kzf ; zok
� 1

�l
@Fn

@zn

zo

kzf ; zok
if

lFn

kzf ; zok
< 1

8>>>>>><
>>>>>>:

@Fn

@zf

¼ 0;
@Fn

@zo

¼ 0

@Fn

@zn

¼
�1 if zn < 0

0 if zn � 0

(

Such optimization problems are usually handled using some form
of Gauss–Newton methods, e.g., the LM algorithms [19] which
we consider in more detail in Sec. 5.

5 Unconstrained Optimization Algorithms

In this section, we discuss some methods for solving uncon-
strained optimization problems of the form [32]: minimize wðxÞ,
where w : <n ! <þ is convex and twice continuously differentia-
ble. We assume that the optimization problem is solvable; in other
words, there exists an optimal value at x� denoted by p� such that
p� ¼ wðx�Þ is the minimum. If w is differentiable and convex, a
necessary and sufficient condition for x� to be optimal is that the
gradient of w at x� is zero, i.e., rwðx�Þ ¼ 0 which yields n equa-
tions in n variables, the solution to which gives us the optimal
value of wðxÞ [32]. The most practical methods to solve convex
minimization problems involve iterative algorithms where a
sequence of points x1; x2; :::; xk 2 dom w are produced with
wðxkÞ ! p� as k!1. The algorithm terminates when
wðxkÞ � p� � e, where e is some specified tolerance very close to
zero. Extensions to nonsmooth problems, where the function w is
continuous but may not be differentiable at finitely many points,
are discussed in Refs. [8] and [9].

LM Algorithm. Newton-like methods often fail to work properly
as the Hessian computed at each iteration step can become singu-
lar during the optimization process, and this consequently stalls
the algorithm. Moreover, in some cases, the Newton step being
computed may not be a step in the descent direction leading to er-
roneous results. The LM algorithm [19], also known as the
damped least squares algorithm, has been proposed in the litera-
ture as a safeguard against these issues, and has the added benefit
that it converges to the minimum irrespective of the starting posi-
tion [20,32].

The LM algorithm interpolates between Newton’s method and
the method of gradient descent. Gradient methods are guaranteed
to reach the minimum point although they sometimes take a long
time to converge, whereas Newton’s method is known for its
speed of convergence to the minimum. By combining both meth-
ods, the advantages of each of these methods are combined. The
LM algorithm is guaranteed to reach the minimum, and it does so
taking a small number of steps. Furthermore, the LM algorithm is
more robust compared to Newton’s method; as in many cases, we
do end up finding the minimum point even for poor initial guesses.

One disadvantage of the LM algorithm is that the (approximate)
Hessian needs to be computed, stored, and inverted, which deteri-
orates the performance of the algorithm when the Hessian is large
in size. Regardless, the LM algorithm is widely used by research-
ers attempting to solve complementarity problems (recast as opti-
mization problems) [8–10]. Below we discuss two such LM
algorithms—the regular LM algorithm (RLM) and the projected
LM algorithm (PLM).

5.1 RLM Algorithm. The RLM algorithm [20] switches
adaptively between the gradient descent method and Newton’s
method based on a reduction factor r. The reduction factor r is
defined as the ratio of the actual decrease of the function w and its
quadratic approximation q at x¼ xk. The closer the reduction fac-
tor r is to unity, the more reliable the quadratic approximation is,
and the smaller we can allow kLM to be. Thus, if r is small, kLM is
increased, and if r is large, kLM is reduced. If kLM is close to zero,
then the RLM becomes a Newton’s method. Alternately, if kLM is
large, then this makes the Hessian diagonally dominant and
we end up with a gradient descent method. Typical parameters
that work well empirically with this method are rmin ¼ 0:3;
rmax ¼ 0:8; kLM ¼ 10�3, and kstep ¼ 20. The following algorith-
mic implementation of RLM has been adopted from Bazaraa
et al. [20].

ALGORITHM: Regular LM algorithm (RLM)

given
wðxÞ ¼ 1

2
/ðxÞT/ðxÞ, initial x 2 dom w, tol e ¼ 10�30 > 0;

kLM ¼ 10�3; kstep ¼ 20; kmin ¼ 10�25

repeat
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(1) Compute the following quantities at the kth iterate xk:

Cost wðxkÞ,
Jacobian JðxkÞ ¼ ð@/=@xÞ,
(Approximate) Hessian HðxkÞ ¼ JTJ þ kLMI,
Step size �xk ¼ H�1ðJT/Þ

(2) Stopping Criteria: If wðxkÞ < e, then STOP

(3) Update xkþ1 :¼ xk þ�xk

(4) Compute the Reduction Factor r

r ¼ wðxkþ1Þ�wðxkÞ
qðxkþ1Þ�qðxkÞ

where qðxkÞ is the quadratic approximation of wðxkÞ
(5) Adaptively change k based on the reduction r:

if r < 0:3, then kLM :¼ kLM � kstep

if r> 0, then accept �x and if r> 0.8, then kLM :¼ kLM=kstep

5.2 Projected LM Algorithm. The main difference between
the projected LM algorithm (PLM) [10] and the RLM algorithm is
in the computation of the search direction. In the PLM algorithm,
the search direction is computed as �xk ¼ H�1B, where H2n�n is
generated by stacking the n� n Jacobian matrix J with the n� n
diagonal matrix whose (diagonal) entries are given by

ffiffiffiffiffiffiffiffi
kLM

p

(where kLM is the LM damping parameter). Similarly, the 2n� 1
vector B is generated by stacking the vector (�/) with a zero vec-
tor of size n. The following basic implementation of the PLM
algorithm has been adopted from Refs. [10] and [11].

ALGORITHM: Projected LM algorithm (PLM)

given

wðxÞ ¼ 1
2
/ðxÞT/ðxÞ, initial x 2 dom w, tol e ¼ 10�30

> 0; kLM ¼ 10�16

repeat
(1) Compute the following quantities at the kth iterate xk:

Cost wðxkÞ,
Jacobian JðxkÞ ¼ @/=@x,

appended-Jacobian HðxkÞ ¼
Jffiffiffiffiffiffiffiffi

kLM

p
I

� �
,

appended-/ BðxkÞ ¼
�/ðxkÞ

0

� �
,

Step size �xk ¼ H�1B

(2) Stopping Criteria: If wðxkÞ < e, then STOP

(3) Update xkþ1 :¼ xk þ t�xk

To this basic algorithm, additional features can be added such
as the nonmonotone line search technique [33] together with
watchdog stabilization [34] to make the algorithm more robust.
For example, if the best function value found so far has not been
sufficiently reduced within a fixed number of iterations, then
the program is restarted from that point using a monotone line
search [10].

We make use of these RLM and PLM optimization rou-
tines to develop four schemes that solve contact dynamics
problems. The first two schemes, i.e., MLCP–PFB–RLM and
the MLCP–PFB–PLM, make use of the MLCP–PFB optimiza-
tion reformulation (see Sec. 3.3), and the optimization prob-
lem is solved using the RLM and PLM algorithms,
respectively. The last two schemes, i.e., MNCP–RLM and the
MNCP–PLM solvers, use Todorov’s formulation (see Sec.
4.3), and the optimization problem is solved, once again,
using RLM and PLM algorithms, respectively. We validate
these routines and test the speed and accuracy of these
schemes in Sec. 6.

6 Simulation Results

To validate the accuracy of the contact dynamics solvers devel-
oped in this study, we consider the following examples:

(1) Uniform sphere sliding and rolling on a fixed horizontal
plane: This example has been adopted from Ref. [1] where
an exact analytical solution has been derived for a specific
set of initial conditions. The example involves a single

Fig. 9 Uniform sphere moving on a horizontal plane surface

Fig. 10 Polyhedral approximation of the friction cone for the
MLCP set of solvers: (a) case 1 (validation case)—one of the
friction cone direction vectors is aligned precisely with the tan-
gential friction impulse direction and (b) case 2—friction cone
direction vectors are misaligned with tangential friction impulse
direction. The circle represents the circular friction limit set, the
solid arrows denote the direction vectors, and the dotted lines
denote the polygonal approximation of the circular friction limit
set. The motion of the sphere is along the positive x-direction
(and so is the tangential contact velocity vector), whereas the
tangential friction impulse vector is along the negative
x-direction. Four direction vectors that are at right angles to
each other are chosen to span the friction cone.
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contact (that of the sphere in contact with the horizontal
plane) at each time step. The analytical solution from
Ref. [1] is used to validate the solvers developed in this paper.

(2) Twelve-link complex pendulum colliding with itself and its
surrounding environment: This example of a 12-link swing-
ing pendulum is used to evaluate the accuracy of the linear
and nonlinear complementarity solvers developed in this
paper for the case of multiple simultaneous contacts.

6.1 Sphere on a Fixed Horizontal Plane. Consider a uni-
form sphere placed on a fixed horizontal plane in the presence of a
uniform gravitational field as shown in Fig. 9. The mass and ra-
dius of the sphere are unity, whereas the initial configuration and
initial velocity of the center of mass of the sphere are specified by

ho ¼ ½ 0 0 1 j 1 0 0 0 �
and

_ho ¼ ½ vxo
vyo

vzo
jxxo

xyo
xzo
� ¼ ½ 2 0 0 j 0 0 0 �

respectively. The first three numbers of ho specify the location of
the center of mass of the sphere, whereas the last four numbers spec-
ify the initial orientation of frame attached to the center of mass
(represented via a unit quaternion). On the other hand, _ho specifies
that the sphere is given an initial velocity of 2 m/s in the x-direction.
The coefficient of friction is assumed to have a constant value of

l ¼ 0:2. The frictional f̂ , orthogonal ô, and normal ĝ directions of
the contact frame have been chosen to lie exactly along the x-, y-,
and z-directions of the inertial frame, respectively (see Fig. 10(a)).

According to the analytical solution [1], for the initial conditions
and parameters described earlier, the sphere is supposed to slide for
a duration of 0.291 s in the x-direction and then roll indefinitely
thereafter. The numerical solutions are computed for a duration of
t ¼ 0:6 s with a time step �t ¼ 1 ms. We consider two cases for
the sphere example. In case 1, we compare the numerical solutions
computed using the MC MNCP (and the MC MLCP) solvers with
the analytically derived solution. On a separate note, the MLCP set
of solvers rely on the polyhedral approximation of the friction cone,
and the choice of the number of direction vectors and their orienta-
tion at each time step can have significant impact on the accuracy of
the solution. To illustrate this impact, we consider two variations of
the polyhedral friction cone approximation (see cases 1 and 2 and
Fig. 10) for the MLCP solvers in this example.

Case 1: We choose four direction vectors (i.e., nf ¼ 4 in
Eq. (30)) at right angles to each other in the contact tangent plane
to discretize the friction cone (Fig. 10(a)). One of the direction
vectors is chosen to be aligned perfectly with the tangential veloc-
ity ��t , and its opposite vector is also included. We believe that
such an alignment is the best choice for orienting the direction
vectors of the MLCP solvers since it reduces the representation
errors for the tangential contact velocity as well as the tangential
contact impulse.

Case 2: The direction vectors for Case 2 are similar to Case
1 with the exception that vectors are rotated by a 45 degree
angle such that none of the vectors align with or oppose ��t
(Fig. 10(b)).

The MNCP set of solvers do not use direction vectors and are
thus unaffected by the choices of these direction vectors. They are
considered only in Case 1 for validation purposes.

Fig. 12 Time history of generalized velocities for the sphere
example (case 2), where the friction cone direction vectors are
not aligned with the tangential contact velocity Fig. 13 Initial setup of the 12-link pendulum

Fig. 11 Motion data for the sphere example (case 1), where the friction cone direction vectors
are aligned with the tangential contact velocity: (a) time history of the generalized velocities
and (b) time history of friction forces in contact coordinates
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Case 1—Friction cone direction vector aligned with tangential
friction impulse (validation). Figures 11(a) and 11(b) show time-
history plots of the velocities of the sphere and the friction forces
in contact coordinates, respectively, computed using the
MLCP–PFB–RLM, MLCP–PFB–PLM, MNCP–RLM, and the

MNCP–PLM solvers. We observe that the sphere initially slides
in the x-direction until tsr ¼ ½ð2vxo

Þ=ð7lgÞ� 	 0:291 s while gradu-
ally losing translational velocity in the x-direction and gaining
angular velocity in the y-direction during this time (see
Fig. 11(a)). After tsr ¼ 0:291 s, the sphere starts rolling with a

Fig. 14 Snapshots of the motion of a 12-link swinging pendulum from t 5 0 to t 5 20 s. Through the course of
the simulation, the pendulum collides with itself and its surrounding environment.
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constant linear velocity in the x-direction (vx) and a constant
angular velocity in the y-direction of xy ¼ ðð5vxo

Þ=7Þ 	 1:429
units. The remaining velocity components are all zero (see Fig.
11(a)). Sliding and rolling phases can be confirmed by the fact
that in Fig. 11(b), we observe that lFn ¼ kFf ; Fok until tsr ¼
0:291 s, after which lFn > kFf ; Fok when the sphere starts roll-
ing. Further, from Fig. 11(b), we observe that the friction force
acts in the �f̂ (or �x) direction alone with Fo 
 0 throughout the
simulation. Thus, as can be inferred from the figures, the solutions
of both the MLCP as well as the MNCP set of solvers match the
predicted analytical solution (described in the Ref. [1]), which
serves in validating all five solvers.

Case 2—Friction cone direction vector misaligned with tangen-
tial friction impulse. Ideally, the choice of the friction direction
vectors in the contact tangent plane should have no bearing on our
final solution. However, they do so in the MLCP case. The degree
to which the friction direction vectors in the contact tangent plane
are aligned with the tangential friction impulse affects the accuracy
of the MLCP solution. This can be seen in the present case where
the four direction vectors in Case 1 that are all at right angles to
each other are rotated by an angle of 45 deg such that none of these
vectors are aligned with the tangential friction impulse or the

tangential contact velocity (see Fig. 10(b)). The rest of the set up of
the problem is exactly the same as the previous case.

From Fig. 12, the MLCP solvers predict that in addition to vx

and xy as seen in Case 1, the sphere also possesses nonzero trans-
lational velocity vy and angular velocity xx, when in reality, both
of these quantities should be zero for all time. Furthermore, the
sphere continues to slide until t 	 0:4 s (much longer than the pre-
vious case), after which it starts to roll. These results depart con-
siderably from the analytically predicted motion of the sphere
seen in Case 1. Thus, any misalignment between the friction
direction vectors and the tangential friction impulse vector pro-
duces erroneous results in the MLCP case, which is one of the
major drawbacks of the approach.

The results from cases 1 and 2 illustrate the importance of align-
ing (one of) the direction vectors with the opposite of the tangential
contact velocity direction (for the MLCP solvers to reduce numeri-
cal errors arising from the friction cone discretization). When using
MLCP solvers, we thus recommend a two-pronged strategy of (a)
aligning one of the direction vectors at the current time step with
the opposite of the tangential contact velocity at the same time step
and (b) including the opposite direction for each direction vector in
the set, to mitigate errors. Further reduction in these errors can be
achieved by increasing the number of direction vectors. Increasing
the number of direction vectors leads to a more accurate representa-
tion of the circular friction limit set at the cost of increasing the size
of (and the cost of solving) the MLCP problem.

Fig. 15 A time-history plot of the height of the last link of the
pendulum computed using the five different solvers. The plots
of the five solvers are superposed on top of one another with
minor differences showing up at the end of the 20 s simulation.
The height of the last link is measured from the origin, which is
located at the midsection of the floor (of thickness 0.2 m).

Fig. 16 A time-history plot of the z-component of the linear ve-
locity (vz) of the last link of the pendulum computed using the
five different solvers. The plots of the five solvers are super-
posed on top of one another with minor differences showing up
at the end of the 20 s simulation.

Fig. 17 A zoomed-in plot depicting the height of the last link of
the pendulum at the end of the 20 s simulation. The solvers
show a grouping behavior, with the MLCP set of solvers show-
ing a similar solution and the MNCP set of solvers show a
slightly different solution. The height of the last link is meas-
ured from the origin, which is located at the midsection of the
floor (of thickness 0.2 m).

Fig. 18 A zoomed-in plot depicting vz of the last link of the
pendulum at the end of the 20s simulation. The solvers show a
grouping behavior, with the MLCP set of solvers showing a sim-
ilar solution and MNCP set of solvers show a slightly different
solution.
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6.2 Twelve-Link Pendulum. To compare the accuracy of the
various linear and nonlinear complementarity schemes developed
in this study for the case of multiple simultaneous contacts, we
consider the example of a 12-link complex pendulum falling
under gravity and colliding with its surrounding environment. The
pendulum consists of 12 identical 1 kg spherical masses connected
together with pin hinges (see Fig. 13). The environment consists
of a floor and a wall on the right located 4 m away from the tip of
the pendulum. The overall length of the pendulum is 12 m with
each of the spheres having a diameter of 0.5 m. The pendulum is
located at a height of 10 m above the ground. The coefficient of
friction is assumed to be l ¼ 0:5 and the coefficient of restitution
is assumed to be 0.7 for inelastic collisions. The open source soft-
ware BULLET [35] is used for collision detection. The pendulum
makes an initial angle of p=4 rad with the vertical and has an ini-
tial angular velocity of xx ¼ 1 rad/s. Uniform gravitational accel-
eration of 9.81 m/ s2 is assumed.

For the MLCP set of solvers, the number of direction vectors in
the contact tangent space is chosen to be four (i.e., nf ¼ 4 in
Eq. (30)), with the direction vectors oriented at right angles to
each other such that the opposite direction vectors are automati-
cally a part of the set. Furthermore, at each time step, one of the
direction vectors at the current time step is aligned with the tan-
gential contact velocity vector at that time step to minimize the
friction cone discretization errors (see discussion in Sec. 3.1).

MC OS formulation is used to model the dynamics of this sys-
tem. Since minimal coordinates are used, the interlink constraints
are automatically eliminated. No loop-closure bilateral constraints
exist for the multilink pendulum. Hence, the only constraints act-
ing on the pendulum system are unilateral contact constraints. The
size of the complementarity problem depends on the number of
contacts, with the size of the MNCP problem being smaller com-
pared to the MLCP problem (3nu for the MNCP versus nuðnf þ
2Þ ¼ 6nu for the MLCP). Except for the PATH-based solver, the
ensuing complementarity problems are recast as optimization
problems using the methodologies presented in this paper and
solved using the RLM and PLM optimization routines.

The simulations are run for a time span of t ¼ 20 s with a time
step of �t ¼ 1 ms. As the pendulum swings from left to right, it
collides with the ground, bounces off of the ground, collides with
the wall on the right, swings back, and collides with the ground
once again. Over the course of the simulation, multiple links are
at times in collision with ground, the wall, and with each other.
Snapshots of the motion of the pendulum at different time instan-
ces are shown in Fig. 14.

Figures 15 and 16 depict the time-history plots of the last link’s
height and the linear z-velocity ðvzÞ, respectively, computed using
the MLCP–PATH, MLCP–PFB–RLM, MLCP–PFB–PLM,
MNCP–RLM, and MNCP–PLM solvers. Figures 17 and 18, on
the other hand, depict the zoomed-in plots of Figs. 15 and 16,
respectively, at the end of the 20 s simulation. As can be seen
from figures, the plots show a close match between the solutions
of all the five solvers with minor differences appearing at the end
of the 20 s simulation. From these simulation results, we deduce
that all five complementarity solvers show similar performance in
terms of accuracy.

The computation times of the solvers for this 12-link pendulum
problem are by and large evenly matched as shown in Table 1.
While it is premature to draw a broader conclusion from just this
class of examples, we conjecture that this may be more broadly
true for the MC formulation. The reason for this is that the size of
the complementarity problem is small in the MC approach, and
the overall solution cost is dominated by the cost of setting up the
complementarity problem rather than the cost of solving the com-
plementarity problem. Furthermore, for our MLCP set of solvers,
our two-pronged strategy of including the opposite direction vec-
tors in the set and aligning one of the direction vectors at the cur-
rent time step with the opposite of the tangential contact velocity
vector at the same time step appears to be working well as the
results generated by the MLCP set of solvers appear to closely
match the results generated by the MNCP set of solvers.

7 Conclusions

In this paper, contact and collision dynamics of articulated rigid
multibody systems is approached using the MC OS formulation.
The dynamics is cast as a complementarity problem, which is
further reformulated as an unconstrained optimization problem.
LM-type algorithms are employed to solve these optimization
problems. Using these techniques, three linear
(MLCP–PFB–RLM, MLCP–PFB–PLM, and MLCP–PATH) and
two nonlinear (MNCP–RLM and MNCP–PLM) complementarity
schemes have been developed for solving general contact dynam-
ics problems. These solvers have been validated using the exam-
ple of a sphere moving on a fixed horizontal plane, for which the
analytical solutions are available [1].

Furthermore, a 12-link complex pendulum example is used to
evaluate the accuracy of the solvers for the case of multiple simul-
taneous contacts. We found that the four schemes developed in
this paper show similar accuracy and closely match the results of
the MLCP–PATH algorithm. We further observed similar compu-
tational speed for the different solvers and speculate that this may
be more broadly true for the MC approach, given that the size of
the complementarity problem is small for the formulation and the
overall solution cost is dominated by the cost of setting up the
complementarity problem (as opposed to solving the problem). In
future work, we plan to investigate this conjecture and determine
if the cost savings arising from reducing the size of the comple-
mentarity problem outweigh the additional costs of setting up the
complementarity problem. We intend to perform this study on a
larger class of multilink contact dynamics problems.

We have further observed that accurate solutions can be
obtained with linear complementarity solvers by aligning one
of the friction cone direction vectors in the contact tangent
plane (at the current integration time step) to coincide with the
opposite of the tangential contact velocity vector at that time
step (see discussion in Sec. 3.1). Using such an alignment pro-
cedure, it is possible to use linear, rather than nonlinear com-
plementarity solvers, with just a small number of friction cone
direction vectors without incurring large accuracy or cost
penalties.
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Table 1 Computational times of the five solvers for the 12-link
pendulum problem

Complementarity solver Computational time (s)

MLCP–PATH 23.92
MLCP–PFB–RLM 22.78
MLCP–PFB–PLM 24.24
MNCP–RLM 22.85
MNCP–PLM 22.82
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Nomenclature

FB ¼ Fischer–Burmeister function
LCP ¼ linear complementarity problem
LM ¼ Levenberg–Marquardt algorithm
MC ¼ minimal coordinate formulation

MLCP ¼ mixed linear complementarity problem
MLCP–PATH ¼ contact dynamics solver, where the dynam-

ics is formulated as an MLCP and solved
using the PATH [7] algorithm

MLCP–PFB–PLM ¼ contact dynamics solver, where the dynam-
ics is formulated as an MLCP, which is fur-
ther recast as an optimization problem
using the PFB function, and solved with the
help of the RLM algorithm

MLCP–PFB–RLM ¼ contact dynamics solver, where the dynam-
ics is formulated as an MLCP, which is fur-
ther recast as an optimization problem
using the PFB function, and solved with the
help of the RLM algorithm

MNCP ¼ mixed nonlinear complementarity problem
MNCP–PLM ¼ similar to the MNCP–RLM solver except

that the PLM algorithm is used to solve the
optimization problem

MNCP–RLM ¼ contact dynamics solver, where the dynam-
ics is formulated as an MNCP using Todor-
ov’s approach [8] (the MNCP is recast as
an optimization problem and solved using
the RLM algorithm)

NCP ¼ nonlinear complementarity problem
OS ¼ operational space formulation

PFB ¼ penalized Fischer–Burmeister function
PLM ¼ projected Levenberg–Marquardt algorithm

RC ¼ redundant coordinate formulation
RLM ¼ regular Levenberg–Marquardt algorithm
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