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ABSTRACT
In this article, the non-smooth contact dynamics of multi-

body systems is formulated as a complementarity problem. Min-
imal coordinates operational space formulation is used to derive
the dynamics equations of motion. Depending on the approach
used for modeling Coulomb’s friction, the complementarity prob-
lem can be posed either as a linear or a nonlinear problem. Both
formulations are studied in this paper. An exact modeling of
the friction cone leads to a nonlinear complementarity problem
(NCP) formulation whereas a polyhedral approximation of the
friction cone results in a linear complementarity problem (LCP)
formulation. These complementarity problems are further re-
cast as non-smooth unconstrained optimization problems, which
are solved by employing a class of Levenberg-Marquardt algo-
rithms. The necessary theory detailing these techniques is dis-
cussed and five schemes are implemented to solve contact dy-
namics problems. A simple test case of a sphere moving on a
plane surface is used to validate these schemes, while a twelve-
link pendulum example is chosen to compare the speed and ac-
curacy of the schemes presented in this paper.

LIST OF ABBREVIATIONS
LCP Linear Complementarity Problem
MLCP Mixed Linear Complementarity Problem
NCP Nonlinear Complementarity Problem
MNCP Mixed Nonlinear Complementarity Problem

∗Address all correspondence to this author.

MC Minimal Coordinates
RC Redundant Coordinates
FB Fisher-Burmeister Function
LMA Levenberg-Marquardt Algorithm
RLM Regular Levenberg-Marquardt Algorithm
PLM Projected Levenberg-Marquardt Algorithm
MLCP-FB-RLM Contact dynamics solver, where the dynam-

ics is formulated as an MLCP, which is fur-
ther recast as an optimization problem us-
ing the FB function, and solved with the
help of the RLM algorithm

MLCP-FB-PLM Similar to the MLCP-FB-RLM solver ex-
cept that the PLM algorithm is used to
tackle the optimization problem

MLCP-PATH Contact dynamics solver, where the dynam-
ics is formulated as an MLCP, and solved
using the PATH [1] algorithm

MNCP-RLM Contact dynamics solver, where the dynam-
ics is formulated as an optimization prob-
lem using the implicit MNCP approach,
and solved using the RLM algorithm

MNCP-PLM Similar to the MNCP-RLM solver except
that the PLM algorithm is used to tackle the
optimization problem
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INTRODUCTION
In the past two decades, researchers have been developing

complementarity based formulations to solve contact and colli-
sion dynamics problems. Complementarity based methods are
an alternative to classical penalty based methods, that rely on
a virtual spring-damper model to apply restoring forces at the
point of deepest penetration between two bodies in contact [2].
Penalty methods notoriously suffer from oscillatory effects and
become numerically unstable when bodies collide with a high
velocity. Small time steps and excessively damped implicit inte-
grators used to counter this make the method slow and computa-
tionally expensive [3].

Complementarity based methods, on the other hand, assume
that the bodies are truly rigid and compute contact forces at each
time step to prevent inter-penetration. Complementarity meth-
ods use impulsive dynamics to handle collision and contact in-
teractions. They avoid the small time step and stiffening is-
sues encountered in penalty methods by impulsively “stepping”
over non-smooth events [4]. There are two variants of the com-
plementarity formulation - the linear complementarity problem
(LCP) formulation and the nonlinear complementarity problem
(NCP) formulation. In the LCP formulation, the dynamics is cast
as a linear complementarity problem by discretizing the friction
cone using a polyhedral approximation. On the other hand, no
such approximations are made in the NCP case leading to an ex-
act modeling of the friction cone.

Considerable research effort [2,4–6] has been devoted to ef-
ficiently posing contact dynamics problems as solvable LCPs.
Nevertheless, the LCP method can lead to inaccuracies because
it relies on a discretized approximation of the friction cone. In-
creasing the accuracy of the LCP solution requires increasing the
number of sides of the polygon used to approximate the friction
cone, leading to an increase in the number of ancillary variables
in the problem. An increased number of ancillary variables leads
to a larger-sized LCP problem and a slowing down of the ap-
proach. Moreover, the degree of misalignment of friction cone
direction vectors in the contact tangent space with the tangential
friction impulse has a significant effect on the accuracy of the
solution [2]. In contrast, the NCP method does not require the
use of direction vectors and has only three unknown variables
per contact leading to a more compact formulation compared to
the LCP approach [3].

Finding the solution to these complementarity problems is
in general a non-trivial problem. Classical approaches for solv-
ing linear complementarity problems include pivoting methods
such as Lemke’s or Dantzig’s algorithm, whereas iterative meth-
ods such as projected-SOR or projected Gauss-Siedel methods
are used for solving nonlinear complementarity problems. More
recent approaches (including the approach in this paper) recast
these complementarity problems as unconstrained (non-smooth)
optimization problems, which can be solved using Levenberg-
Marquardt type of algorithms. This approach of reformulating

the complementarity problem as an unconstrained optimization
problem has been shown to perform exceedingly well [1, 7–10].

The aim of the present paper is to compare and contrast
the linear and nonlinear complementarity approaches to solv-
ing contact dynamics problems. We use a minimal coordinates
approach [6, 11] to set up the contact dynamics problem of the
multibody system. Additionally, the operational space formu-
lation [12] is employed to take advantage of low order struc-
ture based recursive algorithms that significantly reduce com-
putational costs [4]. The linear and nonlinear complementarity
problems are reformulated as unconstrained optimization prob-
lems which are handled using Levenberg-Marquardt type of opti-
mization algorithms. We develop four contact dynamics solvers,
namely the MLCP–FB–RLM, MLCP–FB–PLM, MNCP–RLM,
MNCP–PLM solvers based on this solution approach. We val-
idate these solvers using the example of a sphere moving on a
fixed horizontal plane, for which closed form analytical solu-
tions are available [2]. Subsequently, we use the example of a
twelve-link pendulum falling under gravity and colliding with its
surrounding environment to compare the speed and accuracy of
these four solvers with the MLCP-PATH method (which makes
use of the PATH [1] solver).

Similar work comparing the performance of different com-
plementarity solvers has been done by Lacoursiere et al. [13] for
a different type of NCP solver. Their NCP solver uses a proxi-
mal function based approach for modeling the friction conditions
while we employ Todorov’s approach [7]. In the rest of this in-
troduction, we review the important ideas pertaining to comple-
mentarity problems, constraints, contact dynamics formulations
and Coulomb friction modeling.

Linear and Nonlinear Complementarity Problems
The nonlinear complementarity problem (NCP) seeks a vec-

tor z ∈ ℜn satisfying the following system of equations and in-
equalities

zi ≥ 0, fi(z)≥ 0, zi fi(z) = 0 for i = 1,2, ... ,n. (1)

where f : ℜn→ℜn is any smooth nonlinear function. The mixed
nonlinear complementarity problem (MNCP) is defined by the
mapping f : ℜn → ℜn, lower bounds li ∈ ℜ∪{−∞} and upper
bounds ui ∈ ℜ∪ {+∞}, where the solution of the MNCP is a
vector z ∈ ℜn such that for each i ∈ {1, 2, ... , n}, one of the
following alternative holds

fi(z)≥ 0 for zi = li

fi(z)≤ 0 for zi = ui (2)
fi(z) = 0 for li < zi < ui
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When f is an affine function of z i.e. f(z) = Mz+ q, where M
is an n× n matrix and q is an n-vector, the NCP and the MNCP
reduce to the LCP and the mixed LCP (MLCP) problems respec-
tively.

Constraints
In contact dynamics, the constraints between rigid links can

be either unilateral contact constraints that are defined by in-
equality relationships of the form d(x, t) ≥ 0, or inter-link bi-
lateral constraints defined by equality relationships of the form
b(x, t) = 0, where x denotes the vector of generalized coordi-
nates of the system and t denotes time [12].

In unilateral constraints, d(x, t) ≥ 0 represents the non-
penetration condition between the surfaces of rigid bodies. Con-
tact occurs at the constraint boundary when d(x, t) = 0 and the
surface normals at the contact point are parallel for the bodies in
contact. For a pair of bodies A and B in contact, we use the con-
vention where the ith contact normal η̂(i) is defined as pointing
from body B towards body A, such that the motion of A in the
direction of the normal leads to a separation of the bodies [12].
A unilateral constraint is said to be active when there is contact,
and the contact persists, i.e.,

d(x, t) = ḋ(x, t) = d̈(x, t) = 0. (3)

The contact is said to be inactive when Eqn.(3) is violated. Con-
tact separation occurs when the relative linear velocity of the con-
tact points along the normals becomes positive and the contact
points drift apart. A separating constraint is in the process of los-
ing contact and transitioning to an inactive state. At the start of a
separation event, we have

d(x, t) = ḋ(x, t) = 0 and d̈(x, t)≥ 0. (4)

Only active unilateral constraints generate constraint forces on
the system.

Redundant Coordinates vs Minimal Coordinates
The dynamics of a multibody system is often modeled us-

ing redundant coordinates (RC) [2, 12] The RC approach treats
all bodies in the multi-link system as independent and uses 6n
absolute coordinates for an n-link system. This system is fur-
ther subject to unilateral contact constraints and explicit bilateral
constraints associated with the inter-link hinges that restrict the
relative motion of the of bodies. The advantages of this method
include the relative ease with which the equations of motion can
be set up, and the fact that the mass matrix of the system is block
diagonal and constant, facilitating the use of sparse matrix solu-
tion techniques. However, due to the large number of redundant

coordinates, the differential-algebraic nature of the equations of
motion and the need for constraint error management at each in-
tegration time step, the RC approach is considerably slower [11].

An alternative to the RC approach is the minimal coordi-
nates (MC) approach, where the inter-link bilateral constraints
are eliminated from the equations of motion by using a minimal
set of coordinates that parameterize the permissible motion for
the hinges between pairs of bodies. In this approach, the system
is regarded as being composed of a tree-topology sub-system to-
gether with a minimal set of bilateral constraints arising from
any loop closure constraints. The advantage of this approach is
that the number of generalized coordinates and number of clo-
sure constraints is much smaller compared to the RC approach.
The underlying formulation is still of a differential-algebraic na-
ture and constraint error management is still required, albeit for
the smaller set of closure constraints. The mass matrix of the
MC approach is however dense and configuration dependent.
Using structure based recursive algorithms that do not require
mass matrix inversion to solve for the system dynamics, refer-
ences [11, 12] have shown that the MC approach is consider-
ably faster than the RC approach for smooth dynamics. Refer-
ences [4, 6] further evaluated the RC and MC MLCP formula-
tions for contact and collision non-smooth dynamics and found
that the MC approach leads to much smaller-sized complemen-
tarity problems and is once again considerably faster compared
to the RC approach. In this paper, we build upon the minimal co-
ordinates approach to develop and compare the different comple-
mentarity formulations and their solution techniques for contact
and collision dynamics modeling.

Minimal Coordinates Formulation
Let N denote the number of degrees of freedom for the tree

sub-system. The minimal coordinates equations of motion for
the tree-topology sub-system can be expressed as

M(θ) θ̈ + C(θ , θ̇) = τ (5)

where θ ∈ℜN is the vector of hinge coordinates, M(θ)∈ℜN×N

is the configuration dependent, symmetric and positive definite
inertia matrix, C(θ , θ̇)∈ℜN is the vector of Coriolis, gyroscopic
and gravitational forces acting on the system, and τ ∈ ℜN de-
notes the applied generalized forces.

Let nb denote the dimension of bilateral constraints arising
from loop closures in the system. Since nb in the MC approach
corresponds only to the loop bilateral constraints, it is much
smaller than the nb in the RC approach. There exists a full-rank
matrix Gb(θ , t)∈ℜnb×N and a vector U(t)∈ℜnb that defines the
velocity domain constraint equation which can be expressed as

Gb(θ , t)θ̇ = U(t) (6)
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The bilateral constraints effectively reduce the independent de-
grees of freedom of the system from N to N− nb. The smooth
dynamics of closed-chain systems can be obtained by modifying
the tree system dynamics in Eqn.(5) to include the effect of the
bilateral constraints via Lagrange multipliers, λ ∈ℜnb as follows

M(θ) θ̈ + C(θ , θ̇)−GT
b (θ , t)λ = τ

Gb(θ , t)θ̇ = U(t)
(7)

where −GT
b (θ , t)λ term in the first equation of Eqn.(7) repre-

sents the internal generalized constraint forces from the closure
constraints.

We now introduce unilateral contact constraints to this for-
mulation. Let nu denote the number of unilateral contact nodes
and νu ∈ ℜ3nu denote the vector of relative linear velocities
across the contact nodes. The mapping between the contact ve-
locities νu to the body spatial velocities θ̇ is defined by a matrix
Gu ∈ℜ3nu×N such that

νu = Gu θ̇ (8)

The matrix Gu also maps the impulses at the contact node pairs,
Fu ∈ℜ3nu , to the corresponding generalized impulses, pu ∈ℜN,
by means of the following dual mapping

pu = GT
u Fu (9)

The smooth dynamics equations of motion in Eqn. 7 can be ex-
tended to include the effect of these contact impulses pu as fol-
lows

[
M −GT

b
Gb 0

] [
θ̈

λ

]
=

[
(τ−C)+ pu/4t

U

]
(10)

where U = U̇(t)− Ġbθ̇ ∈ ℜnb and 4t is the time step. A key
requirement for solving the equations of motion is to solve for
the unknown impulses, Fu at the contact node pairs.

Contact Impulses and Coulomb Friction Modeling
To describe the rolling and sliding phenomena at the ith ac-

tive contact constraint node, the 3-dimensional contact impulse
Fu(i) ∈ ℜ3 and contact velocity νu(i) ∈ ℜ3 vectors can be de-
composed into normal and tangential components as

Fu(i) = Fn(i) η̂(i)+Ft(i) t̂(i) (11)
νu(i) = νn(i) η̂(i)+νt(i) t̂(i) (12)

where Fn(i)∈ℜ is the normal component of the contact impulse,
η̂(i) is the contact normal, Ft(i)∈ℜ2 is the tangential component
of the friction impulse and t̂(i) is the tangent plane vector in the
contact tangent plane, which is further spanned by two orthogo-
nal vectors f̂ (i) and ô(i). Furthermore, νn(i) and νt(i) represent
the normal and tangential components of the linear relative ve-
locity of the body at the ith contact pair. Specifically, νn(i) de-
notes the relative velocity which is normal to the constraint and
νt(i) represents the relative velocities that are unconstrained but
are resisted by friction.

As discussed earlier, an active ith contact is defined by
d(i) = 0 (the bodies are touching) and νn(i) = 0. Moreover,
when νn(i) = 0 and νt(i) 6= 0, the contact is said to be sliding.
On the other hand, when νn(i) = νt(i) = 0, the contact is said
to be rolling [14]. Having defined the concepts of rolling and
sliding, we can now state Coulomb’s law of friction as

Fn(i)≥ 0, νn(i)≥ 0, Fn(i) νn(i) = 0
νt(i) parallel to Ft(i), 〈νt(i),Ft(i)〉 ≤ 0 (13)

||Ft(i)|| ≤ µ(i)Fn(i)

The first line of Eqn.(13) states that the normal force and the
normal contact velocity cannot both be simultaneously positive.
The normal force is zero when the bodies are separating, and
positive when there is sustained contact. The second line of (13)
implies that if there is sliding between the bodies in contact, then
the tangential friction impulse is in the direction opposite to that
of the tangential relative linear velocity. The last line states that
the tangential friction impulse must lie inside the friction cone.
The tangential friction impulse is on the boundary of the cone
when the bodies are sliding and in the interior of the cone when
the bodies are rolling. The coefficient of friction is denoted by
µ . Notice that only the first line of Eqn.(13) is a strict comple-
mentarity condition whereas additional work needs to be done to
bring the other two conditions into the complementarity frame-
work.

MLCP FORMULATION
In this section, we summarize the minimal coordinate,

MLCP formulation for contact and collision dynamics [4, 6].

Friction Cone Discretization
The friction cone at the ith contact is approximated by a fric-

tion polyhedron consisting of a finite number, nf, of unit direc-
tion vectors d̂j(i) in the tangent plane. For notational simplicity,
we assume that nf is the same across all the contact points. The
tangential friction impulse for the ith contact is expressed as the

4 Copyright © 2014 by ASME



linear combination of these direction vectors as

Ft(i)t̂(i) =
nf

∑
j=1

βj(i)d̂j(i) = D(i)β (i) (14)

where D(i) =
[

d̂1(i), d̂2(i), . . . , d̂nf(i)
]
∈ ℜ3×nf and β (i) =

col{βj(i)}nf
j=1 ∈ℜnf . Combining Eqn.(11) and Eqn.(14), we have

Fu(i) = D(i)β (i) (15)

where D(i) = [ η̂(i), D(i) ] ∈ ℜ3×(nf+1) and β (i) =[
Fn(i), β T(i)

]T ∈ ℜnf+1. During sliding, the βj(i) compo-
nent is non-zero and is equal to µ(i)Fn(i) for just the single
direction j that corresponds to the closest direction opposing the
tangential relative linear velocity. Denoting σ(i) = ‖νt(i)‖,

βk(i) =

{
µ(i)Fn(i), if σ(i)> 0 and k = j
0, if σ(i)> 0 and k 6= j

The sliding and rolling contact relationships of Eqn.(13) can now
be rephrased as the following complementarity conditions

η̂
T(i)ν+

u (i)⊥ Fn(i)

σ(i)E(i)+DT(i)ν+
u (i)⊥ β (i) (16)

µ(i)Fn(i)−ET(i)β (i)⊥ σ(i)

where E(i) = col{1}nf
j=1 ∈ℜnf and the component of the relative

linear velocity along the contact normal is ν+
n (i) = η̂T(i)ν+

u (i),
where the superscript + (-) denotes the value of the quantity just
after (before) the application of an impulse. Using Eqn.(15), the
above complementarity conditions can be more compactly ex-
pressed as

Ê(i)σ(i)+DT(i)ν+
u (i)⊥ β (i)

E(i)β (i)⊥ σ(i)
(17)

where Ê(i) =
[
0, ET(i)

]T ∈ℜnf+1 and E(i) =
[
µ(i), −ET(i)

]
∈

ℜ1×(nf+1). At the system level, these conditions across all the
contacts can be expressed as

Êσ +DT
ν
+
u ⊥ β

Eβ ⊥ σ
(18)

where β = col{β (i)}nu
i=1 ∈ ℜnu(nf+1), σ = col{σ(i)}nu

i=1 ∈
ℜnu , D = diag{D(i)}nu

i=1 ∈ ℜ3nu×nu(nf+1), Ê = diag{Ê(i)}nu
i=1 ∈

ℜnu(nf+1)×nu , E = diag{E(i)}nu
i=1 ∈ ℜnu×nu(nf+1) and ν+

u =
col{ν+

u (i)}nu
i=1 ∈ℜ3nu . Furthermore, the contact impulses at the

system level can be written as

Fu = Dβ where Fu = col{Fu(i)}nu
i=1 ∈ℜ

3nu (19)

In principle, there are no restrictions on the number of direction
vectors that can be chosen or their orientation in the contact tan-
gent plane. Reducing the number of direction vectors reduces
the size of the LCP problem but increases the approximation er-
ror. However, when choosing direction vectors, one can help
reduce the approximation errors for the MLCP case by aligning
one of the direction vectors in our set at each time step to coincide
with the opposite of the tangential relative linear velocity vector
(i.e. −ν

−
t ) at that time step. This ensures that at least one of the

direction vectors lines up closely with tangential friction impulse
(F+

t ) thereby reducing approximation errors. It should be noted
however that we can only mitigate but not entirely eliminate the
approximation errors arising from the misalignment of direction
vectors and the tangential friction impulse. This is one of the
main drawbacks of the linear complementarity approach.

Setting up the MLCP
We now set up the operational space (OS) MLCP formula-

tion [12]. Eqn.(10) can be rearranged as

Gb M
−1
[
τ−C + GT

b λ + GT
u Dβ/4t

]
− U = 0

Gb M
−1GT

b pb + Gb M
−1GT

u Dβ + α
f
b 4t = 0

(20)

where pb = λ4t and α f
b = GbM

−1(τ−C)−U. The relative lin-
ear acceleration of the contact nodes, ν̇u, is obtained by differen-
tiating Eqn.(8) with respect to time, which can be used to com-
pute ν+

u as follows

ν
+
u = ν

−
u + ν̇u4t = ν

−
u + (Guθ̈ + Ġuθ̇)4t

= ν
−
u + GuM

−1GT
b pb + GuM

−1GT
u Dβ + α

f
u4t

(21)

where α f
u = GuM

−1(τ−C) + Ġuθ̇ . Denoting nc as the num-
ber of the combined set of nodes associated with the unilat-
eral and bilateral constraints of the system, the spatial veloc-
ities of these nodes is given by the stacked vector Vc ∈ ℜ6nc ,
which is related to θ̇ by Vc = Jθ̇ , where J ∈ ℜ6nc×N is the Ja-
cobian of the constraint nodes. Now, there exist matrices Qu ∈
ℜ3nu×6nc and Qb ∈ ℜ3nb×6nc such that νu = QuVc = QuJθ̇ and
U = QbVc = QbJθ̇ . Comparing these expressions with Eqn.(6)
and Eqn.(8), we obtain Gu = QuJ and Gb = QbJ. Denoting
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Λ = JM−1JT ∈ℜ6nc×6nc , Eqns.(18 – 21) can be expressed as

QbΛQT
b pb + QbΛQT

u Dβ + α
f
b4t = 0

DTQuΛQT
b pb +DTQuΛQT

u Dβ + Êσ +DT(α f
u4t+ν

−
u )⊥ β

Eβ ⊥ σ (22)

or more compactly, we have f(z) =Mz+q, where

M=

[
XΛXT E1

E2 0

]
, z =

pb
β

σ

 and q =

 α f
b4t

DT(α f
u4t+ν−u )

0


where X =

[
Qb

DTQu

]
, E1 =

[
0
Ê

]
and E2 =

[
0 E

]
.

Equation (22) is a (nb +nu(nf +2)) sized mixed LCP where the
first equation is an equality condition while the bottom two equa-
tions are complementarity conditions. Structure based recursive
algorithms of order O(N)+O(n2

c) can be used to compute the
configuration dependent matrix Λ as shown in [6, 11].

Casting the MLCP as an Optimization Problem
The mixed complementarity conditions can be reformulated

as a nonlinear non-smooth system of equations which can then be
solved using unconstrained minimization algorithms [15]. The
advantage of this conversion is the multitude of optimization
solvers available for solving such unconstrained minimization
problems. To cast the linear complementarity conditions as a
nonlinear equation, we make use of NCP functions [16] which
have the property that

φ(a,b) = 0 ⇐⇒ a≥ 0, b≥ 0, ab = 0 (23)

An example of an NCP function is given by

φFB := φi(zi, fi(z)) =
√

z2
i + f2

i (z)− zi− fi(z) (24)

which is called as the Fisher-Burmeister (FB) function [17]. The
FB function has the property that the square of Eqn.(24) is con-
tinuously differentiable [15]. This fact can be used to build a cost
function ψ : ℜn→ℜ+ as follows

ψ(z, f) =
1
2

n

∑
i=1

φ
2
i (zi, fi) (25)

Minimizing the cost function ψ gives us the solution to the sys-
tem of nonlinear equations φFB = 0, which owing to Eqn.(23)
gives us the solution to the complementarity problem.

On the other hand, to solve a mixed linear complementarity
problem, the NCP function φ is modified as [18]

φi =

{√
f2
i (z)+ z2

i − zi− fi(z) if li = 0 and ui = ∞

−fi(z) if li =−∞ and ui =+∞

where li = 0 and ui = ∞ correspond to complementarity condi-
tions and li =−∞ and ui = ∞ correspond to equality conditions.
The cost function and its gradient for this MLCP are given by
ψ (see Eqn.(25)) and 5ψ = φ TJ respectively, where J is the
Jacobian matrix whose entries Jij =

[
∂φi
∂ zj

]
are given as follows:

a. If li = 0 and ui = ∞, then

∂φi

∂ zi
=


zi+fi M(i,i)√

z2
i +f2

i
−1−M(i, i), if

√
z2

i + f2
i (z) 6= 0√

1+(M(i, i))2−1−M(i, i), if
√

z2
i + f2

i (z) = 0

and

∂φi

∂ zj
=


fi M(i,j)√

z2
i +f2

i
−M(i, j) , if

√
z2

i + f2
i (z) 6= 0

0 , if
√

z2
i + f2

i (z) = 0

b. If li =−∞ and ui = ∞, then ∂φi
∂ zj

=−M(i, j).

With this optimization reformulation, we can now employ
unconstrained minimization algorithms to find the minimum
point, and hence the solution to the complementarity problem.

MNCP FORMULATION
We now turn our attention to the nonlinear complementar-

ity formulations of contact dynamics that avoid the friction cone
approximations required for the LCP formulation.

Exact Modeling of Friction Cone.
Until now, we have only dealt with an approximate model of

the friction cone. However, to model the friction cone exactly, an
alternative approach is required that captures Coulomb’s friction
conditions (see Eqn.(13)) exactly. In the present work, we use
Todorov’s approach [7] to model the friction conditions, which
we summarize here for the convenience of the reader. A similar
approach has also been described by Drumwright and Shell [19].

Realizing that the contact relative linear velocity νu(i) and
the contact impulse Fu(i) are not independent but are instead
coupled through laws of contact and friction, Todorov [7] param-
eterizes both Fu(i) and νu(i) using unconstrained non-physical
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variables z(i) = [zf(i) zo(i) zn(i)]
T ∈ℜ3 as follows:

Fn(i) = max(0,−zn(i)) and νn(i) = max(0,zn(i))

Ft(i) =−s(i) zt(i) and νt(i) = [1− s(i)]zt(i)
(26)

where s(i) = min
(

1, µ(i)Fn(i)
‖zt(i)‖

)
. The normal force Fn(i) and nor-

mal velocity νn(i) are encoded by zn(i) whereas the tangen-
tial force Ft(i) = [Ff(i), Fo(i)]

T ∈ ℜ2 and tangential velocity
νt(i) = [νf(i),νo(i)]

T ∈ ℜ2 are encoded by the tangential com-
ponents of z i.e. zt(i) = [zf(i), zo(i)]

T ∈ ℜ2. The role of these
parameters can be succinctly understood as follows:

1. Non-penetration condition: When zn(i)> 0, the ith contact
constraint is inactive and zn(i) represents the non-zero
relative normal linear velocity νn(i) = zn(i), with normal
force Fn(i) = 0. Consequently, Ft(i) = [0, 0]T. On the other
hand, when zn(i) < 0, the contact constraint is active, and
zn(i) represents the non-zero normal force Fn(i) = −zn(i)
with the normal velocity νn(i) = 0. Thus, zn(i) characterizes
the non-penetration condition and the complementarity
relation between the Fn(i) and νn(i) variables.

2. Rolling contact: When the ith contact is active and s(i) = 1
(i.e. when ‖zt(i)‖ ≤ µ(i)Fn(i)), we have a rolling contact.
In this case, νt(i) = [0, 0]T. Furthermore, Ft(i) = −zt(i).
Since ‖zt(i)‖ = ‖− Ft(i))‖ ≤ µ(i)Fn(i), we are inside the
friction cone, which corresponds to a rolling contact.

3. Sliding contact: When the ith contact is active and s(i)< 1
(i.e when ‖zt(i)‖ > µ(i)Fn(i)), we have a sliding contact.
The tangential velocity νt(i) = (1− s(i)) zt(i) is in a direc-
tion opposite to the tangential friction Ft(i) =−s(i) zt(i) and
‖Ft(i)‖ = µ(i)Fn(i). Thus, we are on the boundary of the
friction cone which corresponds to a sliding contact.

For an in depth discussion and a schematic depiction of these
functions, the interested reader is referred to [7]. The set of equa-
tions in Eqn.(26), which model Coulomb’s friction exactly, can
be more compactly represented in terms of z(i) as

νu(i) = Fu(i)+ z(i) (27)

Setting up the implicit MNCP
We now develop the operational space implicit MNCP for-

mulation. Using the system level contact impulse, Eqn. (10) can
be rearranged as

Gb M
−1GT

b pb + Gb M
−1GT

u Fu + α
f
b 4t = 0 (28)

which can be further simplified using Gu =QuJ and Gb =QbJ as

QbΛQT
b pb + QbΛQT

u Fu + α
f
b4t = 0 (29)

The relative linear velocity of the contact nodes after the appli-
cation of the contact impulse, ν+

u , is given by

ν
+
u = ν

−
u + ν̇u4t = ν

−
u + (Guθ̈ + Ġuθ̇)4t

= ν
−
u + GuM

−1GT
b pb + GuM

−1GT
u Fu + α

f
u4t

= ν
−
u + QuΛQT

b pb + QuΛQT
u Fu + α

f
u4t

(30)

Using Eqn.(27), Eqns.(29 - 30) can be rewritten as

Φb = QbΛQT
b pb +QbΛQT

u Fu(z)+α
f
b4t = 0

Φu = QuΛQT
b pb +(QuΛQT

u − I) Fu(z)− z+α
f
u4t+ν

−
u = 0

(31)
which can be expressed in matrix form as

Φ(pb,z) =

[
QbΛQT

b QbΛQT
u

QuΛQT
b (QuΛQT

u − I)

][
pb

Fu(z)

]
+

[
α f

b4t

α f
u4t+ν−u − z

]
(32)

where Φ is called the residual and I is the identity matrix.

Optimization Reformulation of the implicit MNCP
The problem now reduces to solving a set of nonlinear non-

smooth equations Φ = 0, which can be rephrased as an uncon-
strained minimization problem with the cost given by

ψ =
1
2

Φ
T

Φ (33)

The gradient of the cost is given by 5ψ = ΦTJ where the Jaco-
bian J can be computed as

J =

[
∂Φb
∂ pb

∂Φb
∂z

∂Φu
∂ pb

∂Φu
∂z

]
=

[
QbΛQT

b QbΛQT
u

QuΛQT
b (QuΛQT

u − I)

][
I 0
0 ∂Fu

∂z

]
+

[
0 0
0 −I

]
(34)

where ∂Fu
∂z = diag

[
∂Fu(1)
∂z(1) ,

∂Fu(2)
∂z(2) , ...

∂Fu(nu)
∂z(nu)

]
, and nu is the num-

ber of unilateral contacts at the current integration time step. Fo-
cusing on a single typical contact for convenience, the expres-
sions for its individual 3×3 block matrix is given by

∂Fu

∂ z
=

∂

∂ z

Ff
Fo
Fn

=


∂Ff
∂zf

∂Ff
∂zo

∂Ff
∂zn

∂Fo
∂zf

∂Fo
∂zo

∂Fo
∂zn

∂Fn
∂zf

∂Fn
∂zo

∂Fn
∂zn

 (35)
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where the entries of ∂Fu
∂z are as follows

∂Ff

∂ zf
=

{
−s if m f ≥ 1
−sz2

o
‖zf,zo‖2 if m f < 1

,
∂Ff

∂ zo
=

{
0 if m f ≥ 1

szozf
‖zf,zo‖2 if m f < 1

∂Ff

∂ zn
=

{
0 if m f ≥ 1

−µ
∂Fn
∂zn

zf

‖zf,zo‖ if m f < 1
,

∂Fo

∂ zf
=

{
0 if m f ≥ 1

szfzo
‖zf,zo‖2 if m f < 1

∂Fo

∂ zo
=

{
−s if m f ≥ 1
−sz2

f
‖zf,zo‖2 if m f < 1

,
∂Fo

∂ zn
=

{
0 if m f ≥ 1

−µ
∂Fn
∂zn

zo

‖zf,zo‖ if m f < 1

∂Fn

∂ zf
= 0,

∂Fn

∂ zo
= 0,

∂Fn

∂ zn
=

{
−1 if zn < 0

0 if zn ≥ 0
, m f =

µFn

‖zf,zo‖

Such optimization problems are usually handled using some
form of Gauss-Newton methods e.g. the Levenberg-Marquardt
algorithms which we consider in more detail in the next section.

UNCONSTRAINED OPTIMIZATION ALGORITHMS
In this section, we discuss some methods for solving

unconstrained optimization problems of the form

minimize ψ(x) where ψ : ℜn→ℜ+

is convex and twice continuously differentiable.

We assume that the optimization problem above is solvable, in
other words, there exists an optimal value at x∗ denoted by p∗

such that p∗ = ψ(x∗) is the minimum. If ψ is differentiable and
convex, a necessary and sufficient condition for x∗ to be optimal
is that the gradient of ψ at x∗ is zero i.e. 5ψ(x∗) = 0 which
gives us n equations in n variables, the solution to which gives
us the optimal value of ψ(x). The most practical methods to
solve convex minimization problems involve iterative algorithms
where a sequence of points x1,x2, ...,xk ∈ dom ψ are produced
with ψ(xk) → p∗ as k → ∞. The algorithm terminates when
ψ(xk)− p∗ ≤ ε where ε is some specified tolerance very close to
zero. Extensions for non-smooth problems, where the function
ψ is continuous but may be non-differentiable at finitely many
points are discussed in references [7, 8].

Levenberg-Marquardt Algorithm
Newton-like methods often fail to work properly as the Hes-

sian matrix computed at each iteration step can become singular
during optimization and stall the algorithm. Moreover, in some
cases, the Newton step being computed may not be a step in the
descent direction leading to erroneous results. The Levenberg-
Marquardt algorithm has been suggested in the literature to safe-
guard against these issues and to also converges irrespective of
the starting position [8, 20].

The Levenberg-Marquardt algorithm (LMA), also known as
the damped least squares algorithm, interpolates between New-
ton’s method and the method of gradient descent. The LMA

method combines the advantages of both worlds. Gradient meth-
ods are guaranteed to reach the minimum point (although they
can take a long time) whereas Newton-like methods are known
for their speed of convergence to the minimum. By combining
both methods, LMA reaches the minimum point and has similar
performance to other Newton-like methods. The LMA method
is more robust compared to Newton’s method because in many
cases we do end up finding the minimum point even when we
start off far away from it.

One disadvantage of the LMA method is that the Hessian
needs to be computed, stored and inverted. If the size of
the Hessian is large (more than 100), the LMA method can
become slow. Regardless, the LMA method is widely used
by researchers attempting to solve complementarity problems
reposed as optimization problems [7–9]. Below we discuss two
such LMA algorithms - the regular LMA and the projected LMA.

Regular Levenberg-Marquardt Algorithm: The follow-
ing implementation of the regular LMA algorithm has been
adopted from Bazaraa et al. [20].

ALGORITHM : Regular LMA (RLM)
given ψ(x) = 1

2 φ(x)T φ(x), initial x ∈ dom ψ , tol ε = 10−30 > 0,
λLM = 10−3,λstep = 20,λmin = 10−25

repeat

1. Compute the Cost ψ , Jacobian J, approximate Hessian H
and the step 4x as ψ(xk), J(xk) =

∂φ

∂x , H(xk) = JT J +

λLMI, 4xk = H−1(JT φ) respectively.
2. Stopping Criteria: If ψ(xk)< ε , then STOP
3. Update xk+1 := xk +4xk

4. Compute the Reduction Factor r = ψ(xk+1)−ψ(xk)
q(xk+1)−q(xk)

5. Adaptively change λ based on the reduction r:
if r < 0.3, then λLM := λLM ∗λstep

if r > 0, then accept4x and if r > 0.8, then λLM := λLM
λstep

The regular LMA adaptively keeps switching between a gradient
descent method and a Newton’s method based on the reduction
factor r. The reduction factor r is defined as the ratio of the ac-
tual decrease of the function ψ and its quadratic approximation
q at x = xk. The closer the reduction factor r is to unity, the more
reliable is the quadratic approximation, and the smaller we can
allow λLM to be. Thus, if r is small, we increase λLM and if r
is large, λLM is reduced. If λLM is close to zero, then the LMA
becomes a Newton’s method and if λLM is large, then this makes
the Hessian diagonally dominant and we end up with a gradient
descent method. Typical parameters that work well empirically
with this method are rmin = 0.3,rmax = 0.8,λLM = 10−3 and
λstep = 20 [20].
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Projected Levenberg-Marquardt Algorithm: The fol-
lowing basic implementation of the projected LMA has been
adopted from Kanzow and Petra [10].

ALGORITHM: Projected LMA (PLM)
given ψ(x) = 1

2 φ(x)T φ(x), initial x ∈ dom ψ , tol ε = 10−30 > 0,
λLM = 10−16

repeat

1. Compute the Cost ψ , Jacobian J, appended-Jacobian
H, appended-φ B and the step 4x as ψ(xk), J(xk) =

∂φ

∂x , H(xk) =

[
J√

λLM I

]
, B(xk) =

[
−φ(xk)

0

]
, 4xk = H−1B

respectively.
2. Stopping Criteria: If ψ(xk)< ε , then STOP
3. Update xk+1 := xk + t4 xk

The main difference between the projected LMA and the regular
LMA is in the computation of the search direction. In the pro-
jected LMA, the search direction is computed as 4xk = H−1B,
where H2n×n is generated by stacking the n× n Jacobian matrix
J with the n× n diagonal matrix whose (diagonal) entries are
given by

√
λLM (where λLM is the Levenberg-Marquardt damp-

ing parameter). Similarly, the 2n× 1 vector B is generated by
stacking the vector (−φ ) with a zero vector of size n. To this
basic algorithm, additional features have been added such as the
non-monotone line search technique [21] together with watch-
dog stabilization [22] to make the algorithm more robust. For
example, if the best function value found so far has not been suf-
ficiently reduced within a fixed number of iterations, we restart
from that point using a monotone line search.

We make use of these RLM and PLM optimization routines
and develop four schemes to solve contact dynamics problems.
The first two schemes i.e. MLCP-FB-RLM and the MLCP-FB-
PLM solvers make use of the MLCP FB optimization reformula-
tion, where the optimization problem is solved through the reg-
ular LMA and projected LMA algorithms, respectively. The last
two schemes i.e. MNCP-RLM and the MNCP-PLM solvers use
the implicit MNCP formulation, where the optimization problem
is once again solved using the regular LMA and projected LMA
algorithms, respectively. We validate these routines and test the
speed and accuracy of these schemes in the next section.

SIMULATION RESULTS
Sphere on a fixed horizontal plane

Consider a uniform sphere placed on a fixed horizontal
plane in a uniform gravitational field as shown in Figure 1.
The mass and radius of the sphere is unity whereas the ini-
tial configuration and initial velocity of the sphere is specified
by θo = [ 0 0 1 | 1 0 0 0 ] and θ̇o = [ vxo vyo vzo | ωxo ωyo ωzo ] =
[ 2 0 0 | 0 0 0 ], respectively. The coefficient of friction is as-

FIGURE 1. Sphere moving on a plane surface (RGB colors corre-
spond to XYZ axes)

sumed to have a constant value of µ = 0.2. The numerical solu-
tion is computed for t = 0.6s with a time step 4t = 1 ms. Fur-
thermore, unlike [2], the frictional f̂ , orthogonal ô and normal η̂

directions of the contact frame have been chosen to lie exactly
along the x, y and z directions of the inertial frame, respectively.
For the MLCP set of solvers, we choose four direction vectors
at right angles to each other in the contact tangent plane to dis-
cretize the friction cone.

The sphere example for the initial conditions described
above has been analytically solved by Trinkle [2]. For this initial
condition set, the motion of the sphere is limited to sliding and
rolling along the x-axis. The existence of the analytical solution
allows us to use the sphere test case to validate the schemes
presented in this paper. We do this validation in Example 1.
To further study the effect of the alignment of the direction
vectors with the motion of the sphere in the MLCP solvers case,
we consider two examples. In Example 1, one of the direction
vector is aligned perfectly with the motion of the sphere whereas
in Example 2, the direction vectors are oriented at 45 degrees to
the motion of the sphere.

Example 1: For the MLCP solvers, if one of the direction
vectors in the contact tangent space is chosen to lie exactly
along the friction force direction (-x direction in this example as
the sphere moves only along the +x direction), then the effect
of the friction cone discretization disappears and we expect to
see our simulations match the analytically predicted solution.
Figures 2(a) and 2(b) show time history plots of the velocities of
the sphere and the friction forces in contact coordinates, respec-
tively, computed using the MLCP–FB–RLM, MLCP–FB–PLM,
MNCP–RLM and the MNCP–PLM solvers. From the figures,
we observe that the sphere initially slides in the x-direction
until tsr =

2vxo
7µg ≈ 0.291s while gradually losing translational

velocity in the x-direction and gaining angular velocity in the
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(a) Time History of the Generalized Velocities

(b) Time History of Friction Forces in Contact Coordinates

FIGURE 2. Motion data for the sphere with friction cone direction
vectors aligned with the tangential contact velocity.

y-direction during this time (see Fig.2(a)). After tsr = 0.291s,
the sphere starts rolling with a constant linear velocity in the
x-direction (vx) and constant angular velocity in the y-direction
of ωy =

5vxo
7 ≈ 1.429 units. The remaining velocity components

are all zero (see Fig.2(a)). Sliding and rolling phases can
be confirmed by the fact that in Fig.2(b), we observe that
µFn = ‖Ff, Fo‖ until tsr = 0.291s, after which µFn > ‖Ff, Fo‖
when the sphere starts rolling. Further, from Fig.2(b), we ob-
serve that the friction force acts in the− f̂ (or−x) direction alone
with Fo ≡ 0 throughout the simulation. Thus, as can be inferred
from the figures, the solutions of both the MLCP as well as the
MNCP set of solvers closely match the predicted analytical solu-
tion described in the reference [2], thus validating their solutions.

Example 2: Ideally, the choice of the friction direction

FIGURE 3. Velocities of the sphere when the friction cone direction
vectors are not aligned with the the tangential contact velocity.

vectors in the contact tangent plane should have no bearing
on our final solution. However, they do so in the MLCP case.
The degree to which the friction direction vectors in the contact
tangent plane are aligned with the tangential frictional impulse
affects the accuracy of the MLCP solution. This can be seen
in the present example where the direction vectors are oriented
at an angle of 45 degrees to the motion of the sphere (and
hence the tangential friction impulse vector). The rest of the
set up of the problem is chosen to be exactly the same as the
previous example. From Fig. 3, the MLCP solvers predict that
in addition to vx and ωy as seen in Example 1, the sphere also
possesses non-zero translational velocity vy and angular velocity
ωx, when in reality both of these quantities should be zero for all
time. Furthermore, the sphere continues to slide until t ≈ 0.4s
(much longer than the previous case), after which it starts to
roll. These results depart considerably from the analytically
predicted motion of the sphere seen in Example 1. Thus, any
misalignment between the friction direction vectors and the
tangential friction impulse vector produces erroneous results
in the MLCP case, which is one of the major drawbacks of
the approach. To avoid these errors in the MLCP case, either
the number of direction vectors has to be increased such that
the polygon better approximates the circle (not desired as it
increases the number of ancillary variables) or the direction
vectors have to be chosen such that they align exactly with the
tangential frictional impulse at each integration time step of the
simulation (which lies beyond our control). In practice, the best
one can do to minimize these errors is to align one of the the
direction vectors at the current integration time step to coincide
with the opposite of the tangential contact velocity vector at that
time step. The MNCP solvers, on the other hand, have no such
concept of direction vectors and they continue to give us the
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FIGURE 4. Initial set up of the twelve-link pendulum

correct solutions as can be seen in Fig. 3.

Twelve-link Pendulum
To evaluate the speed and accuracy of the complementarity

schemes presented in this paper, we consider the more complex
example of a twelve-link swinging pendulum colliding with it-
self and the surrounding environment as shown in Figure 4. The
pendulum consists of twelve identical 1kg spherical masses con-
nected together with pin hinges. The environment consists of a
floor of thickness 0.2m and a colliding wall on the right side lo-
cated 4m away. The overall length of the pendulum is 12m with
each of the spheres having a diameter of 0.5m. The pendulum
is located at a height of 10m above the ground. The coefficient
of friction is assumed to be 0.5 for all surfaces and to simulate
inelastic collisions the coefficient of restitution is assumed to be
0.7. The open source software Bullet [23] is used for collision de-
tection. The pendulum makes an initial angle of π/4 radians with
the vertical and has initial angular velocity of ωx = 1 radians/s.
Uniform gravitational acceleration of 9.81m/s2 is assumed. For
the MLCP solvers, the number of direction vectors in the contact
tangent space is chosen to be four.At each time step, one of the
direction vectors at the current time step is aligned with the op-
posite of the tangential contact velocity vector at that time step.
The simulations are run for a time span of 20s with a time step of
1 ms. As the pendulum swings from left to right, it collides with
the ground, bounces off of the ground, collides with the wall on
the right, swings back and collides with the ground once again.
Over the course of the simulation, multiple links are at times in
collision with ground, the wall and with each other.

Minimal coordinate operational space formulation is used
to model the dynamics of this system. Since minimal coordi-
nates are used, the inter-link constraints are automatically elim-
inated. No loop-closure bilateral constraints exist for the multi-
link pendulum. Hence, the only constraints acting on the pen-
dulum system are unilateral contact constraints. The size of the
complementarity problem is defined by the number of contacts,

FIGURE 5. A time history plot of the height of the last link of the
pendulum computed using the five different solvers. The plots of the
five solvers are superposed on top of one another with minor differences
showing up at the end of the 20s simulation. The height of the last link
is measured from the origin, which is located at the mid-section of the
floor of thickness 0.2m.

FIGURE 6. A zoomed-in plot depicting the height of the last link
of the pendulum at the end of the 20s simulation. The solvers show
a grouping behavior, with the MLCP set of solvers showing a similar
solution and MNCP set of solvers showing a similar solution. The height
of the last link is measured from the origin, which is located at the mid-
section of the floor of thickness 0.2m.

with the size of the MNCP problem being smaller compared to
the MLCP problem. Using the methodologies presented in this
paper, the ensuing complementarity problems are recast as opti-
mization problems, which are further solved using the RLM and
PLM optimization routines. Figs. 5 and 7 show time history
plots of the last link’s height and the linear z-velocity (vz), re-
spectively, computed using the MLCP-PATH, MLCP-FB-RLM,
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FIGURE 7. A time history plot of the z-component of the linear ve-
locity (vz) of the last link of the pendulum computed using the five dif-
ferent solvers. The plots of the five solvers are superposed on top of
one another with minor differences showing up at the end of the 20s
simulation.

FIGURE 8. A zoomed-in plot depicting vz of the last link of the pen-
dulum at the end of the 20s simulation. The solvers show a grouping
behavior, with the MLCP set of solvers showing a similar solution and
MNCP set of solvers showing a similar solution.

MLCP-FB-PLM, MNCP-RLM and MNCP-PLM solvers. Figs.
6 and 8 depict zoomed-in plots of Figs. 5 and 7, respectively,
at the end of the 20s simulation. As can be seen from fig-
ures, the plots show a close match between the solutions of all
the five solvers with minor differences appearing at the end of
the 20s simulation. The computation times of the solvers ap-
pear to be evenly matched with the MLCP-PATH, MLCP-FB-
RLM, MLCP-FB-PLM, MNCP-RLM, MNCP-PLM solvers tak-
ing 23.92s, 22.78s, 24.24s, 22.85s, and 22.82s, respectively, to

complete the simulation.

Conclusions
In this paper, the contact dynamics of multibody systems

is approached using the minimal coordinate operational space
formulation. The dynamics is cast as a complementarity prob-
lem, which is further reformulated as an unconstrained optimiza-
tion problem. Levenberg-Marquardt type algorithms are em-
ployed to solve these optimization problems. Employing these
techniques, three linear (MLCP–FB–RLM, MLCP–FB–PLM,
MLCP–PATH) and two nonlinear (MNCP–RLM, MNCP–PLM)
complementarity schemes have been developed for solving gen-
eral contact dynamics problems. These solvers have been vali-
dated using the example of a sphere moving on a horizontal fixed
plane, for which analytical solutions are available in [2].

Furthermore, an example of a twelve-link pendulum inter-
acting with its surrounding environment is used to evaluate the
performance of the different solvers. We found that all of the
schemes had similar speed and accuracy performance and closely
matched that of the MLCP–PATH algorithm. Elaborating on this
observation, recall that the size of the complementarity problem
itself is small for minimal coordinate approaches, and the overall
solution cost is dominated by the cost of setting up the comple-
mentarity problem, with the complementarity solver itself con-
tributing little to the cost. This is in contrast with our experience
with redundant coordinate approaches where the complementar-
ity problem size is large and the cost of solving the complemen-
tarity problem dominates the overall cost [4]. Our overall obser-
vation is that the cost savings from reducing the size of the com-
plementarity problem using the minimal coordinate approach far
outweigh the additional costs of setting up the complementarity
problem, and have the additional benefit that the speed and accu-
racy of the solution is relatively insensitive to the specific choice
of the complementarity solver.

We have also observed that accurate solutions can be ob-
tained with the linear complementarity solvers by aligning one
of the friction cone direction vectors in the contact tangent plane
(at the current time integration step) to coincide with the oppo-
site of the tangential contact velocity vector (at that time step).
Using such an alignment procedure it is possible to use linear,
rather than nonlinear complementarity solvers, with just a small
number of friction cone direction vectors without incurring large
accuracy or cost penalties.

Future work will be focused on testing these complemen-
tarity schemes on wider set of problems while simultaneously
improving the speed, accuracy and robustness of these comple-
mentarity schemes.
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