
Structure-Based Computational Modeling Architecture for Robotics

Abhinandan Jain1

Abstract— We describe a computational architecture for
meeting a diverse range of robot modeling needs encompassing
analysis, simulation and embedded modeling for robotic sys-
tems. The architecture builds upon the spatial operator algebra
theoretical framework for computational dynamics. It allows
applications to meet the broad range of computational modeling
needs coherently and with fast, structure-based computational
algorithms. The paper describes the SOA computational ar-
chitecture, the DARTS computational dynamics software, and
application modeling layers.

I. INTRODUCTION

Computational models pervade all aspects of robotics,
from the design and analysis of systems, to use within
onboard planning and control architectures for system de-
velopment and test, and during their operation. Recent
DARPA programs such as Autonomous Robotics Manipu-
lation (ARM) and the DARPA Robotics Challenge (DRC)
are focused on increasing autonomous robot operation in
unstructured environments. Autonomous manipulation and
mobility requires increased sophistication and robustness,
and this in turn increases modeling needs for manipulation
and control, grasp design and analysis, task planning, legged
locomotion, online calibration etc [1].

Such robotics demands have stimulated the development
of physics-based simulators to support development and
testing [2–5]. However significant challenges remain and the
DRC program is investing in the development of simulators
for use by the robotics community. Challenges in com-
putational modeling include the large variety of modeling
requirements, the complexity of the numerical algorithms,
designing models that adequately capture the physics, obtain-
ing correct parameters for seeding the models, and obtaining
fast computational performance.

The challenges are even greater for models used within
autonomy software. Such embedded models support task and
motion planning, state estimation in the presence of noise and
uncertainty and real-time closed-loop control. Computational
speed requirements are significantly higher and the types of
information needed span a much broader range. Thus while
a simulator is required to do one function well, i.e., simulate
the system state time history, embedded models have to
perform several functions well.

Due to their inherent complexity, embedded computational
models are often platform specifid, over-simplified or point
solutions to meet a narrow a range of functions or tailored
to the needs of specific autonomy modules. Low-fidelity and

1A. Jain is with the Jet Propulsion Laboratory, California Institute
of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
Abhi.Jain@jpl.nasa.gov

fragmented models degrade the overall system performance.
Fragmentation requires extra measures to ensure the consis-
tency of modeling assumptions and expectations as well as
to keep changing model parameters and data in sync across
the system modules. In addition, there is the added cost of
implementing, testing and validating these special purpose
models.

In this paper we describe a computational modeling archi-
tecture for robotic systems that has been designed to over-
come these challenges for robotics analysis, simulations and
embedded modeling. Our approach is to develop a highly ca-
pable modeling layer to serve as a foundation for the diverse
and demanding needs of application layers. The architecture
is illustrated in Figure 1. Its lowest layer is thespatial

SOA theoretical
framework

DARTS computational
dynamics

Robotics
analysis

Dshell
simulations

RoboDarts
embedded models

Fig. 1. Overall robotics computational mechanics architecture built upon
the SOA theory, the DARTS software library for analysis, simulation and
embedded modeling applications.

operator algebra (SOA) theoretical framework for computa-
tional mechanics [6]. SOA provides mathematical tools for
expressing, analyzing and computing a very broad range of
robot mechanics quantities. It’s expressiveness allows itto
coherently meet the large variety of mechanics modeling
needs for robot models. It uses spatial operators for the
concise mathematical description and analysis of dynamics
quantities, as well as the generation of fast, structure-based
computational algorithms. Section II provides an overview
of the SOA framework, and Section II-A describes the
SOA processes for developing low-order, structure-based
computational algorithms.

The next layer of the architecture is theDARTS computa-
tional dynamics C++ library whose design is based upon the
SOA framework. DARTS provides methods for the compu-
tation of a broad range of robot modeling quantities and is
described in Section III. The DARTS library also includes a
number of dynamics solvers needed for time simulation of
robot dynamics. These solvers utilize the underlying DARTS
methods and differ in the type of dynamics they handle, as



well as the algorithms they use. These solvers are described
in Section III-A.

The robot modeling applications build upon the SOA
and DARTS layers. In Section IV we discuss models for
supporting robotics analysis. In particular we detail the
PyCraft toolkit for the development, testing and maturation
of advanced computational dynamics techniques. Section V
turns to the important area of dynamics simulation. DARTS
and its solvers form the heart of theDshell simulation frame-
work for the development of system level physics-based
simulations. Dshell provides ways to organize and manage
the large number of component models in these simulations
and to reuse these component and sub-system models across
simulations. Dshell has been adapted to develop rover and
flight dynamics system simulations. Finally, in Section VI
we describe theRoboDarts embedded modeling layer that
is built upon DARTS. RoboDarts is designed for use by
autonomy software to meet the diverse modeling needs for
planning, estimation and real-time control. Specific attention
is paid to performance speed, time variability of the tasks
and environment and the robot platform’s interactions with
them.

II. SOA THEORETICAL FRAMEWORK

The spatial operator algebra (SOA) theory and mathe-
matical framework for multibody dynamics [6] has been
developed over two decades of research. SOA provides a
mathematical language for succinctly characterizing and an-
alyzing complex dynamics quantities for articulated robotics
systems. It also provides a natural avenue for developing fast,
structure-based computational dynamics algorithms. These
features make possible its use as a powerful architecture for
the computational mechanics of robotic systems.

SOA makes use ofminimal coordinate system representa-
tions. Thus inter-link hinge motion is parameterized by min-
imal set of coordinates instead of with redundant coordinates
subject to constraints. This reduces the size of the equations
of motion and avoids the need to manage constraint violation
errors required with redundant coordinates. A side-effectof
using minimal coordinates is that the mass matrix, and other
system matrices, are dense and configuration dependent and
thus, more complex. However, these quantities have rich
structure that the SOA provides the mathematics tools to
handle.

The mapping between joint and link velocities serves as a
simple example to introduce the notion ofspatial operators.
The 6-dimensional spatial velocityV(k) of the kth link de-
pends on that of its parent link’s spatial velocityV(k+1) via
the relationshipV(k) = φ∗(k+1,k)V(k+1)+H∗(k) θ̇̇̇(k),
whereφ∗(k+1,k) denotes the rigid body propagation matrix
for the pair of links,H∗(k) characterizes the permissible
hinge motion across the connecting hinge andθ(k) the kth

hinge coordinates. This component level relationship can
be converted into a system level relationship of the form
V = φ∗H∗ θ̇̇̇, where V and θ̇̇̇ are system level vectors
obtained by stacking up the vector contributions from each
link. φ andH are block matrices whose elements are defined

by the componentφ∗(k+1,k) andH∗(k) link-level matrices.
φ andH are examples ofspatial operators.

The conciseV = φ∗H∗ θ̇̇̇ relationship reflects the rich
structure of theφ operator. Indeed, for tree/serial topology
systems,φ = (I − Eφ)−1, where Eφ is another spatial
operator whose structure is closely related to the adjacency
matrix for the graph associated with the connection topology
of the linkages [7].Eφ is always nilpotent for serial/tree
topology systems.

The mathematical structure of the spatial operators make
possible several transformations and simplifications of dy-
namics quantities. A seminal example of this is the system
mass matrix,M(θ). It has been shown to have the factored
form M(θ) = HφMφ∗H∗, whereM is a block-diagonal
spatial operator with link spatial inertias. While this factor-
ization involves non-square factors, the following sequence
of analytical spatial operator expressions with alternative
factorizations involving square factors. and an expression for
its inverse, can be derived [8]:

M = HφMφ∗H∗

= [I+HφK]D[I+HφK]∗

[I+HφK]−1 = I−HψK

M−1 = [I−HψK]∗D−1[I−HψK]

(1)

These expressions involve the additionalψ, D, andK spatial
operators described in [6]. The analytical expressions in Eq. 1
are remarkable in that they hold generally for arbitrary size
serial/tree topology systems. They are direct consequences of
the intrinsic mathematical structure of the spatial operators.
Indeed, theEφ andφ operators are special instances of a
broader family ofspatial kernel operator (SKO) andspatial
propagation operator (SPO) operators [6]. Theψ operator
is also an instance of an SPO operator.

It has been shown using graph theory ideas that spatial
operator expressions, such as in Eq. 1, generalize to the
case where the component bodies and hinges are flexible
[6]. Remarkably, they hold even when the system graph
is transformed into simpler graphs by aggregating groups
of bodies into new variable geometry compound bodies.
This observation forms the basis ofconstraint embedding
techniques that transform non-tree topology graphs into tree
graphs, and thus extend the applicability of Eq. 1 to even
non-tree topology systems [6].

Spatial operator analysis applies to a number of robot
dynamics problems such as joint space dynamics, operational
space dynamics, under-actuated systems, sensitivity analysis,
diagonalized dynamics etc. The SOA provides a unified way
to tie together results and analysis obtained from disparate
approaches, and to understand the relationships among them.
Also, the SOA has been used for several novel analyses and
results not possible by other means [6]. The rich structure
of spatial operators arises, perhaps not coincidentally, from
the close mathematical parallels with concepts and analysis
techniques developed in the optimal estimation arena.



A. Structure Based Computational Algorithms

We now examine the intimate connections between spatial
operator expressions and low-order computational algorithms
that is one of the hallmarks of the SOA-based computational
architecture. As a case in point, we observed earlier the
equivalency between the link-level velocity recursive rela-
tionships (and the implied computational procedure) and the
V = φ∗H∗ θ̇̇̇ spatial operator expression. The connection
between spatial operator expressions and recursive computa-
tional procedures is in fact much broader and deeper. Thus,
while a spatial operator expression of the formφ∗x may
suggest the need for a matrix/vector product for evaluation
(quadratic order cost), it turns out that such a product
can always be evaluated via a linear-order recursivescatter
algorithm that starts at the base of the tree and traverses
the links towards the tip bodies as shown on the right of
Figure 2. The recursive algorithm for computing the link
velocities is a special case of such a scatter algorithm.
Similarly, dual spatial operator expressions such asφx do not

y = φx y = φ∗x y(1)y(1)

y(n)y(n)

11

kk

nn

Tips-to-base
gather
recursion

Base-to-tips
scatter
recursion

Fig. 2. Tips-to-base gather and base-to-tips scatter recursions to evaluate
φx andφ∗x, respectively for tree-topology systems.

require expensive matrix/vector products either, but instead
can always be evaluated using a linear-order, recursivegather
algorithm that starts at the tips and traverses the links towards
the base body while accumulating results from converging
branches. An example application of a gather computation is
the computation of compensating torques for an end-effector
force. The value of this torque isJ∗fe, whereJ is the end-
effector Jacobian andfe the end-effector spatial force. The
spatial operator expression for the Jacobian isJ = B

∗φ∗H∗,
and thus the torqueJ∗f = HφBfe which can be directly
computed using a recursive gather sequence.

The recursive path of the gather and scatter algorithms
are isomorphic to the topological structure of the system, and
hence we refer to them asstructure-based algorithms. As the
system topology changes, the gather and scatter recursion
paths change accordingly so that the computations remain
correct. Such structure-based algorithms always exist for
spatial operator expression involving SKO and SPO spatial
operators such asEφ, φ, ψ etc.

Inverse dynamics computations require evaluation of the
M(θ) θ̈̈̈ product. While direct evaluation is expensive and
requires the explicit evaluation of theM mass matrix, we can
instead use the spatial operator expressionM in Eq. 1 to note
that this product has the formHφMφ∗H∗ θ̈̈̈. This expression

can be evaluated using a scatter recursion forMφ∗H∗ θ̈̈̈

followed by a gather recursion on the result to compute the
full product. This procedure is of linear cost and does not
require the explicit evaluation ofM. It is essentially the well
known Newton-Euler inverse dynamics algorithm [9].

Forward dynamics computations require the evaluation of
M−1(θ)T. Once again, the cost of this evaluation can be
reduced to linear-order by using the spatial operator expres-
sion for M−1 from Eq. 1 so that we need to evaluate[I −
HψK]∗D−1[I − HψK]T. From simple examination we see
that this can be evaluated using a gather recursion followed
by a scatter recursion without ever explicitly requiringM or
M−1. This procedure is in fact the well known linear cost
articulated body (AB) forward dynamics algorithm [8, 10].

The above examples illustrate the ability to convert spatial
operator expressions for dynamics quantities into low-order,
structure-based computational algorithms from simple ex-
amination of the expression structure. Other more advanced
examples of such mapping also extend to (Lyapunov) spatial
operator expressions involving matrix/matrix products such
asφXφ∗ and the dualφ∗Xφ spatial operator expressions.
The former appears within the mass matrix spatial operator
expression in Eq. 1. Expressions such as these can also
be computed using low-order scatter and gather algorithms
based on a operator decomposition of such products into a
block diagonal matrix, and off diagonal terms that can be
computed from the block diagonal part. We refer the reader
to [6] for additional details. The well-knowncomposite-rigid
body algorithm for the mass matrix [11] and thearticulated
body inertia algorithm [8, 10] are both examples for the
first Lyapunov quadratic form. The latter quadratic form
appears in theoperational space inertia spatial operator
expressionB∗ψ∗H∗D−1HψB, and forms the basis for the
fastest available computational algorithm for its evaluation
[6]. For additional examples of such spatial operator to
structure-based algorithms we refer the reader to reference
[6]. The key take away messages are that not only is it
possible to obtain fast computational methods from analytical
spatial operator expressions, but that a large and diverse
family of such fast algorithms emerge naturally from the
SOA approach.

III. DARTS COMPUTATIONAL DYNAMICS

As described above, the SOA framework provides us with
a mathematical vocabulary and tools that cover a broad
spectrum of dynamics analysis needs and fast algorithms
for computing them. We have used the SOA architecture to
develop theDynamics Algorithms for Real-Time Simulation
(DARTS) computational dynamics C++ software. Earlier gen-
erations of DARTS implemented the SOA rigid and flexible
body forward dynamics algorithms for spacecraft simulation.
More recent versions of DARTS more completely exploit the
richer structure-based SOA computational architecture. Thus
DARTS is not designed for a specific function, eg. dynamics
simulation, but rather encompasses the broad family of
SOA based methods that can be combined to meet different
modeling needs.



Since relative pose, velocity and acceleration computations
permeate dynamics computations, DARTS includes a generic
layer for frame to frame queries. The frames layer provides
methods to obtain relative data for any pair of frames defined
in the system. Lazy evaluation and data caching is used for
on demand computation and to avoid recomputing unchanged
values. This abstraction layer considerably simplifies link-
level computations. The frames can be specialized to become
links, viewing cameras, or other moving elements such as
planetary bodies.

DARTS provides classes for bodies and hinges that con-
nect them. The bodies are organized as a directional graph
(digraph) consisting of a spanning tree, and additional bi-
lateral constraints that may be present. Bilateral constraints
are themselves defined by hinges that characterize the per-
missible motion across the constraints. A variety of hinge
types with 0 to 6 degrees of freedom are available to choose
from. These classes help to define the physical model of the
system.

Computational algorithms operate on user defined sub-
graphs of the physical graph. Thus an inverse dynamics
computation can be limited to a part of the system by
defining a subgraph for the subsystem. The SOA scat-
ter/gather structure-based algorithms traverse just the links
in the subgraph. When the subgraph happens to be the
full system, the inverse dynamics for the full system is
computed. The ability to work with subgraphs is very useful
for systems such as mobile and multi-arm platforms, where
intermediate information for sub-systems is often needed for
planning and control. The lazy evaluation and data caching
approaches for frames are used for dynamics computations
as well. Thus velocity changes do not require recomputation
of configuration dependent quantities.

DARTS includes implementations of all the SOA scat-
ter/gather algorithms described in Section II such as for in-
verse dynamics, articulated body forward dynamics, compos-
ite body inertias, composite momentum, operational space
inertias etc. The forward dynamics algorithm actually is
a mixed dynamics variation of the standard AB forward
algorithm, in that it allows the accelerations for arbitrary
coordinates to be prescribed, i.e., specified as inputs, and
the algorithm solves for the required hinge torques. The
mixed dynamics is handled by a simple modification of the
standard AB gather/scatter sweeps. DARTS also has methods
to iteratively solve for coordinates consistent with constraints
on the system that can be used for inverse kinematics
computations.

DARTS also supports treating a subgraph of bodies as a
variable geometry compound body. Such an aggregation step
can be used to eliminate loops from the graph topology of
the system as needed for constraint embedding dynamics.
All of the SOA algorithms are applicable to the transformed
subgraph.

DARTS allows the run-time addition and deletion of
bodies as well as their reattachment. Being structure-based,
the SOA algorithms continue to work as is after such changes
to the system topology. Geometrical shapes can be attached

to the bodies. The geometry information can be used by
collision detection and 3D visualization modules as needed.
Interfaces exist for the automatic synchronization of the
DARTS state with such support modules.

A. DYNAMICS SOLVERS

Physics-based simulations are important application prob-
lems for dynamics modeling. Simulations use solvers to
compute time trajectories of the system state by solving and
propagating the equations of motion which have the form

M(θ) θ̈̈̈+ C(θ, θ̇̇̇) = T

Gc(θ, t) θ̇̇̇− U(t) > 0 (2)

C(θ, θ̇̇̇) in the first expression represents the Coriolis, gy-
roscopic and gravitational terms in the equations of motion
for the tree-topology part of the system. The second equa-
tion defines any additional constraints that may be present.
The constraints for whom equality holds are referred to as
(smooth) bilateral constraints while the inequality ones are
non-smooth unilateral constraints (eg. contact constraints).
Key factors effecting the quality of a solver are its com-
putational speed, modeling fidelity, and numerical accuracy.
Solvers can be categorized as being smooth or non-smooth
solvers. Non-smooth solvers can handle impulsive collision
and contact dynamics. DARTS implements several solvers
that build upon the family of dynamics methods and algo-
rithms available within DARTS. A brief overview of the key
solvers is described next.
Tree smooth dynamics solver: This solver is for the
smooth dynamics of tree topology systems with no additional
constraints. The underlying minimal coordinate equations
of motion are ordinary differential equations. This solver
uses the optimal low-order AB mixed dynamics algorithm
for solving the equations of motion together with ODE
integration schemes for the time propagation of the system
state.
Tree-augmented (TA) smooth constrained dynamics
solver: For systems with non-tree topologies, the smooth
dynamics must handle constraints on the system dynam-
ics. The TA solver does so in multiple steps: (a) use the
mixed AB dynamics algorithm for solving the unconstrained
equations of motion; (b) use this solution to solve for the
unknown constraint forces; and (c) correct the solution from
(a) with the accelerations from the constraint forces from (b).
Steps (a)-(c) provide a solution for the constrained equations
of motion. Since the equations of motion use redundant
coordinates, a DAE integrator is required to integrate the
state derivatives. Also a constraint error stabilization scheme
is required to keep the solution on the constraint manifold.
While steps (a) and (c) use the fast mixed AB algorithms,
step (b) requires the computation of a Schur complement
matrix of the form GcM−1G∗

c whose size depends on
the constraints. While this can be an expensive matrix to
compute, we have used SOA techniques to show that its
structure is closely related to that of the operational space
inertia, and thus linear cost SOA algorithms can be used to



loop

closed
loop
system

constraints

FA model
constraints

TA model

aggregation

CE model

Fig. 3. Dynamics solver options for time simulation of smooth, constrained
dynamics problems.

evaluate the Schur complement and significantly reduce the
cost of step (b) [6].
Fully-augmented (FA) smooth constrained dynamics
solver: The FA solver is similar to the solvers in dynamics
packages such as [2, 4, 12]. It can be a viewed as a limiting
case of the TA solver, where all the hinges are replaced
by constraints. The system dynamics consists of a set of
independent bodies subject to a large set of constraints. Since
no hinges are involved, the equations of motion are simple
to set up. The matrices involved are large, but sparse. The
solution technique is similar to that for the TA solver, except
that steps (a) and (c) are trivial, and the bulk of the cost
lies in step (b). Again, a DAE solver and constraint error
stabilization is required.
Constraint-embedding (CE) smooth constrained dynam-
ics solver: Unlike the TA and FA solvers that impose
constraints on the unconstrained dynamics, the CE solver
eliminates the constraints from the system graph using con-
straint embedding techniques [13]. In this approach, links
in loops with constraints are aggregated into compound
bodies to eliminate the constraints from the transformed
graph. After eliminating all constraints in this manner, the
transformed graph is a tree, and the tree dynamics solver
can be used. This technique is faster and also numerically
more robust because only minimal coordinates are integrated.
Moreover, the underlying dynamics is an ODE thus per-
mitting simpler integrators and larger time steps. There are
extra computations involved in the scatter/gather traversals
across compound bodies, but these additional costs are far
outweighed by the savings from using the tree dynamics
solver.
Non-smooth contact/collision dynamics solver:Contact
and collisions involve impulsive, non-smooth dynamics.
DARTS implements a complementarity based algorithm for
solving such non-smooth dynamics with support for elastic
and inelastic collisions. [14, 15]. The DARTS approach
differs from prior approaches [4] in its use of a minimal
coordinates formulation that is significantly faster and avoids
problems from the use of redundant coordinates. This solver

handles both bilateral and unilateral constraints. An example
of the dynamics simulation of a tire changing scenario is
shown in Figure 4. The DARTS based models are used within
embedded models in the autonomous execution [1] of the
same scenario shown on the right side of the figure.

Fig. 4. The left figure shows the time simulation of the non-smooth dynamics
of a tire changing robotic task using a DARTS based simulator.The figure
on the right shows the same scenario being executed autonomously with
DARTS based embedded models.

A comparison of the computational costs of the TA, FA
and CE smooth constrained dynamics solvers is described
in [16]. The CE solver is the fastest, followed by the
TA solver, with the FA solver being a distant third. A
comparison of the computational cost of the DARTS non-
smooth solver and the traditional non-smooth solver schemes
is described in [14, 15]. The DARTS solver is significantly
faster and has the advantage of using minimal coordinates.
For smooth constrained dynamics, the TA and the CE solvers
can be combined, where constraint embedding is used to
eliminate constraints associated with small loops, while the
TA augmented approach is used for constraints associated
with larger loops.

IV. APPLICATION: ANALYSIS

Robot analysis is a broad ranging area with uses spanning
robot design and optimization (for actuator sizing, mass
properties, kinematic characteristics), robot performance
analysis (workspace, singularity characterization), robot op-
erations (designing sequences, gait analysis, determining op-
erational constraints) etc. One of the intended uses of DARTS
is as an analysis tool for such robotics problems. Python
bindings for all the C++ classes and methods in DARTS
are available to facilitate such use. The Python bindings
are auto-generated using the SWIG tool [17] and faithfully
mirror the underlying C++ classes. The Python bindings
allow users to exercise the full C++ functionality within the
Python scripting environment. This includes the running of
Python analysis scripts as well as interactive user sessions. A
typical session begins with the initialization of the DARTS
robot model via a model description file, followed by various
analysis computations from the command line or via analysis
scripts and supplementary Python modules. The Python
interface allows users to leverage Python’s extensive built-in
capabilities, and its large collection of open source extension
modules. Furthermore, being a programming language, it is
possible to use variables, loop and other constructs within
scripts. The scripting capability removes the burden of build-
ing or compiling software from users. Parametric analysis is
straightforward using this infrastructure.



We have also developed thePyCraft environment [18] to
allow the development, validation and benchmarking of dy-
namics algorithms. PyCraft extends DARTS by adding C++
classes that mimic SOA operators. This allows users to create
operator instances for their robotic system, and combine
the operators in different ways via intuitive expressions that
mirror the underlying SOA expressions. Once again, while
all the PyCraft classes can be accessed at the C++ level,
the Python bindings allow the classes to be instanced and
manipulated within Python scripts and sessions.

Thus, PyCraft exploits the succinct and expressive nature
of SOA operators to allow the easy evaluation of complex
dynamics quantities. For example, theT = HφMφ∗H∗ θ̈̈̈
computation for inverse dynamics can be computed from the
PyCraft Python prompt via the following statement:

>>> T = H*Phi*M*PhiStar*HStar*thetaddot

The SOA forward dynamics spatial operator expressionθ̈̈̈ =
M−1T = [I−HψK]∗D−1[I−HψK]T can be evaluated via

>>> thetaddot = (I-H*Psi*K).transpose()*
D.inverse()*(I-H*Psi*K)*T

Similarly complex quantities such as the mass matrix and
its inverse can be evaluated using the SOA expressions for
them. The+, ∗ etc binary operators are overloaded to invoke
the appropriate low-order scatter/gather SOA algorithms for
the operation. The PyCraft extension makes available virtu-
ally the complete suite of SOA operator based analysis at
the command line. This is useful for developing, testing and
maturing complex and new algorithm ideas in an easy to use
environment. The operator layer reduces the analysis burden
by allowing work to be carried out at a much higher level
without getting swamped by the low level details of typical
dynamics formulations. This enables rapid prototyping of
new computational ideas and algorithms for robot dynamics.

V. APPLICATION: SIMULATION

Section III-A described DARTS solvers for supporting the
dynamics simulation of robot mechanisms. Physics-based
simulations build upon such dynamics solvers and typically
include several other models for engineering platform simu-
lations. Such component models can include models for actu-
ators and sensors, control elements, and environment models.
These models interact with the dynamics as generators of
forces and consumers of data. It is not unusual for such
component models and their parameters to number in the
hundreds and thousands for even moderately sized robotic
platforms. Managing the data flow and interconnects across
them can be a complex and error prone endeavor.

We use theDarts Shell (Dshell) simulation framework
[19] for developing full-scale engineering scale simulations
of robotic platforms. The goals of the Dshell framework are
to facilitate the development and reuse of component mod-
els; provide standard simulation facilities such as logging,
introspection, checkpointing, user interfaces; help hierarchi-
cally organize and reuse sub-system models; and meet the
simulation needs for multiple domains. Figure 5 illustrates
examples of systems simulated using Dshell. The adaptation

Fig. 5. Examples of platform simulations developed using the Dshell
simulation framework.

of Dshell for mobile robot simulation is theROAMS rover
simulator [20], and for flight dynamics simulations is the
DSENDS simulator [21]. ROAMS and DSENDS differ in the
types of models they use, their specific user communities
and the user interface and usage. However they are both
built upon the Dshell layer, and thus able to share and use
component models developed for either of the domains.

The Dshell model base class supports parameters and
internal states. The inputs and outputs of Dshell models can
be connected at run-time to set up a data flow. The models
are DARTS aware so that they can get and set dynamics
data. Dshell contains an instance of the DARTS solver
for propagating the dynamics and model continuous states.
Bridging the gap between the low level Dshell models and
the system level simulation are a hierarchy of Dshell assem-
blies. These assemblies represent sub-systems (eg. a wheel
assembly), multiple instances of whom can be contained
within assembly hierarchies. An example of the assembly
hierarchy for a ROAMS rover model is shown in Figure
6. Once again, while Dshell is primarily C++ software,
its Python bindings permit easy configuration, customization
and scripting of the simulations.

VI. APPLICATION: EMBEDDED MODELS

The mechanical, geometric, kinematic, dynamics, sensor
and actuator characteristics of the robot fundamentally effect
the operation of the robot and its interactions with the
task environment. Onboard autonomy modules often rely on
models to obtain information and data needed during run-
time. The effective use of embedded models does not require



Rover
Environment

Sun
Gravity

Software
Locomotion

Navigation

Hardware

Chassis

Mast

Arm

Wheels
Wheel1

WheelN

Motor

SurfaceContact

Sensors

IMU SunSensor Cameras

...

Fig. 6. Illustration of a hierarchy of Dshell assemblies usedto organize the
sub-systems within a ROAMS planetary rover simulation.

the models be perfect, but instead that they help reduce
the demands on the autonomy software. A-priori knowledge
and online estimators are typically used to continuously
update and improve the model data to handle uncertainty
and changes during task execution.

Due to the variety and complexities of modeling needs,
there is a tendency towards using simplified or fragmented
implementations of custom models to meet specific auton-
omy module needs. This not only adversely impacts the qual-
ity of the models but of the overall autonomy architecture. To
avoid this, we have used DARTS to develop the RoboDarts
embedding modeling layer for use within robot autonomy
software. RoboDarts serves as an oracle-like modeling layer
for embedded use within autonomy modules. It is designed to
support fast computation of the broad variety of model-based
information needed by the modules. Furthermore, SOA’s
structure-based algorithms are able to adapt quite naturally
to handle run-time changes to the robot, its tasks and the
environment.

RoboDarts allows the definition of different parts of the
robotic systems such as arms, legs, necks, grippers etc.
Specializedforward andinverse kinematics functions for any
of these sub-systems can be defined. The frames layers are
used by all modules for computing needed pose transforms
as well as for driving 3D visualization graphics. The inverse
kinematics is used for motion planning, as well as for
redundancy management during real-time control.Jacobians
andmanipulability measures are available for all linkages in
the system. These are used for planning, motion control as
well as for projecting end-effector forces into joint torques.

A collision detection module (built upon the Bullet colli-
sion detection library [4]) supports the checking of collisions
between bodies. This is used by the motion planner to
plan collision free paths as well as by the grasp planner
to generate grasp sets. This module allows one to select the
coarseness of the collision shape geometries, to selectively
hide objects, as well as to add padding to shapes. The
selective collision filtering feature allows users to disable col-
lision checking between specific pairs of bodies as needed.
Collision filters are automatically updated when bodies are

attached and detached from each other during run-time (eg.
impact driver and its battery). This also extends to the
run-time grasping and ungrasping of objects by the arm
hands. Such grasping is not limited to individual rigid body
objects but also toarticulated task object linkages (eg.
trimmers). Pose estimates generated by the estimator are
used to continually update the attachment poses within the
modeling layer.

When heavy objects (eg. tires, impact drivers) are grasped
by a hand, appropriate gravity compensation torques need
to be applied to overcome arm sag. Suchfeedforward
compensating torques are computed by the modeling layer
for the control module. Dual-arm manipulation introduces
loop constraints within the system topology. While reducing
the available number of motion degrees of freedom, these
constraints lead to internal forces that build up within the
robot. A move/squeeze decomposition approach [6] is used to
compute the feedforward terms that optimallyload balance
the torques among the arms.

Dynamics simulations are also available for use by the task
planner to plan execution sequences, and by the estimator
to generate dynamics based predicts. Other miscellaneous
computations available within RoboDarts include those for
the operational space inertia for control in task space, and
recursive methods to compute system center of mass and
composite rigid body inertias.

An adaptation of RoboDarts is currently in use by the JPL
team participating in the DARPA ARM-S competitive pro-
gram [1]. The goals of the ARM-S project are to demonstrate
autonomous dual-arm manipulation for a variety of tasks
in an unstructured environment. Examples of tasks include
using a key to open a door, hang up a phone, drill a hole,
change a tire, cutting wire with a tool etc. The RoboDarts
modeling layer is used by each of the perception, planning,
estimation and control autonomy modules, though each
module uses its instance of RoboDarts in a different way.
Such sharing has several benefits including - centralization of
model data, common model interface throughout the system,
ease of updating modeling methods, and encapsulation of
model complexity within the modeling layer.

VII. CONCLUSIONS

This paper describes a computational architecture that
comprehensively addresses a broad range of robotics model-
ing needs across analysis, simulation and embedded mod-
eling applications. The computations use fast, structure-
based algorithms from the SOA theoretical framework. The
richness of the architecture avoids fragmented and over-
simplified model implementations. Also, the grounding in
the SOA framework and the generic DARTS library allows
for a continual advancement of the architecture with new ca-
pabilities and algorithms and improvement in the application
layers. We believe that such strong foundations are essential
for meeting the ever growing needs for autonomous robotics
systems.



ACKNOWLEDGMENTS

The research described in this paper was performed at
the Jet Propulsion Laboratory (JPL), California Instituteof
Technology, under a contract with the National Aeronau-
tics and Space Administration under a contract with the
National Aeronautics and Space Administration and funded
through the internal Research and Technology Development
program.1 This project was also supported in part by the
DARPA Autonomous Robotic Manipulation Software Track
(ARM-S) program.

REFERENCES

[1] N. Hudson, T. Howard, J. Ma, A. Jain, M. Bajracharya,
S. Myint, C. Kuo, L. Matthies, P. G. Backes, P. Hebert,
T. Fuchs, and J. W. Burdick, “End-to-End Dexterous
Manipulation with Deliberate Interactive Estimation,”
in IEEE International Conferenceon Robotics and
Automation, Minneapolis, MN, 2012.

[2] “Gazebo.” http://gazebossim.org
[3] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics

engine for model-based control,” in2012 IEEE/RSJ
International Conferenceon Intelligent Robots and
Systems, Oct. 2012, pp. 5026–5033.

[4] “Bullet Physics Library,” 2013. http://bulletphysics.org
[5] “OpenRave,” 2013.

http://openrave.org/docs/lateststable/
[6] A. Jain, RobotandMultibody Dynamics:Analysisand

Algorithms. Springer, 2011.
[7] ——, “Graph Theoretic Foundations of Multibody

Dynamics Part I: Structural Properties.”Multibody
SystemDynamics, vol. 26, no. 3, pp. 307–333, June
2011.

[8] G. Rodriguez, A. Jain, and K. Kreutz-Delgado, “A
spatial operator algebra for manipulator modeling and
control,” InternationalJournal of Robotics Research,
vol. 10, no. 4, p. 371, 1991.

[9] J. Y. S. Luh, M. W. Walker, and R. P. Paul, “On-line
Computational Scheme for Mechanical Manipulators,”
ASME Journalof DynamicSystems,Measurement,and
Control, vol. 102, no. 2, pp. 69–76, June 1980.

[10] R. Featherstone,Robot Dynamics Algorithms. Kluwer
Academic Publishers, 1987.

[11] M. W. Walker and D. E. Orin, “Efficient Dy-
namic Computer Simulation of Robotic Mechanisms,”
ASME Journalof DynamicSystems,Measurement,and
Control, vol. 104, no. 3, pp. 205–211, Sept. 1982.

[12] “Open Dynamics Engine.” http://www.ode.org/
[13] A. Jain, “Multibody graph transformations and analysis

Part II: Closed-chain constraint embedding,”Nonlinear
Dynamics, vol. 67, no. 3, pp. 2153–2170, Aug. 2012.

[14] A. Jain, C. Crean, C. Kuo, H. von Bremen, and
S. Myint, “Minimal Coordinate Formulation of Contact
Dynamics in Operational Space,” inRoboticsScience
andSystems, Sydney, Australia, 2012.

1 c©2013 California Institute of Technology. Government sponsorship
acknowledged.

[15] A. Jain, “Minimal Coordinates Formulation of Contact
Dynamics,” inMultibody Dynamics2013,ECCOMAS
ThematicConference, Zagreb, Croatia, 2013.

[16] A. Jain, C. Crean, C. Kuo, and M. B. Quadrelli,
“Efficient Constraint Modeling for Closed-Chain Dy-
namics,” in The 2nd Joint International Conference
on Multibody SystemDynamics, Stuttgart, Germany,
2012.

[17] “Simplified Wrapper and Interface Generator (SWIG).”
http://swig.org

[18] A. Jain and J. Ziegler, “PyCraft: An Algorithm Work-
bench for Computational Multibody Dynamics,” in7th
World Congresson ComputationalMechanics, Los
Angeles, CA, July 2006.

[19] C. Lim and A. Jain, “Dshell++: A Component Based,
Reusable Space System Simulation Framework,” in
Third International Conference on Space Mission
Challenges for Information Technology (SMC-IT
2009), Pasadena, CA, July 2009.

[20] A. Jain, J. Balaram, J. Cameron, J. Guineau, C. Lim,
M. Pomerantz, and G. Sohl, “Recent Developments in
the ROAMS Planetary Rover Simulation Environment,”
in IEEE 2004 AerospaceConf., Big Sky, Montana,
2004.

[21] J. Cameron, J. Balaram, A. Jain, C. Kuo, C. Lim, and
S. Myint, “Next Generation Simulation Framework for
Robotic and Human Space Missions,” in2012 AIAA
Space, Pasadena, CA, 2012.


