
Investigating the Mobility of Light Autonomous Tracked
Vehicles Using a High Performance Computing

Simulation Capability

Dan Negrut∗, Hammad Mazhar∗, Daniel Melanz∗†, David Lamb†,
Paramsothy Jayakumar†, Michael Letherwood†, Abhinandan Jain‡,

Marco Quadrelli‡

∗ Department of Mechanical Engineering
University of Wisconsin - Madison

Madison, WI 53706
† U.S. Army Tank Automotive Research, Development and Engineering Center

Warren, MI 48397
‡ Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

ABSTRACT

This paper is concerned with the physics-based simulation of light tracked vehi-
cles operating on rough deformable terrain. The focus is on small autonomous
vehicles, which weigh less than 100 lb and move on deformable and rough terrain
that is feature rich and no longer representable using a continuum approach.
A scenario of interest is, for instance, the simulation of a reconnaissance mis-
sion for a high mobility lightweight robot where objects such as a boulder or
a ditch that could otherwise be considered small for a truck or tank, become
major obstacles that can impede the mobility of the light autonomous vehicle
and negatively impact the success of its mission. Analyzing and gauging the
mobility and performance of these light vehicles is accomplished through a mod-
eling and simulation capability called Chrono::Engine. Chrono::Engine relies on
parallel execution on Graphics Processing Unit (GPU) cards.

1 INTRODUCTION

Engineers are increasingly relying on simulation to augment and, in some cases,
replace costly and time consuming experimental work. However, current simu-
lation capabilities are sometimes inadequate to capture phenomena of interest.
In tracked vehicle analysis, for example, the interaction of the track with gran-
ular terrain has been difficult to characterize through simulation due to the
prohibitively long simulation times associated with many-body dynamics prob-
lems. This is the generic name used here to characterize dynamic systems
with a large number of bodies encountered, for instance, when one adopts a
discrete representation of the terrain in vehicle dynamics problems. However,
these many-body dynamics problems can now capitalize on recent advances in
the microprocessor industry that are a consequence of Moore’s law, of doubling

1

the number of transistors per unit area roughly every 18 months. Specifically,
until recently, access to massive computational power on parallel supercomput-
ers has been the privilege of a relatively small number of research groups in
a select number of research facilities, thus limiting the scope and impact of
high performance computing (HPC). This scenario is rapidly changing due to
a trend set by general-purpose computing on graphics processing unit (GPU)
cards. NVIDIA’s CUDA library [21] allows one to use the streaming multipro-
cessors available in high-end graphics cards. In this setup, a latest generation
NVIDIA GPU Kepler card will reach 1.5 Teraflops by the end of 2012 owing
to a set of 1536 scalar processors working in parallel, each following a Single
Instruction Multiple Data (SIMD) execution paradigm. Despite having only
1536 scalar processors, such a card is capable of managing tens of thousands
of parallel threads at any given time. This overcommitting of the GPU hard-
ware resources is at the cornerstone of a computing paradigm that aggressively
attempts to hide costly memory transactions with useful computation, a strat-
egy that has lead, in frictional contact dynamics simulation, to a one order of
magnitude reduction in simulation time for many-body systems [34, 20].

The challenge of using parallel computing to reduce simulation time and/or
increase system size stems, for the most part, from the task of designing and
implementing many-body dynamics specific parallel numerical methods. De-
signing parallel algorithms suitable for frictional contact many-body dynamics
simulation remains an area of active research. Results reported in [16] indicate
that the most widely used commercial software package for multibody dynamics
simulation, which draws on a so called penalty or regularization approach, runs
into significant difficulties when handling simple problems involving hundreds of
contact events, and thus cases with thousands of contacts become intractable.
Unlike these penalty or regularization approaches where the frictional interac-
tion is represented by a collection of stiff springs combined with damping ele-
ments that act at the interface of the two bodies [11, 28, 29, 22], the approach
embraced herein draws on a different mathematical framework. Specifically,
the parallel algorithms rely on time-stepping procedures producing weak solu-
tions of the differential variational inequality (DVI) problem that describes the
time evolution of rigid bodies with impact, contact, friction, and bilateral con-
straints. When compared to penalty-methods, the DVI approach has a greater
algorithmic complexity, but avoids the small time steps that plague the former
approach.

The task of presenting this class of algorithms and their parallel implementa-
tion is organized as follows. Section 2 provides a brief description of the general
equations that capture the dynamics of many-body systems. This section also
contains an outline of the parallel method embraced to numerically solve the
equations of motion. One of the challenging components of the solution method
is the collision detection step required to determine the set of contacts active in
the many-body system. These contacts, crucial in producing the frictional con-
tact forces at work in the system, are determined in parallel using an approach
outlined in Section 3. A scalable rendering pipeline that can leverage thousands
of CPU cores for visualization purposes is discussed in Section 4. The engineer-

2

ing application used to demonstrate this parallel simulation capability is that
of a light tracked vehicle that operates on granular terrain and negotiates an
obstacle course. To further illustrate the versatility of the simulation capability,
the vehicle is assumed to be equipped with a drilling device used to penetrate
the terrain. Both the vehicle dynamics and the drilling process are seamlessly
analyzed within the same HPC-enabled simulation capability. A schematic of
the vehicle is provided in Fig. 1(a). A cut-away image of the drilling tool is
shown in isolation in Fig. 1(b).

(a) Light autonomous vehicle negotiating a pile of rubble.

(b) Cutaway view: Anchor pene-
trating granular material [18].

Figure 1: Two examples in which hundreds of thousands of bodies interact
mutually through contact and friction.

2 THEMANY-BODYDYNAMICS PROBLEM

2.1 General Considerations

The modeling approach adopted in order to abstract and represent the dynam-
ics of the vehicle/terrain interaction is based on a differential variational in-
equality (DVI) methodology. Compared to penalty or regularization approaches

3

[11, 28, 29, 22], it allows for larger integration step sizes. The formulation of
the equations of motion, that is, the equations that govern the time evolu-
tion of a multibody system, is based on the so-called absolute, or Cartesian,
representation of the position and attitude of each rigid body in the system.
The state of the system is denoted by the generalized positions q =

[
rT1 , ε

T
1 ,

. . . , rTnb
, εTnb

]T ∈ R7nb and their time derivatives q̇ =
[
ṙT1 , ε̇

T
1 , . . . , ṙ

T
nb
, ε̇Tnb

]T
∈ R7nb , where nb is the number of bodies, rj is the absolute position of the center
of mass of the jth body, and the quaternions (Euler parameters) εj are used to
represent rotation and to avoid singularities. Instead of using quaternion deriva-
tives in q̇, it is more advantageous to work with angular velocities expressed in
the local (body-attached) reference frames; in other words, the method described

will use the vector of generalized velocities v =
[
ṙT1 , ω̄

T
1 , . . . , ṙ

T
nb
, ω̄Tnb

]T ∈ R6nb .
Note that the generalized velocity can be easily obtained as q̇ = L(q)v, where L
is a linear mapping that transforms each ω̄i into the corresponding quaternion
derivative ε̇i by means of the linear algebra formula ε̇i = 1

2G
T (q)ω̄i, with 3x4

matrix G(q) as defined in [12].

2.1.1 Bilateral Constraints

Bilateral constraints represent kinematic relationships between two rigid bodies
in the system. For example, spherical joints, prismatic joints, or revolute joints
can be expressed as holonomic algebraic equations constraining the relative
positions of two bodies. A set B of constraints leads to a collection of scalar
equations

Ψi(q, t) = 0, i ∈ B , (1)

the number of which depends on the type of constraints in set B. Bilateral
constraints must also be satisfied at the velocity level,

dΨi(q, t)

dt
= 0⇒ ∂Ψi

∂q
q̇ +

∂Ψi

∂t
= ∇qΨT

i q̇ +
∂Ψi

∂t
= ∇qΨT

i L(q)v +
∂Ψi

∂t
= 0,

(2)
which is obtained by taking one time derivative of Equation 1.

2.1.2 Unilateral Constraints and Friction

Unilateral constraints enforce contact constraints between rigid bodies in the
system. It is assumed that a gap function, Φ(q), can be defined for each pair
of near-enough bodies. This gap function describes the distance between the
closest points on the two bodies of interest.

Unilateral contact constraints also introduce friction forces into the system.
When a contact is active, or Φi(q) = 0, a normal force acts on each of the
two bodies at the contact point. When a contact is inactive, or Φi(q) > 0 ,
no normal force exists. This represents a complementarity condition. Consider
two bodies A and B in contact as shown in Fig. 2. Let ni be the normal at
the contact pointing toward the exterior of the body of lower index, which by
convention is considered to be body A. Let ui and wi be two vectors in the

4

Figure 2: Contact i between two bodies A,B ∈ {1, 2, . . . , nb}.

contact plane such that ni,ui,wi ∈ R3 are mutually orthonormal vectors. The
frictional contact forces are defined by the multipliers γ̂i,n ≥ 0, γ̂i,u, and γ̂i,w,
which lead to the normal component of the friction force, Fi,N = γ̂i,nni and the
tangential component of the force Fi,T = γ̂i,uui + γ̂i,wwi.

The Coulomb friction model, which draws for contact i on the friction coef-
ficient µi, is used to write the following constraints:

γ̂i,n ≥ 0, Φi(q) ≥ 0, Φi(q)γ̂i,n = 0, (3)

µiγ̂i,n ≥
√
γ̂2
i,u + γ̂2

i,w , ||vi,T ||
(
µiγ̂i,n −

√
γ̂2
i,u + γ̂2

i,w

)
= 0, (4)

〈Fi,T ,vi,T 〉 = −||Fi,T || ||vi,T || (5)

Equation 3 captures the complementarity condition previously described. Equa-
tions 4 and 5 relate the magnitude and direction of the friction force to the mul-
tipliers and tangential velocity of the contact. These remaining equations can
be expressed in an equivalent manner using the maximum dissipation principle.
This frames the Coulomb friction model as a minimization problem, which can
be seen in Equation 6.

(γ̂i,u, γ̂i,w) = argmin√
γ̂2
i,u+γ̂2

i,w≤µiγ̂i,n

vTi,T (γ̂i,uui + γ̂i,wwi) . (6)

The nature of the friction cone can be seen if yet another form of the friction force
equations is considered. The friction force of the i -th contact can be expressed

5

as follows, where Υ is a cone in three dimensions whose slope is tan−1 µi.

Fi = Fi,N + Fi,T = γ̂i,nni + γ̂i,uui + γ̂i,wwi ∈ Υ, (7)

2.1.3 Equations of Motion of Systems with Frictional Contact

The time evolution of the dynamical system is governed by the following differ-
ential variational inequality [7]:

q̇ = L(q)v
Mv̇ = f (t,q,v) +

∑
i∈B

γ̂i,b∇Ψi+

+
∑
i∈A

(γ̂i,nDi,n + γ̂i,uDi,u + γ̂i,wDi,w)

i ∈ B : Ψi(q, t) = 0
i ∈ A : γ̂i,n ≥ 0 ⊥ Φi(q) ≥ 0, and

(γ̂i,u, γ̂i,w) = argmin
µiγ̂i,n≥

√
γ̂2
i,u+γ̂2

i,w

vT (γ̂i,uDi,u + γ̂i,wDi,w) .

(8)

The tangent space generators Di = [Di,n, Di,u, Di,w] ∈ R6nb×3 are sparse
and are defined given a pair of contacting bodies A and B as

DT
i =

[0 . . . −AT
i,p AT

i,pAAs̃i,A 0 . . .
0 . . . AT

i,p −AT
i,pAB s̃i,B 0 . . .] ,

(9)

where AA is the orientation matrix associated with body A, Ai,p = [ni,ui,wi]
is the R3×3 matrix of the local coordinates of the ith contact, the vectors s̄i,A
and s̄i,B are the contact point positions in body coordinates (see Fig. 2). A
tilde x̃ over a vector x ∈ R3 represents the skew symmetric matrix associated
with the outer product of two vectors [12].

2.2 Discretization Scheme for Numerical Solution

Note that Eqs. 3 and 4 express complementarity conditions between the normal
force and gap function, and associated with the stick-slip transition, respectively.
The presence of these complementarity conditions is the trademark of a DVI
formulation, whose numerical solution in the context of rigid body dynamics
can be traced back to [19, 15, 17]. The DVI formulations have been classified by
differential index in [23] and recent time-stepping schemes have included both
acceleration-force linear complementarity problem (LCP) approaches [8, 24, 35]
and velocity-impulse LCP-based time-stepping methods [31, 5, 6, 30]. The
LCPs, obtained as a result of the introduction of inequalities in time-stepping
schemes for DVI, coupled with a polyhedral approximation of the friction cone
must be solved at each time step in order to determine the system state con-
figuration as well as the Lagrange multipliers representing the reaction forces
[15, 31]. If the simulation entails a large number of contacts and rigid bod-
ies, as in the case of part feeders, packaging machines, and granular flows, the
computational burden of classical LCP solvers can become significant. Indeed,

6

a well-known class of numerical methods for LCPs based on simplex methods,
also known as direct or pivoting methods [10], may exhibit exponential worst-
case complexity [9]. They may be impractical even for problems involving as
few as several hundred bodies when friction is present [4, 33]. Moreover, the
three-dimensional Coulomb friction case leads to a nonlinear complementarity
problem (NCP): the use of a polyhedral approximation to transform the NCP
into an LCP introduces artificial anisotropy in friction cones [31, 35, 5]. This
discrete and finite approximation of friction cones is one of the reasons for the
large dimension of the problem that needs to be solved in multibody dynamics
with frictional contact.

In order to circumvent the limitations imposed by the use of classical LCP
solvers and the limited accuracy associated with polyhedral approximations of
the friction cone, a parallel fixed-point iteration method with projection on a
convex set has been proposed, developed, and tested in [7]. The method is based
on a time-stepping formulation that solves at every step a cone constrained
optimization problem [2]. The time-stepping scheme, proved to converge in a
measure differential inclusion sense to the solution of the original continuous-
time DVI, sets off at time tl by assuming that a set of contacts, A, exists between
bodies in the system, and a set of bilateral constraints, B, is also active. The
governing differential equations then assume the form of a DVI problem. The
equation of motion is discretized so that an approximation to the solution can
be found at discrete instants in time. Given a position q(l) and velocity v(l)

at the time step t(l), the numerical solution is found at the new time step
t(l+1) = t(l) + h by solving the following optimization problem with equilibrium
constraints [32]:

M(v(l+1) −v(l)) = hf(t(l),q(l),v(l)) +
∑
i∈B

γi,b∇Ψi +

+
∑
i∈A (γi,nDi,n + γi,uDi,u + γi,wDi,w) , (10)

i ∈ B : 1
hΨi(q

(l), t) +∇ΨT
i v

(l+1) + ∂Ψi

∂t = 0 (11)

i ∈ A : 0 ≤ 1
hΦi(q

(l)) + DT
i,nv

(l+1) ⊥ γin ≥ 0, (12)

(γi,u, γi,w) = argmin
µiγi,n≥

√
γ2
i,u+γ2

i,w

v(l+1),T (γi,uDi,u + γi,wDi,w) (13)

q(l+1) = q(l) + hL(q(l))v(l+1). (14)

Here, γs represents the constraint impulse of a contact constraint; that is,
γs = hγ̂s, for s = n, u,w. The 1

hΦi(q
(l)) term achieves constraint stabilization;

its effect is discussed in [3]. Similarly, the term 1
hΨi(q

(l)) achieves stabilization
for bilateral constraints. The scheme converges to the solution of a measure
differential inclusion [2] when the step size h→ 0.

The proposed approach casts the problem as a monotone optimization prob-
lem through a relaxation over the complementarity constraints, replacing Eq. (12)
with

i ∈ A : 0 ≤ 1

h
Φi(q

(l)) + DT
i,nv

(l+1) − µi
√

(vT Di,u)2 + (vT Di,w)2 ⊥ γin ≥ 0.

7

The solution of the modified time-stepping scheme will approach the solution
of the same measure differential inclusion for h → 0 as the original scheme [2],
yet, in some situations, for large h, µ, or relative velocity v(l+1), i.e., when not
in an asymptotic regime, this relaxation can introduce motion oscillations. It
was shown in [7] that the modified scheme is a cone complementarity problem
(CCP), which can be solved efficiently by an iterative numerical method that
relies on projected contractive maps. Omitting for brevity some of the details
discussed in [7, 34], we note that the algorithm makes use of the following
vectors:

k̃ ≡ Mv(l) + hf(t(l),q(l),v(l)) (15)

bi ≡
{

1
hΦi(q

(l)), 0, 0
}T

i ∈ A, (16)

bi ≡ 1
hΨi(q

(l), t) + ∂Ψi

∂t , i ∈ B. (17)

The solution, in terms of dual variables of the CCP (the multipliers), is
obtained by iterating the following contraction maps until convergence, where
ΠΥi

represents the orthogonal projection on the friction cone associated with
contact i [32]:

∀i∈A : γr+1
i = ΠΥi

[
γri − ωηi

(
DT
i v

r + bi
)]

(18)

∀i∈B : γr+1
i = ΠΥi

[
γri − ωηi

(
∇ΨT

i v
r + bi

)]
. (19)

At each iteration r, before repeating (18) and (19), also the primal variables
(the velocities) are updated as

vr+1 = M−1

(∑
z∈A

Dzγ
r+1
z +

∑
z∈B
∇Ψzγ

r+1
z + k̃

)
. (20)

2.3 Parallel Implementation

The dynamics of a large multibody system whose bodies interact through con-
tact, friction, and bilateral constraints can be simulated in time via the CCP
algorithm previously described. A sequential implementation of this algorithm
is described by the following pseudo-code:

Algorithm 1: Inner Iteration Loop

1. For i ∈ A(q, δ), evaluate ηi = 3/Trace(DT
i M

−1 Di).

2. For i ∈ B, evaluate ηi = 1/(∇ΨT
i M

−1∇Ψi).

3. Warm start: if some initial guess γ∗ is available for multipliers, then set
γ0 = γ∗, otherwise γ0 = 0.

4. Initialize velocities: v0 =
∑
i∈AM−1 Diγ

0
i +
∑
i∈BM

−1∇Ψiγi,b
0 +M−1k̃

.

8

5. For i ∈ A(q(l), δ), compute changes in multipliers for contact constraints:
γr+1
i = λ ΠΥi

(
γri − ωηi

(
DT
i v

r + bi
))

+ (1− λ)γri ;

∆γr+1
i = γr+1

i − γri ;
∆vi = M−1 Di∆γ

r+1
i .

6. For i ∈ B, compute changes in multipliers for bilateral constraints:
γr+1
i = λ

(
γri − ωηi

(
∇ΨT

i v
r + bi

))
+ (1− λ)γri ;

∆ γr+1
i = γr+1

i − γri ;
∆vi = M−1∇Ψi∆γ

r+1
i .

7. Apply updates to the velocity vector:
vr+1 = vr +

∑
i∈A∆vi +

∑
i∈B∆vi

8. r := r + 1. Repeat from 5 until convergence, or until r > rmax.

The stopping criterion is based on the value of the velocity update. The
overall algorithm that provides an approximation to the solution of Eqs. 10
through 14 relies on Algorithm 1 and requires the following steps:

Algorithm 2: Outer, Time-Stepping, Loop

1. Set t = 0, step counter l = 0, provide initial values for q(l) and v(l).

2. Perform collision detection between bodies, obtaining nA possible con-
tact points within a distance δ. For each contact i, compute Di,n, Di,u,
Di,w; for each bilateral constraint compute the residual Φi(q), which also
provides bi.

3. For each body, compute forces f(t(l),q(l),v(l)).

4. Use Algorithm 1 to solve the cone complementarity problem and obtain
unknown impulse γ and velocity v(l+1).

5. Update positions using q(l+1) = q(l) + hL(q(l))v(l+1).

6. Increment t := t+ h, l := l + 1, and repeat from step 2 until t > tend

A parallel implementation that leveraged the parallel computing power of
commodity GPUs was considered based on the two algorithms outlined above.
Solution of the CCP problem proceeds as a collection of functions, or kernels,
which are executed on the GPU. First, some pre-processing steps are executed.
Applied forces are calculated in a body-parallel fashion, and contacts are pre-
processed in a contact-parallel fashion to compute the normal direction and
friction plane directions. Next, the inner iteration loop is entered and a se-
ries of four kernels is executed until convergence. In a contact-parallel manner,
the unilateral constraints are processed. In a constraint-parallel manner, the

9

bilateral constraints are processed. In a reduction-slot-parallel manner, speed
updates are summed to a single resultant per body. Finally, in a body-parallel
manner, speed updates are applied to each body. Once a certain number of it-
erations has been performed or convergence has been achieved, the generalized
velocities are integrated forward in time in a body-parallel fashion to get the
set of generalized positions. Details of the parallel reduction of speed-updates
can be found in [20]. Pseudo-code for the parallel implementation can be seen
below. Details regarding data structures and computational flow of the parallel
implementation can also be found in [34, 20]. The details regarding the parallel
collision detection are provided in Section 3.

Parallel Kernels for Solution of Dynamics Problem

1. Parallel Collision Detection

2. (Body parallel) Force kernel

3. (Contact parallel) Contact preprocessing kernel

4. Inner Iteration Loop:

(a) (Contact parallel) CCP contact kernel

(b) (Bilateral-Constraint parallel) CCP constraint kernel

(c) (Reduction-slot parallel) Velocity change reduction kernel

(d) (Body parallel) Body velocity update kernel

5. (Body parallel) Time integration kernel

3 PARALLEL COLLISION DETECTION

The implemented 3D collision detection algorithm performs a two-level spatial
subdivision using axis-aligned bounding boxes. The first partitioning occurs
at the CPU level and yields a relatively small number of large boxes. The
second partitioning of each of these boxes occurs at the GPU level yielding a
large number of small bins. The GPU 3D collision detection, which handles
spheres, ellipsoids, and planes, occurs in parallel at the bin level. Any other
geometries are represented as a collection of these primitives using a padding
(decomposition) process detailed in [13]. Several kernel calls build on each
other to eventually enable, in a one-thread-per-bin GPU parallel fashion, an
exhaustive collision detection process in which thread i checks for collisions
between all the bodies that happen to intersect the associated bin i. This
requires O(b2i) computational effort, where bi represents the number of bodies
touching bin i. The value of bi is controlled by an appropriate selection of the
bin size. Figure 3 illustrates a typical collision detection scenario and is used
in what follows to outline the nine stages of the proposed approach. Note that

10

Figure 3: Two-dimensional example
used to introduce the nine stages of the
collision detection process. The grid is
aligned to a global Cartesian reference
frame.

Figure 4: Minimum and maximum
bounds of object, based on spatial sub-
division in Fig. 3.

Figure 5: Array T with N entries,
based on spatial subdivision in Fig. 3.

Figure 6: Result of prefix sum op-
eration on T, based on spatial sub-
division in Fig. 3. Each entry repre-
sents an object’s offset based on the
number of bins it touches.

the actual implementation is for 3D collision detection and does not require the
bodies to be spheres.
Stage 1. The process begins by counting for each object the number of bins
it intersects. As Fig. 4 shows, an object (body) can intersect, or touch, more
than one bin. The minimum and maximum bounding points of each object
are determined and placed in their respective bins. For example, Fig. 4 shows
that object 4’s minimum point lies in B4 and its maximum point in A5. The
entire object must fit between the minimum and maximum points; therefore the
number of bins that the object intersects can be determined quickly by counting
the number of bins between the two points in each axis and multiplying them.
In this case the number is 4. For each body, this number is saved into an array
T (see Fig. 5), of size equal to the number of bodies N .
Stage 2. An inclusive parallel prefix sum is carried out on T [27]. The CUDA-
based Thrust library implementation [14] of the scan algorithm operates on T
to return in S (see Fig. 6) the memory offset information.
Stage 3. An array B (see Fig. 7), is first allocated of size equal to the value
of the last element in S. This value is equal to the total number of object-bin
intersections. Each element in B is set to a key-value pair of two unsigned
integers. The key is the bin id and the value is the object id. In this stage, the

11

Figure 7: Array B, based on spatial subdivision in Fig. 3.

Figure 8: Sorted array B, based on spatial subdivision in Fig. 3.

memory offsets contained in S are used so that the thread associated with each
body can write data to the correct location in B.
Stage 4. In this stage, the key-value array B is sorted by key, that is, by bin
id. This effectively inverts the body-to-bin mapping to a bin-to-body mapping
by grouping together all bodies in a given bin for further processing. The stage
draws on the GPU-based radix sort from the Thrust library [14].
Stage 5. Next, the start of each bin in the sorted array B is identified in
parallel. The number of threads used to this end is equal to the number of
elements in B; i.e., the number of object-bin interactions. Each thread reads
the current and previous bin value; if these values differ, then the start of a bin
has been detected. The starting positions for each bin are written into an array
C of key-value pairs of size equal to the number of bins in the 3D grid. When
the start of a bin is found in array B, the thread and bin id are saved as the
key and value, respectively. This pair is written to the element in C indexed by
the bin id. Note that not all bins are active. Inactive bins; i.e., bins touched by
zero or one bodies, are set to 0xffffffff, the largest possible value for an unsigned
integer on a 32-bit, X86 architecture. Figure 9 shows the outcome of this stage.
Stage 6. The array C is next radix-sorted [14] by key. Consequently, inactive
bins (identified by the 0xffffffff entries, represented for brevity as 0xfff in Fig. 10)
“migrate” to the end of the array.
Stage 7. The total number of active bins is determined next by finding the
index in the sorted array C of the first occurrence of 0xffffffff. Determining
this index allows memory and thread usage to be allocated accurately thus
having no threads wasted on inactive bins. One GPU thread is assigned in

Figure 9: Array C, based on spatial subdivision in Fig. 3.

12

Figure 10: Sorted array C, based on
spatial subdivision in Fig. 3.

Figure 11: Center of collision
volume. Based on spatial sub-
division in Fig. 3.

this stage to each active bin to perform an exhaustive, brute-force, bin-parallel
collision detection for the purpose of only counting the collision events. By
carefully selecting the bin size, the number of objects being tested for collisions
is expected to be small; i.e., on average, bi is in the range of 3 to 4 objects per
bin. After counting the total number of collisions in its bin, the thread writes
that tally into an unsigned integer array D of size equal to the number of active
bins.

More involved, the algorithm for counting and subsequently computing ellip-
soid collision information is described in detail in [25]. For spheres, the algorithm
checks for collisions by calculating the distance between the centers of the ob-
jects. Contacts can occur only when the distance between the spheres’ centers
is less than or equal to the sum of their radii. Because one object could be
contained within more than one bin, checks were implemented to prevent dou-
ble counting. Since the midpoint of a collision volume can be contained only
within one bin, only one thread (associated with that bin) will register/count a
collision event. For example, in order to determine the midpoint of the collision
volume the algorithm relies on the vector from the centroid of object 4 to the
centroid of object 7; see Fig. 11. The points where this vector intersects each
object defines a segment; the location of the middle of this segment is used to
decide the unique bin that claims ownership of the contact. If one object is
completely inside the other, the midpoint of the collision volume is the centroid
of the smaller object. Using this process, the number of collisions are counted
for each bin and written to D.
Stage 8. An inclusive parallel prefix scan operation [14] is performed on D.
This returns an array E whose last element is the total number of collisions in
the uniform grid, a value that allows an exact amount of memory to be allocated
in the next stage.
Stage 9. The final stage of the collision detection algorithm computes the actual
contact information. To this end, an array of contact information structures F
is allocated with a size equal to the value of the last element in E. The collision
pairs are then found by using the algorithm outlined in Stage 7. Instead of

13

simply counting the number of collisions, actual contact information is computed
and written to its respective place in F.

4 RENDERING PIPELINE

Adequately understanding the results of a simulation would be very arduous
without an element of visualization since, as systems become more complex,
the sheer volume of components and numerical outputs makes the results ex-
ceedingly difficult to interpret; consequently, rendering is a critical last step to
the modeling and simulation process. To address this issue, a high performance
visualization pipeline has been generated that allows for a simple means to cre-
ate general-purpose renderings of arbitrary models. It supports a variety of
simulation data files (csvs, custom-format, etc.) to remotely and easily gener-
ate an animation during or immediately after a simulation is computed. The
“high-performance” attribute of this pipeline stems from its ability to scale up
to 1000s of CPU cores as demonstrated by its use on the Euler supercomputer
available to this research group [26].

Creating this pipeline poses several technical problems, the most conspicuous
of which being how to “automate” the process as well as how to handle massively
complex scenes. These issues have been addressed by utilizing Renderman [1] in
conjunction with in-house developed code with the overall goal of implementing
a full fledged distributed-computing rendering solution. The developed solution
leverages Renderman’s REYES (Renders Everything You Ever Saw) algorithm
to handle complexity, uses computer clusters to process jobs, and utilizes the
Renderman Bytestream and Shading Language to generate procedural scenes.
Handling geometrically complex scenes with limited hardware resources, such
as rendering a model with millions of granular bodies, is an insurmountable
challenge for many commercial renderers. However, Renderman was particularly
designed to handle this problem with the REYES algorithm. At the high-level,
the REYES algorithm is a micropolygon renderer, which only performs shading
computations for a subset of visible polygons at any given time, loading just
this relevant scene data into memory. This data can be ”bucketed” according
to grids of pixels of the output image and rendered independently. The REYES
pipeline is illustrated in Fig. 12.

Speed is another critical attribute of the rendering pipeline; this is an at-
tribute where, given the size of the many-body systems considered, distributed-
computing becomes an absolute necessity. To put it in perspective, in order to
render a two-hour movie at 24 frames per second in one year, each frame can
afford only three minutes of render time, a relatively short timeframe for com-
plex scenes. Computer clusters combined with Renderman offer two vital means
to parallelize rendering: simultaneous image rendering and distributed bucket
rendering. Simultaneous image rendering tasks individual compute nodes with
rendering a single image from the animation, the number of frames rendered in
parallel scaling linearly with the number of nodes. Distributed bucket rendering
allows for parallel rendering of the same image, where pixel buckets are rendered

14

Figure 12: Schematic of the REYES pipeline.

independently on separate nodes and then stitched back together to form the
final image. The benefits of these approaches are immediately apparent in the
speedup factor, but also with the flexibility in rendering approach, where one
can tailor the computation for a particular need (such as distributed bucket
rendering for an immensely-visually complex still image).

Finally, in order to simplify the rendering process for users without a back-
ground in graphics, the pipeline, which is illustrated in Fig. 13, must automate
image generation as much as possible while retaining the ability to render arbi-
trary visual effects; the Renderman Bytestream and Shading Language provide
the means to meet this demand. The Renderman Bytestream simply allows us
to pipe Renderman calls into the renderer at runtime thus facilitating procedu-
ral calls as the scene is being rendered. These procedural calls are determined
by interpreting data with a simulation-specific metadata file that is either gen-
erated or defined by the user. This small metadata file configures the formatting
options (such as resolution, input data format, etc.) and the salient features of
objects in the simulation (geometry, appearance, etc.). Attaching user-specified
Renderman shaders to the objects enables customization of simulation object
appearance. Shaders are highly-functional compiled bits of code that, at a high-
level, programmatically control how a micropolygon is perturbed or colored; the
Renderman Shading Language is powerful and flexible enough to make it pos-
sible to define any visual effect. The user can draw from a library of shaders
(created by our group) or define their own and assign them in the metadata
file, consequently retaining full control over the appearance of their model. One
last feature of the pipeline is the notion of “injecting” simulation data into pre-
defined scenes. Setting up the aesthetic components of a scene can be a huge
time-investment and typically requires artistic ability (lighting, cinematography,
mise-en-scene); work an engineer typically does not want to deal with. The im-
plemented software infrastructure offers a set of directives that one can insert

15

Figure 13: Schematic of the customized Renderman pipeline.

into existing Renderman scenes that, when encountered at render time, will be
overridden with the emission of corresponding procedural calls (such as piping
the interpreted simulation data). Thus, the users can specify a scene into which
they want to ”inject” their data, either drawing from a library of scenes (made
available on Euler) or defining their own. Ultimately, this pipeline abstracts
away the need to deal with commercial graphics applications, thus making it
possible to host simulation rendering as a remote, “controllably-automatic” ser-
vice for anyone without a background in graphics.

5 NUMERICAL EXPERIMENTS

5.1 Light Tracked Vehicle Mobility Simulation

This simulation captures the dynamics of a complex system comprised of many
bilateral and unilateral constraints. Using a combination of joints and linear
actuators, a tracked vehicle model was created and then simulated navigating
over either flat rigid terrain or deformable terrain made up of gravel-type gran-
ular material. The vehicle is modeled to represent a small, lightweight tracked
vehicle much like an autonomous robot that could be sent to another planet or
used to navigate dangerous terrain.

There are two tracks, each with 61 track shoes (see Fig. 1(a)). Each track
shoe is made up of two cylinders and three rectangular plates and has a mass of
.34 kg. Each shoe is connected to its neighbors using one pin joint on each side,
allowing the tracks to rotate relative to each other only along one axis. Within
each track there are five rollers, each with a mass of 15 kg, one idler and one
sprocket both with a mass of 15 kg. The chassis is modeled as a rectangular box
with a mass of 200 kg and moments of inertia were computed for all parts using
a CAD package. The purpose of the rollers is to keep the tracks separated and
support the weight of the vehicle as it moves forward. The idler is necessary as
it keeps the track tensioned. It is usually modeled with a linear spring/actuator
but for the purposes of demonstration it was fixed using a revolute joint, to the

16

Figure 14: Magnitude of force experienced by one revolute joint.

vehicle chassis. The sprocket is used to drive the vehicle and is attached using
a revolute joint to the chassis. Torque is applied to drive the track, with each
track driven independently of the other. When the sprocket rotates, it comes
into contact with the cylinders on the track shoe and turns the track with a
gear like motion.

The track for the vehicle was created by first generating a ring of connected
track shoes. This ring was dropped onto a sprocket, five rollers, and an idler
which was connected to the chassis using a linear spring. The idler was pushed
with 2000 N of force until the track was tensioned and the idler had stopped
moving. This pre-tensioned track was then saved to a data file and loaded for
the simulation of the complete vehicle.

5.2 Simulation Results for Tracked Vehicle

In this simulation scenario, the tracked vehicle was dropped onto a flat surface
and a torque was applied to the sprocket to drive it forwards; the forces on
several revolute joints connecting the track shoes were analyzed as they traveled
around the sprocket. Figure 14 shows the forces in one revolute joint after the
track has dropped onto the flat surface. Transient behavior is observed when
the torque is applied to the sprocket at 1 second and the track shoe connected to
this joint comes into contact with the sprocket at 5 s. The oscillatory behavior
of the joint forces can be attributed to several factors. First, the tension in the
track was very high; there was no spring/linear actuator attached to the idler,
so high tension forces could not be dampened. Secondly, the combination of
a high pre-tensioning force (2000 N) and lack of a linear actuator on the idler

17

Figure 15: Magnitude of force experienced by 5 revolute joints.

Figure 16: Magnitude of force experienced by one revolute joint on granular
terrain.

18

resulted in high revolute joint forces.
Figure 15 shows the joint forces for several revolute joints as their associated

track shoes go around the sprocket. This plot shows that the forces in the joint
are highest when the track shoe first comes into contact with the sprocket. As
the track shoe moves around the sprocket, the force decreases as subsequent
track shoes and their revolute joints help distribute the load. It should be noted
that the gearing motion between the track shoes and the sprocket was not ideal
as it was not very smooth. In a more realistic model, forces between track shoes
would be overlapping so that the movement of the tracks is more smooth and
the forces experienced by the revolute joints are smaller.

Figure 15 shows the joint forces for one revolute joint where the tracked
vehicle was simulated as it moved over a bed of 84,000 granular particles. The
particles were modeled as large pieces of gravel with a radius of .075 m, and a
density of 1900 kg/m3. A torque of 100 N-m was applied to both sets of tracks
to move the vehicle. Note that unlike the case where the vehicle moves on a
flat section of ground, the forces experienced by the revolute joints are much
noisier. Individual grains move under the tracks as the vehicle moves causing
large vibrations to travel through the shoes. These vibrations would be reduced
when modeling a more complaint terrain material that can dissipate energy on
contact.

5.3 Anchoring in Granular Material

The purpose of this effort is to study the performance of different anchor de-
signs and provide a recommendation on which is better suited to the task of
anchoring. The anchors will be tested against a range of parameters relating to
soil, environment, and anchor penetration angles/velocities to better understand
their corresponding performance characteristics.

The anchor was modeled using three types of regular primitives. The tip of
the anchor was modeled using a sphere, the shaft was modeled using a cylinder,
and the helix was modeled using 67 thin boxes swept along a helical spline. This
configuration is optimal compared to using a triangulated mesh for the anchor.
The triangular mesh requires several thousand triangles, decreasing the perfor-
mance of the collision detection and increasing the memory requirements for
the simulation. Using primitives has an added benefit; modifying the geometry
of the anchor becomes straightforward, thus the pitch of the anchor along with
its diameter and thickness can be varied easily allowing parametric studies to
be completed.

The anchor had several constraints and forces which were used to control its
motion. First, there was a bilateral constraint restricting the planar motion of
the anchor, forcing it to move straight up or down. This constraint also pre-
vented the anchor from rotating in all axes except the vertical axis. A pressing
force was used to press the anchor into the material. This simulated an actuator
which may be attached to the other end of the anchor, forcing it to penetrate.
A torque was applied to the anchor to cause it to rotate and screw into the
material, and a vertical force was used to pull the anchor out of the material at

19

the end of the simulation.
The numerical experiment consisted of a granular bed made up of spheres

of randomly varying radii that was pre-settled and loaded at the start of each
simulation. For each simulation only the parameters associated with the anchor
were varied. The anchor’s mass was 10 kg with a radius of 0.5m. The granular
material had a mass of 0.005 kg and a radius randomly varying between 0.025 m
and 0.036 m. The granular material had a friction coefficient of 0.4, and gravity
was set to -9.806 m/s2. The time step was 5×10−4 s, with 1000 CCP iterations
performed per time step.

5.4 Simulation Results for Anchoring System

Several sets of parametric tests were simulated using the anchor model: the
torque applied to the anchor was varied, and the pullout force applied after
anchoring was varied. Fig. 17 shows an anchor with the same mass that has
4 different torques applied to it. For each test at the end the pullout force
remained constant at 300N. The plot shows that at 2 seconds, when the anchor-
ing torque was applied, the anchor with the highest torque went in the deepest,
fastest, which is as expected. With the constant pulling force that was applied
at 7 seconds, only the anchor with the lowest anchoring torque, 600 N-m, was
pulled upwards, the mass of the granular material above the three other anchors
was too high for the force to have any effect.

Fig. 18, with a close up in Fig. 19, shows a different set of simulations. Here
the anchoring torque was kept constant, but the pullout force was changed. The
purpose of the test was to gauge the magnitude of the pullout force required for
a given applied torque. The plot shows that only a force of 2000N was able to
pullout easily, gaining velocity as it moved upwards. The pullout force of 1600N
was able to start pulling out slowly and at a constant velocity.

6 CONCLUSIONS AND FUTURE WORK

This work describes developments that expand parallel simulation capabilities
in multibody dynamics. The many-body dynamics problem of interest has been
modeled as a cone complementarity problem whose parallel numerical solution
scales linearly with the number of bodies in the system. These developments
have directly resulted in the ability to simulate complex tracked vehicles op-
erating on granular terrain. The parallel simulation capability was demon-
strated in the context of an application that emphasizes the interplay between
light-vehicle/track/terrain dynamics, where the vehicle feature length becomes
comparable with the dimensions associated with the obstacles expected to be
negotiated by the vehicle. The simulation capability is anticipated to be use-
ful in gauging vehicle mobility early in the design phase, as well as in testing
navigation/control strategies defined/learned on the fly by small autonomous
vehicles as they navigate uncharted terrain profiles.

20

Figure 17: Anchor with different applied torques and a constant pullout force
of 300N.

In terms of future work, the convergence issue induced by the multiscale
attribute of the vehicle-terrain interaction problem remains to be addressed.
Additionally, technical effort will focus on extending the entire algorithm to run
on a cluster of GPU-enabled machines, further increasing the size of tractable
problems. The modeling approach remains to be augmented with a dual dis-
crete/continuum representation of the terrain to accommodate large scale sim-
ulations for which an exclusively discrete terrain model would unnecessarily
burden the numerical solution.

7 ACKNOWLDEGMENTS

The research effort of the first two authors was partially supported by fund-
ing provided by the National Science Foundation under NSF Project CMMI-
0840442 and through TARDEC grant W911NF-11-D-0001-0048. M. Quadrelli,
A. Jain and H. Mazhar were partially supported through Jet Propulsion Lab-
oratory sub-contract 1435056 for research carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the Na-
tional Aeronautics and Space Administration. Funding for the third author was
provided by a US Army SMART fellowship.

21

Figure 18: Anchor with different pullout forces and a constant torque of 1000N.

References

[1] Pixar Animation Studios: RenderMan Interface Specification, version 3.2,
2000.

[2] Anitescu, M. Optimization-based simulation of nonsmooth rigid multi-
body dynamics. Mathematical Programming 105, 1 (2006), 113–143.

[3] Anitescu, M., and Hart, G. D. A constraint-stabilized time-stepping
approach for rigid multibodydynamics with joints, contact and friction.
International Journal for Numerical Methods in Engineering 60(14) (2004),
2335–2371.

[4] Anitescu, M., and Hart, G. D. A fixed-point iteration approach for
multibody dynamics with contact and friction. Mathematical Programming,
Series B 101(1) (2004), 3–32.

[5] Anitescu, M., and Potra, F. A. Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear complementarity problems.
Nonlinear Dynamics 14 (1997), 231–247.

[6] Anitescu, M., Potra, F. A., and Stewart, D. Time-stepping for
three-dimensional rigid-body dynamics. Computer Methods in Applied Me-
chanics and Engineering 177 (1999), 183–197.

22

Figure 19: Closeup of Fig. 18, Anchor with different pullout forces and a con-
stant torque of 1000N.

[7] Anitescu, M., and Tasora, A. An iterative approach for cone comple-
mentarity problems for nonsmooth dynamics. Computational Optimization
and Applications 47, 2 (2010), 207–235.

[8] Baraff, D. Issues in computing contact forces for non-penetrating rigid
bodies. Algorithmica 10 (1993), 292–352.

[9] Baraff, D. Fast contact force computation for nonpenetrating rigid bod-
ies. In Computer Graphics (Proceedings of SIGGRAPH) (1994), pp. 23–34.

[10] Cottle, R. W., and Dantzig, G. B. Complementary pivot theory of
mathematical programming. Linear Algebra and Its Applications 1 (1968),
103–125.

[11] Donald, B. R., and Pai, D. K. On the motion of compliantly con-
nected rigid bodies in contact: A system for analyzing designs for assem-
bly. In Proceedings of the Conf. on Robotics and Automation (1990), IEEE,
pp. 1756–1762.

[12] Haug, E. J. Computer-Aided Kinematics and Dynamics of Mechanical
Systems Volume-I. Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

23

[13] Heyn, T. Simulation of Tracked Vehicles on Granular Ter-
rain Leveraging GPU Computing. M.S. thesis, Department
of Mechanical Engineering, University of Wisconsin–Madison,
http://sbel.wisc.edu/documents/TobyHeynThesis final.pdf, 2009.

[14] Hoberock, J., and Bell, N. Thrust: A Parallel Template Library.
Available online at http://code.google.com/p/thrust/, 2009.

[15] Lotstedt, P. Mechanical systems of rigid bodies subject to unilateral
constraints. SIAM Journal of Applied Mathematics 42, 2 (1982), 281–296.

[16] Madsen, J., Pechdimaljian, N., and Negrut, D. Penalty versus
complementarity-based frictional contact of rigid bodies: A CPU time com-
parison. Tech. Rep. TR-2007-06, Simulation-Based Engineering Lab, Uni-
versity of Wisconsin, Madison, 2007.

[17] Marques, M. D. P. M. Differential Inclusions in Nonsmooth Mechan-
ical Problems: Shocks and Dry Friction, vol. 9 of Progress in Nonlinear
Differential Equations and Their Applications. Birkhäuser Verlag, Basel,
1993.

[18] Mazhar, H. Parallel Multi-Body Dynamics on Graph-
ics Processing Unit (GPU) Cards. M.S. thesis, Department
of Mechanical Engineering, University of Wisconsin–Madison,
http://sbel.wisc.edu/documents/HammadMazharMSthesisFinal.pdf,
2012.

[19] Moreau, J. J. Standard inelastic shocks and the dynamics of unilat-
eral constraints. In Unilateral Problems in Structural Analysis (New York,
1983), G. D. Piero and F. Macieri, Eds., CISM Courses and Lectures no.
288, Springer–Verlag, pp. 173–221.

[20] Negrut, D., Tasora, A., Anitescu, M., Mazhar, H., Heyn, T., and
Pazouki, A. Solving large multi-body dynamics problems on the GPU.
GPU Gems Vol. 4 (2011), 269–280.

[21] NVIDIA. CUDA Programming Guide. Available online
at http://developer.download.nvidia.com/compute/DevZone/
docs/html/C/doc/CUDA C Programming Guide.pdf, 2012.

[22] Pang, J.-S., Kumar, V., and Song, P. Convergence of time-stepping
method for initial and boundary-value frictional compliant contact prob-
lems. SIAM Journal of Numerical Analysis 43, 5 (2005), 2200–2226.

[23] Pang, J.-S., and Stewart, D. Differential variational inequalities. Math-
ematical Programming 113, 2 (2008), 345–424.

[24] Pang, J.-S., and Trinkle, J. C. Complementarity formulations and
existence of solutions of dynamic multi-rigid-body contact problems with
Coulomb friction. Mathematical Programming 73, 2 (1996), 199–226.

24

[25] Pazouki, A., Mazhar, H., and Negrut, D. Parallel ellipsoid colli-
sion detection with application in contact dynamics-DETC2010-29073. In
Proceedings to the 30th Computers and Information in Engineering Confer-
ence (2010), S. Fukuda and J. G. Michopoulos, Eds., ASME International
Design Engineering Technical Conferences (IDETC) and Computers and
Information in Engineering Conference (CIE).

[26] SBEL. Euler: A CPU/GPU–Heterogeneous Cluster at the Simulation-
Based Engineering Laboratory, University of Wisconsin-Madison.
http://sbel.wisc.edu/Hardware, 2012.

[27] Sengupta, S., Harris, M., Zhang, Y., and Owens, J. Scan
primitives for GPU computing. In Proceedings of the 22nd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware (2007), Eu-
rographics Association, p. 106.

[28] Song, P., Kraus, P., Kumar, V., and Dupont, P. Analysis of rigid-
body dynamic models for simulation of systems with frictional contacts.
Journal of Applied Mechanics 68(1) (2001), 118–128.

[29] Song, P., Pang, J.-S., and Kumar, V. A semi-implicit time-stepping
model for frictional compliant contact problems. International Journal of
Numerical Methods in Engineering 60, 13 (2004), 267–279.

[30] Stewart, D. E. Rigid-body dynamics with friction and impact. SIAM
Review 42(1) (2000), 3–39.

[31] Stewart, D. E., and Trinkle, J. C. An implicit time-stepping scheme
for rigid-body dynamics with inelastic collisions and Coulomb friction. In-
ternational Journal for Numerical Methods in Engineering 39 (1996), 2673–
2691.

[32] Tasora, A. A Fast NCP Solver for Large Rigid-Body Problems with Con-
tacts. In Multibody Dynamics: Computational Methods and Applications,
C. Bottasso, Ed. Springer, 2008, pp. 45–55.

[33] Tasora, A., Manconi, E., and Silvestri, M. Un nuovo metodo del
simplesso per il problema di complementarit lineare mista in sistemi multi-
body con vincoli unilateri. In Proceedings of AIMETA 05 (Firenze, Italy,
2005).

[34] Tasora, A., Negrut, D., and Anitescu, M. Large-scale parallel multi-
body dynamics with frictional contact on the Graphical Processing Unit.
Journal of Multi-body Dynamics 222, 4 (2008), 315–326.

[35] Trinkle, J., Pang, J.-S., Sudarsky, S., and Lo, G. On dynamic
multi-rigid-body contact problems with Coulomb friction. Zeitschrift fur
angewandte Mathematik und Mechanik 77 (1997), 267–279.

25

