
SECOND INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2006) 1

YAM- A Framework for Rapid Software
Development

Abhinandan Jain and Jeffrey Biesiadecki
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109

Abstract— YAM is a software development framework with
tools for facilitating the rapid development of software in a concur-
rent software development environment. YAM provides solutions
for thorny development challenges associated with software reuse,
managing multiple software configurations, developing of soft-
ware product-lines, and multiple platform development and build
management. YAM uses release-early, release-often development
cycles to allow developers to incrementally integrate their changes
into the system on a continual basis. YAM facilitates the creation
and merging of branches to support the isolated development of
immature software to avoid impacting the stability of the devel-
opment effort. YAM uses modules and packages to organize
and share software across multiple software products. It uses the
concepts of link and work modules to reduce sandbox setup
times even when the code-base is large. One side-benefit is the en-
forcement of a strong module-level encapsulation of a module’s
functionality and interface. This increases design transparency,
system stability as well as software reuse. YAM is in use by several
mid-size software development teams including several developing
mission-critical software.

I. INTRODUCTION

Managing change is a key requirement for successful soft-
ware development. Change can be driven by new requirements,
design evolution, refactoring needs, bug fixes etc. While change
may be the one constant during development, it can also create
instabilities in the development process and the software. An
acceptable development pace is one where the software devel-
opment activity remains stable, i.e. the team is productive and
the quality of the software remains high. The quality of the
software development infrastructure and processes providing
structure for a development effort also determine the devel-
opment pace. There is a fine line between having too little
structure, leading to development instability, and too much
structure, creating excessive overhead and constraints on the
development effort.

As illustrated in Figure 1, the scope of software development
efforts can range from a single developer developing a single
software product to one involving distributed teams developing
multi-product software. Key software development challenges
include coordination of changes across the team, version con-
trol, handling large code-bases, integration and testing, multiple
target development, software sharing etc. Yard sticks for mea-
suring the success of a software development activity are the
quality of the software itself, and the development pace.

Brooks’ The Mythical Man-Month [1] was one of the early
influential essays to analyze the software development process.

Fig. 1. Levels of software development environments ranging from individual
developer/single product to distributed team with product-lines..

Brooks argues that the dynamics of software development
is such that contrary to conventional wisdom, adding more
developers to a team late in a project can delay rather than
speed up the completion of the project. He highlights the need
for getting the design right - asserting that the project should
be willing to throw away the first implementation. Eric Ray-
mond’s Cathedral and the Bazaar and other essays [2] study
the open-source software development model. Eric lists several
insights to explain the success of the “bazaar” style open-source
development in contrast with the “cathedral” style based on
the principles of command and discipline. There have also
been a series of software development processes referred to as
agile software development [3] which advocate short iteration
cycles. One of the best known examples of agile development
is the Extreme Programming style [4] which requires that all
development be done by pairs of developers, and that test cases
be written before starting software implementation.

A. Motivation for YAM
The initial version of YAM [5] (Yet Another Make), devel-

oped a little less than a decade ago, was motivated by the need
for processes to manage a multi-product simulation software
development effort involving a small team at JPL’s DARTS Lab
[6]. The simulation end-products were quite diverse and driven
by different mission testbed needs. The development team’s
strategy was to develop and share a pool of software models
and algorithms. The team had the task of engineering the core
toolkit so it remained adaptable and reusable across different



SECOND INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2006) 2

domains, while simultaneously meeting the custom functional
and interface needs of end-users. With some of the deploy-
ment being in mission-critical testbeds, a significant level of
rigor and discipline was necessary to produce high quality and
maintainable simulation products. The diversity and evolving
nature of the end-products required continual improvements in
and refactoring of the core toolkit capabilities. It was clear that
processes that went well beyond basic version control and good
design were needed to support and sustain the development
nimbleness and software sharing required by the team. Over
time, other software development teams have adopted YAM to
support their development needs and have driven the evolution
and maturation of YAM itself.

YAM advocates continual development and integration cy-
cles in the spirit of agile development. However, with YAM,
software sharing is not a luxury but is rather regarded as
fundamental to good software design and a sound development
process itself. This perspective underlies several novel software
concepts in YAM. While YAM is meant for an organized team-
based software development effort, it does contain elements of
bazaar style decentralized development. YAM integrates ele-
ments from areas such as configuration management, concur-
rent development, build management, software organization,
and software reuse.

YAM provides solutions to challenges facing software de-
velopment depicted in Figure 1 such as: continual software
integration and test, concurrent development across distributed
teams, development of software product-lines, multiple plat-
form development, handling large code-base etc. For example,
YAM’s use of “link modules” allows even large developmental
sandboxes to be built up easily and quickly. This helps develop-
ers get used to routinely creating and abandoning sandboxes
as a matter of course. Such agility is in sharp contrast to
the not uncommon situation of developers hanging onto their
functional sandboxes for long periods of time fearing long
build times for new sandboxes, or of crippling the sandboxes
through a merge! Also, by making the creation and merging of
branches easy and transparent to users, YAM facilitates smooth
and stable concurrent development. This paper describes the
ideas and principles which form the basis of the YAM software
development framework.

B. Software Development Needs

The YAM software development paradigm is guided by a
“hierarchy of needs” (illustrated in Figure 2) underlying soft-
ware development efforts. Colloquially, this hierarchy suggests
that we cannot run before learning to walk, or walk before
learning to crawl. This hierarchy is in the spirit of the hierarchy
of needs developed by Maslow [7] in the arena of human
psychology1 to explain what drives human behavior. Maslow
posited that human beings are incapable of addressing a higher
level need until the lower level ones have been satisfied. This
holds true for software development as well. Starting from the
lowest level, the software development needs are:

1Maslow’s needs hierarchy ranges from: physiological needs, to survival
needs, to belongingness needs, to esteem needs, and finally to actualization
needs.

Fig. 2. Hierarchy of needs underlying software development

Basic Development Needs: This is the lowest level represent-
ing the minimal needs for a functional development environ-
ment. These needs encompass development tools (eg. com-
pilers, debuggers, third party software etc.) to support soft-
ware development; a software version-control and configura-
tion management system; processes to rollback software; build
systems; regression testing setup; support for multi-platform
development; bug-tracking; documentation. These needs apply
to even individual software development.
Stable Concurrent Development Needs: This class of needs
is for development efforts involving more than one developer.
Concurrent development requires processes to manage, coor-
dinate and merge changes from parallel development within
a team. During the course of development, developers need
access to stable versions of the rest of the system while at the
same time shielding the rest of the team from their immature
developmental software. Processes for merging and syncing up
changes need to be clearly defined. Additional coordination
may be needed if the team is distributed across remote sites.
Sound processes are needed to avoid instability and confusion
during concurrent development.
High Quality Software Needs: Beyond stable concurrent de-
velopment are the needs for developing high quality software
- as measured by performance, robustness, maintainability and
defect rates. Meeting these needs requires extensive integration
and testing of the software at the unit and system levels. Keys
to improving the software quality is in depth, multiple-levels of
testing of the software and adjusting the design and implemen-
tation based on the test results and user feedback. Testing (as
well as development) at the unit, sub-system and system level
require the ability to create software configurations tailored
for these purposes. The software development process needs
to facilitate the easy creation and use of such configurations
as a natural part of the development process. It is inevitable
that such configurations will be created, and without built-in
support, a significant part of the team effort can be wasted in
creating brittle, custom environments to meet these needs.
Rapid Development Needs: Having met the needs for a high
quality software development, the next level of needs is geared



SECOND INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2006) 3

towards increasing the team’s productivity and development
pace. Increasing the team development pace requires processes
to: reduce integration and test times; reduce build and devel-
opment times as the system code base gets large; support fast
set up of scaffolding software; decentralize development and
reduce coordination overhead; and facilitate easy prototyping
and refinement of design concepts.
Reuse Needs: While the previous needs focused on a “single”
software product, it is often the case that the team or the
organization is responsible for multiple software products, i.e.
a software product-line. For cost-effectiveness, such product-
lines can involve significant software sharing across the differ-
ent products. Effective software sharing that goes well beyond
the designing software for reuse. When products A and B
share software C, a development process that strait-jackets the
evolution of the shared software C is destined to end up with
variants of C within A and B. Such forking can leave a worse
situation than if A and B had started off with independent
implementations of C. Effective sharing requires a development
process that can accommodate the evolution of software shared
among multiple products. Changes to such shared software
may be driven by internal refactoring needs, availability of new
software technology, new platforms, new performance drivers
or by requirements that trickle down from other products.

The above hierarchy of needs is useful for assessing the
capabilities and gaps in a software development process. An
implication of the needs hierarchy is that efforts to satisfy
higher-level needs without having addressed the lower level
needs are doomed to failure. For instance, attempting to carry
out concurrent software development without adequate regres-
sion testing or version control infrastructure is unlikely to be
very effective. Similarly, it is pointless to attempt to increase
development pace without first having a process that produces
acceptable, high quality software. Often team development
environments struggle to get past the first and second levels.
It is not uncommon to see the development pace being throttled
back to a slow deliberate pace with extensive coordination
overhead to help provide stability to the development process.
As a consequence, software sharing is often little more than an
after thought in such an environment.

While providing an analysis framework, the needs hierarchy
does not however provide a prescription for designing a soft-
ware development processes using these tiers, nor does it imply
that a successful software development model is separable into
distinct layers meeting the different tiers. A software develop-
ment process needs to be viewed in its organic whole - with its
internal dynamics determined by the development scope and
the team, with the needs hierarchy providing the means for
periodically assessing and improving the processes.

Our experience with the YAM development model has been
that concepts that might be perceived - and even at times
conceived - for higher-level needs, often end up significantly
helping meet lower level needs as well. YAM’s organization of
all software into modules (pg. 4), while necessary for sharing
software across products, also turns out to be ideal for creating
developmental software configurations that are essential during
development. YAM modules also improve software modularity,
and help better manage the mix of stable, and new and imma-

ture, portions of the code base. YAM’s use of link modules (pg.
5) for the rapid creation of user sandboxes (pg. 5) has the side-
effect of enforcing strong module-level encapsulation which
enforces software organization with significantly reduced cou-
pling among the modules. In turn, this helps increase design
transparency and software quality. YAM’s use of conventions
and tools for the easy creation and merging of module-level
branches simplifies version control as well as concurrent de-
velopment. Supporting such hierarchy inversion, is Raymond’s
observation [2] that software reuse serves to improve software
quality by making the “grass taller, the more it is grazed”. The
remainder of this paper describes in detail the key ideas and
concepts underlying YAM and how they address the software
development hierarchy of needs.

II. KEY CONCEPTS FROM THE YAM FRAMEWORK

YAM provides a set of user commands, in the style of
CVS [8], to support day-to-day development. Additional YAM
commands are also available for administration support. As
illustrated in Figure 3, YAM components include a source
repository with version control, a database for storing release
data, command line scripts and make rules for building soft-
ware. The current YAM toolkit uses CVS for version control,

Fig. 3. The key components of YAM include a source repository, a database
for releases data, and Perl for command line scripts.

MySQL for the database [9], PHP for Web interface [10] and
Perl for the command line scripts [11]. YAM uses an abstract
interface to these tools to facilitate its use with other tools such
as Subversion.

This section describes some of the key design ideas and con-
cepts that make up the YAM software development framework.
The working model we use here is of a collocated team, or a
group of collocated teams engaged in a software development
activity. Here, collocation does not imply physical collocation
but instead a coherent and shared file-system and development
environment.
† Low-level version control using CVS
The CVS open source version control tool is used for low-
level version control of the software. This includes the use of
branches, tagging, handling of directory structures as well as
remote client/server use.
† All software is organized into YAM “modules”
All software is broken up and organized into software units re-
ferred to as modules. A YAM module is simply a directory of



SECOND INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2006) 4

files, containing a file called Makefile.yam which implements
a set of standard YAM make targets. The size, content and
number of modules is completely up to the discretion of the
development team.
† Support software is also stored in modules
Even support software, e.g. test harness, scripts, software stubs
and utilities that support the development effort are managed
within modules. Keeping such support software within version
controlled modules gives the team easy access to them, and
avoids the risk of “losing” them within developers’ custom se-
tups. For modules providing libraries, it is a common practice
to include unit tests for the library within the module.
† YAM ”packages ” are defined as module bundles
As illustrated in Figure 4, YAM packages are simply bundles

Fig. 4. All software being developed is organized into modules, with
packages representing different bundles of modules.

of YAM modules and do not contain any additional software.
Different packages can share modules between them, and
can also contain other packages. While modules can provide
component libraries, packages are typically runnable applica-
tions.
† All module development occurs on branches
Developers do all development on private branches. This iso-
lates them from each others changes during development. The
main trunk is used as the release branch. On conclusion of a
development phase, developers release their changes by merg-
ing them onto the main trunk and committing and releasing the
relevant modules. YAM provides commands to simplify the
creation, merging and release of such branches and releases.
† Development via fast branch/release cycles
Frequent and regular releases of modules and packages are
highly encouraged. Module development branches are expected
to be short-lived and to be used to implement specific features
or fixes. This is driven by two important goals. First, long
life branches can require disproportionately large merge and
integration effort on the part of the developer. Secondly, such
large integration efforts can also require a large effort from the
rest of the team to absorb and handle such large changes after

they are released. YAM’s typical module branch/release cycles
are illustrated in Figure 5.

Fig. 5. The software development proceeds through a continual series of
branch, develop, merge and integration cycles. The YAM commands in the
figure are described in Sectino II-A.

† Releases are managed at the module and package level
Developers make releases of individual modules. On release,
the source code for the module is tagged with a release number

Fig. 6. The module release area hosts built versions of the releases of all
the modules. Each column represents a module and the entries in the column
the different releases for the module. package releases on the other hand are
the lines that run horizontally across the modules and define specific module
releases that belong to a package release.

for later use if needed. The fully built version of the module
is stored for later use in a module release area. The typical
requirement for a module release is that it pass the test suite.
During a module release, YAM generates candidate entries for
a module’s ChangeLog file from log messages from individual
file commits. Packages can also be released. Package releases
simply consist of a specific grouping of module releases as
illustrated by Figure 6. All release information is recorded
in a database and a Web script provides on-line access to
the information. While such short developmental cycles are
the norm, there are times when specific developments require
longer than usual development on isolated branches. Though
not recommended, these are not precluded by YAM.
† module releases are available as link modules
On release, the built version of the module is moved from the



SECOND INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2006) 5

developer’s sandbox into a module release area. They contain
built versions of all the libraries and binaries provided by the
module. The module release area is available to sub-teams
sharing a development environment. These built versions can
be used to quickly create virtual presence of these modules
within developer sandboxes for use as scaffolding code and are
hence referred to as as link modules.
† All work is done in independent sandboxes
All development is carried out within independent user
“sandboxes”. A user sandbox is a development directory

Fig. 7. The structure of a typical YAM sandbox.

created by the user containing the modules to be worked on
with directory structure shown in Figure 7. The top-level of a
sandbox contains a src/ sub-directory for checkout out mod-
ule source code. Other top-level directories such as include,
lib etc. are referred to as the export area of a sandbox and
only contain symbolic links from the modules. YAM provides
commands to simplify the creation of private sandboxes for
YAM packages. These commands also create branches for
and checkout modules to be worked on within the sandbox.
On completion of the development work, YAM commands can
be used to make releases of the modules. Developers can create
as many sandboxes as they need.
† Developers can tailor a sandbox configurations
Developers can tailor the modules contained in a sandbox.
Moreover, they can specify which of the modules are present
as simply link modules and which ones are work modules,
i.e. ones whose source code is checked out into the src/ direc-
tory of a sandbox. Each sandbox contains a YAM.config
file that defines the the mix of link and work modules for the
sandbox. As illustrated in Figure 8, a sandbox configuration
can consist of only link modules (eg. for running regression
tests) or all work modules (eg. for regression builds) or more
typically, a hybrid mix. Usually, a developer will create a
sandbox with work modules that he/she plans to work on,
and the rest of the required modules as link modules to
provide scaffolding code to complete the sandbox. Since link
modules require just symbolic links they are much faster to
create since they do not need to be checked out and built. The
developer can also select the versions of link modules and
module release branches to include in the sandbox. YAM also

Fig. 8. Sandbox configurations can range from all work modules, to all link
modules, to a mix of link and work modules.

provides support for updating a sandbox’s configuration to add
and remove work and link modules.
† Explicit exporting of module interfaces
To meet the requirement that modules be usable as work
modules as well as link modules, all YAM modules export
their public interfaces via symbolic links to a top-level export
area within the sandbox. This allows module A to access files
from module B irrespective of whether module B is a link or a
work module in the sandbox. Thus, a module makes available
its libraries to other modules by exporting links for them into
the export area. On the other hand, if the module needs header
files from other modules in order to build the library, then
it looks for them in the export area and not directly in the
module directory. The other modules should have exported
links for these header files to the export area. The export area
serves as a central nexus for interactions between the different
modules. YAM provides make rules to simplify exporting of
links by modules. There is support for physically copying such
exported files for portability to non-Unix platforms that do not
support symbolic links.
† modules have a standardized build interface
The only requirement on what constiutes a YAM module is
that it provide a Makefile.yam make file that supports a
small number of make rules for cleaning and building the
module. Thus all modules have a uniform make file inter-
face. YAM supports the generation of such makefiles from
templates limiting the module specific customization largely to
the definition of variables using supporting make files provided
by a special SiteDefs module. modules can internally have
arbitrary levels of additional build infrastructure as long as
this minimal interface makefile requirement is satisfied. The
module make interface establishes uniform conventions much
like autoconf does for open source software.
† Tracking third party tool dependency information
The module makefiles do not contain hard-wired paths for
external third party tools but instead derive the information
from the SiteDefs module. Though not precluded from doing
so, YAM modules do not typically use autoconf. While auto-
conf is an excellent tool for “discovering” the capabilities of
the environment and adapting the build accordingly, this works
against the build homogeneity required to use link modules.



SECOND INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2006) 6

To provide this homogeneity, YAM tracks and version controls
information about external software versions used during builds
and at run-time. As a result developers can rollback the software
- and the external tool configuration - to earlier points in time.
† Support for multi-site development
To support distributed teams that do not share a common
development environment, and for supporting builds of soft-
ware for deployment in other environment, YAM supports the
definition of site specific build information in the SiteDefs
module. This information is version controlled. link modules
cannot be shared across different sites since the binaries may be
incompatible. Developers can specify custom site information
to override the information in the SiteDefs module. This is
convenient for users working in isolated environments such as
laptops or on subnets with different software environments.
† Support for multi-target development
Often, the development effort needs to support the developed
software on more than one target platform hosts. A target
platform here is used to denote variants in computing hardware,
different types or flavors of operating systems, or differences in
compilers for the target hosts. The key point is that binaries built
for different targets cannot be inter-mixed. YAM provides build
conventions and rules to support building modules for multiple
platforms within the same directory structure. This is conve-
nient for verifying and testing new capabilities across all the
targets of interest in one place. YAM also provides convenient
rules for building modules in parallel for the different targets.
There is also support for gracefully disabling a module’s builds
for targets it does not support.
† Module inter-dependency tracking
YAM provides support for automatically extracting information
about module inter-dependencies2. This information is very
useful for generating alerts about modules impacted by API
changes within a module, as well as for automatically pulling
in modules needed by a module into a sandbox.
† Software delivery and deployment
A recently added YAM capability is the support for creating
relocatable RPMs [12] for YAM packages and modules for
external deployment of the software. An earlier capability for
creating customized package tarballs for deployment contin-
ues to be supported.
† Development effort is organized as a YAM Project
A single YAM installation can be used to support multiple
YAM projects. A YAM project denotes a development effort
with a source repository, its own releases area, its own mod-
ule/package definitions and its own releases database. YAM
allows project-level as well as user-level tailoring of the default
behavior of YAM commands to conform to policies defined for
the development effort.

A. Summary of YAM Commands

YAM provides a small set of commands for developers to
support the development work. The main ones are:

• setup: Creates a sandbox for a YAM package.
• rebuild: Updates work and link modules in a sandbox.

2Currently implemented for only C/C++ parts of the software.

• relink: Updates link modules in a sandbox.
• save: Makes a module release.
• sync: Syncs up a module branch with new releases.
• pkgnewrelease: Makes a package release.
• mkmodule: Creates a new YAM module.
• mkpackage: Creates a new YAM package.
• latest: Returns latest release information for a module,

package.
These commands support a number of options as well.

B. Customizing the Development Model

Some of the key factors that shape development policies
include the size, stability and experience level of the develop-
ment team, mission criticality and schedule for the software,
homogeneity in the software, product-line needs, extent of
software sharing, number of build targets and size of the code-
base. YAM supports the tailoring of the development model
to match a team’s constraints, policies and needs. Examples of
such fine-tuning include:

• Support for project and user specific customization of
the default value for the YAM command options. For
instance, the default behavior of the setup command is
to create sandboxes with link and work modules on
user specific branches off of the latest module releases.
This default behavior can be changed to instead check
out work modules on the main trunk so that branches
are not created automatically. Another easy customization
is to not use latest module releases (which represent the
bleeding edge) by default but instead module releases
from the latest package release baseline.

• Support for project specific customization of make file
templates and rules.

• Support for disabling the use of link modules. Not defin-
ing a module release area for a YAM project completely
disables the importing of link modules from the module
release area. In this case, read-only versions of source code
for the specified link modules are checked out and tagged.

• While use of parallel makes is supported for multi-target
development, this can be disabled if so desired.

Tailoring such default behavior can have profound effects on a
team’s development patterns and dynamics.

III. MEETING DEVELOPMENT HIERARCHY NEEDS

In this section we examine how the elements of YAM’s soft-
ware development framework described in Section II address
the software development hierarchy of needs from Section I-B.

A. Meeting Basic Development Needs

YAM provides extensive support for meeting basic develop-
ment needs including

• version control support using CVS
• module/package level release management, automated

ChangeLog entry generation
• tracking of external software dependencies
• build management with make conventions for modules
• support for multi-target development



SECOND INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2006) 7

YAM does not directly provide support for bug-tracking, test
harnesses or documentation generation - all of which are impor-
tant requirements for software development. There are several
good open-source and commercial options available to meet
these needs. YAM does allow make rule and other interfaces
to such infrastructure tools.

B. Meeting Stable Concurrent Development Needs

† Support for independent development sandboxes
One of YAM’s central tenets - supported by the toolkit - is the
use of independent sandboxes by developers for pursuing their
development activities without stepping on one another’s’ toes.
† Concurrent development on short-lived branches
Software changes are in many ways like seismic tremors. A
long sequence of mild tremors is easily handled, while large
shocks can be very disruptive. Frequent branch/release cycles
allows the team to incrementally absorb and adjust to each
other’s changes with relative ease. The use of private CVS
branches allows isolation of developmental, immature code
to avoid premature interactions and instability. Furthermore,
it allows multiple developers to be work independently on
the same module with minimal coordination overhead. De-
veloper’s merge only mature and tested code into the release
branch. YAM provides commands that simplify the creation
and merging of module branches. This helps keep branches
short-lived avoiding integration difficulties and instabilities.

YAM uses conventions for auto-generating strings used as
release and branch tags. Release tags contain a release number
that increments with every release, and branch tags contain the
release tag as well as the user name for private branches. To
allow catching up with released changes for a module, YAM
provides a sync command that creates a new branch by merging
in development on an existing branch with the released changes
on the main trunk.
† Isolation from others’ releases
During development, modules continue to evolve and be re-
leased by the team. However, individual developers are free
to choose the right time to sync up his/her sandbox with the
new releases. This choice helps avoid unexpected and forced
sync up efforts that distract from the development at hand. If a
release happens to contain a relevant bug fix or new feature then
a developer may choose to sync up, or else he/she may well
choose to wait till the development task is completed before
bothering to sync up. Such measured isolation provided by
sandboxes enables productive development even in the midst
of fast evolving code.
† Module-level encapsulation increases stability
Requiring a module to work as both work and link modules
has the important benefit of requiring an explicit definition of
the externally visible API for the module. A powerful side-
benefit is that it enforces module-level encapsulation on the
module’s public interface, which in turn helps significantly
reduce the coupling across modules. While compilers enforce
class-level encapsulation by disallowing access to private and
protected parts of a class, the module-level encapsulation
means that modules cannot access classes, header files or
libraries from other modules that have not been exported

by the module. This mechanism allows the enforcement of
private and public parts of a module and the permissible cross-
coupling across modules. The encapsulation implies that even
significant changes within a module that do not effect the
exported API remain hidden from other modules. Such com-
partmentalization of changes increases system level stability.

C. Meeting High Quality Software Needs

† module-level encapsulation improves organization
module-level API encapsulation enforces clear functional and
interface boundaries across modules reducing the possibility
of hidden coupling and interactions across the modules. The
only coupling possible across modules is that through the
exported API from the modules. Thus classes, header files,
libraries etc. that are not explicitly exported remain private to
the module. This encapsulation takes the compiler enforced
encapsulation of class definitions much further by enforcing
privacy of classes themselves! Exposure of classes within the
module API has to be explicit - avoiding inadvertent inter-
module cross-coupling and complexity in the process. It has
been observed [1] that such information hiding is the key to im-
proving software quality. The encapsulation also exposes poor
module definitions and improves software organization. Poor
module definitions are evident by the large number of links
that need to be exported helping improve software organization
and design transparency.
† Separation of stable and immature software
The module-based organization is especially conducive to
keeping stable and legacy software in modules different from
those with new and immature software, allowing careful moni-
toring and attention to the new developments.
† Refactoring of software is not a big deal
A key aspect for improving software quality is the ability to re-
factor as the need arises. The ability to do so also reflects good
API design. The module-based organization together with
the minimal API exposure facilitates refactoring by localizing
changes to modules, reduces the risk and impact on the rest
of the system, and helps reduce the effort needed to refactor
it. One strategy, when significant refactoring is required, is
to create a new module that co-exists with the existing one.
This facilitates side-by-side testing, and on conclusion, the old
module is retired and replaced with the re-factored one.
† Extensive module verification prior to release
There is a strong requirement for developers to throughly test
their changes before releasing them to the rest of the team. Fur-
thermore, YAM’s release commands automatically run several
checks to verify a module’s readiness for release such as: that
the modules are built against the latest link module; that all
binaries are properly built; and that a ChangeLog entry has been
created before allowing a release to proceed. Such continual
testing of incremental changes and monitoring of quality helps
improve the overall quality of the software.
† Continual integration and test
When there is a miscue, rolling back a change does not require a
big effort either. The team settles into a “release-early, release-
often” process where the software evolves and anneals at a
steady and smooth pace. As changes keep merging into the



SECOND INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2006) 8

release stream, they continue to be exercised and shaken-out
as the team uses them. These continual development cycles
painlessly replace the carefully coordinated integration efforts
that are otherwise needed to merge changes from long-lasting
branches. YAM makes co-developers into the first line of beta
testers of new changes. This takes advantage of the observations
in [2] that “all debugging is parallelizable” and “given enough
eyes, all bugs are shallow”. YAM embeds continual quality
improvement into the development process itself reducing the
effort needed for addition quality assurance efforts.

When others on the team make module releases, it takes only
a short duration for a developer to update their sandbox to pick
up the new release as a link module in their sandbox since no
builds are involved. This enables continual exposure and use of
new developments by the team making them effectively beta
testers on an ongoing basis. This also reduces the impact on the
system from each of these smaller releases facilitating a smooth
annealing of the ongoing software development.
† Support for sub-system packages
While YAM packages are used for product configurations,
they can also be used to define sub-system configurations. Thus
teams responsible for sub-system development can manage
their development efforts using the same YAM infrastructure
as for the system-level development. Working with sub-system
packages allows the teams to develop, test and manage re-
leases at the sub-system level. This facilitates a natural parti-
tioning and decentralization of the development effort, enabling
thorough vetting of the sub-system components before integra-
tion into the rest of the system.
† Support for developmental configurations
The process of software development often requires the cre-
ation of development configurations such as for unit testing,
with instrumentation for debugging and profiling, stub soft-
ware, demos, training, system level tests. The support software
needed for such configurations is valuable for the development
effort. The YAM framework insists that all software - includ-
ing such support software - be captured in YAM modules.
Furthermore, YAM allows the creation of YAM packages
for these important development configurations. Sandboxes for
these packages are easy to create, and their evolution can be
tracked through package releases. Thus, YAM brings such
support software and development configurations out of the
hidden shadows and integrates them directly into the main-
stream development effort. Once available, it is not surprising to
see how often such configurations get used. Furthermore, being
available as modules, portions of such support software get
adapted for other development configurations.
† Module level regression tests
The module level organization also facilitates the use of re-
gression tests throughout the software by including module
level unit tests within the module. The make system supports
rules for automating the running of regression tests in a uniform
manner across the modules. Developers are expected to run
and pass the regression tests before making a module release.
This allows version control of the test code and its evolution
with changes in a modules.
† Package level regression tests
Since packages represent runnable applications, system-level

tests for the packages are needed and are hosted and version
controlled within modules that are part of the package.
† Built-in reuse model improves quality
The very process of making software shareable by organizing
them as modules promotes their reuse by other development
efforts. Such reuse helps improve the quality of the module
software. It promotes the ”grass grows taller as it is grazed” [2]
principle for software development.
† Multi-site and multi-target support
By building in support for multi-site, multi-platform develop-
ment YAM avoids messy issues that can arise when porting
software to a new target, or a new compiler needs to used,
or the software needs to be deployed in a new environment.
The transition effort to accommodate such events are easily
handled by adding new targets and sites to the YAM project
configuration. This requires no changes to the existing targets
and sites and can thus be developed and tested independently
without destabilizing and impacting ongoing development.
† Templatized makefiles
YAM provides makefile templates (which can be tailored by
projects) as well as a host of helper make rules and conventions
that allow the module level makefiles to be very simple. This
allows the use of uniform conventions across the software,
and also eliminates the burden of developing and maintaining
complex make rules from individual modules.
† Monitoring module API changes
YAM supports the automatic generation of inter-dependencies
among the C/C++ modules. With the decentralized organiza-
tion of the software into modules, such dependency informa-
tion is valuable for assessing the impact of API changes within
a module on other modules prior to making the changes.
Furthermore, the release process uses this information to alert
the user to any API changes that may have occurred so that the
user is able to follow up and make additional releases as needed.

D. Meeting Rapid Development Needs

† Fast development sandbox setup and turnaround
Link modules allows new sandboxes (even large ones) to
be built up with scaffolding code easily and quickly. The fast
sandbox setup also helps developers get used to the idea of
creating and abandoning sandboxes for specific developments
as a matter of course. Such agility in the development process
is in sharp contrast to the not uncommon behavior where
developers hang onto their functional sandboxes for as long as
possible fearing long build times for new sandboxes, or from
fear of crippling their existing sandboxes through a merge!

Furthermore, the separation of stable and developmental
software into different modules allows sandboxes to use link
modules for the stable parts of the software and work modules
for the developmental modules.
† Fast system sandbox setup
Link and work modules also allow the fast set up of sand-
boxes for integration, test, training and demonstrations.
† Handling large code-base
As the code-base gets large, build and checkout times for the
full source can become unacceptably large. However, the size
of the code-base is typically a non-issue during day-to-day



SECOND INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2006) 9

development for the YAM framework. At any given time, an
individual developer is typically working on a small number
of work modules. The build time for a sandbox is directly
proportional to the size of these modules alone since the rest
of the modules serve as scaffolding link modules.
† Parallel makes for multi-target builds
As part of its support for multi-target development, YAM
provides build and make rules to carry out builds for all the
supported targets in parallel. Thus the build time stays more or
less constant as new targets are added as opposed to scaling
linearly with the number of targets.
† Simplified branch and release process
YAM provides scripts that make the creation of module
branches effortless for the user. The user does not have to
know the intricacies of the branch and merge process of the
underlying version control system. YAM uses conventions for
tags and branch names which once again the user does not
have to deal with. The mechanics of the module development
and release cycles take little effort. Such low cost encourages
developers to release modules and terminate the branches with
incremental developments and avoids the big integration push-
ups that can result from long-lived branches.
† Decentralized development and release process
Having organized the software into modules with strong en-
capsulation allows YAM to decentralize the development pro-
cess and reduce the mundane coordination overhead within the
team. The compartmentalization of the software functionality,
the isolation from developing on branches, and the incremental
development process provide a very stable foundation to add
new capabilities with reduced risk to the development process.
Even when changes turn out to be not acceptable, rolling back
is not a big effort. The reduced risk allows developers to spend
their energy more productively on development rather than on
coordination overhead. Appropriate team coordination however
is still needed when far-reaching module API changes are to be
undertaken,
† Metrics collection from releases meta-data
The releases database records information about the module
and package releases. For those so inclined, the data is avail-
able to analyze and fine tune the development process. It is easy
to query the database for information such as: modules that are
going through a lot of change; or ones that are being worked
on simultaneously by several developers; or assess the team’s
productivity in terms of the number of releases.

E. Meeting Reuse Needs
† YAM module interfaces facilitate reuse
YAM’s module and package concept is at the heart of module
reuse. While there are virtually no restrictions on what software
can go into a module, the process of assigning a software to a
YAM module requires a few critical steps that go a long way
to making the module shareable. Firstly, the modules public
interface has be explicitly defined so that it can be exported.
Similarly, the dependency of the module on other modules,
as well as external software, has to be clearly defined as well.
These steps very clearly define the functional boundaries and
interfaces for the module, protect from hidden dependencies
and facilitating sharing of modules.

† Packages can share modules
YAM modules can belong to more than one YAM package.
Packages are simply bundles of constituent modules, and there
is nothing package specific within modules themselves. YAM
provides simple mechanisms to add and remove modules from
package definitions to facilitate the sharing of modules.
† Standardized make interface for modules
YAM’s use of uniform conventions and rules for building a
module makes it easy for users to bring unfamiliar modules
into the mix without having to work through complex build
issues that might otherwise be necessary. Thus it is trivial to
reuse a module from one YAM package in another.
† Packages are also reusable
YAM allows packages to contain other packages. Such
containment simply adds the modules from the contained
package to the list of modules for the parent package. Such
hierarchical package definitions are effective for not only
managing a product-line, but for also building up more complex
products from existing ones.
† Package releases manage change evolution
As modules evolve, there is no guarantee that an arbitrary com-
bination of module releases are compatible with one another.
Package releases establish baselines where the combination of
module releases in a package release have been tested for
compatibility. Regular package releases help the team to
track the evolution of the package as well as to help bracket
the source of any bugs that may be discovered. The existence
of such baseline releases also establishes the quality of the
constituent modules and facilitates their reuse elsewhere.

IV. USAGE

YAM started out as a framework for fast-paced simulation
software development by the DARTS Lab team. YAM has
evolved considerably over the years and has been adopted by
several other teams for managing their software development.
These development efforts include mission-critical software
development for the Mars Exploration Rover flight software
[13], Space Interferometry Mission [14] and the Deep Impact
fault protection software [15] as well as R&D projects such as
CLARAty robotics software development [16]. The size of de-
velopment teams has been in the range of 3-30 developers. Most
of these development efforts have involved collocated teams
sharing common development environments permitting the use
of link modules. Indeed, even though several of the teams are
working towards the development of a single product, they have
nevertheless adopted YAM to support their development.

It is noteworthy however that while using YAM, there are
significant variations in the development policies and models
used by the different teams. Some of the determining factors
in defining the development policies include the stability of the
development team, experience level of the team, mission criti-
cality and schedule, homogeneity in the software and product-
line needs. Some teams chose to not introduce the use of the
novel concept of link modules to the team until the team gained
sufficient familiarity with the YAM development process. Other
teams have chosen to assign ownership of modules to sub-
teams or individuals. Yet others allow package releases by



SECOND INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2006) 10

only a single individual responsible for creating baseline builds
on a regular basis. Some teams do not use branches and carry
out all development on the main trunk. YAM provides mecha-
nisms to tailor project configurations to meet the policy needs
of individual teams.

One of the issues teams need to plan for is the need to provide
adequate training and mentoring to help new team members
familiarize themselves with the range of new concepts such
as link/work modules, packages, sites, targets etc. that come
with YAM. Of course, such training would be necessary for
any development process in place.

At the DARTS Lab, the YAM-based development supports
a product-line consisting of physics-based simulation appli-
cation products for a range of application domains including
spacecraft, planetary rovers, entry/descent/landing systems and
airships. These distinct simulation products share a number of
infrastructure modules such as for vehicle dynamics, device
and environment models, simulation framework, graphics vi-
sualization, and user interfaces. It’s YAM setup has around
200 active YAM modules and 30 YAM packages and the
software supports 2 to 5 build targets. The development team
is collocated and has ranged in size between 6 to 10 developers
and includes engineers and software personnel. The software is
a mix of C/C++ software, with significant amounts of Python,
Tcl, Perl and some Fortran and is approximately 2 million lines
of code. All development takes place on branches and the team
makes extensive use of link modules. The development pro-
cess is fairly decentralized within the team. The development
pace is fast with over 2400 module/package releases during
2004, and over 2800 in 2005. Of course, the YAM software
is itself managed as a YAM module!

V. CONCLUSIONS

The YAM software development framework provides solu-
tions to many thorny challenges involved in team-based concur-
rent software development, managing software product-lines
and sharing software. We have described the ideas and princi-
ples that form the basis of YAM and discussed how they address
the hierarchy of needs for effective software development. The
YAM framework integrates concepts spanning software orga-
nization, build management, release management, and software
reuse to provide a nimble development processes for managing
complex software development. Contrary to the belief that
such rapid development processes are not suitable for mission-
critical software development, YAM is being successfully used
for such development by a number of NASA missions.

To date, YAM has largely been used by mid-sized, collocated
development teams. However, YAM’s multi-site development
support can be adapted to large-scale developments that are or-
ganized around several mid-sized teams. Open source projects
can benefit from YAM’s support of multi-site development,
module-based software organization, bazaar style decentral-
ized development and smooth branch and release cycles. How-
ever link modules are likely to be less useful for open source
projects since developers are not collocated, and do not share
common development environments.

YAM has benefited greatly from other open source software
and our goal is to make it publicly available in the near future.

ACKNOWLEDGMENTS

We would like to thank Garth Watney for the many construc-
tive suggestions that have helped improve YAM’s usability over
the years. The research described in this paper was performed at
the Jet Propulsion Laboratory, California Institute of Technol-
ogy, under contract with the National Aeronautics and Space
Administration, and has been partly supported by the National
Science Foundation Grant ASC 92 19368.

REFERENCES

[1] F. N. Brooks, The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley Professional, 1995.

[2] “The Cathedral and the Bazaar website.” http://www.catb.org/
∼esr/writings/cathedral-bazaar/.

[3] “Agile Alliance website.” http://www.agilealliance.org/.
[4] “Extreme Programming Resource website.” http://www.

xprogramming.com/.
[5] “YaM website.” http://dartslab.jpl.nasa.gov/yam/.
[6] “DARTS Lab website.” http://dartslab.jpl.nasa.gov/.
[7] A. Maaslow, The Farther Reaches of Human Nature. Viking, 1971.
[8] “CVS Wiki website.” http://ximbiot.com/cvs/wiki/index.

php?title=Main Page/.
[9] “MySQL website.” http://www.mysql.com/.

[10] “PHP website.” http://www.php.net/.
[11] “The Perl Directory website.” http://www.perl.org/.
[12] “RPM Package Manager website.” http://www.rpm.org/.
[13] “2003 Mars Exploration Rovers website.” http://www.jpl.nasa.

gov/missions/current/marsexplorationrovers.html/.
[14] “Space Interferometry Mission website.” hhttp://planetquest.

jpl.nasa.gov/SIM/sim index.cfm/.
[15] “Deep Impact website.” http://deepimpact.jpl.nasa.gov/

home/index.html/.
[16] “CLARty website.” http://claraty.jpl.nasa.gov/.


