
SIMSCAPE Terrain Modeling Toolkit

Abhinandan Jain, Jonathan Cameron, Christopher Lim, John Guineau

Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109

Abstract— Planetary space mission applications involving lan-
ders and surface exploration vehicles make extensive use of
terrain models within their simulation testbeds. Such terrain
models are large, complex and have a variety of attributes
including topography, reflectivity, soil mechanics, and hazard
information. Sources for the terrain models include planetary
data archives, field tests, and analytically constructed models.
Simulation uses of such models include surface rover vehicles’
kinematics and dynamics models, instrument models, camera
models and robotic arm models.

This paper describes the SIMSCAPE middleware toolkit for
providing a common infrastructure to represent terrain model
data from multiple data sources and make them available to sim-
ulation applications. SIMSCAPE simplifies the overall simulation
design by eliminating the traditional need for custom terrain
model interfaces to terrain data sources for simulation users.
SIMSCAPE provides a collection of libraries and tools to use
and manage terrain environment models within the simulation
applications.

I. INTRODUCTION

Many types of planetary exploration missions require sim-

ulations that involve software models of the terrain surface of

planetary bodies. Missions that involve rovers operating on the

planet’s surface require terrain models with rover simulations

to develop flight software and test mission operations plans.

Space missions that land a payload on a planet’s surface also

require terrain models for realistic radar models for developing

on-board landing control software.

Surface rover simulations require rich, complex terrain

models involving a wide range of surface attributes including

topography, surface imagery, soil mechanics properties, hazard

conditions, and optical characteristics such as reflectivity. First,

the terrain model must represent basic surface topography to

compute the location of the ground under each rover wheel.

At the same time, the soil mechanics properties are needed

to compute the forces acting on the rover wheels for wheel

slippage and sinkage models. These computations are carried

out for each wheel several times for each simulation step.

Fast algorithms that work with the terrain models are needed

for such demanding applications. Planetary exploration rovers

use imagery from on-board cameras to plan motions. Creating

simulated images for on-board cameras also requires terrain

models with appropriate surface optical properties such as

imagery and reflectance.

Landing a mission on a planetary surface is a risky and

difficult process. Extensive planning and simulation is nec-

essary to develop landing control software and to reduce

the risks during landing. Terrain models needed for landing

simulations involve basic topography as well as other types of

specialized terrain information. For instance, laser altimeters

may need topography and surface reflectivity. Radar models

also need specialized properties such as ground density to

estimate the strength of radar returns. Recent landing missions

often include landing approach control based on on-board

camera imagery. Construction of suitable images leads to

requirements for surface optical properties similar to those for

rover camera operations. Science teams also need high-quality

terrain models for simulating science instruments and planning

surface operations.
These simulation applications need to incorporate raw ter-

rain data from a variety of sources including planetary data

archives, field tests, synthetic models (derived from existing

terrain models) as well as algorithmically generated ones. Such

primary terrain data needs to be processed and assembled into

a terrain model prior to use by applications. This often requires

piecing together data from different sources, processing rela-

tive spatial transforms among them, assigning attributes to the

geometry, handling different data formats and representations

and using height field and/or 3D models as appropriate
The SIMSCAPE terrain modeling toolkit described here

arose out of the recognition that while the different terrain

applications represent a wide diversity in terrain modeling

and algorithm requirements, there is also a significant overlap

in the requirements among them. Our goal was to create a

common toolkit that could be used and shared by a wide

range of simulation applications. A high level description of

the requirements for SIMSCAPE are:

• Support multiple representations of the terrain geometry.

These include 2.5D digital elevation map grid represen-

tations, point cloud representations, 3D mesh representa-

tions, and 2.5D triangulated irregular network (TIN) mesh

representations and support for geo-referenced planetary

data models.

• Support algorithms and methods for transformations be-

tween different terrain model representations.

• Support use within applications as a general-purpose,

embeddable library library with efficient algorithms and

methods for operating on terrain models.

• Support terrain model data from different sources includ-

ing planetary archives, field test sites, and synthetic and

analytic terrain models (Figure 1).

• Support exporting and importing terrain models to and

from a variety of standard terrain data formats including

PDS, GeoTiff, USGS ISIS and VRML.

2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06)
0-7695-2644-6/06 $20.00 © 2006

Fig. 1. SIMSCAPE as middleware for terrain models within simulation
applications

• Support the use of overlays of surface properties such

as material composition, texture, albedo, terra-mechanics

parameters, reflectivity, and user defined properties onto

the underlying terrain geometry.

• Support for composite terrain models assembled from

heterogeneous component terrain models, eg., base ter-

rains together with component 3D rock models (Fig-

ure 2). This includes the ability to assemble terrain

models from a variety of topographic components in a

tree hierarchy with relative transforms to rotate, position

and scale the subcomponents.

Fig. 2. Assembling a terrain site model

• Support persistent storage and retrieval of assembled

terrain models for later retrieval and use by applications.

• Provide an open architecture to allow extension of the

library with new algorithms and terrain model types by

users.

There are many products that provide some of these required

capabilities. But none cover all of the needs of terrain mod-

eling for planetary space missions. Daylon Graphics offers a

stand-alone product called Leveller [2] that provides an ability

to construct and edit 3D terrains. The GNU Triangulated

Surface Library (GTS) [1] has many useful functions for

modeling surfaces with sets of triangular faces, but does

not deal with gridded elevation data. The Geospatial Data

Abstraction Library (GDAL) [4] supports importing of raster

terrain data from a wide range of data formats. The Planetary

Data System (PDS) [5] provides planetary images and data

collected by various NASA missions and related software. The

Integrated Software from Images and Spectrometers (ISIS)

[6] provides software for processing data fro orbiters and

instruments. There are also many Geographic Information

Systems products available, such as GRASS [7], that provide

useful tools for geographic data analysis.

This paper describes the SIMSCAPE middleware toolkit that

has been developed to meet the simulation requirements de-

scribed above. SIMSCAPE provides a common infrastructure

for importing terrain model data from multiple data sources

and making them available to simulation applications. These

terrain data sources include planetary and empirical terrain

data sets, terrain synthesis models and analytical models.

The SIMSCAPE infrastructure simplifies the overall simulation

design by eliminating the traditional need for custom terrain

model interfaces to terrain data sources and simulation users.

SIMSCAPE provides a collection of libraries and tools to use

and manage terrain models within spacecraft simulation appli-

cations. As described in more detail below, SIMSCAPE uses

some of available open-source tools and libraries described

above to develop an integrated terrain modeling capability for

use by simulation applications.

Section II provides an overview of the SIMSCAPE design

architecture, object types and their functionality. Section III

describes algorithms and methods for manipulating the SIM-
SCAPE objects as well as for transforming them into one an-

other. Section IV describes the various data formats supported

for importing and exporting terrain data. Section V describes

support for storing and retrieving terrain models to and from

the file system. Section VI describes user interfaces for vi-

sualizing terrain models and Section VII describes simulation

applications using SIMSCAPE.

II. SIMSCAPE OBJECT HIERARCHY

As shown in Figure 3, SIMSCAPE provides a class hier-

archy that supports various terrain modeling needs. Broadly,

these classes fall into the following categories:

• Classes to represent the topographic geometry of terrain.

• Classes to overlay surface properties onto the terrain

geometry.

• Container classes to assemble component terrain models

into hierarchical models.

• Classes to store and retrieve terrain models from the file

system.

Before examining classes in each of these categories, we will

briefly discuss the base class from which they are derived.

All storable SIMSCAPE classes are derived from the CORE-
OBJECT class. Each class derived from COREOBJECT im-

plements methods to save and restore their object-specific data

from the persistent store. For more details on persistent stores

see Section V.

The base class COREOBJECT also provides functions to

assign and retrieve meta-data about the object, referred to by

2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06)
0-7695-2644-6/06 $20.00 © 2006

Fig. 3. The SIMSCAPE class hierarchy

SIMSCAPE as “attributes”. There are two types of attributes.

The first type of attributes are user-defined attributes. Their

purpose is to provide a way for users to store and retrieve

textual data about an object such as labels, annotations, data

sources, etc. COREOBJECT provides the capability to save

and retrieve arbitrary text strings with keys. A second type of

attribute provides simple access to known data internal to each

topographic object. For instance, the number of samples for

a TOPODEM can be accessed via a read-only attribute with

the key ’samples’. Other known attributes such as the textual

description of the TOPODEM (that has the key ’description’)

can be accessed or modified via the attribute get/set functions.

These two types of attributes use the same underlying mecha-

nisms to store their information in the persistent store so that

objects retrieved from the persistent store will include all of

their attribute data.

We begin by examining the primary topographic object

classes.

A. Primary topographic object classes

1) TopoDem: One of the primary topographic classes is the

TOPODEM. As the name implies, this is primarily a DEM

(Digital Elevation Map). The elevation values are laid out in

a regular x-y rectangular grid. For each x-y value pair, there

is only one elevation (Z) value. The TOPODEM provides data

access and interpolation functions to compute the elevation

value for a specified x-y location. Each TOPODEM contains

information about the extent (physical area) that the data grid

covers.

DEM topographic data contain grids of regularly spaced

elevation data. In some cases, each elevation data point repre-

sents an average elevation in the grid square (or rectangle) that

contains the point. This type of data is called CENTERPIXEL.

In other cases, the elevation data denotes elevation at one of

the corners of the grid square. This type of data is called

FENCEPOST. TOPODEM supports both types of elevation

data representations.

TOPODEMs can be created from elevation data stored

in files (or persistent stores, explained in more detail in

Section V). The second source of data for TOPODEMs is

via an analytic construction capability. TOPODEMs can be

created with a number of ideal geometric surfaces such as

flat surfaces, sloped surfaces, wavy surfaces (sine/cosine wave

function), and other similar shapes. Users can also define new

analytic surfaces.

TOPODEMs also provide many functions that provide

useful data beyond simple elevation lookup. These include

functions to compute the normal to the surface at a specified

location, compute statistics for a small patch surrounding a

specified location, and other functions geared towards ground

vehicle simulations.

Although the most common use of the TOPODEM class

is to provide access to a regular, Cartesian grid of elevation

data, the coordinate types can be more general. For instance,

TOPODEM coordinates can represent radius and angle coor-

dinates for a polar grid. Similarly, TOPODEM coordinates can

also be latitude and longitude pairs in the TOPOPLANET class

(see Section II-A.5 for more details about TOPOPLANETs).

TOPODEM is based on a C++ template and can contain

elevation data in double, float, or even integer types.

2) TopoCloud: A TOPOCLOUD is simply a collection of x-

y-z points called vertices. TOPOCLOUDs support adding new

vertices, merging TOPOCLOUDs, and other related functions.

A cloud of points may be the 3D range data obtained from

stereoscopic image correlation.

3) TopoMesh: A key limitation of the TOPODEM is that

it is 2.5 dimensional (meaning that there is only one elevation

data value for each x-y location). For some vehicle simula-

tions, a truly 3D surface class is necessary to model terrain

surfaces with realistic 3D characteristics such as overhangs.

The TOPOMESH class provides full 3-dimensional irregular

mesh capability. The surface is broken up into a set of ”Faces”

(which are usually triangles) and the vertices necessary to

define each face. The TOPOMESH class derives from the

TOPOCLOUD class (which provides basic vertex storage

and operations). The TOPOMESH type provides functions

to access/add/delete faces, merge TOPOMESHs, and refine

(subdivide) existing faces to reduce the size of all faces below

a desired threshold.

4) TopoTinMesh: For 2.5D terrain data, the TOPOMESH
class provides the advantage of being economical in the

number of polygons needed to represent the surface, while

the TOPODEM class provides fast look up of elevation val-

ues. The TOPOTINMESH class combines these advantages

for 2.5D terrain models. A TOPOTINMESH is an irregular

mesh with faces and vertices that is constrained to be 2.5D

by the vertex/face construction process. This means that a

TOPOTINMESH provides the unambiguous elevation lookup

of a TOPODEM with the data flexibility of a TOPOMESH.

A well-constructed TOPOTINMESH represents the same ele-

vation data as a TOPODEM with considerably reduced fewer

polygons and reduced storage requirements with minor run-

time elevation lookup penalties.

5) TopoPlanet: The TOPOPLANET class is the primary

end-user class for dealing with the surface of a planet.

2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06)
0-7695-2644-6/06 $20.00 © 2006

A TOPOPLANET represents the surface of a planet in a

generalized way by adding an offset to an nominal plane-

tary radius value based on some idealized reference surface

model (such as a sphere or an ellipsoid). To accomplish this,

TOPOPLANET uses the PLANETMODEL class to compute

radius values from a latitude and longitude pair or convert

from latitude and longitude pairs to x,y,z Cartesian locations

(and vice versa).

The reference surface accounts for the fact that planets are

not in perfectly spherical in general, but are usually elliptical

or oblate in shape, with flattening at the poles relative to

the equator. Using a fixed reference surface also allows the

software to make use of the limited precision of floating point

number formats for describing the surface detail by factoring

out a large constant reference value associated with planetary

radii.

PLANETMODEL is a generalized base class. It contains an

object of the PLANETSURFACEREFERENCE class that is the

base class for planetary reference surfaces and knows how to

compute a reference surface radius for any specified (planeto-

centric) latitude and longitude pair. SIMSCAPE provides two

simple derived classes, ELLIPSOID and SPHERE, that model

a spherical and ellipsoidal reference surface, respectively.

There are two classes derived from PLANETMODEL:

PLANETDETIC and PLANETCENTRIC. These two classes

do the primary work of adding offsets to the reference surface

radius. PLANETCENTRIC assumes the offset is added to the

reference surface in a direction radially outward from the

center of the planet. PLANETDETIC assumes the offset is

added in a direction normal to the local reference surface at

the specified location. The PLANETMODEL class also uses

the class PLANETCOORDINFO (and several related classes)

to take care of whether longitudes increase in the eastward or

westward directions, and how to deal with longitude wrapping.

To provide the offset elevation data at any specified latitude

and longitude, the TOPOPLANET class uses an embedded

TOPODEM object. For this usage, the typical meaning of x

and y of the TOPODEM are replaced by longitude and latitude

(respectively) and the elevation values of the TOPODEM are

interpreted as offsets from the reference surface.

When a TOPOPLANET object is created, the user must

first create an appropriate PLANETMODEL object (using

the PLANETDETIC class or a PLANETCENTRIC class)

with the appropriate reference surface (such as ELLIPSOID).

The resulting PLANETMODEL object is used to create the

TOPOPLANET object and is installed as a data member of

the TOPOPLANET object for future surface location compu-

tations.

The TOPOPLANET class provides various useful functions

such as the ability to compute the radius or elevation offset

of the surface at a specified latitude and longitude, compute

local surface normals, and compute the intersection of a ray

with the surface.

The design of the TOPOPLANET class and the classes that

it uses provides a flexible and extensible way to implement

complex planetary topographic systems.

B. Container Types - Trees and Nodes

In order to support the assembly of topographic models

from various sources the SIMSCAPE framework provides a

TOPOTREE tree class populated with TOPOTREENODE ob-

jects. The topology of the tree structure is a simple downward

branching tree. Each TOPOTREENODE object can contain

a set of TOPOTREENODE children. Each TOPOTREENODE
contains a single topographic data object such as a TOPODEM
or a TOPOMESH. The relative position and rotation of the

Fig. 4. Mars Gusev site terrain mesh with detail DEM and 3D rock meshes

node (with respect to its parent node) can be specified using

an affine transform (which contains a position offset, scale,

and a rotation matrix). The position/rotation offset applies to

the node, all its children, and to the contained topographic

object. This provides the ability to position all topographic

objects as needed.

C. Surface Property Overlays

Elevation data is essential to vehicle simulations but is not

the only type of data needed to describe an area of terrain.

Important science and engineering data related to terrains are

available and must be associated with terrains so that the data

can be accessed for locations within the terrain. Examples

include images to be overlaid on the surface for visualization

purposes, soil properties at specific locations (eg. soil types,

cohesion), and spectral properties of the terrain surface. These

2D raster data sets are called surface property ”overlays” in

SIMSCAPE and are derived from the SURFACEPROPERTY
base class. Multiple surface property overlays may be associ-

ated with a TOPO object.

SIMSCAPE allows overlaid surface properties to be speci-

fied in frames different from that of the parent TOPO object.

In order to access a surface property value at a TOPO vertex,

the overlay data set must be “bound” to the vertices on the

parent TOPO object. The “binding” process (see Figure 5)

registers the overlay (including a position/rotation offset) with

the parent topographic object and initializes various internal

data structures for accessing the overlay data. Each overlay

provides its own accessor functions that return SURFACE-
PROPERTY values for specific locations (x-y or x-y-z de-

pending on the type of topographic object). For instance,

an image to be overlaid over a topographic object is called

2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06)
0-7695-2644-6/06 $20.00 © 2006

Fig. 5. Binding of surface attributes to the TOPO surface objects

a TEXTUREOVERLAY. The TEXTUREOVERLAY class is

derived from SURFACEPROPERTY and provides a primitive

data type called TEXTURECOORDINATE (containing an s,t

image coordinate pair). When the bound TEXTUREOVERLAY
information is needed, it can be accessed from the parent

topographic object and TEXTURECOORDINATEs can be gen-

erated for specified x-y coordinates.

In the process of binding surface properties on to to-

pographic objects, a coordinate map can be specified. If

the topographic object is essentially 2.5 dimensional (for

TOPODEMs, for instance), a simple one-to-one correspon-

dence between the surface property set and the underlying

topographic object might be appropriate. However, if the

topographic object is 3 dimensional (like a TOPOMESH),

controlling how to map the surface property to the 3D object

may not be as simple. Several coordinate mapping classes are

provided for this purpose (and the user can create new mapping

classes derived from one of the existing ones). For instance,

the class COORDAFFINEMAP2D can introduce an arbitrary

affine transform (offset, rotation, and skew) in the mapping

process. See the left part of Figure 6 for an example including

skew. The user can also define a custom mapping using the

COORDCUSTOMMAP2D class as shown in the right part of

Figure 6.

Fig. 6. 2D Coordinate Mappings For Binding of Surface Properties

Interesting and useful mappings for 3-dimensional figures

are also available, including a 2D mapping, a spherical map-

ping using COORDSPHERICALMAP3D (see left image in

Figure 7) and a user defined custom mapping using COORD-
CUSTOMMAP3D (see the right image in Figure 7 and note

that the same texture is mapped to each face of the cube).

Although these example surface property mappings are shown

for textures (images), the same capability can be used to map

other types of surface properties onto topographic objects.

Fig. 7. Left: 3D Coordinate Mappings For Binding of Surface Properties

It is also possible to bind an overlay (along with relative

position/rotation offsets) to TOPOTREE nodes. Such overlays

are applied to the TOPOTREENODE sub-tree.

D. Architecture Extensibility

SIMSCAPE supports extensibility by the mechanism of

runtime dynamic loading of extension libraries. The user can

extend any of the base classes provided by SIMSCAPE and

the new classes can be easily loaded at run time so that

the new functionality is available without recompiling the

base SIMSCAPE library. Each new class also provides basic

functions to save its data to a persistent store so that its

classes can be saved and restored from the persistent store

like any of the basic classes of SIMSCAPE. The new user-

defined classes can be extensions of existing classes or be

created to perform a single function such import data from

external formats (“Importers”), export data to external formats

(“Exporters”), convert an object from one type to another

(“Transformers”), or modify an object without changing its

type (“Manipulators”). See Figure 2. More details about these

types of objects will be covered in Section III and following.

III. TRANSFORMERS AND MANIPULATORS

Many common operations on basic topographic objects in-

volve some type of manipulation of the data in the topographic

object and constructon of a new topographic object of the same

type. These functions can be thought of as manipulators since

the object returned is of the same type as the original, but the

internals have been changed or manipulated. (In most cases,

the original object has not been modified.) For instance:

• The function TOPODEM::getPatch() allows the caller to

specify a region or patch of a terrain TOPODEM and

return the patch as a TOPODEM.

• In TOPOMESH::refine(resolution), the TOPOMESH
adds vertices to the mesh as necessary to ensure that no

2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06)
0-7695-2644-6/06 $20.00 © 2006

Fig. 8. Run-time loadable dynamic extensions

vertex is farther away from another vertex than the spec-

ified resolution. The TOPOMESH is updated in place.

• In TOPOTREE::normalize(), the TOPOTREE is traversed

and a new TOPOTREE is constructed for which all trans-

forms are applied to the internal data of the topographic

objects (such as vertex data) so that all the transforma-

tions become identity transformations and the original

transforms are no longer necessary. The normalized tree

is more efficient at run-time because the transforms are

not needed.

In addition, there is a need at times to transform a terrain

model from one type into another. For instance, this can

happen if the source data is of a specific type (eg. an irregular

mesh) while the application has a need for a 2.5D grid terrain

data type. At times, in more complex simulation scenarios,

it is possible to use multiple different representations of

the same terrain by different modules within the simulation.

For instance a TOPOTREE representation with component

3D mesh models is very suitable for graphics visualization,

while a 2.5D TOPODEM version of the same tree may be

needed for a wheel/soil dynamics model. Algorithms and

methods that convert one model type into another are referred

to as transformers. Examples of such transformers within

SIMSCAPE include:

• A transformer that converts a 3D TOPOMESH into a

2.5D TOPODEM model that takes as arguments a pro-

jection plane and a grid resolution for the desired TOPO-
DEM. The algorithm projects the irregular TOPOMESH
onto the plane and samples along the desired grid to

create the TOPODEM. This transformer makes use of the

transformer from a TOPOMESH to a TOPOTINMESH
during the projection process.

• A transformer to convert a normalized TOPOTREE into

a TOPODEM. This transformer essentially merges all the

component TOPO objects within the TOPOTREE into a

TOPOMESH and then converts it into a TOPODEM.

We plan to add additional transformers such as those generat-

ing surface property overlays for properties such as roughness,

slopes, height fields from a TOPO object.

IV. EXPORTERS AND IMPORTERS

The import and export of terrain data for different formats

is supported by specialized importer/exporter classes in SIM-
SCAPE. This mechanism allows the addition of support for

new formats in the future. Most common data formats are

for data in regular grid format that are suitable for creation

of TOPODEM and TOPOPLANET terrain models. Several

providers also support the specification of geo-referencing data

along with projection information for the data. These data

providers also often provide libraries that support processing

such data files. SIMSCAPE makes use of these libraries where

available to allow importing of such terrain models. The key

data import formats supported by SIMSCAPE include:

• SIMSCAPE includes a Geospatial Data Abstraction
Library (GDAL) [4] based terrain model data importer

for the creation of TOPODEM terrain models from a

variety of data formats. GDAL is an open source software

library for raster geospatial data formats. As a library,

it presents a single abstract data model to the calling

application for all supported formats. The GDAL library

has been used to develop an importer extension to allow

importing of a large number of widely used data formats

[8] into SIMSCAPE. This importer can also handle raster

data from several image format files.

• The Planetary Data System (PDS) [5] is a publicly

available archive that distributes scientific data from

NASA planetary missions, astronomical observations,

and laboratory measurements. The data is available in

the PDS format with header information describing the

data sets. The PDS site also provides software for pro-

cessing the PDS data and has been used to develop a

TOPOPLANET importer for SIMSCAPE.

• The Integrated Software for Imagers and Spectrome-
ters (ISIS) [6] provides a tool for processing, analyzing,

and displaying remotely sensed image data. ISIS primar-

ily handles 2-D image data (as single-band cubes) and

3-D data (as multi-spectral or hyper-spectral cubes) from

imagers and spectrometers. SIMSCAPE imports ISIS data

by using the ISIS toolkit to export data into TIFF format

followed by the use of the GDAL importer to complete

the import.

• SIMSCAPE also can import simple raster format data

consisting of ASCII and binary height field data into a

TOPODEM object.

• SIMSCAPE also can import range map data generated

from stereo camera pairs into a TOPOCLOUD. Such

data is typically obtained by camera sensors on surface

exploration rovers.

Exporting terrain models into external data files is supported

in SIMSCAPE as follows:

• SIMSCAPE uses the GDAL library for exporting TOPO-
DEM model data into external data formats. The export

formats in the GDAL library supports are a subset of

those supported for importing. All of these formats are

available to SIMSCAPE via the GDAL library.

2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06)
0-7695-2644-6/06 $20.00 © 2006

• To facilitate 3D graphics visualization, SIMSCAPE sup-

ports the export of all TOPO object data into VRML files.

V. PERSISTENT STORE

A persistent storage system allows SIMSCAPE objects

(surfaces, rocks, textures, etc.) to be saved to a storage device

for later retrieval. The persistent storage class (“Store”) in

SIMSCAPE can be thought of as an “input/output stream”;

objects can be read and written to the stream and the PERSIS-
TENTSTORE class takes care of loading or storing the object’s

binary data from/to storage.

The PERSISTENTSTORE class has an abstract device in-

terface to support different types of storage. Currently SIM-
SCAPE uses an XML schema to save objects, but other

storage types such as SQL databases and even flat files can be

implemented in the future. The resulting PERSISTENTSTORE
storage files are portable and can be transported between

different machines that support SIMSCAPE.

The PERSISTENTSTORE is extensible and can support any

C++ class type derived from COREOBJECT; new SIMSCAPE
objects can be added without the need for recompiling the

entire SIMSCAPE library. This is implemented by requiring

each SIMSCAPE object to register methods to load and save

itself to the PERSISTENTSTORE. The list of loading and

saving methods is keyed by the object’s class type. To load

an object from the store, the PERSISTENTSTORE searches

the list of registered classes for the specified class type and

invokes the necessary load methods to reconstruct the object.

Since a SIMSCAPE object may be derived (subclassed) from

another SIMSCAPE object, each SIMSCAPE object also saves

its complete class hierarchy (type chain) to the store. When

restoring an object from the store, the most specialized class

available is used to create the object. Each SIMSCAPE object

gives itself a unique ID string to distinguish itself from other

SIMSCAPE objects of the same type.

Methods for saving and reloading objects can be loaded and

registered at run-time using the dynamic loading capability

described earlier. Therefore users can create new classes that

can be saved to persistent stores.

When writing to the store, each SIMSCAPE object also

saves a version number; when loading from the store the SIM-
SCAPE object can therefore detect whether the stored object

was created with a newer or older version of SIMSCAPE and

process it appropriately.

As mentioned earlier, the PERSISTENTSTORE currently

stores objects into an XML file. The XML schema is im-

plemented as follows:

1) Objects are saved in a tree structure in the XML file

with each child object saved as a leaf (node) of its

parent object’s node so reconstructing an object with

child objects is simply a matter of walking the tree.

2) Arrays of simple data types (integers, strings and floating

point numbers) are compressed and stored in separate

files to save space. The path to the array file is stored

in the XML file.

3) Large data files (eg., image files) are also stored in

separate files with the paths kept in the XML file.

VI. USER INTERFACE

The SIMSCAPE toolkit includes a GUI for browsing and

editing terrain models as well as a 3D visualization interface

based on a JPL-developed 3D graphics toolkit called Dspace

for visualizing the terrain models.

While SIMSCAPE provides a portable and well-defined C++

interface, a Python [9] scripting interface is also available for

all the object classes. The Python interface is auto-generated

using the SWIG [10] wrapper generator tool. The SIMSCAPE
Python classes closely mimic the underlying C++ classes.

SIMSCAPE’s Python interface is very useful for creating

scripts to implement functions needed to prepare and manip-

ulate SIMSCAPE terrain models. Such scripts have been used

to develop a regression test suite as well as a host of tutorial

examples for using the SIMSCAPE objects.

The Python scripting interface has also been used to develop

a GUI browser for SIMSCAPE persistent stores (Figure 9).

The browser allows a user to browse and edit the contents of

Fig. 9. The SIMSCAPE GUI browser

one or more SIMSCAPE stores. The GUI also displays the

defined attributes for the objects. Several of the manipulator

and transformer methods available for the objects can be

invoked from the GUI as well. The GUI also provides hooks

to visualize a 3D graphics model of any of the TOPO objects.

VII. APPLICATIONS

We briefly describe a few simulation applications that

currently use SIMSCAPE for their terrain modeling needs.

SIMSCAPE is in use by the ROAMS rover simulator [11],

the DSENDS entry, descent and landing simulator [12] and

instrument simulators. Beyond the terrain model definition,

SIMSCAPE provides high-performance algorithms for embed-

ded use by these simulations.

• ROAMS (Rover Analysis, Modeling and Simulation)

[11] is a physics-based simulation tool for the analysis,

2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06)
0-7695-2644-6/06 $20.00 © 2006

design, development, test and operation of rovers for

planetary surface exploration missions. ROAMS provides

a modular rover simulation framework to facilitate use

by planetary exploration missions for system engineering

studies, technology development, and mission operation

teams. ROAMS currently is being developed and used

by NASA’s Mars Program as a virtual testing ground

for various rover subsystems and components. ROAMS

is capable of modeling vehicle dynamics, engineering

sensors and actuators, and operational environments. The

terrain environment and surface property overlays needed

for the wheel/soil dynamics models, the onboard camera

sensors, and the 3D graphics visualization are provided

by SIMSCAPE.

Fig. 10. Roams - Rover Vehicle Simulation Environment

• DSENDS [12] is a high-fidelity spacecraft simulator for

Entry, Descent and Landing (EDL) on planetary bodies.

DSENDS (Dynamics Simulator for Entry, Descent and

Surface landing). DSENDS is currently in use by the

JPL Mars Science Laboratory project to provide a high-

fidelity testbed for the test of precision landing and

hazard avoidance functions for future Mars missions.

SIMSCAPE provides the terrain modeling capability for

DSENDS’ radar altimeter and landing hazard sensing

models.

VIII. CONCLUSIONS

We have described the design and use of the SIMSCAPE
terrain modeling toolkit that has been developed to serve as a

general-purpose framework for meeting the terrain modeling

needs of various simulation applications. SIMSCAPE is al-

ready in use by several key simulation applications for space

missions such as planetary landing and surface operations.

SIMSCAPE’s ability to handle a variety of different terrain

model types, import/export data formats, and support for

assembling hierarchical terrain models is proving to be very

useful in addressing the diverse set of terrain modeling needs

that arises within sophisticated physics-based simulations. The

Fig. 11. DSENDS - Mars Entry Descent and Landing Simulation

SIMSCAPE implementation has adopted open-source toolkits

where available in its design. SIMSCAPE provides both a

portable C++ implementation, as well as a Python binding

to facilitate its use from within scripts. Future SIMSCAPE
developments will continue to mature the existing classes and

algorithms, as well as develop various extensions as needed.

ACKNOWLEDGMENTS

We would like to thank Meemong Lee and James Wood for

their many suggestions during the design and implementation

of the SIMSCAPE software and Michael Wagner for the im-

plementation of the SIMSCAPE GUI. The research described

in this paper was performed at the Jet Propulsion Laboratory,

California Institute of Technology, under contract with the

National Aeronautics and Space Administration, and has been

supported partly by the National Science Foundation Grant

ASC 92 19368.

REFERENCES

[1] “GNU Triangulated Surface Library (GTS) website.” http://gts.
sourceforge.net/.

[2] “The Daylon Leveller Heighfield/Bumpmap/Terrain Modeler website.”
http://www.daylongraphics.com/products/leveller/.

[3] “Terrain Server, Client, and Maker website.” http://terrain.
jpl.nasa.gov/.

[4] “GDAL - Geospatial Data Abstraction Library website.” http://
www.remotesensing.org/gdal/.

[5] “The Planetary Data System (PDS) website.” http://pds.jpl.
nasa.gov/.

[6] “Integrated Software for Imagers and Spectrometers (ISIS)
website.” http://isis.astrogeology.usgs.gov/Isis2/
isis-bin/isis.cgi/.

[7] “Geographic Resources Analysis Support System (GRASS) website.”
http://grass.itc.it/.

[8] “GDAL Raster Formats.” http://www.remotesensing.org/
gdal/formats list.html.

[9] “Python website.” http://www.python.org/.
[10] “Simplified Wrapper and Interface Generator (SWIG) website.” http:

//www.swig.org/.
[11] A. Jain, J. Guineau, C. Lim, W. Lincoln, M. Pomerantz, G. Sohl, and

R. Steele, “Roams: Planetary surface rover simulation environment,”
in International Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS 2003), (Nara, Japan), May 2003.

[12] J. Balaram, R. Austin, P. Banerjee, T. Bentley, D. Henriquez, B. Martin,
E. McMahon, and G. Sohl, “DSENDS - A High-Fidelity Dynamics and
Spacecraft Simulator for Entry, Descent and Surface Landing,” in IEEE
2002 Aerospace Conf., (Big Sky, Montana), Mar. 2002.

2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06)
0-7695-2644-6/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

