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Abstract. This paper discusses an approach for sensitivity analysis of multibody dynamics using spatial operators. The

spatial operators are rooted in the function space approach to estimation theory developed in the decades that followed

the introduction of the Kalman filter and used extensively by authors to develop a range of results in multibody dynamics.

The operators provide a mathematical framework for studying a wide range of analytical and computational problems

associated with multi-body system dynamics. This paper focuses on the computation of the sensitivity of the system mass

matrix for tree-topology multibody systems and develops an analytical expression for the same using spatial operators. As

an application example, the mass matrix sensitivity is used to derive analytical expressions based on composite body inertias

for the Christoffel symbols associated with the equations of motion.

1 Introduction

Kalman introduced the notion of a state space, and a recursive filter [Kalman 60] that computes the best estimate of the

state from possibly noisy past measurements. The optimal Bryson [Bryson 63] smoother computes the best state estimate

using both past and future data. Although several authors seemed to have arrived at similar results at approximately the

same time, Kailath [Kailath 70, Kailath 74] was most likely the first to recognize many new techniques. He introduced

the “innovations” approach, which when specialized to state space systems was a more advanced way to derive optimal

linear estimators such as the Kalman filter. He also recognized the value to estimation theory of powerful mathematical

techniques (Gohberg and Krein) to factor positive operators into a product of two closely related integral operators with

triangular kernels. The function space approach reached maturity in the work of Balakrishnan [Balakrishnan 77], who

introduced the elegant methods of Hilbert space. At the end of this period, we knew how to easily solve very complicated

linear filtering problems using linear integral operators, operator factorization methods, and triangular (Volterra) factors.

In the mid 1980’s, the authors recognized [Rodriguez 87,Rodriguez 92b,Rodriguez 90] that the equations of mechanical

systems had an almost perfect analogy to those of state space linear systems. Discovery of this analogy allowed the use

in mechanics of very advanced methods and computational architectures (Kalman, Bryson, Riccati, etc.) that had emerged

from estimation theory. Also, the parallels led to the introduction ofspatial operatorsto succinctly describe at a high-
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level complex multibody dynamics quantities and relationships. The rich structural properties of the spatial operators and

the ability to do mathematics with them to derive new reletionships and computational algorithms led to the coining of

thespatial operator algebra term for this multibody dynamics framework. An overview of the spatial operator algebra

can be found in [Rodriguez 91, Jain 91, Jain 00]. Some of the contributions of the spatial operator approach include the

closed-form expressions for the mass matrix, theO(N ) algorithms for the computation of theoperational space inertia

matrix [Kreutz-Delgado 92], the dynamics of under-actuated systems [Jain 93a], diagonalized dynamics formulations [Jain

95] etc.

In this paper we describe our recent results which use an analytical approach for tree-topology multibody dynamics

sensitivity computations using spatial operators. Sensitivity computations arise in problems involving optimization, lin-

earization, nonlinear analysis and control of multibody systems. Example multibody applications where such sensitivity

computations are useful can be found in [Jain 93b, Jain 95]. The key role of the system mass matrix in multibody dynam-

ics implies that its sensitivity plays a central role in most multibody sensitivity analysis. The mass matrix sensitivities also

underly the velocity dependent gyroscopic and Coriolis terms that appear in the Lagrangian form of the equations of motion.

In practice, due to the complexity of the dynamics quantities, numerical differentiation techniques are often utilized

for such multibody sensitivity computations. Not only are these techniques non-robust, they also introduce errors and are

computationally expensive. In this paper we focus less on the computational issues, and more on using the spatial operator

approach for sensitivity computations to develop new relationships. In particular we establish connections between the

mass matrix sensitivities and the composite rigid body inertias which play a key role in inverse dynamics problems. As

illustration, these relationships are used to develop closed-form expressions for the well know Christoffel symbols that are

related to the non-linear velocity dependent gyroscopic and Coriolis terms in the equations of motion. One interpretation

of this analysis is the natural bridging between the abstract Langrangian expressions for these velocity dependent terms

and the component level expressions that can be used for computations. References [Jain 99,Bestle 92a,Bestle 92b,Chang

85,Eberhard 96,Hsu 01,Haug 84,Serban 98] contain additional detailed discussion of the computational and other aspects

of multibody sensitivities.

The promise of the spatial operator approach is:

• It is applicable to large-dimensional systems, is accurate and is computationally efficient, as it makes use of the highly

developed Kalman filter computational architecture. This adds an enormous amount of algorithmic and computational

robustness to the evaluation of analytical terms, the sensitivity of the mass matrix with respect to any given joint angle

for example, that are otherwise typically evaluated by symbolic or numerical differentiation.

• The sensitivities of the spatial operators are expressed in terms of the spatial operators themselves, which implies
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that the sensitivities for the mass matrix can be evaluated by spatial recursions quite similar to those associated with

recursive evaluation of the mass matrix itself. This property also implies that if necessary higher-order sensitivities

could be computed by applying the spatial operator sensitivity formulas derived here repeatedly.

Such exact methods for computing mass matrix system model sensitivities, in contrast to the use of approximate methods,

are relatively easy to implement with spatial recursions that are already being used to implement the evaluation of the mass

matrix itself. There is no need to introduce additional numerical computations that may be specified within a framework

that does not exactly match that which is being used to evaluate the mass matrix. Instead, the spatial recursions that are

used to evaluate the mass matrix itself, or alternatively to implement the original system equations of motion, provide

the computational structures to evaluate the system mass matrix sensitivities. This feature, the commonality in the spatial

recursions needed for both the mass matrix and its sensitivities, also applies for efficient evaluation of the velocity dependent

Coriolis term in the original equations of motion. An added benefit of using spatial operators to specify the spatial recursions

is that the system mass matrix sensitivities can be computed with exactly the same spatial operators. This is a unique feature

of the spatial-operator-based method that is being described here.

The set of spatially recursive methods embodied by the spatial operator algebra have been applied to a large variety of

systems including: analytical design, software development, real-time hardware in the loop simulation, and flight operations

for several planetary spacecraft [Jain 92a, Biesiadecki 96]: dual-arm robotic space systems; and large-scale simulation of

molecular systems for use in addressing such problems as the analysis of protein-folding and new medicinal drug design

[Jain 93c]. While this present paper focuses primarily on theoretical issues, the motivation for the work is drawn from many

practical applications [Jain 92a,Biesiadecki 96,Jain 93c] where the methods are currently in use.

1.1 Overview of Spatial Operators for Serial Chain Systems

The aim of this subsection is to summarize briefly the essential ideas underlying spatial operators leading up to the Newton-

Euler Operator FactorizationM(θ) = HφMφ∗H∗ of the manipulator mass matrix. While this is done here for a serial

chain manipulator, the factorization results apply to a much more general class of complex joint-connected mechanical

systems, including tree configurations with flexible links and joints [Jain 92b].

Consider a serial manipulator withN rigid links in Figure 1. . The links are numbered in increasing order from tip to

base. The outer-most link is link1, and the inner-most link is linkN . The overall number of degrees-of-freedom for the

manipulator isN . There are two joints attached to thekth link. A coordinate frameOk is attached to the inboard joint,

and another frameO+
k−1 is attached to the outboard joint. FrameOk is also the body frame for thekth link. Thekth joint

connects the(k + 1)st andkth links, and its motion is defined as the motion of frameOk with respect to frameO+
k . When

applicable, the free-space motion of a manipulator is modeled by attaching a 6 degree-of-freedom joint between the base
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Figure 1: Illustration of links and joints in a serial rigid body system

link and the inertial frame about which the free-space motion occurs. However, in this paper, without loss of generality and

for the sake of notational simplicity, all joints are assumed to be single rotational degree-of-freedom joints with thekth joint

coordinate given byθ(k). Extension to joints with more rotational and translational degrees-of-freedom is easy [Rodriguez

92a].

The transformation operatorφ(k, k − 1) between theOk−1 andOk frames is

φ(k, k − 1) =
(

I3 l̃(k, k − 1)
0 I3

)
∈ R6×6

wherel(k, k − 1) is the vector from frameOk to frameO(k−1), and l̃(k, k − 1) ∈ R3×3 is the skew–symmetric matrix

associated with the cross-product operation.

The spatial velocity of thekth body frameOk is V (k) = [ω∗(k), v∗(k)]∗ ∈ R6, whereω(k) andv(k) are the angular

and linear velocities ofOk. With h(k) ∈ R3 denoting thekth joint axis vector,H(k) = [h∗(k), 0] ∈ R1 × R6 denotes

the joint map matrix for the joint, and the relative spatial velocity across thekth joint is H∗(k)θ̇(k). The spatial force of

interactionf(k) across thekth joint is f(k)= [N∗(k), F ∗(k)]∗ ∈ R6, whereN(k) andF (k) are the moment and force

components respectively. The6× 6 spatial inertia matrixM(k) of thekth link in the coordinate frameOk is

M(k) =
(

J (k) m(k)p̃(k)
−m(k)p̃(k) m(k)I3

)
wherem(k) is the mass,p(k)∈ R3 is the vector fromOk to thekth link center of mass, andJ (k)∈R3×3 is the rotational

inertia of thekth link aboutOk. I3 is the3× 3 unit matrix.
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The recursive Newton–Euler equations are [Luh 80,Rodriguez 87]
V (N + 1)= 0; α(N + 1)= 0

for k = N · · · 1
V (k) = φ∗(k + 1, k)V (k + 1) + H∗(k)θ̇(k)
α(k) = φ∗(k + 1, k)α(k + 1)+H∗(k)θ̈(k) + a(k)

end loop


f(0)=0

for k = 1 · · · N
f(k) = φ(k, k − 1)f(k − 1)+M(k)α(k) + b(k)
T (k) = H(k)f(k)

end loop

whereT (k) is the applied moment at jointk. The nonlinear, velocity dependent termsa(k) andb(k) are respectively the

Coriolis acceleration and the gyroscopic force terms for thekth link.

The “stacked” notationθ=col
{
θ(k)

}
∈ RN is used to simplify the above recursive Newton-Euler equations. This

notation [Rodriguez 91] eliminates the argumentsk associated with the individual links by defining composite vectors, such

asθ, which apply to the entire manipulator system. We define

T = col
{

T (k)
}
∈ RN V = col

{
V (k)

}
∈ R6N

f = col
{
f(k)

}
∈ R6N α = col

{
α(k)

}
∈ R6N

a = col
{
a(k)

}
∈ R6N b = col

{
b(k)

}
∈ R6N

In this notation, the equations of motion are [Rodriguez 87,Rodriguez 92b]:

V = φ∗H∗θ̇; α = φ∗[H∗θ̈ + a] (1.1)

f = φ[Mα+ b]; T = Hf = Mθ̈ + C (1.2)

where the mass matrixM(θ) = HφMφH∗; C(θ, θ̇)= Hφ[Mφ∗a+ b] ∈ RN is the Coriolis term;H = diag
{

H(k)
}
∈

RN×6N ; M = diag
{

M(k)
}
∈ R6N×6N ; andφ ∈ R6N×6N

φ = (I − Eφ)−1 =


I 0 . . . 0

φ(2, 1) I . . . 0
...

...
...

...
φ(n, 1) φ(n, 2) . . . I

 (1.3)

with φ(i, j) = φ(i, i− 1) · · ·φ(j + 1, j) for i > j. The shift operatorEφ ∈ R6N×6N is defined as

Eφ =


0 0 0 0 0

φ(2, 1) 0 . . . 0 0
0 φ(3, 2) . . . 0 0
...

...
...

...
...

0 0 . . . φ(N ,N − 1) 0

 (1.4)

Using spatial operators one can obtain operator factorizations of the mass matrix and its inverse as follows:
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Identity 1.1
M = HφMφ∗H∗

= [I + HφK]D[I + HφK]∗

[I + HφK]−1 = I −HψK

M−1 = [I −HψK]∗D−1[I −HψK]

These identifies have been used extensively [Rodriguez 87, Rodriguez 92b, Rodriguez 90, Rodriguez 91, Jain 91, Jain

00,Jain 93b,Jain 95], to develop a variety of spatially recursive algorithms for forward dynamics, for both rigid and flexible

multi-body systems of arbitrarily specified topologies, as well as closed-form analytical expressions for the inverse of the

mass matrix. The spatial operatorsψ, D correspond to a suitably defined spatially recursive Kalman filter, with the spatial

operatorK representing the Kalman gain for this filter. We also refer to these operatorsψ, D andK as”articulated”

quantities, because of their relationship to the articulated inertias first introduced by [Featherstone 83].

The approach presented here to compute sensitivities for the mass matrix and the spatial operators embedded in it has

been extended to be able to compute sensitivities of the articulated operators. We have used [Jain 95] such sensitivities of

articulated operators to evaluate explicitly the Coriolis term in a diagonalized version of Lagrange’s equations of motion.

However, it is beyond the scope of this article to address the issue of how to compute sensitivities for these articulated

operators. We will therefore not go any further in this direction, but instead will focus on the process of computing the

sensitivity of spatial operators associated with the mass matrix itself. For the purpose of this discussion, we focus attention

on serial chains with single-degree-of-freedom hinges. We will maintain this focus in the rest of the paper, although the

generalization to general tree-topology systems and hinges in straightforward.

2 Preliminary Notation

We introduce some preliminary notation that will simplify the evaluation of the spatial operators embedded in the mass

matrix. Specifically, we introduce: 1) a shift-operatorS and develop some of its properties; 2) a 6-dimensional skew-

symmetric operator, analogous to the cross-product of ordinary 3-dimensional vector algebra; and 3) a set of “pick-off”

operatorsHi, Hi
s, andHi

δ that, when applied to any given spatial vector, have the effect of “picking-off” or operating only

on quantities associated with theith hinge in this vector. While introducing these quantities may appear to be somewhat

arbitrary at this stage, they will subsequently prove themselves quite useful in streamlining the sensitivity computations that

are the focus of this paper.
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2.1 The Shift operatorS

We first introduce and define theshift operator, S ∈ R6N×6N consisting ofR6×6 block elements with the only non-zero

ones being the identityR6×6 elements along the first sub-diagonal. Some useful properties of the shift operatorS are

defined in the following lemma.

Lemma 2.1 : Properties of the shift operator S

Given block diagonal matricesA andB, the following relationships hold:

(SAS∗)SB = SAB

(S∗AS)S∗B = S∗AB

AS∗(SBS∗) = ABS∗

AS(S∗BS) = ABS

(SAS∗)(SBS∗) = SABS∗

(S∗AS)(S∗BS) = S∗ABS

Special Cases:
(SS∗)SA = SA SA(S∗S) = SA

(S∗S)S∗A = S∗A S∗A(SS∗) = S∗A

(S∗S)AS∗ = AS∗ A(S∗S)S∗ = AS∗

(SS∗)AS = AS A(SS∗)S = AS

Proof: Use direct evaluation to verify these identities.

2.2 The spatial vector cross product

With z
4
=
[
x
y

]
andc

4
=
[
a
b

]
in R6, define the6-dimensional cross-product operation as:

z × c = z̃c =
(

x̃a
ỹa+ x̃b

)
where z̃

4
=
(
x̃ 03

ỹ x̃

)
(2.5)

For 3-vectors, thẽx terminology denotes the standard 3 by 3 skew-symmetric matrix associated with the 3-vector cross-

product operation.

The following lemma provides an intuitive rationale for extending the “cross-product” terminology above from 3-vectors

to 6-vectors.
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Lemma 2.2 : Spatial vector cross-product identities

We have the following identities for the spatial vector cross-product:

ÃA = 0 and ÃB= −B̃A (2.6)

whereA andB are two given spatial vectors.

Proof: The identityÃA follows from the skew-symmetry ofÃ. The remaining are established by verification for arbitrary

vectorsA andB.

Note that the aboveskew-symmetricproperty holds even though unlike in the 3-dimensional case, thez̃ matrix for 6-

vectors isnotskew-symmetric! The differential geometric interpretations and properties ofφ∗(·), and of the 6-dimensional

cross-product, are discussed further in [Li 89, Murray 94]. The “”̃ operator defined above is a natural generalization to

spatial quantities of the 3-dimensional cross-product operator.

For notational convenience we also define the operationS [z] which is closely related to the cross-product operation as

follows:

S
[(

x
y

)]
4
=
(
x̃ ỹ
0 x̃

)
= −

{(
x
y

)∼}∗
(2.7)

wherex andy are arbitrary 3-vectors.

Also, with theskew-symmetric matrix defined as

Q[z]
4
=
(
x̃ ỹ
ỹ 03

)
(2.8)

the following relationships can be verified:

Ã∗B = Q[B]A = −Q∗[B]A or S [A]B = −Q[B]A (2.9)

Thus theQ operator is in a sense the adjoint of the˜operator for spatial vectors. Just as the 3-dimensional cross-product

defines the Lie bracket for theso(3) Lie-algebra for theSO(3) Lie group, the 6-dimensional cross-product defines the Lie

bracket for thead Lie algebra associated with theAd Lie group made up of theφ∗(·) elements. The identities in Eq. 2.6

are just special cases of identities that involve the Lie bracket operation.

Lemma 2.3 : Identities involving Q(·) and φ(·, ·)

For an arbitrary 6-vectorX, we have the following identities:

Q [φ(l)X] = φ(l)Q[X]φ∗(l)

S [φ∗(l)X] = φ−1(l)S [X]φ(l)

˜[φ∗(l)X] = φ∗(l)X̃φ−∗(l)

˜[φ∗(l)X]φ∗(l) = φ∗(l)X̃

(2.10)
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The second identity parallels the well known identitỹRl = Rl̃R∗, whereR is a rotational matrix andl is a 3-vector. This

is a well know differential geometric identity that applies in general toAd andad representations.

Proof: The first two identities can be established by verification for arbitrary 3-vectorsl andX. The last one is a simple

restatement of the second identity.

2.3 TheHi, Hi
s, and Hi

δ operators

We defineH(i) as

H(i)
4
= S∗ [H∗(i)] =

(
h̃(i) 0
0 h̃(i)

)
(2.11)

Hi
s is the block diagonal matrix defined asHi

s(k, k) = H(i)δk<i, i.e.

Hi
s(k, k) =

{
H(i) for k > i
0 for k ≤ i

(2.12)

We similarly also define the block diagonal matricesHi andHi
δ as havingH(i) along the block diagonal in the following

manner:

Hi(k, k) = H(i)δk≤i, and Hi
δ(k, k) = H(i)δk=i (2.13)

In the above, theδcond notation is defined such that its value is1 if cond is true and is0 otherwise. There is an important new

quantity in this result, and it has a simple physical interpretation. The matrixHi
δ is the6N ×6N matrix whose elements are

all zero, except for a single6× 6 blockH(i) at theith location on the diagonal. The indexi corresponds to the joint-angle

θi with respect to which the sensitivityMθi
is being taken.

Note that

Hi = Hi
s + Hi

δ, and Hi
s = S∗HiS (2.14)

Also, Hi, Hi
s andHi

δ are all skew-symmetric.

Lemma 2.4 : Composition of Hi
δ etc. with arbitrary matrices.

For a given matrixX we have that,
[Hi

sX](k, j) = H(i)X(k, j)δk<i

[XHi
s](k, j) = X(k, j)H(i)δj<i

[HiX](k, j) = H(i)X(k, j)δk≤i

[XHi](k, j) = X(k, j)H(i)δj≤i

[Hi
δX](k, j) = H(i)X(k, j)δk=i

[XHi
δ](k, j) = X(k, j)H(i)δj=i

[XHi
δY ](k, j) = X(k, i)H(i)Y (i, j)

(2.15)
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Proof: These identities are established by simply evaluating the products on the right hand side of the equations.

Define

Ω̃(k) ∆=
(
ω̃(k) 0

0 ω̃(k)

)
(2.16)

and

Ω̃ =
n∑

i=1

Hiθ̇(i), Ω̃s =
n∑

i=1

Hi
sθ̇(i), Ω̃δ =

n∑
i=1

Hi
δ θ̇(i)

Ω̃ is the spatial cross product matrix associated with the spatial vectorΩ(k), whereΩ(k) is defined as:

Ω(k)
4
=
[
ω(k)

0

]
(2.17)

Note that

Ω̃ = Ω̃s + Ω̃δ, and Ω̃s = S∗Ω̃S (2.18)

3 Sensitivity Computations

Given the generalized coordinates vectorθ and a multi-valued functiong(θ), our general approach to computing its sensi-

tivity will be to first compute an expression for its time derivativeġ(θ) and then use the relationship

ġ(θ) =
∂g(θ)
∂θ

θ̇

to obtain∂g(θ)
∂θi

from theith column of ∂g(θ)
∂θ .

3.1 Sensitivities ofφ(k + 1, k), H(k) and M(k)

Having defined a set of useful quantities that will play a key role in streamlining subsequent derivations, we now begin

a process of systematically evaluating spatial operator sensitivities at two distinct layers of abstraction. First, we derive

sensitivities for spatial operators defined at each link,φ(k + 1, k) for example, and then we derive similar sensitivities for

spatial operators,φ for example, defined over the entire span of the serial-chain system.

Lemma 3.1 : Time derivatives of φ(k + 1, k), H(k) and M(k)

We have that

Ṁ(k) = Ω̃(k)M(k)−M(k)Ω̃(k) (3.19)

Ḣ∗(k) = Ω̃(k + 1)H∗(k) (3.20)

φ̇(k + 1, k) = Ω̃(k + 1)φ(k + 1, k)− φ(k + 1, k)Ω̃(k + 1) (3.21)
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Proof:

φ̇(k + 1, k) =

(
0 ˜ω̃(k + 1)`(k + 1, k)
0 0

)
=
(

0 ω̃(k + 1)˜̀(k + 1, k)− ˜̀(k + 1, k)ω̃(k + 1)
0 0

)
(3.22)

Also,

Ḣ∗(k) =
[
ω̃(k + 1)h(k)

0

]
= Ω̃(k + 1)H∗(k) (3.23)

Also,

Ṁ(k) =
(
ω̃(k)J (k)− J (k)ω̃(k) m(k)[ω̃(k)p(k)]∼

−m(k)[ω̃(k)p(k)]∼ 0

)
= Ω̃(k)M(k)−M(k)Ω̃(k) (3.24)

Lemma 3.2 : Sensitivities ofφ(k + 1, k), H(k) and M(k)

[φ(k + 1, k)]θi
= [H(i)φ(k + 1, k)− φ(k + 1, k)H(i)] · δk<i

=
{

0 for k ≥ i
H(i)φ(k + 1, k)− φ(k + 1, k)H(i) for k > i

(3.25)

[H∗(k)]θi
= H(i)H∗(k)δk<i =


0 for k ≥ i[
h̃(i)h(k)

0

]
for k < i

(3.26)

[M(k)]θi
= [H(i)M(k)−M(k)H(i)]δk≤i =

{
0 for k > i
H(i)M(k)−M(k)H(i) for k ≤ i

(3.27)

Proof: Follow directly from Lemma 3.1.

3.2 Operator sensitivities ofφ, H, M

Now we proceed to compute sensitivities for the operatorsφ,H,M which together constitute the Newton-Euler factoriza-

tionM = HφMφ∗H∗ of the mass matrix.

Define the operator∆φ as follows.

∆φ =


φ(2, 1) 0 . . .

0 φ(3, 2)
...

...
0 . . . . . . φ(n+ 1, n)

 (3.28)

Note that

Eφ = S∆φ (3.29)
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Lemma 3.3 : Time Derivatives of Spatial Operators

∆̇φ = Ω̃s∆φ −∆φΩ̃s (3.30)

Ėφ = Ω̃Eφ − EφΩ̃s (3.31)

Ḣ∗ = Ω̃sH
∗ (3.32)

Ṁ = Ω̃M −M Ω̃ (3.33)

φ̇ = φΩ̃φ̃− φ̃Ω̃sφ = φΩ̃δφ+ Ω̃sφ− φΩ̃ (3.34)

Proof: Eq. 3.30 can be derived by assembling the component time derivatives of Eq. 3.28 from Eq. 3.21. Eq. 3.32 follows

by applying the identities in Lemma 2.1 to Eq. 3.30. Eq. 3.32 and Eq. 3.33 are simply matrix versions of Eq. 3.20 and Eq.

3.19 respectively. For Eq. 3.34 we have that

φ̇ = −φ ˙φ−1φ = −φ ˙[I − Eφ]φ = φĖφφ = φ[Ω̃Eφ − EφΩ̃s]φ = φΩ̃φ̃− φ̃Ω̃sφ

Lemma 3.4 : Operator sensitivities ofφ, H, M

[∆φ]θi = Hi
s∆φ −∆φHi

s (3.35)

[Eφ]θi = HiEφ − EφHi
s (3.36)

[φ]θi = φHi
δφ− φHi + Hi

sφ (3.37)

[φ]θi
(k, j) = [φ(k, i)H(i)φ(i, j)δk≥i − φ(k, j)H(i) + H(i)φ(k, j)δk<i]δj<i (3.38)

[H∗]θi
= Hi

sH
∗ (3.39)

[M ]θi
= HiM −MHi (3.40)

Proof:

[Eφ]θi
= S[∆φ]θi

Sinceφ = [I − Eφ]−1

[φ]θi = −φ[φ−1]θiφ = φ[HiEφ − EφHi
s]φ = φHiφ̃− φ̃Hi

sφ = φHi
δφ− φHi + Hi

sφ

[φ]θi
(k, j) = φ(k, i)H(i)φ(i, j)δk≥i≥j − φ(k, j)H(i)δj≤i + H(i)φ(k, j)δk<i

= [φ(k, i)H(i)φ(i, j)δk≥i − φ(k, j)H(i) + H(i)φ(k, j)δk<i]δj<i

12



Lemma 3.5 : Sensitivity of Hφ

˙[Hφ] = Hφ[Ω̃δφ− Ω̃]

[Hφ]θi
= Hφ[Hi

δφ−Hi]
(3.41)

Proof:

[Hφ]θi

3.37,3.39
= Hθiφ+ Hφθi = Hφ[Hi

δφ−Hi]

4 Mass Matrix Related Sensitivities

We now proceed to evaluate sensitivities for the mass matrix, using its Newton-Euler factorizationHφMφ∗H∗ as a point

of departure. The main difference in computing mass matrix sensitivities, when compared to the sensitivities we have

computed up to now, is that the mass matrix is ”quadratic” in the spatial operatorsφ andH. That is, the spatial operators

φ andH each appears twice in the Newton-Euler mass matrix factorization. This property suggests that application of

the basic idea of chain-rule differentiation should be sufficient to compute the mass matrix sensitivity. This is indeed what

happens, as we show below.

Lemma 4.1 : Sensitivity of φMφ∗

[φMφ∗]θi = [φHi
δ + Hi

s]φMφ∗ − φMφ∗[Hi
δφ
∗ + Hi

s] (4.42)

Proof:

[φMφ∗]θi
= [φ]θi

Mφ∗ + φM [φ]∗θi
+ φMθi

φ∗

= [φHiφ̃− φ̃Hi
sφ]Mφ∗ + φM [φ∗Hi

sφ̃
∗ − φ̃∗Hiφ∗] + φ[HiM −MHi]φ∗

= [φHi
δ + Hi

s]φMφ∗ − φMφ∗[Hi
δφ
∗ + Hi

s]

Lemma 4.2 : Sensitivity of the Mass Matrix Mi = [HφMφ∗H∗]θi

Mθi
= Hφ[Hi

δφM −Mφ∗Hi
δ]φ

∗H∗ (4.43)
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Proof:

Mθi
= Hθi

φMφ∗H∗ + HφMφ∗H∗
θi

+H[φMφ∗]θi
H∗ = Hφ[Hi

δφM −Mφ∗Hi
δ]φ

∗H∗

This is one of the central results of the paper. Lemma 4.2 establishes how to compute the mass matrix sensitivity with

respect to an arbitrary hinge angleθi, in terms of the spatial operatorφ itself. The spatial operatorφ appears a total of 4

times in the mass matrix sensitivity, whereas it appears only twice in the original Newton-Euler factorizationHφMφ∗H∗.

However, in both cases, that of the mass matrix and its sensitivity, it is the same operatorφ that plays a central role. This

means that process of computing the mass matrix sensitivity is “closed”, in the sense that the same operatorφ that appears in

the mass matrix also appears in its sensitivity. The only new operator that appears in the sensitivity, and which does not show

up in the mass matrix Newton-Euler factorization, is the “pick-off” operatorHi
δ. However, this operator is memoryless, in

the sense that no spatial recursions are needed to compute it, in contrast to the operatorφ which involves an inward (from

the tip to the base) spatial recursion. It is therefore possible to observe that, aside from the presence of the relatively trivial

memory-less operatorHi
δ, all of the operators in the mass matrix sensitivity are identical to those in the original mass matrix

factorization. The main significance of this observation is that spatial recursion set up to evaluate the mass matrix can also

be used as a basis to also evaluate its sensitivity coefficients. Before proceeding further, we state below without proof an

alternative expression for the sensitivity of the mass matrix using articulated body inertia quantities.

Lemma 4.3 : Alternative expression forMθi

Note that sinceφMφ∗H∗ = [I + φKH]Pφ∗H∗,

Mθi
= Hφ[Hi

δ(I + φKH)P − P (I + φKH)∗Hi
δ]φ

∗H∗

5 Composite Rigid Body Inertias Based Sensitivities

Now that we have developed closed-form expressions for the mass matrix sensitivity, we shift our focus slightly to look at

the computational aspects. TheComposite Rigid Body Inertias(CRB) were introduced in [Walker 82] to develop efficient

algorithms for the computation of the system mass matrix. As we will see below, the CRB also play a key role in deriving

expressions for the mass matrix sensitivities that are simpler to evaluate. We begin by providing some background on the

composite rigid body inertias.
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5.1 The Composite Rigid Body Inertias

Thecomposite rigid body inertia , R(k), at thekth link is the effective spatial inertia atOk of the outboard linksk · · · 1

assuming that they form a composite rigid (augmented) body obtained by freezing hinges(k− 1) · · · 1. In general the value

of R(k) is not a constant and rather depends on the configuration of the hinges1 through(k − 1). Clearly,R(1) = M(1),

the spatial inertia of link 1.R(2) is the spatial inertia atO2 of links 1 and 2 regarded as a composite rigid body formed by

“freezing” hinge 2 and ignoring the inboard links. Now let us examine how we might go about assembling these composite

rigid body inertias for all the links. The composite rigid body inertia,R(k), at thekth link can be obtained by using the

parallel axis theorem to combine together the composite rigid body inertiaR(k− 1) at link (k− 1), with the spatial inertia,

M(k) of thekth link. This procedure gives us the tip-to-base recursive computational algorithm in Eq. 5.44 for assembling

the composite rigid body inertias for all the links in the serial chain.

Recursive Computation of Composite Body Inertias


R(0) = 0

for k = 1 · · · n
R(k) = φ(k, k − 1)R(k − 1)φ∗(k, k − 1) + M(k)

end loop

(5.44)

Lemma 5.1 : Decomposition of the Mass Matrix

We have the following decomposition of the mass matrix into diagonal and triangular factors:

M = HRH∗ + Hφ̃RH∗ + HRφ̃∗H∗ (5.45)

Proof: See [Jain 91].

From this decomposition it follows the the elements ofM are given by the following expression:

M(i, j) =

 H(i)R(i)H∗(i) for i = j
H(i)φ(i, j)R(j)H∗(j) for i > j
M∗(j, i) for i < j

(5.46)

5.2 Inertial frame reference quantities

The hinge mapH∗(k) characterizes the relative spatial velocityH∗(k)θ̇(k) across thekth hinge with the hinge frameOk

as the velocity reference frame. However one can also choose an inertially fixed frame - denotedI - as the velocity reference

frame. This choice helps simplify some of the analytical expressions as seen below. the corresponding hinge mapHI
∗(k)

is given by

HI
∗(k) = φ∗(k, I)H∗(k) =

[
h(k)
λ(k)

]
, λ(k)

4
= l̃(I, k)h(k) (5.47)
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HI(k)
4
= S [HI

∗(k)] = φ(I, k)H(k)φ(k, I) =
(
h̃(k) λ̃(k)

0 h̃(k)

)
(5.48)

Thus, for any spatial vectorX,

HI(i)X = −Q[X]HI
∗(i) (5.49)

Note that the corresponding inertial frame referenced CRB inertia - denotedRI(k) - is given by the relation

RI(k) = φ(n, k)R(k)φ∗(n, k) (5.50)

The following lemma provides an alternative operator expression for the mass matrix sensitivity using the composite

rigid body inertia operators. These expressions are easier to evaluate as illustrated by the later results which provide

expressions for the component elements of the mass matrix sensitivity.

Lemma 5.2 : CRB Based Expression forMθi

Mθi
= H

[
φ[Hi

δR−RHi
δ]φ

∗ + φHi
δφ̃R−Rφ̃∗Hi

δφ
∗
]
H∗ (5.51)

Proof: The above expression follows from the use of Eq. 5.46 in Eq. 5.52.

Lemma 5.3 : Component elements ofMθi

We have that

Mθi(j, k) = Mθi(k, j)

= H(k)
[
φ(k, i)[H(i)R(i)−R(i)H(i)]φ∗(j, i)δk,j>i

+ φ(k, i)H(i)φ(i, j)R(j)δj≤i<k −R(k)φ∗(i, k)H(i)φ∗(j, i)δk≤i<j

]
H∗(j)

= HI(j)[HI(i)RI(k)δk≤i<j + RI(j)H∗I (i)δj≤i<k + {HI(i)RI(i) + RI(i)H∗I (i)}δk,j>i]HI
∗(k)

=


HI(j)HI(i)RI(k)HI

∗(k) for j > i ≥ k
0 for j, k ≤ i

HI(j)
{

HI(i)RI(i) + RI(i)H∗I (i)
}

HI
∗(k) for k, j > i

(5.52)

Proof: Note thatMθi(j, k) = 0 for j, k ≤ i .

Mθi(j, k) = H(k)
{
φ(k, i)H(i)[φMφ∗](i, j)δk>i − [φMφ∗](k, i)H(i)φ∗(j, i)δj>i

}
H∗(j)

= H(k)
[
φ(k, i)[H(i)R(i)−R(i)H(i)]φ∗(j, i)δk,j>i + φ(k, i)H(i)φ(i, j)R(j)δj≤i<k

−R(k)φ∗(i, k)H(i)φ∗(j, i)δk≤i<j

]
H∗(j)
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This result shows an explicit expression for the sensitivity with respect to hingeθi of the general matrix elementM(j, k).

The key quantity involved in this expression is the composite body inertiaR(i) evaluated at the same hingei. Since both

the argumenti in R(i) refer to the same hinge, this means that it is possible to compute this quantity with a single spatial

recursion, going in the inward direction from the tip of the serial-chain to the base. This recursive algorithm is outlined in

the following result. The above result implies that once we have either of theR(i) or RI(i) composite rigid body inertias

computed (using Eq. 5.44), it is a simple matter to obtain the individual elements of the mass matrix sensitivity matrix.

5.3 Christoffel Symbols

Christoffel symbols play a key role in multibody dynamics quantities and can be used to compute the Coriolis and gyroscopic

velocity dependent acceleration terms. Recall that the Christoffel symbols are defined as

Ci(j, k)
4
=

1
2

[
∂M(i, j)
∂θ(k)

+
∂M(i, k)
∂θ(j)

− ∂M(j, k)
∂θ(i)

]
(5.53)

The symmetric matrix Ci whose elements are the Christoffel symbols is such that the Coriolis joint force elements are

given by the expression

C(i) = θ̇∗Ciθ̇

For a tree-topology system,

Ci(j, k) = Ci(k, j) ∀ i, j, k

Ci(j, k) = −Ck(j, i) ∀ j ≥ k, i

Ci(j, i) = Ci(i, j) = 0 ∀ j ≥ i

∂M(k, j)
∂θi

= Cj(i, k) + Ck(j, i) ∀ i, j, k

Also Ci(j, k) is a function ofθ(1) · · · θ(m− 1) alone wherem
4
= max(i, j, k).

Lemma 5.4 : Expressions for Christoffel symbols using Composite Body Inertias

For j > k, i, we have that

Ci(j, k) =
1
2
H(j)

{[
φ(j, k)[H(k)R(k)−R(k)H(k)]φ∗(i, k)δi>k + φ(j, k)H(k)φ(k, i)R(i)δi≤k

]
H∗(i)

−
[
φ(j, i)[H(i)R(i)−R(i)H(i)]φ∗(k, i)δk,j>i + φ(j, i)H(i)φ(i, k)R(k)δk≤i<j

]
H∗(k)

}
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Proof: From Eq. 5.53 and Lemma 5.3 it follows that

2Ci(j, k) = H(j)
[
φ(j, k)[H(k)R(k)−R(k)H(k)]φ∗(i, k)δj,i>k + φ(j, k)H(k)φ(k, i)R(i)δi≤k<j

−R(j)φ∗(k, j)H(k)φ∗(i, k)δj≤k<i

]
H∗(i)

+ H(k)
[
φ(k, j)[H(j)R(j)−R(j)H(j)]φ∗(i, j)δk,i>j + φ(k, j)H(j)φ(j, i)R(i)δi≤j<k

−R(k)φ∗(j, k)H(j)φ∗(i, j)δk≤j<i

]
H∗(i)

−H(k)
[
φ(k, i)[H(i)R(i)−R(i)H(i)]φ∗(j, i)δk,j>i + φ(k, i)H(i)φ(i, j)R(j)δj≤i<k

−R(k)φ∗(i, k)H(i)φ∗(j, i)δk≤i<j

]
H∗(j)

For j > k, i, we have that

2Ci(j, k) = H(j)
[
φ(j, k)[H(k)R(k)−R(k)H(k)]φ∗(i, k)δi>k + φ(j, k)H(k)φ(k, i)R(i)δi≤k

]
H∗(i)

−H(k)
[
φ(k, i)[H(i)R(i)−R(i)H(i)]φ∗(j, i)δk,j>i −R(k)φ∗(i, k)H(i)φ∗(j, i)δk≤i<j

]
H∗(j)

For j > k > i, we have that

2Ci(j, k) = H(j)φ(j, k)H(k)φ(k, i)R(i)H∗(i)−H(k)φ(k, i)[H(i)R(i)−R(i)H(i)]φ∗(j, i)H∗(j)

Lemma 5.5 : Alternative expression for the Christoffel symbols

DefineY(a, b, c) as

Y(a, b, c) =
1
2
HI(a)

[
−Q[RI(c)HI

∗(c)] + HI(c)RI(c) + RI(c)H∗I (c)
]
HI

∗(b) (5.54)

Then, an alternative expression for the Christoffel symbols is as follows:

Ci(j, k) =



−Y(k, j, i) for j > k > i
0 = Y(i, j, i) for j ≥ k = i
Y(i, j, k) for j > i > k
Y(i, i, k) for j = i > k
Y(i, j, k) for i > j > k
Y(i, k, j) for i > k > j

(5.55)

Proof: This result is obtained by combining the expressions in Section 5.2 with Lemma 5.4.

6 Concluding Remarks

We have covered a range of topics all within the overarching goal of developing various expressions for the mass matrix

sensitivity coefficients, with respect to arbitrarily specified joint angle changes. Spatial operators make possible the sys-

tematic development of these quantities. The Newton-Euler spatial operator factorization of the mass matrix is used as a
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starting point to derive the mass matrix sensitivity equations. Alternatively, the composite-body mass matrix is then used

to derive alternative equations that are relatively simpler to evaluate. The sensitivity computations are then used to evaluate

the velocity dependent Christoffel symbols in Lagrange’s equations of motion. To our knowledge, this is the first time that

this type of term has been computed explicitly, using only spatial recursions and without the need for symbolic or numerical

differentiation. The paper focused only on the mass matrix and its related sensitivity. We have developed similar results for

the mass matrix inverse and its sensitivity, and these results will be described in a separate publication.
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