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The Newtor-Euler inverse mass operator (NEIMO) method for internal coordinate molecular dynamics (MD)
of macromolecules (proteins and polymers) leads to stable dynamics for time steps about 10 times larger
than conventional dynamics (e.g., 20 or 30 fs rather than 1 or 2 fs for systems containing hydrogens). NEIMO
is practical for large systems since the computation time scales linearly with the number of degrees of freedom
N (instead of thelN 2 scaling for conventional constrained MD methods). In this paper we generalize the
NEIMO formalism to the Nos¢and Hoover) thermostat to derive the N@s& Hoover equations of motion

for constrained canonical ensemble molecular dynamics. We also examined the optimu@, ek mining

the time scalet) for exchange of energy with the heat bath for NEIMBoover dynamics of polymers.

We carried out NEIMOG-Hoover simulations on the amorphous polymers poly(vinyl chloride) and poly-
(vinylidene fluoride), where we find that time steps of-28D fs lead to stable dynamics (10 times larger than

for Cartesian dynamics). The computational efficiency of the NEIMO canonical MD method should make

it a powerful tool for MD simulations of macromolecular materials.

1.0. Introduction cost in the dynamics of large systems. Thus for 1001 atgms (
For studies of the conformations and dynamics of polymers ;?ﬁ?a%;ﬂﬁf:?iﬁg Ir:\(;?g ?hiiﬁﬁizrg?s?tg?ti\;eg/i;ergics
and proteins, it is often useful to simplify the description of the Using the cell multipole methgMD has been demonstrated

systems by constraining such structural properties as bond . O . .
lengths and bond angles so that the focus can be on the dihedral® be practical for 19atoms p = 333 333). However, inverting

angles distinguishing the conformatioh. With such con- the 333 332><. 333 332 matrix would be clearlyl impractical.
straints the number of degrees of freedom (dof) drops froim 3~ To solve this problem we use the Newteluler inverse mass
(whereN is the number of atoms) f8. Thus, for a polyethylene  operator (NEIMO) approach to calculate thef (2) directly
polymer, GHap2, 3N = 9p + 6, while the number of torsional withoutgoing through the step of explicitly calculatifg and
dofisN = p — 1. In addition to simplifying the analysis, such then inverting. NEIMO is based on a spatial operator algebra
constrained molecular dynamics (MD) can allow significantly formalism andscales linearlywith N. The application of

increased time steps. NEIMO to (standard microcanonical) dynamics of proteins,
With constrained MD, Newton’s equation of motion becomes including the Tomato Bushy Stunt virus, has been reported
. . elsewheré.
M(6)6 + C(6,0) = 10) (1) Standard Newtonian dynamics leads to conservation of the

total energy along the trajectory. Thus the collection of points
from the MD describes anicrocanonicalensemble (in which
the energyE, volume V, and number of particleiN are
conserved). However, normal experimental conditions have the
system in contact with a heat bath with constant temperature.
Thus we want the MD simulation to simulate canonical

where@ denotes the vector of the generalized coordinates (e.qg.
torsional angles)Z denotes the vector of generalized forces
(e.g., torques)M denotes the mass matrix (moment of inertia
tensor), andC includes the Coriolis forces. The dynamics of
motion is obtained by solving (1) for the acceleration

“ a1 . ; ensembleappropriate for describingT( V, N) and (T, P, N)
0=M"710) ~ C(0.0)] ) canonical ensembles. This extension was carried out by®Nose
and integrating to obtain new velocities and coordinates. The and Hoovet® for Cartesian dynamics.
problem here is thaM is a N x N matrix, and hence the In this paper we derive the theory of constrained dynamics

calculation ofM ~1in (2) involves a computational cost scaling in the (T, V, N) canonical ensemble and present a NEIMO
asN 3. Since the other parts of the calculation generally scale algorithm (based on spatial operator algebra and the corre-
linearly in N, calculation ofM ~1 can become the dominant sponding recursive equations) to solve the NEWvIoseand
NEIMO—Hoover equations.
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topologies, and for closed loop systeA?s® For each cluster,
the spatial quantities (position, velocity, acceleration, and
momentum) are calculated recursively using the spatial quanti-
ties of the parent cluster. The derivation of the NEIMO
algorithm considers the spatial quantities for all the clusters to
be stacked in a matrix called the spatial operator. The spatial
operator corresponding to the mass matrix is then factorized
using innovations operator factorizatffi consisting of square
and invertible factors. The NEIMO algorithm involves no
explicit calculation or inversion of the mass matrix. There are
three steps to solving the equations of motion:

1. Velocities A base to tips recursion, during which the
spatial velocity @) of each cluster is calculated from the motion
of its associated hinge as well as the motion of its parent cluster.

2. Forces A tips to base recursion, during which the
effective force ¢/'— C) acting on each cluster is derived from
Figure 1. Clusters and hinges for the NEIME@oover simulations the direct force terms acting on the cluster (Cartesian forces,
of polyethylene oligomers. The large atoms are carbon, and the smallhinge torques, Coriolis forces, and other velocity dependent
ones are hydrogen. forces) plus the indirect forces due to its children. This step
requires a knowledge of the velocities in order to calculate the
Coriolis forces. Other quantitiéselated to the inverse of the
mass matrix are also calculated during this recursion.

3. Accelerations A final base to tips recursion to compute
the accelerations@j for all clusters. The details of this
algorithm along with the definition of the spatial operators is

contains the recursive algorithm for solving the NEIMO
Hoover equations of motion. In section 5 we discuss the
optimization of the Nosenass parameter for NEIME&Hoover
simulations (with bond lengths and bond angles constrained).
lllustrative applications of the NEIMO©Hoover method for
amorphous polymers and other polymers are shown in section

6. described in ref 2.
The NEIMO algorithm in the microcanonical ensemble was
2.0. NEIMO Method in the Microcanonical Ensemble combined with the POLYGRAF MD packagé and success-

. . fully applied for various polypeptides and protethsNEIMO
The NEIMO method offers @(N ) algorithm for solving  gimylations on polypeptides show that time steps as large as
the equations of motion, (1), for constant energy dynamics. The 5539 s can be used, even for systems containing explicit
system is partitioned in terms of rigid bodies ternwdsters hydrogens. The NEIMO method in the microcanonical en-
which are connected byingeseach of which can have one 10 semple has also been applied to the MD simulations of
six dof. The cluster is a group of atoms moving as a rigid unit amorphous polymers (e.g., poly(vinyl chloride)) described using

in @ molecule. It can consist of a single atom, a methylene yerindic boundary conditions where we find that time steps of
group, a phenyl ring, aa helix, or even an entire domain ofa 5 ¢g generally lead to stable dynamics.
protein. The hinge describes the relative motion between two

adjacen_t clusters. A typical application to polymers, prote_ins, 3.0. Canonical Ensemble NEIMO Method
or DNA is to freeze all bonds and angles. In this case the hinge
becomes one-dimensional, describing a torsion. If only the Several methods have been develdgeld to simulate
distance between two clusters is fixed, the hinge is five- constanttemperature systems. Constant kinetic energy methods
dimensional. Thus a molecule consists of one or more clustersscale the velocitiéd!> or moment# so that the total kinetic
with hinges connecting adjacent clusters. The union of clustersenergy remains constant. However, this leads to incorrect
connected to each other by hinges is referred to elsain A fluctuations in kinetic energy and hence does not produce
chain can be cross-linked (multiply connected) or open. A configurations corresponding to a canonical distribution in
system may consist of single or multiple chains. For each chain momentum space. Andersérused discontinuous stochastic
there is a designatedase clustewhich is connected to the  collisions to induce the canonical distribution (essentially MD
reference coordinate system by a hinge having the full six dof. with the velocities of the particles governed stochastically).
This enables each chain to have full freedom to translate and Nos& made a major advance by
orient in space. i. extending the system to contain an additional degree of
Within a chain the relationship between adjacent clusters is freedom representing the interaction of the system with a heat
described in terms gfarentandchild clusters. The base cluster bath and
has no parents but can have children clusters; it is the parent ii. choosing the form of the Hamiltonian so that the (equi-
cluster of each of these children. Each of these children clusterslibrium) dynamics generates the proper canonical distribution
may in turn have zero, one, or more children, branching outward in both momentum and configuration space. In the Nose
from the base. Outward branching can continue in a toplogical extendedsystem the physical system is placed in an external
tree with each cluster having zero, one, or more children, but bath with one additional coordinate variatd€corresponding
each child having only one parent cluster. Clusters with no to a time-scaling variable) and its conjugate momenpyrithe
children are calledtips. A chain can be infinite, but this  equations of motion fos drive the changes of velocities with
modifies the algorithm, which will be discussed elsewhere. time which in turn drive the changes in the thermal energies
In a serial chain(such as a linear polymer), there is a single with time. This leads to the proper canonical description of
tip cluster and each cluster between the base and the tip has @he thermal energy. However, the real time interval corre-
unique parent and unique child. These concepts are illustratedsponding to each time step is unequal, which complicates
in Figure 1. calculation of dynamical quantities involving Fourier transforms.
The NEIMO methodology has been developed for solving Hoover 8 proposed an alternative formulation in which the real
the dynamical equations of motion for serial chains, for tree time is explicit. Since the Hoover formulation involves real
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velocities and real time steps, it allows a simpler calculation of Thus the trajectory of the extended system leads to a canonical

dynamical properties (fast Fourier transforms). distribution of the coordinates and momenta of the physical
We now derive the Ndsand Hoover equations of motionin  system.

the internal coordinate dynamics framework. We also derive a  From (5a) the conjugate momentum is given by

solution to these equations of motion on the basis of the

recursive algorithm previously derived for the NEIMO micro- = 2$M 6)
canonical ensembfe.The computational time for this recursive 39: Z "l j
algorithm also scales linearly witN.

3.1. Derivation of NEIMO —NoseEquations of Motion. (where we usejx = My;), and the equation for the conjugate

The equations of motion for the Nosxtended system in the  position is

constrained internal coordinate framework are derived using the

Lagrangian formalism. Equations of motion are derived for a

system with clusters connected by hinges, wherein each hinge ﬁ = _SZZ 80' 0 — 80' Q)
can have one to six dof. These equations of motion are general
and can be used with any tree topology or any number and size

. . . In Nosevariables the Lagrangian tions of motion are given
of clusters and hinges. We first derive the Nagpe of osevariables the Lagrangian equations of motion are give

equations of motion and then extend it to the Hoover formalism. by
Consider a system with generalized coordinat§sapd N dfaL L
generalized velocities#). We represent the virtual Nose at 3_0i< _8_6[<_O 8

variables with a prime and the real variables without primes
(this is opposite the convention of ref 6). The system is placed Substituting (6) and (7) into (8) leads to
in a bath of temperaturgs, with the bath variables beirgand

ps. In the Noseformulation the real time is related to the d , 1 COMy 9
: i —(YM0) — <Y 0—0 +—=0 9)
virtual time ts by ot Jz ki”j 2 Z 'BGL i 30,
% = s% 3) Although the contribution té®/36y due to internal coordinates
S is straightforward, the contributions due to nonbond interactions
. , . . . are tedious to calculafe Consequently, we rewrite the potential
Thus the virtual Nosgeneralized variables are defined by ener
gy as
0= 6 (42) D=0, + Dy (10)
and where®; is the contribution due to internal coordinates (e.g.,
. . torsions) andPyg contains the Coulomb, van der Waals, and
0, = s, (4b) external forces. The gradient is given by
The Lagrangian for the extended system in Nuagables ad 0D Dy X,
(i.e., virtual variables) is given by —= + — (12)
96, 90, T 0X, 00,
, 1
L=KE — PE= —32 Z OM;(0)6; — D(0') +-Q(8)* — where the summation is over thdl €artesian coordinates. The
i=1 2 second term which is the gradient®fg with respect to internal
gkTg In's (5a) coordinates is computationally tedious. Substituting (11) into

(9) and rearranging leads to
where it is understood thatis in the extended system, KE is . . .
the kinetic energy, and PE is the potential energy of the extended szﬂ} +C\(0.0) + Fy(0.0) = 7 (0)  (12)
system. TheM; in (5a) are the elements of the mass matrix, ]
and® is the potential energy of the physical system (including
the potential energy due to van der Waals and Coulomb forces
along with the torsional internal energy). The first and the
second terms of (Sa) correspond to the kinetic energy and the ¢, (g,§') = sz - _zgr _Z__ (13)
potential energy of the physical system in internal coordinates. 7 9’ % X, 90,
The third and the fourth terms on the right-hand side of (5a)
represent the kinetic and the potential energy corresponding to

where

the bath variables whereTg is the temperature of the external Fn(0.0') = ZM'“ i (14)
bath andk is the Boltzmann constant. Nostowed? that
choosing and
9= N+1 (Sb) 1 a(I)int 1 3CI)|m
O ==3—r =550 (15)
leads to a partition function of the extended system which when § 90 $ 90,

properly integrated with respect to the bath variables leads to
the canonical form for the partition function of the physical
system as

Fn(0,6") corresponds to a velocity-dependent friction-like force
and could be included in the Coriolis terfDN(a,é'). The
Coriolis term also contains the nonbond and the external forces.
The NEIMO algorithm has the distinct advantage of not

Z — @_HO/'(TBD .. K .
N requiring the gradient of the nonbond and the external potential



The NEIMO Method J. Phys. Chem., Vol. 100, No. 25, 19960511

with respect to internal coordinates. Instead it can handle the where
gradient of the nonbond and external potentials with respect to

the Cartesian coordinates which is computationally advanta- ) L 1 oM 0Pyg
geous. In the NEIMO algorithm the forces can be written as C(0.0) = szﬂj 9_9 z (24)
] 8Gk axa
Py 2 F(0.0) =Y MD (25)
30, 4 X, e ,z ¥l
(12) is similar to the microcanonical equations given by (1). and
The major differences are the scaling of the generalized forces
by the variables and the additional friction-like term. The T(0) = — int (26)
Lagrangian equation of motion faris JHW T 00,
. | 9kTg . Thus the NEIMO-Hoover equation, (23), has the same form
&(QS) - SzeiMu 91 + S =0 as (1) and (12). With NEIMGHoover the additional frictional
” term due to the canonical ensemble §§;M;@i, which is
or included in the Coriolis force termsZ/4(0) is the vector of
generalized forces.
Transforming (20) to real variables leads to
¢= _Z[T_ - %] (27)
The kinetic energy of the physical system is Tsl'B
1 where
KE = —5220 M;(6)6; = NKT 17)
1lds
C=sd (28)
where T defines an instantaneous temperature. Thus, (16) s
becomes From (25) we see thdtis a friction coefficient. Hoover showed
1 using the Liouville equation that the probability density in
= 65['\' KT — gkTg] (18) conserved only if
We prefer to writeQ in terms of the time scale of relaxation of 9=N

i 19
the bath variables &5 in (27). This leads to

__Q
‘L’é = (19) iz l[l -1

(29)

Substituting forQ from (19) into (18) leads to
(23) and (29) are the fundamental equations for NEMMO

e 1T g (20) Hoover dynamics. These equations are solved for each cluster
in the tree topology using the recursive algorithm described in
the next section.

Substituting forg from (5b) leads to (21) . .
4.0. The NEIMO—Hoover Equations of Motion:
Recursive Solution
Since the NEIMG-Hoover equations of motion (23) have
the same form as (1), all the spatial operator equations and
as the equation of motion fos. (12) and (21) are the factorization discussed in ref 2 hold for the solution of these
fundamental equations to be solved for the NEIMQose equations. The three steps described in section 2 for the

dynamics. recursive NEIMO algorithm are also the major steps used in
3.2. NEIMO—Hoover Dynamics Equations of Motion. the solution of the NEIMG-Hoover equations of motion.
The Noseequations of motion involve virtual time, which Theinnovations operator factorizatioh'° provides a closed

implies unequal time steps in real time. This is incovenient form expression for the blodkDL T decomposition of the mass
for the analysis of dynamical properties (e.g., fast Fourier matrix M ~1. The operator expression for the mass matrix
transforms), and Hoovéproposed using (3) to transform the inverse in the innovations operator factorization is giveA by
Noseequations of motion into real variables

M t=[l — HyK]" D[l — HyK] (30)

dA_1dA 22)
dt s dt The factor [ — HyK] is square, block lower triangular, and
nonsingular. H is the hinge matrix representing the relative
Substituting for the Nosgariables in (12) leads to motion characteristics of the dof of each hingerti = 1 for
B . . torsions only);y is a lower diagonal spatial transformation
szjOJ- + Cu(6,0) + F (0,6) = 7, (23) matrix. K is a spatial operator definééh terms of the body
]

inertia and the hinge characteristics. The matfBixis block
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diagonal withN m x m subblocks (1x 1 for torsion only); i1 = & T 0D 1) (35)
the transpose in (30) is indicated by a superscript T.
For normal NEIMO dynamics (microcanonical ensemble) the where(g, is the value of the friction coefficient at the step

accelerations are obtained by solving the equation ando is the time step usedDy+ /2 at the half-step is given by
b=MY7-C 31 1T+ )
[ ] (31) Dirarm) =3 T, 1] (36)
From (23) we see that for NEIM©Hoover canonical dynamics Ts &

the accelerations become whereTh1(1/2) is the temperature of the system at the- Y/,

step. The computer code for the NEIM®loover simulations
was interfaced with POLYGRAF for carrying out calculations
reported here.

6=M{T-C,— M (32)

or . .
5.0. Optimization of the NoseMass Parameter
O6=M"[7-C, - b (33) Although the mass parame@rdoes not affect the canonical
. o ) ] distribution, it affects the rate at which the system attains
where —Z@ is the friction-like correction term to the (micro-  equilibrium. Various previous studies for Cartesian molecular

canonical) accelerations. The operator expressior®ffwb- dynamics of Lennard-Jones systems (NBs®iTolla and
tainepl by subs.titu'ging the operator expression Nor! from Ronchett® and Cho and Joannopoutdshave shown that a
(30) into (33)] is given by broad range of values f@ (about 2 orders of magnitude) leads
. T . to similar properties, but too small or too large a valueQof
0=[l —HyK] D [7—Hy(KZ+Pa+b+f)] — leads to unstable dynamics and different properties.
KTz/)Ta— Cé (34) We examined the appropriate range of valuesQoffor

NEIMO—Hoover dynamics of polymers (with the bond angles
whereP is the articulated poor inerfiawhile a andb are the and bond lengths constrained). This is the first test for the best

Coriolis and gyroscopic forces. Q for molecular systems containing internal valence forces. We
Equation 34 is built up from the following sequence of will express the heat bath mass param&ein terms of the
expressions: time constants given by (19), wheres is the relaxation time
R of the Nosevariables.
z=yl[K7+Pat+b+1] The lower limit on the value ofs is placed by the time step
of integration §). For stable dynamics one would expect that
€e=7—Hz o is sufficiently small that there be at least 10 steps in the period
1 corresponding tas leading to
v=D "¢
106 < 277, (37)
a=y[HY + a
or

O0=v—K'a—:¢o 10
_ 7,2 50 =160 (38)

Each of these above expressions has been shidwm be of 21

orderN. From (33) and (34) we see that the only difference in

the NEIMO—-Hoover equations of motion is the additional

computation of the friction-like termé.

The leapfrog Verlet algorithm is used to obtain velocities and
coordinates from the accelerations. Since the NEIMO algorithm
requires a knowledge of the velocities at the current step (to
compute the Coriolis forces, see (24)) in order to calculate the
accelerations, we modified the Verlet algorithm as follows:

i. We estimate the velocity at the current steps

There are two time scal¥%2linvolved in the relaxation
toward equilibrium of the extended system.

i. The relaxation of interatomic forces depends on the
fundamental frequencies of the molecular system and the
coupling between these modes.

ii. The relaxation of the heat bath variablg (o achieve
thermal equilibrium leads to additional forces dependingon

An estimate of the total simulation time can be obtained by
considering the long time fluctuations in tf&] Applying the

0 =15 ... —05) equilibrium condition(TO= Tg to (21) and assumingl~ 1
n n—(1/2) n—(3/2) leads to
i. We use®, in the recursive solutions to the NEIMO 1
Hoover equations to obtain the acceleratiohs Bl= - —; (39)
iii. Using @, we obtain the velocitynius). This is used to N 7

re-estimate) . . . . .
" This suggests a harmonic behavior for the long time fluctuations

0,=0.50,_(/5+ 0.5, 1 in [s0] leading to a characteristic relaxation time of

iv. Steps ii and iii are repeated until convergence is reached. Tdong — VN- Ts (40)
The criterion used for convergence is that the difference in the ) ) . .
velocity is less than 0.001 MD units (lengthA, time = 0.0488  the period being 2 longer. In order to obtain good averaging,
ps)_ Th|S Convergence iS genera”y reached after one or two the tOta| t|me Of the Slmu|atI0nS ShOU|d be at |eaSt 20 tlmeS thIS
iterations, adding negligibly to the computational costs. The Period, leading to

Hoover dynamical variablé is also integrated using the Verlet
algorithm, ttotal = 20(27trslong) = 4077:st (41)
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Figure 3. Variation withzs of the rms fluctuations in the total energy

calculations indicate that the torsion frequencies are in the range of (System+ bath) for isolated pe50 as a function of Various

200-600 cnr?.

Thus the above analysis suggests that in order to obtain good

dynamical behavior

i. From (38)7s should be larger than the time step for
integration which in turn must be small compared to the period
of interatomic motions.

ii. From (41) the total simulation time should exceed
40Q(N )V2r,

We now analyze the results of the NEIM®loover simula-
tions for molecular systems using various valuessdb check
the validity of (38) and (41). The choice ofis dependent on
how fast the system attains equilibrium and the ergodicity of
the system. Constrained MD simulations with all bond lengths
and bond angles fixed (using only torsional dof) were carried
out using the NEIMG-Hoover algorithm described in section
4.

5.1. Tests on pe50.We consider the polymer

pe50= CH,;—(CH,)gg—CH, (42)
where each Ckland CH group was taken as a cluster. This
leads to 99 hinges arld = 99 + 6 = 105, for the total number
of degrees of freedom in the NEIM&Hoover simulations

integration time steps), were considered.

0.04 T T T T T
, PE5S0 &= 5fs
Tg=300 K

0.031

0.02F

{ NEMO
“Tg=10
01/

005~/
Cartesian ——+—

Normalized Distribution

0.01

200 0 00 500 600

Temperature (K)

0 100

Figure 4. Distribution of temperatureScadfor pe50 from 400 ps of
dynamics aff = 300 K; CartesiarrHoover simulations and NEIMO-
Hoover simulations for various values of

with a large value ofrs = 10.0 ps blew up. This was due to
the slow response of the bath (lar@ to the system.

For the fastest reliable results, we want to use the largest
time step,d, consistent with stable dynamics. Of coursé a

(including the 6 degrees of freedom of the base body). Since that is too large can increase integration errors causing changes
the linear and angular momenta of the molecule are conserved,n the total energy and leading to errors in the calculated
the temperature and other properties correspond to 99 indepenproperties. From here onward total energy means the energy

dent dof.

of the system and the bath. The root-mean-square (rms)fluc-

Figure 2 shows the vibrational frequencies obtained from the tuations in the total energy are shown in Figure 3 for time steps

velocity autocorrelation analysis of the Cartestdoover
dynamics for pe50. The modes below 200 @énfthe first

of 6 =1, 5, and 10 fs and various valuesmf(ranging from
0.01 to 1.0 ps). (Analysis of the rms fluctuations for larger

plateau shown in Figure 2 as a lattice) correspond to lattice time steps is given in the next section). Ko 1 fs the total

vibrations. The region from around 800 to 1200 ¢ncorre-
sponds to Chlrock twist and skeletal motions, as shown by
Karasawa et &2 Also the region from 1300 to 1800 crhis
due to CH wag- and scissor-like motion. The 3000 chnegion

is CH stretch. Thus the region between 200 and 6001cm
corresponds to torsions. This leads to periods of-1% fs,
suggesting a dynamics time stejp,of about 16-6 fs.

5.1.1. Total Energy Consegition. NEIMO—Hoover (T,V,N)
simulations were carried olitfor 400 ps at 300 K for various
values ofzs and step sizé. Ford = 0.01 ps, (38) suggests
that the lower limiting value ofs > 0.016 ps, and indeed the
NEIMO—Hoover simulations blew up fors = 0.007 ps.
Similarly for 6 = 0.005 ps, (38) suggests that> 0.008 ps,
and the simulations blew up fag = 0.007 ps. On the basis of
(41) we expect that for a total simulation tirhgs = 400 psts
should bers < 0.32 ps. Indeed we found that the simulation

energy is well conserved at all valuesmgfapparently because
0 < 1. Ford =5 fs the total energy conservation is good for
all values ofts except 0.01. Fop = 10 fs the deviation in
total energy is large only fors < 0.05. Thus,zs = 0.05 ps
leads to good total energy conservation foraalk 10 fs.

5.1.2. Temperature DistributionsWe now compare the
temperature distributions of the NEIM&Hoover simulations
with the temperature distribution for the Cartestatoover
simulation. Figure 4 shows the temperature distribution for 300
K Cartesian-Hoover simulations withrs = 0.01 ps,0 = 1 fs,
and tioiey = 400 ps. Figure 4 also shows the temperature
distribution for NEIMO-Hoover dynamics using various values
of 7. The NEIMO temperature distributions are similar to the
Cartesian simulations for alls. For larger values ot the
distribution is somewhat too broad. From statistical mechanics
the average value of KE should be
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N
KEO= §kTB
and the fluctuation in KE should be
[OKE)2C= [KE)? — (KEMA= g(kTB)Z

Hence the average temperatiifigydIshould be

O..dF N_2k KEO= Ty (43)
and the mean-square deviation in temperature should be
BT, =2 TS

Thus we expect
N 2
SBTea =T (44)

Figure 5a shows how fa&f.ydconverges to the equilibrium
value. The average temperature converges fagt;fer0.1 ps
but not forzs = 0.5 and 1.0. Fors = 0.5 and 1.0 there are

large fluctuations even after 300 ps (they should dampen with
longer simulation times). It is also evident from Figure 5a that

(Tcadds steady only after 300 ps, even far= 0.05 ps. Hence

the properties calculated below are averaged over the last 100

ps of the simulation. Table 1 showScaddand ((N/2)
OT2, "2 values ford = 5 fs and various; values. According
to (43) and (44) botHTcudland (N /2)0T2, )" should be
300 K. We find thatT.,ddis always slightly above 300 K but
is closest forrs = 0.05. The value ofd T2, [is closest to the
theoretical value fors = 0.07 and 0.3 ps. However fag >

0.3 ps, the fluctuations become increasingly too large. (38) for

0 = 5 fs suggests that; > 0.008 ps. These results suggest
that s be chosen in the range of

0.05 ps< 7, < 0.10 ps (45)

Further tests were carried out on pe50 witk= 10 fs. (38)
leads tors = 0.016. Indeed the simulations with = 0.01 ps
blew up for this case. Table 2 shows thRydland ((N /2)
072, "2 where we see thafc,dis too large by 3-6 K. This
is because of inaccuracies in integration due to the lar@nce
again good properties result from 0.01p3s < 0.1 ps. Figure
5b shows the variation @ff ¢ With time. Thel[T.qdonverges
fast forzs < 0.1 ps but forrs = 1.0 ps leads to large fluctuations
even after 200 ps. Again the best values @72, [Jare
obtained for

0.05 ps=< 7, < 0.07 ps (46)
5.2. PVDF-50. We now consider the polymer

PVDF50= CF,—(CH,~CF,),s—CH,

to test the NEIMG-Hoover dynamics. This molecule was built
with the POLYGRAF BUILDER, and we used the MSXX FF
derived for amorphous poly(vinylidene fluoride) by Karasawa
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Figure 5. Variation of (Tcadwith time for NEIMO—Hoover simula-
tions at 300 K at several valuesaf (a) pe50 withd =5 fs, (b) pe50
with 6 = 10 fs, and (c) PVDF50 witlkd = 10 fs.

et al?®> Each CR, CHs, CH,, and Ck, moiety was taken as a
cluster connected by torsion-only hinges. This leads to 99
torsional dof. NEIMG-Hoover simulations were carried out
for 400 ps withd = 10 fs and various values aof;. (38)
demands thatrs > 0.016. As expected NEIM©Hoover
simulations for PVDF50 at 300 K blew up withh = 0.01.
Table 3 shows théT.uddand (N /2)dT%, 0 calculated
for PVDF50. ThelTcaddis close toTg for all the values ofrs
except forrs = 10.0 ps. Poor results were expected for=
10.0 ps since (41) suggests thaty > 12600 ps for good
averaging. BothTcudland ((N /2)dT%,[)"? are closest to 300
K for 7s = 0.1 ps. Forzs > 0.3 ps we see that N(/2)
T2, )% deviates increasingly from 300 K. Figure 5¢c shows
the variation ofTgdwith simulation time for PVDF50 at 300
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TABLE 1: Dependence of Temperature Averages for
Isolated pe50 as a Function ofs with 6 =5 fs

7s (pS) MeadA(K) (N 12)B T2, 0% (K)
0.007 blew up
0.01 303.16 240.15
0.03 302.13 156.43
0.05 301.68 238.96
0.07 302.74 295.31
0.1 302.32 285.88
0.3 302.95 304.35
0.5 302.13 367.47
0.8 302.46 354.77
1.0 304.96 923.79

10.0 blew up

TABLE 2: Dependence of Temperature Averages for
Isolated pe50 as a Function ofs with 6 = 10 fs

75 (pS) Teaid XK) (N 12)DT2, 5" (K)
0.01 blew up
0.03 303.93 142.39
0.05 305.71 223.08
0.07 305.29 276.19
0.1 304.99 335.41
0.3 303.55 705.89
0.5 308.10 1591.40
0.8 307.58 1868.88
1.0 306.93 2829.92

10.0 blew up

TABLE 3: Dependence of Temperature Averages for
Isolated PVDF50 as a Function ofrs with 6 10 fs

7s (pS) MeadAK) ((N 12)BT2, 0" (K)
0.01 blew up
0.03 301.67 120.91
0.05 301.54 311.23
0.07 302.10 181.99
0.1 301.66 160.00
0.3 302.45 389.79
0.5 301.02 548.20
0.8 302.84 662.94
1.0 308.60 1134.51

10.0 379.21 28501.37

J. Phys. Chem., Vol. 100, No. 25, 19960515

base body) in the NEIMO©Hoover simulations for pe20, pe30,
pe40, and pe50 are 45, 65, 85, and 105, respectively. Carte-
sian—Hoover simulations were also done for all these systems
at 300 K. Figure 6a shows how the time st@émffects the
total energy (scaled by the torsional dof). For NEIMBoover
dynamics, time steps as high as-Z% fs give stable dynamics
while Cartesiar-Hoover simulations are limited t6 < 3 fs.
Parts b, ¢, and d of Figure 6 show similar curves for pe30, pe40,
and peb0, respectively. Again, time steps of-3D fs can be
used for these systems, whereas Cartesitwover simulations
are limited to time steps 2 fs. Thus with NEIMO-Hoover
the time steps can be about 10 times as large as for Cartesian
dynamics while leading to the same total energy conservation.
6.2. Amorphous Polymers. Using periodic boundary
conditions to eliminate surface effects, we examined NEHMO
Hoover dynamics for amorphous polymers poly(vinylidene
fluoride)

PVDF66= CF,—(CH,—CF,)ss—CH;
with one chain per unit cell and poly(vinyl chloride)
PVC20= CH;—(CCI-CH,),.—CH,CI

with four chains per unit cell.

6.2.1. PVDF66-PBC.For amorphous PVDF66 (132 car-
bons) the unit cell is cubic witk = b = ¢ = 18.0 A. This
system has 131 torsional dof and a totaldof= 137. Each
backbone carbon with its ligands is taken as a cluster. We used
the FF of Karasawa et &t. The nonbond forces were calculated
using the fast Ewald summation meth@dThe initial structure
was energy minimized (conjugate gradient) to a rms force less
than 0.1 (kcal/mol)/A. NEIMG-Hoover simulations were
carried out at 300 K usings = 0.05 ps. According to (38)s
> 0.048 ps fordo = 30 fs. The CartesianHoover simulations
were carried out for amorphous PVDF at the same conditions
as those for NEIMG-Hoover. Figure 7 shows the total energy
fluctuations for PVDF66 using variousvalues. We see that
the 6 with NEIMO—Hoover can be 10 times as fast as that for
Cartesian-Hoover with the same fluctuation in the total energy.

6.2.2. (PVC20Q)PBC. Both Cartesian and NEIM&Hoover
simulations were carried out for amorphous PVC at 300 K using

K. The fluctuations in the average temperature converges fasterthe Ewald summation method for nonbonds. Once agsin

for s = 0.05 ps than fors = 1.0 ps. As expected from (41)
the fluctuations forrs = 1.0 ps are large even after 250 ps.

Again, the best properties are obtained for

5.3. Conclusion. On the basis of (45), (46), and (47) we

recommend that

0.05< 7, < 0.10

0.05< 7, < 0.07

6.0. Applications of NEIMO—Hoover Dynamics

In this section we test the NEIM&Hoover simulations for
various systems using = 0.05 ps from (45). However fab
= 25 or 30 fs, we have used = 0.07 ps. From (38) this is
consistent fo® < 44 fs. We now examine the limits ahfor

0.05 ps for alld. Ford = 30 fs,zs = 0.07 ps was used. For
PVC the unit cef! hasa=22.8 A,b=23.1 A,c=12.1 A,
ando = 94.82, 8 = 89.17, andy = 84.92. The system has
four chains of PVC with a total of 488 atoms and 180 torsional
dof including the four base bodies for each chain. In order to
remove any bad contacts in the starting structure, we minimized
the energy of the initial structure to a rms in force less than 0.1
(kcal/mol)/A. Figure 8 shows the fluctuations in the total energy
as a function of time step for amorphous PVC. Again the time
steps for NEIMO can be about 10 times those for Cartesian
dynamics. Here we show that = 20 fs exhibits stable
dynamics.

7.0. Summary

For polymers and proteifhsNEIMO allows an order of
magnitude speedup in the calculations since much larger

NEIMO—Hoover simulations of dense amorphous polymers integration time steps can be used than for Cartesian simulations.
(simulated using periodic boundary conditions).

6.1. Isolated Polymer Chains. NEIMO—Hoover simula-

The NEIMO method has been extended to samplerthé N
ensemble in order to obtain canonical ensembles for calculating

tions were carried out for isolated polyethylene oligomers: pe20, properties of materials. The Lagrangian equations of motion

pe30, pe40, and pe50. Simulatibhseere done at 300 K for

have been derived for both the NEIMMoseand the NEIMO-

400 ps. Again, only torsional dof were allowed (bond lengths Hoover methods, leading to an additional frictional force in the
and bond angles frozen). The total number of dof (including Coriolis term. We have shown the applicability of t&¢N )
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