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T'wo new methods developed for molecular dynamics simulations of very large proteins
arc applied to a series of protcins ranging up to the protein capsid of tomato busily stunt
virus (TBSV).

For molecular dynamics of very large proteins and polymers, it is useful to carry out the
dynamics using internal coordinates (say, torsions only) rather than Cartesian coordinates.
This allows larger tine steps, climinates p roblemns with the classical description of high
cnergy modes, and focuses on the important degrees of freedom. The resulting equation
of motion has the form

M(6)0 -{ C(8,0) = T(6)

whiere for 7' is the vector of gencralized forces, M(6) is the moments of inertia tensor, 6
is the vector of torsions and C is a vector containing Coriolis forces and nonbond forces.
The problem is that to calculate the acceleration vector 8 from M, Cand 7' requires

inverting M(0), an order A calculation. Since the nuinber of degrees of frecedom might
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be 300,000 for a million atom system, solving these equations every time step is impractical,
restricting internal coordinate methods to small systems. The new method, Newton- Fuler
Inverse Mass Operator (N EIMO) dynamics, constructs the torsional aceclerations veetor
= M (T - C) directly by an order N p rocess, allowing internal- coordinate dynamics
to be solved for super large (inillion atom) systeins. The first use of the NEKIMO method
for molccular clynadl-lies of proteinsis presented here.

A sccond serious difficulty for Jarge proteins is caleulation of the nonbond forms. We
report here the first application to proteins of the new Cell Multipole Method (CMM) to
evaluate the Coulomb and van der Waals interactions. The cost of CMM scales linearly
with the number of particles while retaining an accuracy significantly better than standard
110111.)01)(1 mmethods (involving; cutoffs).

Results for NEIMO and CMM arc given for simulations of a wide range of peptide
and protein systems, including the protein capsid of TBSV with 488,000 atoms. The
computational time fox NEIMO and CMM are demonstrated to scale lincarly with size.
With NEIMO the dynamics time steps canbe as large as '20 fs (for small peptides), much
larger than possible with standard Cartesian coordinate dynamics.

For TBSV we considered both the normal form and the high pH form in which the
Ca??ions are removed. These talc.ulaticn)s lead to a contraction of the protein for both

forms (probably becausce of ignoring the RNA core not observed in the X-ray).

1.1 ntroduction

Molecular dynainies simulations have becomne invaluable for such diverse tasks as
building protein modecls from crystallogra phic data’ and determining the relative frec en-
crgy of binding for a variety of drugmolecules to a com morireceptor.? Despite the ad-
van ces, many problems of chemistry and biology scemn completely outside the reach of
current methodologics. For example, starting with the X-ray diffraction structure for the
protein capsid of poliovirus, we would like to use mnolecular dynamics to predict the strue-
ture of the RNA inside the protein capsid, a simulation involving loug-term simulations
of over 1,000,000 particles. Major advauces in computer hardware (including vector pro-

cessing supercomputers, RISC workstati ons, and massively parallel supercomputers) have
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allowed the extension of current methods to larger and more complex systems. Yovery more
important are the advances in software which involve optimization of architectures,® im-
sroved cfficiency in calculating interatomic forees,»® and development of techniques for
proved efficiency in caleulating interatomic forces,”” and development of techniques for

allowing larger timncstepsinmolecular dynamics simulations.®™12

Molecular dynamics simulations typically involve numerical integration of Newton’s

equations of motion,

Mi= I (1)

Time steps for the integration must be sufliciently small that the fastest modes are handled
accurately. Systems containing explicit hydrogen atoms typically require time steps of
about ] femtosecond (1 fs == 107!° S) for accurate results.

The most popular approach for increasing time steps is to fix the fastest degrees of
freedom (bond stretches and angles) and to solve the cquations of motion for the slower
(torsional) degrees of frcedom. Suchanapproach is cspecially justified for studies of
large biological molccules, where bond lengths and angles vary little fi -om one structure to
another and nearly all important conformational tra nsitions are clue to torsional motions.
[An alternative approach for increasing time steps is to separate short and long-range forces

and use different tine steps for the different forces.’]

The SHAKE algorithin’has become the standard approach for doing molccular dy -
namics with fixed bond lengths. It can also be used to hold angles fixed, but this is less
cffective.?? SHAKE is a modification of the Verlet algorithm for integrating the equations
of motion for the 3n - 6 Cartesian coordinates degrees of freedom in an n-particle systems.
Particle velocitics are calculated first for the unconstrained systemn, and then modified to
mecet cach constraint. Al 1 iterative p rocess is required to mncet all the constraints concur-
rently. The SHAKE algorithm has been successfully used for time steps up to 4 {5,910
enabling a speedup in computational time that is partially balanced by the costs of itera-
tively solving the constraint equations.®

An alternative to the SHAKE methodology of solving Cartesian coordinate dynamics

with constraints is to solve the equatio ns of motion divectly for th ¢ internal degrees of
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freedom. This leads to equations of the form

M(0)0 -1 C(8,60):-1(6) (2)

where 7°(0) is a vector containing all { orques (or other generalized forces), C is a vector
describing nonbond forces and external fields, M is the moment of inertia tensor (the
Mass matrik), and 6 is the vector of angular accclerations (generalized accelerations). At
any particular time step, M, C,and 7" arc known and 6 must be calculated to obtain
the @ and @ for the next time step. When only torsional degrees of freedom are allowed,
solutions to (2) automati cally fulfill the desired bond length and/or angle constraints, so
their efficiency is not limited to a secondary constraint-solving step. Indeed, Mazur ¢t al.
were able tosimulate accurately asmall polypeptide, (Ala)g, withtimesteps as large as
13 fs, asignificant improvement over the S}1 AKE algorithim. The problem is that for A/
degrees of freedom M is an A by N matrix and solving (2) requires a time proportional
to A3, which becomes prohibitive for large systeins.

Recently, Jain et al.?1-12 developed an alternative method for solving the equations of
motion for internal coordinates. This new Newton- Kuler Inverse Mass Operator (N1SIMO)
m cth od, does not require dircect manipulation of matrices, and leads to computational
times proportional to A rather than A, * fhemethodology was (1 CW10]KK1 for spacecraft
dynamics, but in a separate rcport, Jain et al.¥? described how the method could be applied
to molccular dynamics. This report presents the first implementation of the NEIMO
method fox molecular systems. We have studied the dynamics of polypeptide systeimns and
find that we arc able to talc.ulatc accuratcly the dynamics of some systeins with time steps
as large as 20 fs. Becausc the computational costs using; NIIMO arc rigorously proportional
to N, it, can be applied to very large systems. Actual application of NEIMO to systeins
as large as the tomato bushy stunt virus erystal structure,? (with anasymmetric unit of
over 8000 atoms distributed along three chains tot alling nearly 900 residues) snow that

the costs arcindeed proportional to A,
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11. Methodology
A. NEIMO
In standard molecular dynamics calculations the independent variables arc the 3n

cartesian degrees of freedomn, leading to Newton’s equations of motion in the formn
MiZTai = Fai- (1)

Here, mi is themass of particle i, Zai is th ¢ a component Of the accclerat ion for particle
i, and Iaiis the a component of Hic force for particle i. At cach time step the unknown
acceleration is calculated from (1) for each of the 3n Cartesian degrees of freedom by
dividing by 7?11,

!
Foi 7 = Fai (2)
My

in internal coordinates the dynamical cquations of motion are
M) + C(0, 6):T(0). (3)

where 6 is the set of gencralized internal coordinates (¢ g., torsion angles), Cis the set
of nonlinear forces (Coriolis plus nonbond), 7" is the set of generalized forces (torques in
the case of torsional degrees of freedom), and M(0) is the moment of inertia tensor (inass
mat 1ix). For a syst cm with A internal degrees of frecdom, the N degrees of frecdom
are coupled, leading to ofl-diagonal clemen (g iy the mmass matrix, M, with a nonlincar

dependence on 8. Thus solving (3) for g requires computing
b= M OT(6)- C6,0)) 4)

at cach time step."The computational cost of solving this matrix equation is proportional
to A2, which becomes prohibitive for large molceules.

Recently, Jain, et al.)?developed a recursive algorithm for solving the equations of
motion (3) which computes the right hand side of (4) without explicitly solving the N x N
matrix equations in (3). Instead this NEIMO method uses spatial operator algebre in a

rccursive approach o calculate (4) directly in a procedure where the COMPUL 460l e fJort
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is rigorously proporiional to A7, making a whole new class of very large m olecular systems

avail able for study by internal-coordinate molecular dynamices.

The NEIMO methodology has been developed for general multibody systems c.cmfig-
urcd as serial chains, topological trees, or Closed- loop systems.’ 1412 Qur first implemen-
tation for molecular systems reported here is for serial chain and tree topologies. (This
includes all proteins without disulfide linkages or prosthetic groups having multiple at-
tachment sites). ¥xtensions to Closed-loc)p topologics and periodic systems have since

b een completed.??

NEIMO USCSthe concepts Of “clusters” and “hinges” to describe a molecular systen. A
clusier is an atom or group of atoms that moves as a rigid unit; this could be a single atomn,
a multiple-atom group such as a methylene group, a phenyl ring, or even an entire domain
of a protein. A hinge describes the relative orientation between two connected clusters;
in a molccular system, each hinge is a bond connecting two adjacent clusters. There are
six possible degrees of freedom (dof) for cach hinge.  Special cases include torsions-only
(1 dof)and all-angles (5 clef). Here we will concentrate onthe torsions-only case, with
cach hinige limited to a single torsional dof. In addition to the internal dof, cach connected
chain of molecules is referenced to an absolute referen ce coordinate system. This is done
by considering one cluster as the base and using a hinge with the full six degrees of freedom

to describe the absolute orientation and position in space for this cluster.

The relationship between adjacent clusters is deseribed in terms of “parents” and
“children.” ¥Kach cluster can have onc or more attached child clusters; and is the parent of
cach of these children. In a topological tree, outward branching proceeds with cach cluster
baving zero, one, or more children, but cach child having only one parent cluster. Clusters
at the far extent of cach branch arc termed ‘(t ips” and have no children. A serial chain is a
lincar polymer having the base at one end and a single tip cluster at the other. Between the
base and tip clusters, cach cluster has aunique parent and unique child. I a protein, most
of the C, atoms are branch points with two children, and the outerinost cluster Of every
sidechain is a tip. These concepts arc illustrated in Figure 1, where the pentapeptide

Met-enkephalin is shown with the hinges numbered.  Hinge 0, which connects the base
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cluster to the reference frame, is 1ot shown . Bach cluster has a unique hinge connecting
to its parent cluster. The clusters and hinges of Mct-enkephalinare deseribedin ‘1'able 1.
The torsional degree of freedom for cach hinge (other than hinge O) is defined in terms of
a specific dihedral angle. These dihedrals are also listed in Table 1, using the standard
nomenclature of protein dihedrals.

The N EIMO method uses spatial operator algebra to simplify and solve the equations
of motion for multibody systcins.!? Using spatial notation, the Newton-Fuler recursive

cquations of motion for a tree-to])ology system arc:

V(E)= ¢ *(p, K)V(p) - H* (k)0 (5a)
a(k) = ¢*(p, K)a(p) 1 H*(k)I(k) 4 a(k) (5b)

al]d

F) =Y bk, e)f(e) 4 M(k)a(k) 4 b(k) A fe(k) (6a)
Tk = H(R)F(R) | (6b)

(where * indicates transposc).

These equations deseribe the relationship between a cluster k and its parent (p) and
child (¢) clusters, as well as the relationship between spatial variables [c.g. spatial velocity
V (k)] and generalized variables [e.g. generalized velocity ()(L)] Fquations Ha and bb define
the relationships between velocities and aceclerations in the space fixed coordinate system,
V (k) and a(k), in terms of the succession of body fixed V(p) and a(p). This starts with
k = base and proceeds to all tips (that is, it proceeds from parent (p) to child (¢)). Likewisc,
Equations 6a and 6b define the forces and torques in the space fixed coordinate system,
f(k) and T(%), in terins of the inter-cluster interaction forees f(e) plus the {orces derived
from non-bonded interactions, fe. This procceds from k = tips to k= base (that is from
child to parent)

The spatial transformation matriz ¢(k, ¢) transforis spatial force quantitics from the
frame of reference of the child cluster ¢ to its parent cluster, k; its transposc, ¢ (K, ¢)

transforins velocities and accelerations from parent to child.  The kinge matriz 11* (k)
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deseribes the spatial velocity across the k hinge.! 112 H* (k) is a 6 x dof dimeusional matrix
whose form depends upon the nature of the hinge motion (dof = 1 for torsions-only). The
spatial velocities derived are used'?? {o calculate the Coriolis accelerations a(k) and the
spatial gyroscopic forces, b(k).

The NEIM O method allows one to use Cartesian forces as well as torques to caleulate
the dynamic%. YFor our calculations, we have used Cartesian forces exclusively, as these are
alrcady calculated by BIOGRAF. Futurcimplementations of NKIMO will usc Cartesian
forces only for nonbonded interactions ( which are Cartesian in nature) while using torques
derived directly fro1 i the torsional potentials.

Spatial variables arcspecified interms of the six degrees of freedom (three angular
and three lincar) of cach cluster. Thespatial velocity V(k) combines angular and lincar
velocities of the duster while the spatial force j(k) combines angular forces (inoments or
torques) andlincar forces (Cartesianforees). Spatial operators canbe used to express these
rccursive relationships very concisely. For instance, using spatial operators, the cquation
for v'(k) becomes

Vo= EV 1. 7)

The spatial operator H* is a6nA by 6nA block diagonal matrix defined by H* =
diag{1*(1)“ .“ 11"(?1)}. The other spatial oper ators arc defined similarly,’? leading to

the followin g factored expression for the mass matrix:
M= H¢M@*H”.

The NEIMO method for solving the equations of motion is based upon expressions
for an alternative factorization of theimassmatrixand its inverse. Using spatial operators,

the Innovations Operator Factorization of the mass matrix'? has the form

M= (T4 H$K| DI+ HGK]. (8)

while the inverse of the mass matrix has the form?!?

MV- [ HYR)PD - HYK) (9)
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Therefore, the generalized aceelerations 6 in (4) are calculated by inverting the clef(k) x
dof(k) matrices, D(k), ratl ier than by inverting the entire .V x A mass matrix, M. Yor
torsions-only, clef = 1.
With NEIMO the computation of § is carried out in scveral recursive steps, cacl1 of
which is lincar in M.
2. Vclocity (V) step: an outward recursion from basc totipsto calculate the spatial
velocities, V(k), from the geometry and hinge velocitics, 6(k), as in Fiquation 5a.
ii. Spatial Inertia (MK D) Step: Caleulation of a number of dof(k) x dof(k) matrices,
P(k), D(k), etc.. related to the fore.cs. This proceeds from tip to base (child to parent).
P(k)= Y gk, ) PP ©))* (k, c)-t M (k)
D)= H(k) P(k)H"(K)
G(k) = P(k)H* (k)D™ (k)
]{(pa k) = d)(pa k)G(k)
(k) = 1- G(k)H (k)
PY(E) = 7 (R)P(E) (lo)
P(p, K)= ¢p, k)i (k)
sy =y @)zt oy AP(R)a(k) -1 b(k) A fe(R)
e(k)=T(k) - H(k)z(k)
v(k) = D1 (E)e(k)
2V (k) = 2(k) 4 G(R)e(k)

a2, Torsional Acecleration (0) Step: Calculates the angular acceleration, é, in terms of
the c.luster accelerations, a(k), and Coriolis aceclerations, a(k), effeetive t orques, c,
mass inverses, V, €etc.
ot (k) = ¢ (p, k)alp)
0(k) = (k) - G*(k) o' (k) (11)
a(k) = o (k) W (k) 6(k) 4 a(k)
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1v. New velocities and coord inates (() ¢R). The accelerations 0 are 118 (1 to update the

torsional velocities (6), torsional angle (6), and Cartesian coordinat s (I8) of the system

using the integrator described below. This step is done siimultancously with 0012,

The equations of motion were integrated using, the “leapfrog” Verlet algorithm.® The
Verlet algorithm calculates accelerations and velocities at alternating half time steps. Since
the accelerations in NEKIMO dynamics are not independent of velocities, the half time step
separation of accelerations and veloceit 1es must be modified. A's deseribed in detail in the
Appendix we solved iteratively for the velocitics at integer time steps (very fast). A major
virtue of th ¢ Verlet algorithin is that it requires only 4 single calculation Of the forces at
cachtime step. In simulations of large systeins, the force calculation consumes the vast
majority of computational time, so that mecthods requiring only asingle force calculation
arc preferable to methods which require two or moreforce calculations per time step,
such as the Gear predictor-corrector algorithm.?® Other integration schemes are being
investigated for use in NEIMO dynamics, but all results presented hiere usc the leapfrog
Verlet algorithm.

The NEIMO calculations presented here were performed using a version of the program
written (o work with the BIOG RAY¥/1’OLYG R AF program from Molecular Simulations,
Incl® All calculations were performedon iris PowerSeries and Iris Indigo workstations

from Silicon Graphics, Inc.

B. CMM

The Cell Multipole Method (CMM) i's described in reference 4 (the CMM module
described in reference 4 was adapted to BIOGIRAF/P OLYG RAYF). With CMM we place
the molecule ina box and divide the box into cight children cells, ecach child ccll into
cight grandchildren cells, etc., until there arc about 4 particles in the smallest cdl (the
microcell). Thus for TBSV the full virus is placedin a box having sides of 341.8 A and
a hicrarchy of 6 levels is used (262,144 level 6 cells). The charge, dipole moments, and
quadrupole moments (both Coulomb and vdW) arc calculated for each microcell and used
to ohtain the momenits of the parent cells. In describing the Coulomb and vdW interactions

for the atoms in some microcell, we explicitly calculate the interactions with cach of the
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particles in the same cell and in the 26 adjacent cells; this is denoted as the near field,
Viear- The interactions with all other particles use the multipole fields. The cells are
grouped so that the fields from larger (higherlevel) cells arc used for regions farther from
the cell of interest. These multipole fields arc expanded iy g Taylor series about the ceuter
of cach cell, allowing rapidcalculation of the energy and forces for cach particle in the cell
of interest. The total multipole ficld is denoted, Vg Thus the potential energy is written
as

Ve M 1\1(]{) - 1/n('(n (]{) 4V ar(]{) (]?)

Fachstep i the process is rigorously lincarinn (the number of particles) for a constant
particle density.

For systems such as 1135V the computational time for Vi car and Vg, are approx-
imately the same. However We find that Vy,, is relatively constant from step to step
so that Vyg4, nceds be updated only every 50 time steps. The net result is that the total
computational cost is that of calculating the near field (about 50 interactions per particles).

For TBSV the total calculation of all Coulomb and vdW interactions between all
particles in one asymmetric unit (8083 atoms) with all particles of the whole protein
(484,980 atoms)requires only 1.86 timmes the time (92.6 s vs. 49.8 s) for the interactions
within the asymmetric unit alone. This is .003% of the time estimated to do all nonbond
mteractions (3.2 X 106s).

C. TBSV

The crystal structure of TBSV was obtained by assuming exacticosahedral symmetry
for the protein capsid. in order to usc BIO GRAY for calculating the valence forces and
organizing, the input and output, we added a symmnetry mapping module (SYMMAY).
Thus on cach iteration the process was as follows:

1. usc BIOGRAF to calculate Cartesian valence forces (DREIDING force field) for the

8083 atoms asymimetric unit

‘2. usc SYMMAP toobtainthe 484,980 atons of the full protein capsid
3. USC CMMto calculate the Coulomb and vdW forces of all 484,980 atomsonthe 8083

atoms of the asymmetry unit
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4. use NEIMO with the valence forces from (1) and the Coulornb and vdW forces from
(3) to calculate thcaccelerations, andthusthe velocities and coordinates for the next
tnne step.

O.return to (1).

Calculations on a simple workstation are not really practical for long term dynamics of
viruses but we were able to perform 50 00-step simulations (e.g. 10 ps using 2 fs time steps)

inroughly 3 days (58 hours of CPU time on onc processor of an SG141)/380 workstation).

111. Results

NEIMO calculations were carried out ona wide variety of peptide and protein systemns,
ranging from the five-rcsiclue peptide Met-enkephalin (denoted MEnk) to the tomato bushy
stunt virus (TBSV) protomer, which contains three proteins totaling 893 residucs (8083
atoms). ‘J able 2 contains a list of the ten systens studied. The two peptides (M¥Enk and
Ala9) were built using the Peptide Builder of BIOGRAY ¢ which uses standard amino acid
geometries. They were initially configured as alpha helices, but were minimized to a local
potential energy minitnum using conjugate gradients minimization. As in all calculations
reported here, the D REIDING foree field?® was used for these imninimizations. No solvent or
counterions were used, but the diclectric constant was taken as distance-dependent (€ = 7).
This provides a ¢ rude representation of the clectrostatic shiclding of aqucous solvent. For
these small peptides, no nonbond cutofl’ was used;i.c., all possible pairs were included in
the van der Waals and electrostatic calculations.

The initial conformations of the cight protcins were derived from the X-ray crystal
structures listed in Table 2. All metal ions, solvent molecules, and disulfide bridges were
removed, leaving only protein chains conforming to a tree topology. (As mentioned above,
sidechain aromatic rings and proline rings are treated as single clusters ) Hydrogen atom s
were then added to heteroatoms using, the BIOGRAF hydrogen builder). As for the pep-
tides, the DRFIDING force field was used to energy-minimize these conformations. The
large size of the proteins precluded the inclusion of all possible nonbond pairs, a number
close to ; n? for an n-atom protein. Thercfore, CMM was used to calculate the van der

Waals and clectrostatic interactions.
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A. Timing

Timing results for the ten systems are shown in Table 3. The times represent the
average of 100 dynamics steps run on an iris | ndigo (R3000) workst ation. Times are
given for both the NEIMO calculations and the nonbond calculations, the latter of which
consumes the vast majority of CPU time, even when a very fast method such as CMM s
used. The NEIMO timing is shown to be rigorously proportional to N for the proteins
with over 400 atoms. For these systems, the NEKIMO calculations take up less than 5% of
the total CPU time. Since NEKIMO scales lincarly with size, there isno longer a practical
limit to the size of systein which can be simulated using internal- coordinate dynamies.
Calculation of the nonbonded interactions is the limiting factor, as it is for Cartesian
dynamics calculations.

A s indicated in Table 3 and Figure 2, the CMM calculations are proportional to n,
leading to times that are n/500 timnes faster than the exact calculations. The CMM cal-
culations arc not exactly proportional to n because protcinsystems arc not homogencous.
Shape and density variations cause variations in the number of atoms per microcell. How-
cver, these variations are not themsclves proportional to nz, so the n-proportionality holds.
Thesc applications usc the original CMM program developed for testing the algorithin.?

It has since been optimized and parallelized.3¢

B. Energy Fluctuations

A primary advantage of intcrnal-coordinate methods of molecular dynanicsis the abil-
ity touselarger timesteps thanthel fs step size typically required for Cartesian molecular
dynamics. A good measure of accuracy for dynamnicscalculations is the fluctuationin total

cuergy. In microcanonical dynamics, the totalenergy of the system
E- K4V (13)

should be constant, even though it, S compon ent s p otential energy, V, and kinetic cnergy,

A.", fluctuate. The energy fluctuation £ is defined by

B2y - (1)
g. ! >l~n’f(' ) (14)
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where by is the Boltzmann constant and 7" is the temperature of the simulation.

It is common practice to keep the temperature of a microcanonical dynamics siin-
ulation roughly constant by periodically scaling the velocities. Other calculations which
must be done periodically, such as updating a list of nonbond pairs within a given cutofl
distance or reassigning atoms to cells in CMM can be done at the same time the velocities
arc rescaled; This is particularly important for large systeins, where calculation of all
nonborided interactions for every time step is prohibiti ve. Under such conditions, where
nonbonds and velocitics are updated periodically, the total encergy, 1, dots not remain
constant throughout the entire time of the simulation. Thus the energy fluctuation £ from
(7) no longer provides a1 accurate measure of the dynamics because the reference F ois
different in cach period. Application of (7) then would lead to (K?) diverging from (19)?.
Instead, we use the average fluctuation, (£), deterinined by calculating £ during cach 0.100
ps interval,andaveraging. If the total calculation has N; 0.100 ps intervals, (£) is defined

by
(€)= -, 2. &, (15)

where €iis the energy fluctuation Calculated during t he 2- thinterval. In such calculations,
time steps should be chosen so that they given an integral number of dynamics steps per

0.100 ps - forinstance,a timestep of 3,0303 {s is used, rather than 3.0 fs.

B.1 Met-enkephalin

Figure 3 shows the values of & obtained from 1 picosccond (10- '2s) simulations
of the pentapeptide Met-enkephalin (NHY - Tyr- Gly-Gly- Phe-Met- COO ™ ) for NEIMO (AT)
and Cartesian (C) dynainics siinulations at time steps ranging from1 fs to 20 fs.

For Cartesian dynamics simulations the initial fluctuations were significantly higher
and we equilibrated (for about 1 picosecond) using 1 fs time steps before starting the
calculation of £. The NEIMO simulations did not require an equilibration phase. Cartesian
dynamics siinulations using time steps greater than 3 fs led to exaggerated particle motions
fromone time step to the next and the energy quickly diverged. For Cartesian dynamics
of large systems, our experience is that time steps must be restricted to 1 fs for robust

performance. Yven for the small peptide Met-enkephalin, a . 2 s time step gives rise to
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encrgy fluctuations 11101°(! than 10 times as large as a1 fssimulation.

In contrast, NEIMO dynamics simulations arc quite stable. Withtimesteps as large
as 18 fs, we found small fluctuations, smaller even th an the Cartesian dynamics simulat jon
with a 1 fs timestep. A fairer comparison might be to divide the energy fluctuations by
the number of degrees of freedom. For Met -enkephaling A= 28(22 dihedral angles plus
the six degrees of freedom for the base body), while the number of degrees of freedom in
Cartesian dynamics is 3n - G, or 138. Thescaled fluctuations, £x, arc also shown in Figure
3 and arc labeled with an asterisk (N* and C*). NEIMO time steps as large as 12 fs gave

smaller scaled fluctuations than the 1{s Cartesian siinulations.

B.2(AlA)

Siinilar results were obtained for Ilillc-residue polyalanine, (Ala)g. Cartesian dynamics
were rcliable only at 1 fs and 2 fstime Steps. The 3 fs simulation did not diverge, but the
flue.tuatiolls were extremel y large. The scaled fluctuations, £+, were very siinilar for 1 fs and
2 fs Cartesian dynamics of both peptides. The NE1 MO shinulations of (Ala)g gave larger
values of € and £+ thanfor Met-c]lkg)ljali]l at almost every timestep, but the fluctuations
did not diverge until tiine steps larger than 30 fs were used. It is likely that (Ala)g is able
to tolcrate such large time steps because it has no light sidechain c.lusters (which would
have higher rotational velocities). We used the united-atom option in the DREIDING
force field so that the C'Hsunits of the Alanine sidechains were treated as single particles
which did not rotate independently. However, the tyrosine, phenylalanine, and methionine
sidechains of Met-cnkc])llalin all containindividual clusters withlow moments of incrtia.
As indicated below inthe analysis of Met-clllicldlalin dihedral angle fluctuations, the long,
unbranched methionine sidechain is particularly flexible.

As thesimulations are carried out for longer periods of time, the flue.tuaticnls £ grad-
ually increased. For instance, a 1 ps NEIMO simulation of Met-enkephalin using a 5 fs
time step leads to a value of £ Icss than 0.0001 kcal/mol. The same simulation run for &
ps leads to £: 0.0042 kcal/mol, even though cach 0.1 psstretch of the simulation has £ <
0.0004 kecal/mol,and the average fluctuation overthe 50 0.1 psstretches was only 0.0001

keal/mol. Over 25 1)s, the siinulation lGads to anoverall £ of ().()36() keal/mol, even though
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the average 0.1 ps stretch had £: 0.0005 keal/mol. This discrepancy is caused by very
slow fluctuations in the total encrgy which cause (152) to slowly diverge from (#9)2. The
cause of thislong-term fluetuaiioll is unknown. Possibly due to tiine asymmetry of the
new integrator.

In order to compare NEIMO directly to the matrix method of Mazur, ¢t o' the
quantity &y (defined below) was calculated from simulations of (Ala)g at time steps ranging
from 1 {fsto 20 {s (sew Figure 4), Yor cachtime step, thesimulation was run for 4.0 ps
during which the velocit ies were rescaled, when necessary, to equilibrate the system. At the
cnd of the 4.0 psrun, 110 additional stepswere run. The first ten of these were discarded,

but the final 100 steps were used to determine &y, which is defined by

. B8

( (16)

(#7) isthe average cnergy during the 100 steps, and \/(A]T) is the root-mean-square clevi-
ation in the energy. Mazur et al. reported simulations on (Ala)g using a variety of models
including some containing explicit hydrogens. The DREIDING/NEIMO talc.ulaticnl cor-
responds to their third model: united atoms are used rather than explicit hydrogens, and
all bond lengths and angles are fixed. Only dihedral degrees of freedom are allowed plus
the six degrees of frecdom of the base body, for a total of 32 degrees Of freedom. Mazur
ct al. obtained a value of &5, = 0.8 X 1 0°using time steps of 0.5 fs. The magnitude of
b1 incrcased linearly with increasing time steps, but they were able to achicve their desire
level of accuracy, 651072, using time stepsas large as 13 fs. NKIMO simulations using
a 0.5 fstime step had a larger value of 65, = 4.0 x 10- ‘, but time steps as large as 15 fs gave
81 &~ 10-"2, as can be scenin Figure 4. These results are very consistent with the results
of Mazur, et al., even though they used diflerent foree field (a combination of CHARMm?¢
and KCEPP?T) and a different integration schemne.
B.3 Avian Pancreatic Polypeptide

Although time steps of 15 fs and longer arce clearly possible for NFSIMO simulations

Of small peptides such as Met,-cllli:Nlali]l and (Ala)g, suchtimestepsare too large for

large polypeptides and proteins, using the original program. Avian pancrcatic polypeptide
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(d’1"), a36resiidue hormone peptide, is a very interesting case because it is one of the
smallest known polypeptides to fold into a stable globular form. Figured Snows the alpha
carbon trace of aP’P’, which has two helices: ana helixanda collag;ml-like polyproline
helix 7" H ydrophobic sidechains line the cleft between the two helices, allowing for unusual

stability in a peptide this size.

Figurc 6 shows £ and £* using, diflerent time steps for 1 ps stmulations of al’P. NEIMO
simulations of aPP break down when tiime steps above 10 fs are used. Althougly time steps
as large as 9 {s give valucs of £ as good or better than the 1 {s Cartesian simulation, the
scaled fluctuations, £*, arc approximately equal for ¢ fs NIIM O and 1 fs Cartesian cascs.
Several factors may muse folded polypeptides and proteins to have substantially larger
fluctuations than small peptides at large time steps.  C o mplex sccondary structure cle-
ments such as helices, turns, and beta. sheets, are held together by hydrogen bonds, whit.]1
arc short-range interactions. Large time steps may causce rapid destabilization of these hy-
drogen bond networks. In general, nonbonded fore.cs such as van der Waals, electrostatics,
and hydrogen bonding arc Cartesianinnaturcand can flue.tuatc substantially with respect
to dihedral angle rotations. This effect is particularly great in the denscly-packed interior
of globular proteins, where self-c.ollisicnls occur very quickly, Much larger time stepscan

be used in NEIMO simulations of large low-density polymer systems.®!

The fastest dynamical modes inthe NEIMO modcl are those with the sinallest spatial
incrtia. In protein systems, these are clusters with explicit hydrogens, where rotation of the
hinge moves only the hydrogen atoms. For instance, the hydroxyl group of Tyrosine forms
a two-atom cluster. Rotation of the hinge between the aromatic ring Ce and the hydroxyl
0, modifies only the hydroxyl hydrogen coordinates. Thesc arc the fastest degrees of
freedom in the system. With NKIMO wce can hold fixed these dihedrals by counting the
outer OH cluster as part of the parent cluster and thentreating the hydroxyland aromatic
ring of tyrosineasasingle cluster. This “Rigid 11" modc] removes the fastest degrees of
freedom of thesystem and enables evenlonger N EIMO tune steps. This is seen clearly in
Figure 7, wherethe 18 hydroxyl and amino groups of aPP> have been incorporated with

their parent clusters. Although the scaled fluctuations, £* | are very similar for smnall time

A3281 1’




steps, the standard model blows up when time steps above 10 {s are used, while the “Rigid
H” fluctuations inerease only slowly above this point. Simulations using even longer time
steps displayed the same gradual increase in fluctuats ons, without the sharp jump in £* for
time steps above 10 fs. The “Rigid H” model should be useful for studies focussed primarily
on large-scalc motions, where the hydrogen-bonding interactions of these sidechain groups

arc less important and the advantage of longer time steps is pre-ciinent.

Detailed studies of protein systems require the inclusion of solvent, which plays an im-
portant role in stabilizing the native conformmation of most proteins. Solvent includes both
water (and/or lipids inthe casc of membrane-bound proteins) and ionic charges, which
may be present to stabilize charged groups onthe protein. Inorder to test the ability of
NEIMO simulations to include such factors, wc ran calculations where NEIMO dynam-
ics were used to solve the cquations of motion for the protein, while standard Cartesian
dynamics equations were solved simultancously for counterions. Avian pancreatic polypep-
title (al’P’) was used as a test system. Oppositely - charged groups within 10 A of each other
were considered paired and were not given counterions. This left cight unpaired charges,
which were then neutralized by adding counterions (five Nat and three cl- ). The coun-
terion locations were first optimized by minimizing their energies, then siimulations were
run for 2 psusing various time steps. The first picosccond was used for equilibrating the
counterion motions and the next picoseccond was used to determine €. The results arc
shown in Figure 7, along with the results from standard and “Rigid H” simulations of the
protein alone. The addition of counterions increases the energy fluctuation substantially,
but time steps as large as 8-10 fs arc still practical. This is a great improvement over

simulatior s where al atoms are treated with Cartesian-space molecular dynamics.

Figure 8 shows the variation in(€) during & ps simulations of al’P. In these calcu-
lations, the CMM was used for the nonbond talc.ulatiol]s. The £ was calculated during
0.1ps intervals, during which the average kinetic energy was talc.ulated and the farfield
contribution to the CMM cnergy was held constant.* At the end of ecach 0.1 psinterval,
the velocities were rescaled if necessary, the CM M farfield was recaleulated, and the £ was

recorded. At the end of the b ps simulations, the £ values were averaged to give (£). These
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values are plotted in Figure 8. For very short time steps (1 and 2 {s), the (£€) values are
much larger than the £ values from the 1 ps shimulations in Figure 6. At large time steps,

however, the results are very consistent with the shorter simulations.

B.4 Large Proteins

Figure 9 snows the average value of £* during § ps simulations of several of the proteins
in ‘J'able 2. Clearly the energy fluct vations in NEIMO dynamics simulations, cven when
scaled by the numnber of degrees of freedom, increase with protein size. This is in contrast
to the fluctuations during Cartesian dynamics simulations, which are roughly constant
when divided by the number of degrees of freedom. Sor ne of the inherent difliculties of
doing internal-coordinate dynamics for dense protein systeins are discussed above. Figure
9 allows that t} icse problems incrcase with protein size.  The results here indicate that
NEIMO dynamics simulations of typical protein systems (1 000-10,000 atoms)should be
used with 1 or 2 fs time steps if a high degree of accuracy is required. However, in some
cascs it may be valuable toincrease the timestep despite the loss in accuracy, in order to
increase the time span of thesimulation. Such simmulations would include studies of large-
scale protein motions such as hinge bending or local {folding and unfolding. The accuracy of
the NEIMO simulations for large time steps should improve as our iinplementation evolves.

This has alrcady been scen in recent work. !

>« Dihedral Distributions

Analysis of cnergy fluctuations indicates that the NKIMO method accurately solves
it cquations of motion for molccular systems. However internal coordinate dynamics pro-
duces a different sequence of molecular motions than Cartesian dynami es (which includes
the additional bond and angle degrees of freedom). in order to determine the relationship
between NEIMO and Cartesian simulations for the dynamics of the Met-enkephalin pep-
tides, we computed the distribution of dihedral angles during these simulations. Cartesian
and NEIMO dynamics siimulations were run at a temperature of 300 K for 5.() ps, during
which the dihiedralangles were output every 0. 1)S. The Cartesian dynamics calculations
hadal fs time step while the NEIMO calculations were runata variety of time steps.

Figure 10 shows the resulting distributions from siimulations of Met-enkephalin. The num-
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b ering of the dihedral angles is shown i Figui ¢ 1 and further identified in Table 1. The
top graph in Figure 1() shows the distribution from Cartesian dynamics and the bottom
shiows the distribution from a NEIMO clyjlall’lies simulation; both siimulations used a 1{s
time step. The distributions from the two simulations are very similar, with the backbone
w dihedrals (6, 9,12, and 1 7) showing the least flexibility, as would be expected, and the
methionine sidechain dihedrals showing the great.cst variation during the simulation. The
aver age values for cach dihedral, 6, can be caleulated from such distributions. Becausc
dihedral angles have a periodicity of 2z (3600), the average cannot be calculated dircctly,

but is derived from the average cosine and sine?®:

(0) = arctan ({sin 8)/{cos 8)) . (17)

Once () is known, the standard deviations can be calculated casily for AT time steps:

" C&q |,
S IS 08)

where
60: = (6, ~ (0))
(19)
7 < 60; < m.
Because of the periodicity of dihedral angles, equation (8) can always be ¢1forced by
appropriate additions or subtractions of 2z
The average values, (0), and standard deviations, o, for the distributions in Figure 10
are shown in Figure 11. The average valucs are also shownin ~’able 4, and arc compared
to the initial conformation. The NEIMO results are very similar to the results from the!
Cartesian siimnulations, indicating that the reduction in the numnber of degrees of freedom
docsnot,in general, affect thetorsional flexibility of themolecules. There arc! two excep-
tions to this here: 31 of Met b undergoes a transition from roughly 30° to - 60° (300°)
in the Cartesian simulation, but remains near 45° in the NEIMO simulation. Scecondly,
the ¢ angle of Gly 2 is rotated from - 60° to 60° inthe Cartesian simulation, but remains
ncar - 60° duri ng the N EIMO calculation. Apparently fixing the angle terms increases the

barriers to rotation sufliciently to prevent these transitions during 5 ps NEI MO simulation
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at 300 K. Therotational transition of Met 5y 'did occur after approximately 40 ps of a
50 ps NEIMO simulation using 5 fs time steps. A 600 K NEIMO simmulation using 5 {s
time steps saw both transitions occur by 20 ps, but the temperature was high enough that
fill'tller transitions continuedinboth directions over these harriers. It is important to note
that the NEIMO formalism explicitly includes the capacity for bond stretches and angle
bends between clusters, but the current implementation uses only the dihedral degrees of
frecdomn. Use of canonical dynamics also increases the rates for such torsional transitions.
The torsional barriers are expected Lo inercase when bonds and angles are fixed. This
eflect can quite simply be built into the force field by calculating the barriers for fixed and
flexible bonds and angles and then adjusting the harriers for the torsional-only calculations
to meclude this.

A slightly different view of theaverage dihedrals from 10 different NEIMO simulations
is given inFigure 12. The simulations were identical except for the time step, which ranged
from 1 fsto 10 fs (chosen to given an integer number of dynamics steps per 0.100 ps). It
is clecar that the results are quite consistent for time steps up to10 fs. Only the two outer
sidechain dihedrals y!and x? of Mect 5 have significantly different distributions for different
time steps. x! has (0) &~ 145° for §, 9, and 10 s timc step simulations, but (t?) =~ 90°
for the smaller timesteps. 1t is possible that the larger time steps occasionally enable the
molecule to jump over rotational encrgy barriers which cannot be cleared by simulations
using smaller time steps which,in effect, calculate energies and forces at more points along
the trajectory.

Inorder to quantify the dihedral distributions, we represented cinch distribution]] by a
gaussian, using the average, (0), andstandard deviation, ¢, from the 50 datapoints:

A 1 1 —60%/4a? 20
w000 | | (20)

These gaussians were normalized as

/ (8) d6 r/:(qr]? do =1, (o1)

[The constant in equation (20) is appropriate for nonperiodic variables and would lead

to a total probability in cquation (21 ) that is not normalized if o were so large that the
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probability is non -zero for every value of 8; this did not occur for any of the distributions

we have analyzed.]
Distributions from two diflerent siimulations can be compared by calculating the over-

lap, Sy2, of the functions ¥y and Vo:

S]Q : / 47y \]’2(10. (??)
L n

If ¥;and ¥y are defined as

1/4 1/4
20 . 23 .
Uy = [7:] @ Ya s [Vﬂ/} ¢ e (23)

where a = 1 /do? and f= 1 /402, and 66, and 602 are defined as in cquation (19) for (0);
and {€)2, then the produ et of these functions is also a gaussian:
1/4
daf
U, - [; 02[] Kz (a+ B)é6:12 (24)
T
Here, 60,5 is defined as usual from (O) | 2, where

9’(0>1 - 5(0)2.

(02 - o p

(25)

The constant in equations (24) is

[(€l©), 4 £(6)2)" =
a - f

Inserting equation (24) into equation (22) gives a formula for the overlap:

4aft 1/4
Syp - [-(a/j;)g} K53, (27)

S12 equals 1 if the two distribut jon funct ions are ident 1¢ al and equals O if there is no

(a(0)] -+ A(0)3) |a (26)

.
K2 = ex

overlap.

The overlaps from the 1() NIXIM () simulations plott ed in Figure 12 are shown in
Figure ] 3. Fach linc represents the overlap b etween the 11s time step simulations and one
of the simulations with a larger timestep. A sccond figure, Figure 14, specifically snows

the overlaps between the 1 fs simulation and the 2,5, and 10 fs simulations at a higher
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resolution. A's expected, there is almost 1 00% overlap among the NEIMO simulations,
which indicates clearly that t])e molecular dynamics are very consistent across arange O f
time steps of 1 fs 1010 fs. The one exceptions to these are y dihedrals of Met b and the
w of Gly 2. The relatively small overlap of the latter is due to the very small value of o
(0.3°) for the 1 fs NEIMO simulation. The discrepancy in the methionine sidechains is
also duc primarily to diflerences in o rather than (8) for the smaller time step simulations.
At larger time steps, however, both o and {(6) difler.

Overlaps between the dihedral distribution from the Cartesian simulation, and those
from the NEIMO simulations, are shown in Figure 1 5. Here, theoverlap is quite sinall for
x? of Met 5and the ¢ backbone dihedral of Gly 2, as indicated by the large differences
in(f) note above. A third very-low overlap is scen for the w of Gly 2. This difference is
completely hidden in Figure 11 since it is duc entirely to the extremely low value of o inthe
NEIMO simulations. The value is so low, infact,that it dots not appear in Figure 11 for
the 1 fs NEIMO simulation. The overlaps are greater than 65% for 19 of the 22 dihedrals
for cvery NEIMO time step. Fxcluding the methionine residue, overlaps arc greater than

90% for 13 of the 16 dihedrals.

1).1 Tomato Bushy Stunt Virus

The linear-in-n scaling of CMM makes molccular dynamics calculations possible for
million-atom systems.* In addition, the lincar-in- A cost of NEIMO (sce Table 3) means
that there is no longer a restriction on the size of the system for which internal coordi-
nate dynamics are practical (the computational time is dominated by calculation of the
nonbonded interactions). Thus it is now computationally possible to perform molecular
dynamics calculations on systens as large as icosahedral viruses, such as rhinoviruses or
the tomato bushy stunt virus (1'BSV). A typical virus of thistype, having a protein coat
of roughly 7 x 10° D surrounding an RNA strand of 1.5 x 10°1?* contains onthe order
of a million atoms. of course, practical calculations for long term dynainics still requires
supercomputers. However we have used the implementatons of NEEIMO and CMM on a
Silicon Graphics workstation (4] )7380) to examine short dynanics studics (up to 10 ps)

for several systems.
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TSV is an RNA virus composed of 180 identical coat proteins arranged inl' = 3
icosahedral symmetry. The virus has been crystallized and the structure of the asymmnetric
unit, containing three copies of the coat protein, has been deternined from 2.9A X-ray
data by symmetry averaging. * The three copies of the coat proteininthe asymmetric unit
have slightly different conformations which are designated A, B, and C. While all three
conformations contain RNA-binding (R), surface (S), and projecting () domains, the R
domain (residues 1-101 ) is completely uiiresolved inthe A and B conformations while in
the C conformation, residues 67-101 have an ordered structure and are resolved. The viral
RNA (1nolccular weight 1.5 x 10°) lacks icosahedral syminetry and hence structural data

on the core regiont is not available experimentally.

The asymmetric unit of TBSV contains six calcium ions, Ca??, arranged as three
pairs located at the A-B, B-C, and A-C interfaces. ¥ach pair of calcium cations binds in
a negatively charged pocket at the interface between adjacent S domains; the pocket is
formed by five aspartic acid sidcchaius contributed by the two proteins. It is postulated
that the interaction between these Asp residuces and the Ca?tions plays a major role in
stabilizing the viral coat.3? If the Ca®! jons are removed, the virus expands as the pH is
raised above 7. The hydrodynamic radius of the virus can expand by as much as 10%,
but there is no loss of mass and the process is reversible. A low- resolution (8 A) crystal
structure was determined for the expanded conformation of the virus®? and indicated that
expansion occurred by relative motions perpendicular to the interfaces where Ca®? jons
bind in the unexpanded conformation. However, no atomic details were available from this

low resolution dat a

Inorder to investigate the expansion phenomenon, we carried out molecular dynamics
calculations on the viral coat proteins with the calcium cations (the “pH7” inodel) and

34r

without the calcium cations (“NoCa” ).*"J he model systemns included all resolved  residues
from the asymmetric unit plus counterions, Na? and Cl” (and Ca??! for pli7), for a total
of 8138 atoms. Wc did not attempt to simulate cither the RNA or the unresolved RNA-
binding regions of the coat proteins. Through the usc of the transformation matrices

i the crystal structure (Brookhaven Protein Database structure 21TBV), the coordinates
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were generated for the entire viral coat containing 180 proteins and 488,280 atoms. On a
one-processor SG141)/380workstation, the current implementation (NFIMO and CMM in
conjunction with Biograf) requires 42 sce per time step (assuming icosahedral symmetry).
Thus on an SGI workstation it would require about 42 min per time step to do the full
capsid without symmetry. Inorder to carry out siimulations for Several picoscconds, we
restricted tlie dynamics by requiring icosahedral symmetry. That is, only the atoms of
the three proteins of the asymmetric unmt were considered as independent. However, it
was practical toinclude all nonbonded interactions using CMM (Coulomb and van der
Waals) between the asymmetric unit and all other 177 coat proteins (with no cutofls).
The coordinates of the entire viral coat were updated (al] 488,280 atomic positions) after
cach dynamic step so that we considered the dynamics of the full protein capsid. Molecular
dynamics calculations have beenreported cm another similar size virus (with about 8000
atoms in the asymmetric unit), by Cagin, Holder, and Pettitt on HRV-1433 also using

icosahedral constraints (they used rotationally symmetric boundary conditions).

.2 Methodology

Inan attempt to simulate the expansion effect observed for high pll, we developed
two different models of the TBSV. The first contains the protein atoms and calciumn ions
as they appear in the protein database coordinate file (27'13V)?1 | with hydrogen atomns
added to nitrogen, oxygen and sulfur atoms to allow for hydrogen bonding. In addition,
Na¥ and Cl~ ions were added to balance the charges of unpaired acidic and basic residues,
respectively. This structure is termed the “pH7” 1-1 odel. The sccond representation is the
“NoCa” model, in which the six Ca?" ions were removed and the free aspartic acid residues
were allowed to form salt bridges with basic residues, or were givana" counterions. In
this model, the 15 Asp residues are 110 longer held together by interactions with Ca?d |, but
arc free tomove independently. This is believed to be the major factor in the expansion
of the virus particle.®? Inclusion of explicit waters in a calculation of this type improves
the accuracy but also greatly increases the comnputational cost. We partially corrected
for the exclusion of water by modifying the system clectrostaticsin two ways: we used a

distance-dependent diclectric constant (¢ = €gryj) and placed Nat and ClI” counterions
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ncar charged amino acids which had 1o opposi tely- charged amino acids or Ca?? jons
within 10A. T1he pH7 model required 25 (71 and 24 Na' in addition to its 6 Ca?? . The
NoCa model required 22 Cl and 33 Na? . Both mod els were charge neutral and had the
samme number of atoms (8138). Thie S and I’ domains of the TBSV asymmetric unit were
resolved independently in the X-ray studies, leading to mismatches in the hinge region
(residucs ‘273-275). The crystal structure (21TBV) lists alternate Sand 1' coordinates for
the residues inthe overlap region. Yor our calculations, we averaged the coordinates of the
two alternates and re-optimized the strut.turc by energy minimization.

Inorder to accurately model the capsid environmment, the nonbonded forces acting
on the asymmetric unit included all nonbond interactions with all other 1 77 proteins.
This was made possible by the usc of CMM? | an ext remncly fast and accurate method for
calculating nonbondsin large systeins. CMM divides the simulation space into a hicrarchy
of cubic cclls, the smallest of which contains, ideally, 4 or b atoms and the largest of which
contains the entire systemn. For the asyminetric unit alone, four levels of cells were needed.
There were 4096 (84) cells at level 4, mcasuring 6.397 A on aside. Since this unit is rather
flat, 81 .4$% of these cells arc empty, leaving 762 populated cells with anaverage of 10.7
atomns per cell. When the asymimnetric unit was expanded into the full 180 protein capsid,
CMM used six levels for the 488,820 atom system. At level 6, there were 2621 44 cells,
cach 5.340 Aon a side. 87.5% of these are empty, leaving 8.0 atoms per populated cell.
Since the dimensions and the average population for the full system arc Letter than thosc
insimulations of theisolated asymmetric unit,it was faster tocalculate the nonbonds for

the entire 180 protein coat than for the asymmnetric unit alone (sew below)!

.3 Results

Timing results for the CMM molecular dynamics calculations are shown in Figure 17,
interins of CPU seconds on one processor of anSG ] 4 1)/380 workstation. Thetotalcharge,
dipole, and quadrupole of cach cell, collectively termed the “farfield,” varies slowly with
time so that it neced not be recalculated every time step. We considered two cases, labeled
“Update] “ and “Updateb0,” the latter referring to calculations in which the farficld was

updated only every 50 steps. Also shown is the difference between caleulations Using only
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the nonbonds of the three- protein asymmetric unit, labeled “NB3 " and those including
interact ions with the entire 180-Nrotcill capsid, labeled “NB1 80, The Updated0 caleula-
tions are actually faster for NB180 than NB3 (37.2 versus 41.0 s), because the calculation
is dominated by the ncarficld interactions. The average ccll in the NB180 case has 5.4
at oms versus 6.4 for the NB3 case which mecans that fewer pairwise interactions need to
be calculated. The farficld interaction takes longer to calculate 1 the NB180 case, but
the effect is not significant because of the hicrarchical CMM approach. Only when the
farficld itself must be updated every step,i.c., the Updatel calculations, dots thesize of
the system make a significant difference. 1 such calculations, including the entire capsid

Imcreases the time of the nonbond calculations from49.8 S to 92.6 s.

Figure 17 also shows the total time required for NEIMO calculations, including the
time required to calculate accelerations and velocitics, and to update the system coordi-
nates. NEIMO calculations for the threc protein chains in the asymmetric unit (M = 4335)
require 5.3 s per dynamics step. Figurce 18 shows the average scaled energy fluctuation,
(EY*, versus time step for 1.0 ps simulations of the PH7model of TBSV. £ and (£) are
defined in Bquations 14 and 15, respectively. The scaled fluctuation, (€)*, is £ divided
by the number of degrees of freedom (A in NEIMO and 3n -- 6 in Cartesian dynamics).
The fluctuations in Figure 18 arc larger than those in Figure 9 because these talc.ulatiolls
included Ca?t |, Nat , and Cl” ions which had to be sim ulated using, Cartesian dynamics.
The NEIMO implementation allows for NEIMO dynamics of large systems and Cartesian
dynamics of individual particles to be handled simultancously. Figure 18 indicates that the
cnergy fluctuations did not vary inuch between diflerent nonbond methods. Fluctuations
using the entire capsid, with the farficld updated every step, i. ¢.,NB180/Updatel, were
not mecasured but arc unlikely to provide! a substantialimproveinent. 111 every casc, there
was typicallya 4- to 5-fold increase in the fluctuation for cach 1 fs increase in the time

step.

Cartesian dynamics with 1 fstime steps generally give a value of 0.0001” kcal/mol for
(€)*.This value was matched by NEIMO siiulations with a 1 fs timne step, but exceeded

in siimulations using larger time steps. However, as discussed above, the computational
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speedup  obtained from using large time steps may be worth the loss in accuracy. We used
atime step of 2 fs for our NEKIMO simulations of TBSV. This allowed us a nearly twofold
speedup over Cartesian dynamics while maintaining reasonably low energy flue.t,uat,iol]s.
As is clear from Figure 17, the NEIMQ computational time is small comnpared to the
nonbonded calculations, so thespeedup vs. Cartesian is essentially lincar with increasing
time  step.

Thetwomodel systems, 1)117 and NoCa, were initially optimized using Cartesianspace
conjugate gradients minimization. The CMM method was used at the NB180/Updateb0
level. The radius of gyration of the viral capsid systemn was calculated cvery 50 steps, when

the farfield was updated. The radius of gyration is defined as:

N

, i 7 e W Yem)? 1 (20 zem BEY] 42
]{gy‘r - - ke n

- >;:‘ my (30)

w here the coordinates and mass of cach particle 7 are (24, Yi, zi) and M, respectively, and
the coordinates of the center of mass are (Tem, Yems 2em )- Both structures contracted very
little (about 0.08%) during the minimization. At the end of the minimization (converged
at 0.01 kcal/molA? ), the pH 7 structui ¢ was almost 700 keal /ol lower in energy than
NoCa (-5801.6 keal /1ol vs. - 5135.6), despite containing identical nunbers of atoms. This
cuergy difference is alimost entirely duce to the clectrostatic energy term and indicates the
large stabilizing energy of the Ca??ions.

Molecular dynamics calculations were carried out on the diflerent miniinized struc-
tures, again using N3180/Updateb0 for the nonbonds. The farfield was updated every 0.1
ps. Two different Cartesian dynamics methods were used:

(i) microcanonical dynamnics (NVE) with temperature scaling and

(i) Nosh canonical dynamics (NVT').36
In addition, for NVIE we carried out NEIMO dynamics with a time step of 2 fs. Figure 19
shows the radius of gyration of pH7 during the first 2.0 ps of dynamics. Both Cartesian
simulat ions show an initial expansion phasc followed by a longer contractions. Thie NEKIMO
simulation shows no expansion phase, but its contiaction phase closely resembles that of the

Cartesian NVE sinulation, with roughly the samne slope, contracting until approximately
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1.8 1)s, whenitlevels out. The canonical dynamics siimulation, in contrast, shows 110 similar

leveling; out through the first 2.0 1)S,

Longer simulations were run using, Cartesian NVT dynamics and NEIMO dynamics
onboth the ])117 and NoCamodels. The NISIMO dynamics simulations were twice as fast,
since 2 fs time steps were used. Figure 20 shows the radius of gyration of the pH7 and NoCa
models during the first 4 (I ps of NEIMO and Cartesian NV simulations. In the NEIMO
simulations, the NoCa model undergoes a rapid expansion duri ng the first 2.0 ps, then an
cven sharper contraction. The pH7 mnodel has no such expansion phase but docs have a
gradually increasing contraction rate. Both of these simulations show far more variation
in the radius of gyration than the corresponding Cartesian simulations. H owever, in both
simulations, the NoCa model initially has a larger radius of gyration than for pl17, but
eventually becomes smaller. Although the curves of the radii cross after about 3.9 psin the
Cartesian simulation, the encrgy curves do not cross, as shown in Figure 21. The energy
plotindicates that the NoCa model is less stable, as it undergoes larger cnergy fluctuations
after 3.0 ps.These fluctuations continuc until the end of a 5.0 ps simulation (data not
shown). The pH7 model is relatively stable. For the NKIMO simulations, the contraction
rate is comparatively exaggerated, but the e nergies do not show such large fluctuations.
The NoCa modcl has a potential cnergy aro und -3850 kcal/mol while the potential energy
for pH7remains near -4550 kcal/mol. Note that thesc energics arc substantially lower
than in the cartesian siimulation b ecause the numerous bond and angle degrees of free-
dom remain at their minimum potential encrgy values. Therefore, the approximately 700
kecal/mol differential between pH 7 and NoCa is relatively constant, even though the! radii

change significantly.

The current simulations do not reproduce the 1 0% expansion expected for the NoCa
model on the basis of the experimental data.®? However, the NoCamodel is substantially
higher in encrgy (700 keal/mol), indicating that it might be driven to expand in more
extensive calculations. The NEIMO simulations show substantial contraction of both the

pH7 andNoCa models. This is likely duc toignoring the RNA in the interior of the virus.
A s these new methods (NEIMO and CMM) a1 ¢ optimized for parallel supercomputers,
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we expeet to carry out calculations on the full virus, including RNA. This could be most

valuable sinice experiin ental t echimiques providelittle structural dataabout the RN A region.

IV. conclusions

The NEIMO and CMM methods have now been successfully applied to polypeptide
and protein systems. NEI MO is extremely fast compared to otlier internal- coordinate
dynamics mecthods. NEIMO and CMM scales lincarly with the number of degrees of
freedom making them practical for super large systems. Yorincreasingly large systeins, the
NEIMO computational requirements grow more slowly thanthose of energy calculations.
Molecular dynamics including ounly torsional degrees of freedom allow much larger time
steps than simulations including all possible degrees of freedom. NEIMO calculations of
peptides indicate that time steps as large as 20 femtoscconds can be used for these small
Systems. Time steps of this size arc not yet possible for large polypeptides and proteins, as
judged by the criterion of total cnergy fluctuations. However, timne steps of  fs and longer
canibe used for large systems without dangcr of cuergy divergence.  Such calculations
should be useful for conformational analyses of extremely large systemns such as viruses.
A s these methods are refined, it is likely that the energy conservation of larger systems
will beimproved.

The dynamics of polypeptides are accurately modeled by NEIMO. Analyses of dihe-
dral angle fluctuations show that NEIM O dynamics simulations produce conformational
fluctuations very similar to those arising from Cartesiandynamics simulations. The few
exceptions to this insimulations of Met-enkephalin appear to be cases where rotational
barrier is sufliciently higher for fixedbonds and angles that they arc traversedin the
Cartesian dynamics simulation but not for NFIMO siiulations at the same temperature.
Such problems can be celiminated by using torsional barrier basedon the adiabatic energy
curves. Thus we belicve that CMMand NEIMO cannow be used for simulations on very

large molecules, such as viruses.

Acknowledgments
We wish to thank Dr. Guillermo Rodriguez of JPI, and Dr. N. Vaidehi of Caltech for

important contributions to the development of the current NEI MO iimplemernitation and to

A328-30




Dr. Naoki Karasawa for the implementation of CMM with BioG raf. A MMacknowledges
a National Rescarch Service Award/NIH Predoc toral Trainceship in Biotechnology. We
thank Mr. K. ‘J. Lim for constructing Figure 16.

We thank DOE -AICD for funding this rescarch. The facilities of the MSC arc also
supported by grants from N S¥ (CHE 91-100289), N SI-ACR, D O¥-CH BI10O1, Allicd- Signal
Corp., Asali Chemical, Asahi Glass, BP> America, Chevron, B Goodrich, Vest ar, Xerox
and B eckinan Institute.

This work has been partially performed at the Jet Propulsion laboratory, California
Institute of Technology, under contract with the National Acronautics and Space Admin-

istration.

A328-31




APPENDIX
For Cartesian dynamics we generally use the “leapfrog” formulation of t e Verlet
algorithin. In this approach, the coordinates z(”) at time step f = nli, are used to caleulate

the forces at this time step, 20" which are related to the accclerations by

PG ] Jo(n)

m
\ . ] .
These are combined with the velocities at step n »%z co(2) o calculate the velocity at
]
n- o,
42 22 ko
o122+ gl (A.])

m

which is in terms usced to calculate the new coordinates

CAURRDICONRY RUCER Y (A.2)
This is initiated with
p(2) = 2(0) | (0) Vh O (A.3)
2m

For NEIMO dynamics this algorithm is more complicated because the acceleration
6 depends explicitly 011 both the velocitics (") and coordinates 00 at time step 71. For
this paper, we used the following iterative procedure. We estimate the velocities 7 from

the previously determined velocities:
- . _ l . _ g
g = 150" % - 056" %, (A.4)

This allows us to calculate the NEIMO accelerations 8™ by solving the spatial operator

(S0) cquations,??»1?

g" - SO l(“", ™, o, 0’") (A.5)

using the coordinates 6, the velocitics 6", the torques T andnonboud forces ¥ ", The

accelerations arc used to update the velocities as in Al

iy G i ho. (A.6)
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Because 0" 1s estimated in equation (A.4), the 0" from A.D Is inaccurate and errors could

build up as the simulation progresses. In order to eliminate such errors, 8" is re-estimated

from the 0712 caleulated in A.G and the known € %
0" - 0.60"1 % 4 050" 1, (A.7)

This ])roccsé (A.5), (A.6), (A7) is repeated until @ converges, producing an accurate
value for 0" . We find that suflicient convergence (based on maximal improvement to
energy conservation) is generally reached after a single it cration, so that! theeflect 011
overall computational costs is minimal.

The converged values of 6" from cquation (A .5) give the converged values for o

from A.6 which arc then used to update the coordinates:
AR L AR (A.5)

The dynamics step is completed using the new internal coordinates 8717 to update the

n-1 (n41)

Cartesian coordinates y which are used for the Cartesian forces, I
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Table 1. The clusters, hinges, and related dihedrals of Met-enkephaling shown in Fig-
ure 1.

Cluster Hinge Dihedra  Residue
-N 1 0 (none) Tyr 1
-cll- 1 ¢
- cl12- 9 !
- C611°1 - 3 2
-0H 4 x©
(co)- ) WP
- (NH)- 6 w 2y 2
-cl12- 7 ¢
-(CO)- 8 2p
—(NH)- 9 w Gly 3
~CHy— 10 ¢
- (c~0)- 11 )
- (NH)- 12 w Phe 4
-cll- 13 ¢
- CH,- 14 X3
- Ce¢Hsy 15 x?
-(co)- 16 P
- (A'H)- 17 w Met 5
- cll- 18 ¢
- ¢coO- 19 ()
. 132- 20 %
- o[ 12-- 21 2
- SH 29 x®

A328-37




Table 2. Proteins and peptides used in NKIMO simulations,  The structures listed
are the imtial Protein Database files, except for the peptides “MEnk™ and
“Ala9,” which were ereated using the BIOGRAY peptide builder.

Protein structure  Ref.  Residues  atoms N

Met-Enkephalin MYk - 5 48 28
(Ala)g Ala9 9 57 32
Avian Pancreatic Polypeptide  1ppt 17 30 368 192
Crambin lern 18 46 402 216
Plastocyanin Tpey 19 98 857 460
Troponin-C Stnc 20 161 1514 857
Alpha-Lytic Protecasc 2alp 21 198 1748 959
Carbonic Anhydrase 2ca?2 22 256 2482 1305
Carboxypceptidase Ay 4cpa 23 307 2986 1581
Tomato Bushy Stunt Virus 2tbv 24 893  8083% 4335

*The TBSV simulations also include 6 Cat,2 5 Cl™, and 24 Na' (sce Section 111.1.2)

for a total of 8138 atoms per unit. Including all 60 units this leads to 488,280 atoms.
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Table 3. Times per time step for 100 steps of dynamics for various protein/peptides
systems. The average times per time step of the NIIMO calculation and the
nonbond calculation arc given, along with the NEIMO time divided by N,
and the nonbond time divided by the number of atomns, n.

Number of NFKIMO Nonbonds

Protcin Atoms Time® Time/N Method Time Time/n
(s) (ms) (s) (117)s)
MEnk 48 0.011 0.393 ANl NB 0.044 0.92
Ala9 57 0.012 0.375 Al NB 0.061 1.07
Ippt 368 0.06'4 0.438 All NB 1.933 5.25
1C) 402 0.102 0.472 All NB 2.322 5.78
Tpey 857 0.220 0.478 Al NB 10.121 11.81
1ppt 368 0.084 0.438 CMM 1.408 3.83
lern 402 0.102 0.472 CMM 1.950 4.85
7pcy 857 0.220 0.478 CMM 3.541 4.13
Hinc 1514 0.411 0.480 CMM 9.180 6.06
2alp 1748 0.460 0.480 CMM 11.153 5.20
2ca?2 2482 0.629 0.482 CMM 15.612 6.29
Sepa 2986 0.762 0.482 CMM 22.733 7.61
2tbv 8083 2.094 0.483 CMM 55.439 6.86

¢ Timing resolution is 0.01 scc.
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Table 4. The average values of the Met-enkephalin dihedrals from § ps NEIMO ((6) n)
and Cartesian ({(0)¢) dynamics simulations, compared to the initial values
o and compared to cachother.

Dihedral 0o (0) N N (0) ¢ 80¢:o b0c: N
1 186.3  191.1 4.8 189.6 3.3 - 1.5
2 70.6 66.6 -4.0 76.1 5.5 9.5
3 107.4 99.9 -75 104.6 -2.8 4.7
4 178.0 178.0 0.0 180.2 122 2.2
5 300.1 306.8 6.7 3014 13 5.4
6 185.1 183.4 1.7 186.0 2.6 2.6
7 3115 2720 395 279.4 -32.1 74
8 306.8  300.8 -6.0 55.8 109.0 115.0
9 182.1 177.7 4.4 173.0 9.1 -4.7
10 2948 2717  -231 263.4 -31.4 -8.3
11 3532 3038  -494 309.8 -43.4 6.0
12 173.4 173.9 0.5 172.3 -1.1 1.6
13 246.1 ‘241.6 -45 2547 -8.6 13.1
14 61.3 65.5 4.2 71.2 9.9 5.7
15 72.0 92.8 20.8 99.8 27.0 7.6
16 351,7 3200  -31.7 3204 -31.3 0.4
17 184.0 177.2 -6.8 176.3 7.7 -0.9
18 238.8 241.0 22 245.6 6.8 4.6
19 116.3 128.8 12.5 116.0 -0.3 -12.8
20 33.3 46.0 127  289.8  -1035  -116.4
21 70.1 89.2 19.1 113.5 43.4 24.3
22 82.0 117.2 352 1594 774 -39.8
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Figure Captions

Figure 1.

Figurce2“,

Figure 3.

Figure 4.

Figure 5.

Figure G.

Figure 7,

Figure 8.

The peptide Met-enkephalin with its hinges numbered (see text and Table
1). Bonds which arc not munbered arc held fixed. Clusters are units which
remain fixed during dynamics, such as the phenyl group of Tyr 1, located
between hinges 3 and 4. The Last cluster is the N-terminal amino group.
(a) A plot of computational titne vs. protein size (n- number of atoms) for
nonbond calculations and NEIMO. (b) CPU time/n vs, protein size. Times
arc given in CPU scconds per dynamics step, as deterinined onan SG 1 Indigo
R3000 workstation,

Encrgy fluctuations, £, for NEIMO (N) and Cartesian (C) dynamies simu-
lations of Met-enkephalin (48 atoms, 23 clusters). Simulations were run for
1 ps using time steps ranging from 1 to 20 fs. N* and C* arc the scaled
fluctuations, £*, where £ is divided by the mu nber of degrees of freedom: AN
for NEIMO simulations and 371-- 6 for Cartesian coordinates. For Cartesian
dynainics, the system was equilibrated for 1 ps before calculating £.

61 = VAE /() for 100 time steps of NEIMO dynainics on (Ala)g.

The alpha carbon trace of Avian pancreatic polypeptide (al’]’). From the
crystal structure 1 PPV

Fnergy fluctuations, &£, for NEIMO (h’) and Cartesian (C) dynamies simu-
lations of avian pancreatic polypeptide (al’]’). Simulations were run for 1 ps
using time steps ranging from 1 to 15 fs. Timesteps above 11 fs caused the
energy to diverge. N* and C* arc the scaled energy fluctuations, £7.

Scaled energy flue.tuatiol]s, £*, for 1 ps NEIMO simnulations of al’P. “Rigid
11" differs from “ Normal” N} Hh40 inthat hinges which rotate only hydro-
gen atoms are held fixed. The “Counteri ons” shimulation used the stan dard
NEIMO method for the protein, but concurrently solved the Cartesian equa-
tions of motion for counterions (b Natand 3 CJ]) added to neutralize un-
paired charges.

The average energy fluctuations, (€£), during 5 ps siimulations of avian panere-
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atic polypept ide. Fluctuations in N IMO (N) and Cartesian (C) dynamics

were determinedat ().1 psintervals during the course of the simulation, after
which velocities could be rescaled and the CMM nonbond farfield talc.ulatiml
was updated.

Figure 9. (£)* vS. protein size for 5.0 ps simulations. Values are given for Carte-
sian dynamics using 1 fs time steps and NEIMO dynamics using time steps
ranging from 1 fs to dfs.

Figure 10. During 5 psmolecular dynamics simulations of Met-cl)kqgdlalill, the 22 di-
hedral angles were written out at ().1 psintervals. Thefifty Values for cach
dihedral are plotted here for Cartesian and NEIMO dynainics simulations
using 1 fs time steps.

Figurc 11. The average dihedrals from the distributionsin Figure 10 are shown here
with error bars indicating 4o, the standard deviations.

Figure 12. The average dihedrals from NEIMO simulations using time steps ranging
from 1 to 10 fs.

Figure 13. The overlaps Syp between 1 fs and 2-10 fs NEIMO simulations of Mect-
enkephalin.

Figure 14. The overlaps Si2betweenl fs and 2, 5, and 10 fs NEIMO simulations of
Met-cmkcphalin shown at higher resolution than Figure 13.

Figure 15. The overlaps Si2between dihedral distributions from Cartesian dynamics
versus those from N EIMO dynamics simulations with time steps ranging
from1 fs.

Figurce 16. The strut.tum of tomato bushy stunt virus (TBSV).Shown is the van der
Waal surface for the cutire protein. Fach of the threc independent chains is
given a different color (red for chain A, green for chainB3, blue for chain C).

We thank K. 7T, Lim for constructing this figure.

I'igure 17. CPU times for CMM calculations, NEKIMO acceleration calculations, and
overhead. Overhicad includes coordinate updat ing for NEIM O and other

parts of Biograf.
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Figure 18. Encrgy fluctuations, (£)* for 1.() ps of N BINQO simulations.

Figure 19. The TBSV radius during 2.() ps of Cartesian and NFIMO dynamies simula-
tions.

Figure 20. The radius of the pH7and NoCa models of TBSV during 4.0 ps of Cartesian
(NV']") and NEIMO dynamics.

Figure 21 . Potential energy during the 4 () ps Cartesian canonical dynamics simulations.
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Overlap of Dihedral Distributions
NEIMO Dynamics
vs. Cartesian Dynamics
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Computational Time for TBSV Simulations
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Energy Fluctuations in NEIMO Calculations
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Potential Energy (kcal/mol)

Potential Energy during Canonical Dynamics
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