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Abstract

The aim of this work is to address the problems of and investigate appropriate solutions

to the Guidance & Control aspects of autonomous Precision Aerial Delivery Systems

(PADS), which in the future could lead to novel space exploration approaches as well

as to noticeable cost reduction. The investigated application, in particular, focuses on

a Titan landing which would be particularly relevant from a scientific point of view,

due to both Titan’s peculiar geophysical characteristics and to the fact that PADS have

never been used for planetary landing.

PADS dynamics has been investigated, with the adoption of both low-fidelity (three

degrees of freedom) and higher-fidelity (six degrees of freedom) dynamic models. The

six-DOF model has been implemented in DSENDSEdu, a high-fidelity development and

testing environment for spaceflight systems, to efficiently simulate the desired conditions

for the whole descent and landing phase. This model was also used to perform some

preliminary studies on the feasible glide range, expected wind drifts and average descent

speed, as well as to investigate details of the final flare maneuver.

The Guidance & Control aspects are macroscopically divided into three parts. The

first part addresses point-to-target control techniques that don’t require previous path

planning: a Proportional-Derivative (PD) control and a T-approach are investigated.

The goal of the second part is to address the computation of optimal trajectories for the

terminal part of the descent to overcome the limitations of the previously-investigated

techniques. Finally, in the last part, trajectory tracking techniques (both optimal and

sub-optimal) are investigated to follow the previously-generated trajectories.

The PD controller and T-guidance are particularly relevant in situations where no offline

motion planning is desired and/or computational resources are limited. In particular,

for the T-approach an expected wind drift is constantly taken into account to generate

virtual waypoints in real-time: these waypoints guide the parafoil to an area close to

the Intended Point of Impact, perform eight-patterns for energy management, and then



to perform a final landing maneuver against wind.

Motion planning considers two distinct phases. An initial homing phase is considered

first, during which a minimum-time path is followed to reach an area above the target

as quickly as possible as to maximize the residual altitude. The optimal trajectory

for the final portion of the descent is obtained during this first phase by solving the

Euler-Lagrange problem typical of the optimal control theory. If the complete state and

control action history is needed, a six-DOF model must be integrated in its entirety.

If, instead, only trajectory waypoints are of interest, a three-DOF model can be used

to greatly reduce integration time.

In cases where the complete state and control actions history is available, it is possi-

ble to perform trajectory tracking by means of a Linear-Quadratic Regulator (LQR)

which, through the use of weight matrices, gives the appropriate feedback control action

in the neighborhood of the (possibly optimal) nominal trajectory, provided small per-

turbations are present. If the whole state and input vectors are not available for each

time instant (i.e. only waypoints to be followed are given), it is not possible to use a

LQR and other waypoint-tracking techniques must be introduced. A Model Predictive

Control (MPC) was implemented for this eventuality. Given a sequence of spatial way-

points, the MPC allows to accurately track them by linearizing the system (whose state

matrices have been previously computed offline in symbolic form) at every time step

and computing the optimal control action, given a desired time horizon which depends

on the available computational power.

Finally, a reduced-order Dynamic Programming (DP) implementation which makes

use of successive grid-refinement has been investigated for the terminal portion of the

descent. This would allow, through offline calculations, to obtain the optimal feedback

action for every point close to the landing site.
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Chapter 1

Introduction

The aim of this work is to address the Guidance & Control aspects of a new way to approach

space exploration, based on the concept of delivering payloads by means of Autonomous Precision

Aerial Delivery Systems (PADS). The investigated application, in particular, focuses on a Titan

landing which would be particularly relevant from a scientific point of view, due to both Titan’s

peculiar geophysical characteristics and to the fact that PADS have never been used for planetary

applications. Improvements and advances in this field could lead to drastic reductions in cost as

well as to improvements in landing precision.

Landing on Titan poses many unprecedented challenges [1]. To start with, the aerodynamic per-

formance is different than on Earth, and the presence of fast-blowing winds present in the higher

atmosphere might initially blow away the parafoil from the Intended Point of Impact (IPI). The

only data available concerning atmospheric properties comes form the Cassini-Huygens mission

and is not available for every latitude-longitude-altitude combination: the control architecture

must then be robust to external disturbances. Many Earth-bound autonomous systems rely on

GPS data, which of course is not available and cannot be employed for autonomous navigation on

Titan. Additionally, the on-board computer would rely on Terrain Relative Navigation (TRN) to

direct the autonomous PADS towards the appropriate landing site, which needs sufficient surface

data to be effective. In the case of Titan though the topography comes from radars, with a resolu-

tion limited to about 350 meters per pixel. This, combined with the fact that Titan’s atmosphere

is inherently thick, poses an additional challenge when it comes to vision-based algorithms.
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1. INTRODUCTION

1.1 Autonomous Precision Aerial Delivery Systems

Precision Aerial Delivery Systems (PADS), despite being underactuated, provide a unique capabil-

ity for accurate airdrops, and substantial investigation is being carried out in many fields where they

might be employed. While most PADS used by civilians are human-controlled, extended research

is being conducted in the military field in an attempt to improve landing precision and accuracy

of autonomous solutions. The U.S. military, for example, is interested in developing autonomous

PADS which range from about 100 lbs (or about 45 kg) all the way up to 10,000 lbs (about 4500

kg). NASA started investigating similar problems more than 20 years ago to figure out the landing

precision that could be achieved (Fig. 1.1, as an example, shows one of the early tests conducted

in 1992). In a similar manner, private companies are also investigating the many advantages of

autonomous delivery/recovery. SpaceX, for example, just recently started developing algorithms

for recovering rockets fairings, which would lead to additional cost reductions. Parafoils are also

used for troop resupply. sensor placement, urban welfare reconnaissance and similar operations [2].

Figure 1.1: NASA Spacewedge subscale model being delivered using a steerable parafoil in 1992
during a flight test.

Despite the economic convenience and ease of deployment, PADS have a few peculiarities that

lead to many challenges from a control perspective. Unlikely conventional powered vehicles, for

2



1.2 Landing on Titan

example, most parafoils don’t have the ability to ascend: this, of course, implies that only one

attempt can be made to land at a desired position. Control is usually performed by deflecting the

rear flaps which, in turn, accelerate the canopy-payload system and have a direct impact on the

system attitude. Another complication is the wind profile whose velocities at high altitude exceed,

more often than not, the parafoil speed relative to the ground [3]. While wind only accounts for a

small percentage of the speed on airplanes, it has a considerable effect on the landing position of

a parafoil, which might turn out to be off by several kilometers. Furthermore, landing is usually

to be performed upwind to limit payload touchdown speed and avoid (or limit) the risk of payload

roll-over. Thanks to the Cassini-Huygens mission we have a basic knowledge of Titan’s atmosphere

(i.e. density, chemical composition, winds), although many aspects still remain unknown. For this

reason it is clear that a control strategy should be as robust as possible in case the actual conditions

were different from the expected ones.

Preliminary results indicate that precision control of PADS can be achieved in a dense atmosphere,

provided enough control authority and enough knowledge on the atmospheric conditions.

1.2 Landing on Titan

Titan is of high scientific interest and significance mainly due the presence in its atmosphere of

liquids and gases very similar to the ones present on Earth. The goal of a mission would also be

to investigate the possible presence of underground oceans on water. Furthermore, it is believed

that methane and ethane lakes might be connected underneath the surface. Fig. 1.2 shows an

overview of Titan’s northern lakes and seas. This image was obtained in multiple operating modes

with resolutions of 0.3− 1.5 km, 2− 10 km, and 40− 200 km. False coloring is used to distinguish

the features: bodies of liquid hydrocarbon are indicated using blue/black, while dry land is brown.

Fig. 1.3 highlights the targeted landing area in more detail (with a site close to the Maracaibo

Lacus being the goal at the time of writing).

Titan’s atmosphere is about five times thicker than Earth’s. As a consequence, smaller parafoils

can be adopted for landing on its surface and the complete Entry, Descent & Landing (EDL) phase

will be relatively slow, meaning that there is enough time for winds to change considerably.

Some specific requirements of the project are still to be defined completely at the time of the

writing, while other are covered by the International Traffic in Arms Regulations (ITAR). The

following high-level requirements will then be assumed throughout this work:

3



1. INTRODUCTION

• Starting altitude (after canopy complete inflation) of 40km above Titan’s surface.

• Target altitude and longitude assumed to be zero, although this does not influence the study

if the wind model is considered constant.

• Payload mass of 200kg.

Figure 1.2: Titan’s North polar lakes and seas (data from the Cassini Titan RADAR Mapper).

Figure 1.3: Detail of the targeted landing area.

4



Chapter 2

Titan properties and definitions

The aim of this Chapter is to present the main properties of Titan and provide the necessary

definitions of the angles and frames of reference that will be referred to throughout the whole

work. Table 2.1 shows Titan’s most relevant properties. Note, in particular, how much the density

changes when moving from a 40 km altitude to ground level.

Property Value Unit

Angular velocity 4.056 · 10−6 rad/s

Density at 40 km 0.7 kg/m
3

Density on surface 5.43 kg/m
3

Gravity acceleration 1.352 m/s
2

Equatorial radius 2575 km
Mass 1.345 · 1023 kg

Table 2.1: Titan properties.

2.1 Atmospheric models

Only a few publications have analyzed in detail the atmospheric properties of Titan in the past. A

thorough study about the atmospheric structure can be found in [4], which considers and compiles

data from the Cassini-Huygens mission to generate an empirical model of mass densities and

temperatures, as well as in [5] which, on the other hand, focuses on visibility and downlink Direct-to-

Earth (DTE) by analyzing seasonal and latitudinal variations in wind. The present work considers

a wind and density profile obtained by Jet Propulsion Laboratory for the site of interest.

5



2. TITAN PROPERTIES AND DEFINITIONS

2.1.1 Density profile

The model used to compute the density (expressed in kg/m3) at a generic altitude h is:

ρ = 5.43exp

(−0.512h

1000

)
(2.1)

where h is expressed in meters. The density profile is shown in Fig. 2.1.
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Figure 2.1: Density profile.

2.1.2 Wind profile

Wind is computed with a zonal model which gives the average, high-intensity component through

the following equation:

W =
W300

1 + exp
(
h0−h
L

) (2.2)

Where W300 is the wind speed at 300 km, h0 the reference altitude and L the length scale. The

coefficients are as follows, depending on wind conditions:

The nominal wind profile is shown in Fig. 2.2.
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2.2 Frames of reference

Wind profile W300 h0 L

Nominal 22 35 8
Maximum 50 38 11
Minimum -3 0 1

Table 2.2: Wind profile coefficients for different blowing conditions.
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Figure 2.2: Wind profile.

2.2 Frames of reference

Strictly speaking, given a non-null angular rotation of Titan, a planet-centered inertial frame should

be defined as the one having:

• Origin at the center of mass of the planet

• z axis along the planetary axis of rotation

• x axis laying on the equatorial plane and pointing towards the vernal equinox

• y axis following the right-hand rule

Analogously, a planet-centered planet-fixed frame could be introduced that has the following prop-

erties:

• Origin at the center of mass of the planet

7



2. TITAN PROPERTIES AND DEFINITIONS

Figure 2.3: Transformation between planet inertial frame and planet-centered planet-fixed frame.

• z axis along the planetary axis of rotation

• x axis intersecting the equatorial plane and the reference meridian

• y following the right-hand rule

The transformation between the two systems described above is described in Eq. 2.3 and is shown

in Fig. 2.3

R =


cos(ωt) sin(ωt) 0

− sin(ωt) cos(ωt) 0

0 0 1

 (2.3)

where ω is the angular velocity of the planet (4.056·10−6 rad/s) in the case of Titan. Since ω is very

low, Titan rotation is usually neglected and the planet-centered planet-fixed frame is considered

to be the inertial frame {I}.

Besides the {I} frame presented above (used when dealing with a spherical planet), three main

frames of reference will be used throughout this work, presented hereafter.

North-East-Down frame {NED}

• Origin: arbitrary, but usually set to coincide with the Intended Point of Impact (IPI)

• x axis: positive in the direction of true North

• y axis: positive in the direction of East

8



2.3 Angles definitions

• z axis: positive towards the center of the planet

Note that, although the equations of motion will be expressed in this reference frame, a East-North-

Up {ENU} frame following the opposite convention will be used for the software implementation

on DSENDSEdu.

Body-fixed frame {B}

• Origin: PADS center of gravity

• xb axis: positive along the longitudinal axis of the PADS on its plane of symmetry

• zb axis: perpendicular to the xb axis, in the plane of symmetry of the PADS and positive

pointing down

• yb axis: perpendicular to the xb-zb plane, positive determined by the right-hand rule

Again, due to the {ENU} convention, the zb axis will be pointing up in DSENDSEdu, with yb

redefined accordingly.

Wind frame {W}

• Origin: PADS center of gravity

• xw axis: positive in the direction of the velocity vector relative to the air, airspeed vector Va

• zw axis: perpendicular to the xw axis, in the plane of symmetry of the PADS and positive

pointing down

• yw axis: perpendicular to the xw-zw plane, positive determined by the right-hand rule

A navigational frame {N} parallel to the {NED} but with origin at the PADS center of mass is

often used when studying parafoils, but it won’t be used in the present work since DSENDSEdu

allows to avoid using it. Similarly, a geographical frame {G} is sometimes used, but it won’t be

introduced since it has the same formal definition of the {NED} frame, with the only difference

being the origin set on the surface through the projection at the initial time.

2.3 Angles definitions

The above-mentioned angles are formally defined as follows [3]:

9



2. TITAN PROPERTIES AND DEFINITIONS

(a) Front view. (b) Side view.

(c) View from above.

Figure 2.4: Angles definitions.

• Pitch angle θ: angle from a horizontal plane to the longitudinal axis of the body frame xb

• Yaw angle ψ: angle from North to the longitudinal axis of the body frame xb

• Roll angle φ: completes the transformation from {N} to {B} (the formal definition refers

to a relative transformation expressed in an intermediate plane obtained after a θ and ψ

rotation)

• Angle of attack α: angle between the projection of the airspeed vector V a onto the xb-zb

plane and the longitudinal axis of the body frame xb

• Sideslip angle β: angle between the airspeed vector V a and its projection onto the xb-zb

plane

10



2.4 Relative transformations

Figure 2.5: Transformation between planet-centered planet-fixed frame and geographical frame.

• Bank angle φa: rotation of the lift force around the airspeed vector V a from the vertical

plane

• Flight path angle γa: angle from a horizontal plane to the airspeed vector V a

• Heading angle χa: angle from North to the horizontal component of the airspeed vector V a

2.4 Relative transformations

Having defined the necessary angles, the relative transformations between the different frames are:

• {B} to {NED} (or {N}) → three Euler angles: roll φ, pitch θ, yaw ψ

• {B} to {W} → two Euler angles: angle of attack α, sideslip angle β

• {W} to {NED} (or {N})→ three Euler angles: bank angle φa, flight path angle γa, heading

angle χa

Fig. 2.5 shows the transformation of coordinates needed to move from {I} to {NED} and Eq. 2.4

describes it.

RGI =


− sin(λ) cos(l) − sin(λ) cos(l) cos(λ)

− sin(l) cos(l) 0

− cos(λ) cos(l) −cos(λ) sin(l) − sin(λ)

 (2.4)

where l represents the longitude and λ the latitude.

11



2. TITAN PROPERTIES AND DEFINITIONS

The transformation between the NED frame and body is described by Eq. 2.5.

RB,NED =


c(ψ)c(θ) s(ψ)c(θ) −s(θ)

c(ψ)s(θ)s(φ)− s(ψ)c(φ) s(ψ)s(θ)s(φ) + c(ψ)c(φ) c(θ)s(φ)

c(ψ)s(θ)c(φ) + s(ψ)s(φ) s(ψ)s(θ)c(φ)− c(ψ)s(φ) c(θ)c(φ)

 (2.5)

The rotation matrix between body-fixed and wind frame is:

RWB =


cos(α) cos(β) − sin(β) sin(α) cos(β)

cos(α) sin(β) cos(β) sin(α) sin(β)

− sin(α) 0 cos(α)

 (2.6)

where α is the angle of attack and β is the angle of sideslip.

In order to move directly from wind to NED frame, the matrix RWG has to be defined as ([6]):

RW,NED =


c(χa)c(γa) s(χa)c(γa) −s(γa)

c(χa)s(γa)s(φa)− s(χa)c(φa) s(χa)s(γa)s(φa) + c(χa)c(φa) c(γa)s(φa)

c(χa)s(γa)c(φa) + s(χa)s(φa) s(χa)s(γa)c(φa)− c(χa)s(φa) c(γa)c(φa)

 (2.7)
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Chapter 3

Parafoil dynamics

The dynamics of a Precision Aerial Delivery System (PADS) is described by various dynamic

models characterized by different levels of complexity, depending on the scope of the model. In

most cases it is unnecessary to model every physical degree of freedom of the canopy and payload,

unless the need to study some specific details of payload oscillations arises. Depending on the

desired accuracy, there are models that range from three DOF in which the PADS is considered

to be a point mass, all the way up to nine DOF in which canopy and payload are modeled as

two separate bodies connected by an appropriate constraint (usually spherical). Simpler one-DOF

models are also sometimes, though seldom, used when only the vertical descent dynamics needs to

be analyzed.

Not only are simpler models adopted during the early stages of a project, but due to their reliability

in describing the system accurately (provided reliable coefficients and parameters are available),

they are often used in more advanced stages of the projects to guarantee faster convergence of the

GNC algorithms (i.e. for applications such as real-time motion planning or trajectory optimiza-

tion).

The present chapter adopts the typical aerospace convention of using a North-East-Down (NED)

frame of reference when writing the equations of motion, even though the opposite convention

(East-North-Up, ENU) will be used for DSENDSEdu simulations later on for convenience, mainly

for being consistent with the software’s default frames of reference.

Also, while Euler angles are used in the present chapter for a more clear physical description
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3. PARAFOIL DYNAMICS

of the problem, quaternions have been used for the actual software implementation due to the

computational saving given by avoiding matrix operations.

3.1 Parafoil properties

Symbol Property Value Units

AR Aspect ratio 3.0 -
S Canopy area 3.14 m2

t Canopy thickness 0.075 m
R Lines length 1.84 m
a Canopy height 0.164 m
xc Center of mass to aerodynamic center distance 0.26 m
σ Final sigma (contractor’s value) 0.45 kg/m2

zrp Payload distance 1.5 m
ldiam Lines diameter 0.005 m
lha Harness length - m
b Canopy span - m
c Canopy chord - m
mp Canopy mass 0.002 kg
Sp Drag surface - m2

Table 3.1: Canopy properties.

Symbol Property Value Units

a Depth 0.5 m
b Width 0.5 m
c Height 0.5 m
ml Mass 200 kg
Sl Drag surface 0.25 m2

Table 3.2: Payload properties.

3.2 Wind effect

Calling W the wind vector expressed in the geodesic frame

W = [wx, wy, wz]
T

(3.1)

and V the ground speed vector

V = [Vx, Vy, Vz]
T

(3.2)
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3.3 Reduced three-DOF model

the velocity relative to the air (airspeed vector) V a is defined as follows

V a = V −W . (3.3)

Va =


vx

vy

vz

 =


u

v

w

−RBNW (3.4)

The actual planet-referenced flight path angle γ can be defined as

γ = − arcsin

(
Vd
V

)
(3.5)

with the real descent rate of the parafoil is

Vd = Vz = Vv + wz (3.6)

The flight path angle γa is usually computed through the vertical component of the airspeed vector

Vv (neglecting wx) so that

γa = arcsin

(
Vv
Va

)
Va = |V a| (3.7)

It will then be assumed that γ ≈ γa holds.

3.3 Reduced three-DOF model

[3] and [7] describe a three-DOF dynamic model written in wind reference frame. The state vector

x = [Va, γa, χa]
T

contains respectively the velocity vector, the flight path angle and the heading

angle. Its dynamics is expressed by Eq. 3.8.
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3. PARAFOIL DYNAMICS



V̇a = − 1

m
(D +mg sin (γa))

γ̇a =
1

mVa
(L cos (φa)−mg cos (γa))

χ̇a =
L sin (φa)

mVa cos (γa)

(3.8)

where L = 0.5ρV 2
a SCL and D = 0.5ρV 2

a SCD indicate lift and drag, m is the total mass of the

PADS, g is the gravitational acceleration and φa indicates the banking angle, which in this case

coincides with the control variable.

Given the rotation matrix needed to go from the wind to the inertial frame of reference RWN and

the geodetical wind components, kinematic equation 3.9 allows the extract the inertial coordinates

x, y and z. 
ẋ

ẏ

ż

 = RT
WN


Va

0

0

+


wx

wy

wz

 (3.9)

The above equations assume the planet to be flat and are used in situations where the parafoil

altitude is negligible with respect to the planet radius, typically for terminal descent. They also

rely on the strong hypothesis that the angle of attack does not influence lift and drag coefficients,

a condition that can be compensated by adequately varying CL and CD.

3.4 Reduced three-DOF model for a spherical planet

While the flat-planet three-DOF model is reliable whenever path planning is performed at relatively

low altitudes (a few kilometers), a somewhat more accurate dynamics must be considered whenever

the initial altitude is high when compared to a planet’s radius. An improvement over the previous

model is presented in both [7] and [8]. Although the PADS is still modeled as a point mass, the

sphericity of the planet is taken into account and the state vector is expanded by adding latitude,

longitude and radius. The buoyancy effect is also considered.
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3.5 Six-DOF model

The full system of equations (comprising the kinematic) is presented in Eq. 3.10



V̇a =

(
B

m
− g
)

sin(γa)− D

m

γ̇a =
Va

RP + h
cos(γa) +

(
B

m
− g
)

cos(γa)

Va
+
L cos(φa) + Y sin(φa)

mVa

χ̇a = − Va
RP + h

cos(γa) cos(χa) tan(λ) +
L sin(φa)− Y sin(φa)

mVa cos(γa)

ṙ = ḣ = Va sin(γa)

Λ̇ =
Va cos(γa) cos(χa)

r cos(λ)

λ̇ =
Va cos(γa) sin(χa)

r

ẋ = Va sin(γa) + wx

ẏ = Va cos(γa) cos(χa) + wy

ż = Vacos(γa) sin(χa) + wz

(3.10)

where h is the altitude above the surface, Λ indicates the longitude, λ indicates the latitude and B

is the buoyancy force. r = Rt + h is the sum of Titan’s radius and current altitude, and coincides

with the norm of [x, y, z].

3.5 Six-DOF model

[3] presents a full six-DOF model in which the PADS attitude is considered as well. This is

the model used for the simulations throughout this work, mainly because of the accuracy of the

results. The parameters of the physical canopy, in fact, are only available for a 6 DOF model at

the time of writing. The whole system is considered as a rigid body in which canopy and payload

rotate/translate together and, unless someone is specifically interested in investigating the payload

oscillation (e.g. to estimate camera movements and/or to verify maximum payload acceleration),

this is the main model presented in literature (see, for example, [3] and [9]). The state vector

includes the three linear velocity components u, v, w and the three angular rates p, q, r, expressed

in body frame. The three spatial coordinates x, y, z as well as the three attitude components φ,

θ, ψ are obtained through the appropriate kinematic relationships.
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3. PARAFOIL DYNAMICS

3.5.1 Inertias

As a first step, the inertia matrices of both the parafoil canopy and payload must be obtained.

These will lay the foundation to compute the full inertia matrices by adding the apparent terms,

which will be done in the next section.

The moments of inertia of the load referring to the body axes are:


Ix,l = ml

12

(
b2load + c2load

)
Iy,l = ml

12

(
a2
load + c2load

)
Iz,l = ml

12

(
a2
load + b2load

) (3.11)

where aload, bload and cload represent length, width and height of the payload, respectively.

The parafoil center of gravity is located in the longitudinal plane of symmetry at c/4 and at a

distance lcgp from the point where the suspension lines confluence.

lcgp =
2

3

(llines + t)3 − l3lines
(llines + t)2 − l2lines

sin ε

ε
t =

vvol
Sp

(3.12)

with t being the average canopy thickness, Sp being the reference area defined as Sp = cb and vvol

approximated as 0.09c2b.

Defining hmean as

hmean =
vvol
cb

(3.13)

the moments of inertia of the parafoil can be expressed as


Ix,p =

vvolρ+mp

12

(
b2 + h2

mean

)
Iy,p =

vvolρ+mp

12

(
c2 + h2

mean

)
Iz,p =

vvolρ+mp

12

(
c2 + b2

) (3.14)

The above moments of inertia can be projected onto the body frame as follows:

I = RyI
′RT

y where Ry =


cos (µ) 0 sin (µ)

0 1 0

− sin (µ) 0 cos (µ)

 (3.15)
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3.5 Six-DOF model

I =


Ixx 0 Ixz

0 Iyy 0

Izx 0 Izz

 =

=


Ix,p cos (µ)

2
+ Iz,p sin (µ)

2
0 1

2 (Iz,p − Ix,p) sin (2µ)

0 Iy,p 0

1
2 (Iz,p − Ix,p) sin (2µ) 0 Ix,p sin (µ)

2
+ Iz,p cos (µ)

2


(3.16)

This rotation is only to be performed for the canopy, since it is rotated of the rigging angle µ.

3.5.2 Apparent mass and inertia

When a body moves in air, the air around it is set to move as well. Apparent mass effects

depend not only on the acceleration of the center of mass, but also on the local acceleration at a

significant distance from the body center of mass. The real effect of the local acceleration can be

described by detailed analytical formulations out of the scope of this work. Iterative procedures

can also be adopted as an alternative. This motion introduces pressure forces on the body itself,

the apparent mass pressures. These effects are far from negligible and their magnitude follows

an inverse relationship with the mass ratio (i.e. the ratio between the vehicle mass m and the

displaced air mass). While for conventional vehicles such as airplanes this ratio is extremely high,

it is much smaller for lighter-than-air vehicles.

Apparent mass and inertia contributions are given ([3]) by Eq. 3.17 and Eq. 3.18, both written in

the rotating parafoil coordinate frame.

F̃a.m. = −

Ia.m.


˙̃vx

˙̃vy

˙̃vz

+ S(ω̃)Ia.m.


ṽx

ṽy

ṽz


 (3.17)

M̃a.i. = −

Ia.i.


˙̃p

˙̃q

˙̃r

+ S(ω̃)Ia.i.


p̃

q̃

r̃

+ S(Ṽa)Ia.m.


ṽx

ṽy

ṽz


 (3.18)

The ∼ symbol is used to denote the components of the canopy airspeed vector Ṽa and of the canopy
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3. PARAFOIL DYNAMICS

angular velocity vector ω̃, expressed in the parafoil canopy frame, which is different from the body

frame because of the nonzero rigging angle.

The apparent mass force and apparent moment of inertia act at the centroid of the apparent mass

of the body, which depends on the body’s geometry and for ellipsoidal canopy shapes resides at

approximately volumetric canopy centroid [3]. Ia.m. and Ia.i. have the diagonal form:

Ia.m. =


A 0 0

0 B 0

0 0 C

 Ia.i. =


IA 0 0

0 IB 0

0 0 IC

 (3.19)

Based on [10], [11] derived more accurate expressions for the apparent masses A, B and C and for

the apparent inertias IA, IB and IC , as shown in Eqs. 3.20 and 3.21 (the approach is the same

presented by [3] and similar to that of [9]). These expressions assume that the parafoil axes system

coincides with the principal axes of the canopy (which is typically the case).

A = 0.666ρ

(
1 +

8

3
a∗2
)
t2b

B = 0.267ρ

[
1 + 2

a∗2

t∗2
AR2

(
1− t∗2

)]
t2c

C = 0.785ρ
√

1 + 2a∗2 (1− t∗2)
AR

1 +AR
c2b

(3.20)

IA = 0.055ρ
AR

1 +AR
c2b3

IB = 0.0308ρ
AR

1 +AR

[
1 +

π

6
(1 +AR)ARa∗2t∗2

]
c4b

IC = 0.0555ρ
(
1 + 8a∗2

)
t2b3

(3.21)

where the following quantities have been used:

• aspect ratio

AR =
b

c
(3.22)

• arc-to-span-ratio

a∗ =
a

b
(3.23)
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3.5 Six-DOF model

Figure 3.1: Visualization of apparent mass and inertia.

• relative thickness

t∗ =
t

c
(3.24)

Ia.f. and Ia.i. are then rotated in body frame through the following equations:

I∗a.m. = RT
PBIa.m.RPB (3.25)

Under steady flight conditions (which include steady turning maneuvers), this model represents
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3. PARAFOIL DYNAMICS

accurately the apparent mass effects. Consequently, as long as the system is not subject to intense

dynamic flight conditions, this model is a good approximation.

Fig. 3.1 offers a visual representation of the contributions presented above.
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3.5 Six-DOF model

3.5.3 Parafoil canopy aerodynamics

The aerodynamic forces refer to the center of gravity of the parafoil. They are defined in the axes

system determined by the local air velocity Vp. The local attack and sideslip angles, respectively

α and β, are defined as:

α = arctan

(
wp
up

)
(3.26)

β = arctan

 vp√
u2
p + w2

p

 (3.27)

Once they are computed in the intermediate coordinate systems, the forces and moments can be

expressed in the body frame making use of the transformation matrix Mba:

MBA =


cos (µ+ α) 0 − sin (µ+ α)

0 1 0

sin (µ+ α) 0 cos (µ+ α)

 (3.28)

3.2 shows the CLARK-Y aerodynamic profile, adopted as a reference for parafoil canopies (the

rotation corresponds to the rigging angle µ).

Figure 3.2: CLARK-Y aerodynamic profile.

A downward deflection of the canopy trailing edges is considered in terms of a dimensionless ratio

δcurr/δmax where δcurr represents the actual deflection and δmax the maximum available deflection.

The left and right deflection are referred to as δl and δr (right and left are defined when looking

towards the direction the parafoil is moving in). δl and δr, being dimensionless, vary between 0

and 1.

In the aerodynamic model used in this work, the symmetric and asymmetric deflections δs and δa
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3. PARAFOIL DYNAMICS

are used instead, since they have the clear physical meaning of influencing the longitudinal and

lateral dynamics, respectively. These are:

δs =
1

2
(δr + δl) (3.29)

δa = δr − δl (3.30)

All the following coefficients refer to a local kinetic pressure 1
2ρV

2
p , a reference area Sp and a chord

c. The following forces and coefficients all refer to the canopy, even though the subscripts have

been omitted to simplify the notation.

Lift force

CL = CL,0 + CL,αα+ CL,δsδs (3.31)

FZ =
1

2
ρV 2

p Sp(−CL) (3.32)

Coefficient Value Units

CL,0 0.091 -
CL,α 0.90 rad−1

CL,δs 0.21 -

Table 3.3: Canopy lift coefficients.

Drag force

CD = CD,0 + CD,α2α2 + CD,δsδs (3.33)

FX =
1

2
ρV 2

p Sp(−CD) (3.34)

Side force

CY = CY,ββ (3.35)
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3.5 Six-DOF model

Coefficient Value Units

CD,0 0.25 -
CD,α2 0.12 rad−2

CD,δs 0.30 -

Table 3.4: Canopy drag coefficients.

FY =
1

2
ρV 2

p SpCY (3.36)

with CY,β = −0.23 rad−1.

Rolling moment

Cl = Cl,ββ + Cl,δaδa + Cl,p
b

2Va,p
p+ Cl,r

b

2Va,p
r (3.37)

L =
1

2
ρV 2

p SpcCl (3.38)

Coefficient Value Units

Cl,β -0.036 rad−1

Cl,δa -0.0035 -
Cl,p -0.84 rad−1

Cl,r -0.082 rad−1

Table 3.5: Canopy rolling moment coefficients.

Pitching moment

Cm = Cm,0 + Cm,αα+ Cm,q
c

Va,p
q (3.39)

M =
1

2
ρV 2

p SpcCm (3.40)

Yawing moment

Cn = Cn,ββ + Cn,δaδa + Cn,p
b

2Va,p
p+ Cn,r

b

2Va,p
r (3.41)
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Coefficient Value Units

Cm,0 0.35 -
Cm,α -0.72 rad−1

Cm,q -1.49 rad−1

Table 3.6: Canopy pitching moment coefficients.

N =
1

2
ρV 2

p SpcCn (3.42)

Coefficient Value Units

Cn,β -0.0015 rad−1

Cn,δa 0.0155 -
Cn,p -0.082 rad−1

Cn,r -0.27 rad−1

Table 3.7: Canopy yawing moment coefficients.

3.5.4 Suspension lines aerodynamics

It is assumed that only one force (drag) acts on the suspension lines, applied at half distance

between the center of mass of the parafoil and the center of gravity of the parafoil, with a direction

parallel to that of the local air velocity. The reference area Sline of the suspension lines is obtained

starting from the area Sref of a single line, which is multiplied by the number of lines N and scaled

to keep into account the cascading part of the lines.

The aerodynamic force is then computed as

1

2
ρV 2

s Sline(−Cline) with Cline = 1.0 (3.43)

3.5.5 Payload aerodynamics

The aerodynamic model employed for the payload is similar to that of the suspension lines and

only accounts for the drag:

1

2
ρV 2

l Sl(−Cload) with Cload = 1.0 (3.44)
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3.5 Six-DOF model

3.5.6 Equations of motion

Given the terms described in the previous sections, the motion is governed by the following equation:

Aẋ = b (3.45)

with

ẋ =



u̇

v̇

ẇ

ṗ

q̇

ṙ


(3.46)

Before expanding the terms above, a few vectors and rotation matrices must be defined.

Weight force Fg represents the weight force expressed in body-fixed frame and is defined as

follows:

Fg = mg


− sin(θ)

cos(θ) sin(φ)

cos(θ) cos(φ)

 (3.47)

where m is the mass and g the gravity acceleration.

Aerodynamic forces Fa is the vector containing the aerodynamic forces acting along x, y and

z components of the body frame.

Fa = −QSRBW


CD

CY

CL

 (3.48)

where Q = 0.5ρV 2
a represents the dynamic pressure.
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Aerodynamic moments Ma contains the aerodynamic moments expressed in body-fixed frame:

Ma = QS


bCl

cCm

bCn

 (3.49)

where b and c are the span and chord of the parafoil.

Sω and SrBM
are skew symmetric matrices built from ω = [p, q, r]T and rBM = [xBM , yBM , zBM ].

rBM is the vector that goes from the system center of mass to the apparent center of mass, where

apparent forces of the parafoil are applied: here it’s modeled as [0, 0,−R cos(ε)], where R is the

line length and ε is the angle between line length and vertical direction. They are defined as:

Sω =


0 −r q

r 0 −p
−q p 0

 (3.50)

SrBM =


0 −zBM yBM

zBM 0 −xBM
−yBM xBM 0

 (3.51)

Ia.i.
∗ = RPB

T Ia.I.RPB (3.52)

RPB is defined as:

RPB =


cos(µ) 0 − sin(µ)

0 1 0

sin(µ) 0 cos(µ)

 (3.53)

where µ is the rigging angle (defined as unique property of the parafoil geometry). Finally some

terms which have not been defined yet have to be introduced: me = 0.09ρbc2 is the added mass

(mass of air entrapped in the ram air canopy), I3x3 is the identity 3x3 matrix. A final point has

to be underlined: knowing (u, v, w, φ, θ, ψ), bank angle, flight path angle, heading angle and
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airspeed velocity can be retrieved in this way:

RBN
T



u

v

w

−RBN


wx

wy

wz


 = RWN

T


Va

0

0

 (3.54)

knowing that Va is calculated as the modulus of:

Va =


u

v

w

−RBN


wx

wy

wz

 (3.55)

Assumptions which have been done to obtain this model are:

• The parafoil is treated as a 3D rigid body: there is not relative motion between the canopy

and and the payload.

• The parafoil canopy is considered to be a fixed shape once it has completely inflated.

• Apparent mass and inertia are applied to canopy center of mass (they are rotated with respect

to body frame of the angle µ)

Coming back to Eq. 3.45, all the elements to define A and b are now available.

A =

(m+me)I + Ia.m.
∗ −Ia.m.

∗SrBM

SrBM Ia.m.
∗ I + Ia.i.

∗ − SrBM Ia.m.
∗SrBM

 (3.56)

b =

B1

B2

 (3.57)
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where:

B1 = Fa + Fg − Sω((m+me)I3x3 + Ia.m.
∗)


u

v

w

+

+ SωIa.m.
∗SrBM


p

q

r

+ SωIa.m.
∗RBNW (3.58)

B2 = Ma − (Sω(I + Ia.i.
∗)− SrBMSωIa.m.

∗SrBM )


p

q

r

+

− SrBMSωIa.m.
∗


u

v

w

+ SrBMSωIa.m.
∗RBNW (3.59)

Translational and rotational kinematics relationships are used to retrieve linear and angular posi-

tions. These kinematic equations are as follows:
ẋ

ẏ

ż

 = RBN
T


u

v

w

 (3.60)


φ̇

θ̇

ψ̇

 =


1 sin(φ)

sin(θ)

cos(θ)
cos(φ)

sin(θ)

cos(θ)

0 cos(φ) − sin(φ)

0 sin(φ)
1

cos(θ)
cos(φ)

1

cos(θ)



p

q

r

 (3.61)

3.5.7 Implementation details

While the previous section adopted a North-East Down (NED) convention, DSENDSEdu imple-

mentation uses a East-North-Up (ENU) frame of reference. This is mainly due to a more straight-

forward implementation it and the need of a more flexible framework which might be used in the
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3.6 Six-DOF model linearization

future. The following list highlights the most important differences:

• The sign of the rigging angle µ, sideslip angle β and most of the angular velocities will be

opposite. Rotation matrices will differ as well.

• In the software implementation, projections are handled through quaternions, which are far

more efficient than matrices when it comes to computational efficiency

• [9] aims at obtaining a model for which all the forces are applied to the center of mass of the

entire system, mainly for a easier representation and a more convenient numerical approach.

For a more convenient implementation in DSENDSEdu, the present work distinguishes be-

tween the following groups of forces, applied independently from each other:

– acting on the center of pressure of the canopy (aerodynamic forces)

– acting on the body center (apparent masses, buoyancy)

– acting on the lines of the parafoil (drag)

– acting on the payload to be deployed (drag and lift)

– gravity acting on each body separately

• Linear/angular velocities and accelerations are probed directly from the local body when

needed, so that no Rivals transportation theorem is not to be implemented directly. This

allows to exploit the Spatial Operator Algebra (SOA) properties which will be introduced in

the next chapter.

• The model analyzed in [9] brings to equations that need to be integrated numerically, for this

reason some terms (usually the ones depending on acceleration) are neglected. In this work

no terms will be neglected since DSENDSEdu allows to handle them with relative simplicity.

3.6 Six-DOF model linearization

3.6.1 Linearization

The need for linearized models arises for both stability analysis and controllers necessity. Imple-

menting the linear dynamics results in much faster computation times, where suitable. The 6-DOF
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model presented in the previous section can be written as:

ẋ = f(x) + g(x)u (3.62)

For an equilibrium position we have that

0 = f(x0) + g(x0)u0 (3.63)

and the linearization of 3.62 around 3.63 leads to [3]

∆ẋ =

(
∂f

∂x
− fg−1 ∂g

∂x

)∣∣∣∣
x=x0

∆x+ g0∆u = A∆x+B∆u (3.64)

with A and B being the usual state and input matrices, respectively. If needed, the output is also

linearized as:

∆y = C∆x+D∆u (3.65)

where C and D output and feedthrough matrices. Considering Eq. 3.46, the state vector would be

[∆u,∆v,∆w,∆p,∆q,∆r]
T

while the control vector is [∆δa,∆δs]
T

. In practice however, rotational

kinematics is usually included as well, as suggested by [3], which leads to

x = [∆u,∆v,∆w,∆p,∆q,∆r,∆φ,∆θ,∆ψ]
T

(3.66)

The longitudinal and lateral-directional motions are usually studied independently, so that the

former motion is described by

xlon = [u,w, q, θ]
T

with u = δs (3.67)

and the latter by

xlat = [v, p, r, φ, ψ]
T

with u = δa (3.68)

.

This is possible since δs and δa are responsible for controlling the longitudinal and lateral dynamics,

respectively.

Linearizing the model around its steady-state condition (free gliding) at an altitude of 20 km leads
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to Eqs. 3.69 and 3.70.


u̇

ẇ

q̇

θ̇

 =


−0.0504 −0.00195 −9 −1.34

−0.0409 −0.0374 16.9 0.0519

1.7 −0.861 −3.99 −0.101

0 0 1 0




u

w

q

θ

+


−0.364

−0.734

5.06

0

 δs (3.69)



v̇

ṗ

ṙ

φ̇

ψ̇


=



0.00588 9.16 −17.2 1.34 0

−0.0722 −2.86 0.326 −0.0709 0

−0.076 −3.06 −3.63 0.00458 0

0 1 −0.0427 0 0

0 0 1 0 0





v

p

r

φ

ψ


+



8.35 · 10−5

−0.475

2.14

0

0


δa (3.70)

3.6.2 Stability analysis

Once the system is reduced to the state-space model, its stability is assessed by analyzing the

eigenvalues of matrix A which are all stable. As mentioned above, this analysis is conducted by

linearizing around a trimming point at 30 km from the ground during a free gliding condition. A

steady-state flight condition is not the same at every altitude due to the change in air density, and

poles change slightly during the descent.

The following modes typical of a parafoil can be identified around the trim condition, and they are

consistent with the results presented in [12] and [3]:

Mode Eigenvalues Period [s] Damping ratio

Roll subsidence −4.7 0.3 -
Spiral mode −3.8 0.2 -
Short period oscillations −2.6± 4.7 i 1.3 0.49
Phugoid mode −0.086± 0.0041 i 11 ≈ 1
Dutch roll −0.072± 0.15 i 14 0.44

Table 3.8: PADS modes.

Lowering the altitude, the phugoid mode tends to disappear: the two complex conjugate poles

become real.
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3. PARAFOIL DYNAMICS

3.6.3 Controllability

Starting from Eqs. 3.69 and 3.70, it is possible to compute the longitudinal and lateral controlla-

bility matrices (which hold around the linearization condition) as:

KC,lon =
[
Blon,A

2
lonBlon,A

3
lonBlon

]
(3.71)

KC,lat =
[
Blat,A

2
latBlat,A

3
latBlat,A

4
latBlat

]
(3.72)

whose determinants are det (KC,lon) ≈ −105.6 6= 0 and det (KC,lat) ≈ −5.976 6= 0, assuring

controllability around the steady-state gliding condition.
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Chapter 4

DSENDSEdu implementation and

preliminary results

The Mobility and Robotic Systems Section at Jet Propulsion Laboratory developed the Dynamics

And Real-Time Simulation (DARTS), which provides several multi-mission space system simulation

tools for the closed-loop development and testing of flight algorithms and software ([13]).

Dshell was developed for simulating real-time spacecraft dynamics, and it uses the DARTS engine

for solving the dynamics. On top of Dshell is DSENDS - a Dshell-based simulator for entry,

descent and landing (EDL) scenarios. DSENDSEdu is the educational version of DSENDS and is

the simulation environment of choice in this work.

The model has mainly been coded through high-level Python wrappers that make use of lower-

level C++ libraries. The final implementation consists of different Python stand-alone modules

that allow for a higher flexibility, especially because of the Object Oriented Programming (OOP)

paradigm: in case a change was needed in the geometry, dynamics, control logic or any other aspect

of the project, only a few modules would need to be rewritten.

4.1 Spatial Operator Algebra

DSENDSEdu dynamics solver is based on a novel approach to model linked multi-body systems

developed by the authors of the software, referred to as a Spatial Operator Algebra (SOA). SOA
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4. DSENDSEDU IMPLEMENTATION AND PRELIMINARY RESULTS

enables a convenient representation of spatial kinematics and dynamics of complex systems. While

mathematical complexity is reduced, no information about the system is lost in the Spatial Operator

approach, as the spatial operators still contain precise information about the system. However,

this information is organized and presented using much fewer symbols.

While in most traditional methods the number of arithmetical operations grows with the cube of

the number of degrees of freedom (O(n3)), the computational complexity of SOA grows linearly

with n, O(n).

Not only does using DSENDSEdu allow to reduce the computational complexity, but it also pro-

vides a convenient way to verify the results graphically, if needed.

4.2 Six-DOF model implementation

The first model to be implemented assumes a flat planet (used for data validation and for the
following GNC algorithms). This laid the ground for other improvements and future model im-
provements. The following hierarchical tree structure was used:

Root Body

Parafoil Body

Canopy Body

Payload Body

Where Root Body represents the planet surface and is where the inertial frame belongs, Parafoil Body

is the physical/graphical model of the parafoil and Payload Body is a cube with realistic mass and

inertia properties associated to it.

Parafoil Body and Root Body are attached through a FULL6DOF INERTIAL hinge type, which

allows the body the freely move in the 3D space and allows to probe inertial values directly through

the usage of parentHinge().specNode().

The final implementation is shown in Fig. 4.1

Once a model is set up on DSENDSEdu, it is possible to extract any kinematic or dynamic property

directly at any time instant. while Fig. ?? shows some of the properties that can be probed from

the model, all referred to the inertial frame (which, in the case of the flat planet assumption,

corresponds to a {ENU} frame).
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4.2 Six-DOF model implementation

Figure 4.1: DSENDSEdu simulation.

Figure 4.2: Properties probed directly with DSENDSEdu.
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Figure 4.3: Inertial {I} and local geographic frame {G} frames of reference used in the spherical
model.

4.3 Model improvement - spherical planet

The model was further expanded to allow for the sphericity of the planet to be taken into account.

This allowed to simulate higher-altitude descents with added accuracy as well, when necessary.

Being Titan radius about 2575 km and considering an initial parafoil altitude of 40 km, it is

straightforward to verify that the total descent accounts for about 1.55% of the radius. While this

can be ignored during most simulations (especially if testing control strategies), it is not completely

negligible. Plus, in case it was required to perform additional simulations from higher altitudes or

for similar missions on different satellites, it is handy to have a spherical model set up for higher

accuracy.

Instead of rewriting the whole dynamics from the bottom up, the spherical model has been obtained

by expanding the previous model already implemented on DSENDSEdu. Using the transformations

presented in Chapter 2, along with the definitions of [6], it is possible to revisit the model by

considering the inertial frame {I} placed at the center of the planet and expressing the position as

a function of two angles and a distance, namely latitude, longitude and distance from the center

of the planet.

The initial position must be now specified through the latitude λ, longitude Λ and initial R, which
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4.3 Model improvement - spherical planet

is the sum of Titan radius Rt and initial altitude h. Note that latitude and longitude are commonly

referred to as θ and φ in literature, this terminology was chosen to avoid confusion with the body

rotations. Given these three parameters and referring to Fig. 4.3, Eq. 4.1 can be written
êr = cos (λ) cos (Λ) î+ sin (λ) cos (Λ) ĵ + sin (Λ) k̂

êλ = − sin (λ) î+ cos (λ) ĵ

êΛ = − cos (λ) sin (Λ) î− sin (λ) sin (Λ) ĵ + cos (Λ) k̂

(4.1)

where î, ĵ, k̂ are the unit vectors referred to the inertial frameof reference and êλ, êΛ, êr represent

respectively latitude, longitude, and radial unit vector.

The explicit unit vectors derivates must be computed in order to express velocity and acceleration

in spherical coordinates, even though only the velocity vector is needed for DSENDSEdu, since it

takes care of the accelerations by itself. They are defined as follows:
ˆ̇er = λ̇ cos (Λ) êλ + Λ̇ êΛ

ˆ̇eλ = −λ̇ cos (Λ) êr + λ̇ sin (Λ) êΛ

ˆ̇eΛ = −Λ̇ êr − Λ̇ sin (Λ) êλ

(4.2)

Having defined the position at a generic time instant as p = R êr, the velocity can be obtained:

v =
d

dt
(p) = Ṙ êr +R ˆ̇er = Ṙ êr +R λ̇ cos (Λ) êλ +R Λ̇ êΛ (4.3)

where Ṙ = d
dt (Rt + h) = ḣ is the descent rate of the parafoil.

The inertial coordinates can be obtained with simple projections as shown in Eq. 4.4.
x = R cos (Λ) cos (λ)

y = R cos (Λ) sin (λ)

z = R sin (Λ)

(4.4)

The resulting model is shown in Fig. 4.4 and, due to the spherical nature of the problem, it is now

possible to simulate a more realistic landing scenario.
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Figure 4.4: DSENDSEdu simulation – spherical planet.
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4.4 Model validation

4.4 Model validation

The model has been validated against other already-existing MatlabR© implementation (presented

in [12]), and results were found to be consistent. A few plots of the system properties during a

descent are shown here.

Figure 4.5: Descent velocity components.

4.5 Preliminary analysis

This chapter investigates the preliminary validations performed with DSENDSEdu, as well as the

analysis of the reachable distance. The model has been compared with the one presented in [12],

and results have been found to be coherent.

4.5.1 Gliding range - reachable distance

One of the most important aspects to take into account during the design phase of the Titan

parafoil is its glide ratio GR = L/D. Different design characteristics have direct implications

on this value which, in turn, directly affects the reachable distance. Beside the glide ratio, the
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4. DSENDSEDU IMPLEMENTATION AND PRELIMINARY RESULTS

(a) α and β. (b) α inititial transient.

Figure 4.6: Angle of attack and sideslip angle.

(a) CL and CD. (b) CL/CD.

Figure 4.7: Lift and drag coefficients.

reachable distance is also influenced by wind magnitude and direction.

The aim of this section is to investigate:

1. The worst-case scenario divert range: considering a deployment condition followed by a 180

degrees turn, two different glide ratios are compared to highlight the different divert ranges

2. The influence of East-West and North-South wind on the divert range, with a fixed glide

ratio

Also, since we know that given L/D and the deployment altitude h0 we can compute the total
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4.5 Preliminary analysis

Figure 4.8: Aerodynamic moments coefficient.

gliding range as ∆X = L
Dh0, this section serves to validate the model as well.

Titan winds mainly blow in the East-West direction, so that North-South winds can be neglected

for this investigation.

The heading angle of the parafoil at deployment has been assumed to be directed towards East.

As explained above, the first maneuver is a complete (180 degrees) turn in order to simulate the

reachable distance in the worst possible situation. After this initial turn, the parafoil keeps pointing

West and the rest of the landing involves free gliding.

The nominal wind conditions have been used for the simulations. For each investigated gliding

range, three different wind profiles were considered: wind blowing towards West (parafoil moving

downwind), null wind and wind blowing towards East (parafoil moving upwind).

As an example, Fig. 4.12 shows the final part of the descent of a parafoil with L/D = 3, to

highlight the different landing points obtained in the different wind conditions.

Fig. 4.13 highlights the initial turn of the parafoil.

Table 4.1 shows the divert range for two different values of the glide ratio, starting from an initial
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Figure 4.9: Apparent mass contributions.

altitude of 40 km.

Glide ratio Upwind No wind Downwind
(L/D) divert range divert range divert range

2 74406 77146 78102
3 113647 119734 122015

Table 4.1: Divert range [m] for the case of low and high glide ratio (nominal wind conditions,
h0 = 40 km).

4.5.2 Gliding range - wind influence

Next, the wind drift along every direction has been considered. Wind profile was changed both

along the East-West and North-South direction, in the range [−Wmax,Wmax], where Wmax is the

magnitude of the maximum wind speed. This way, the maximum wind was considered in every

direction.

No initial turn was considered in the following simulations, the heading angle only changed because

of lateral wind. The initial conditions were fixed, with a starting altitude of 40 km and a starting
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4.5 Preliminary analysis

Figure 4.10: Flight path angle.

planar position of (-80, 0) km.

With a glide ratio equal to two, the no-wind landing is very close to the origin. With increasing

longitudinal and lateral wind, the landing point moves further and further away from the origin.

As expected, the plot is symmetrical with respect to the East-West axis.

In the ideal case with no wind, the divert range is directly proportional to the parafoil glide ratio

L/D, as the theoretical model suggests. With the same initial altitude of 40 km, L/D = 2 and

L/D = 3 imply a landing about 80 km and 120 km away from the starting point, respectively.

Given a high initial altitude, the initial turn has little influence over the total divert range.

Also, as expected, the wind drift is not directly proportional to the glide ratio, meaning that

doubling the glide ratio under the same wind conditions does not imply a doubling wind drift.

This of course holds both for the upwind and downwind landing conditions. The reason lies in the

exponential wind model whose profile, given the different landing times, has non-linear effects on

the system.

Finally, lateral wind was shown to have noticeable effects on the final landing point. Although

according to Fig. 4.16 wind can cause, in a few situations, the parafoil to drift as much as 50 km,
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Figure 4.11: Pitch angle.
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Figure 4.12: Terminal descent phase with L/D = 3. Downwind, no wind and upwind case.
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Figure 4.13: Initial turn with L/D = 3: downwind, no wind and upwind case.
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Figure 4.14: Longitudinal and lateral wind drift: full trajectories on x− y plane.

it must be kept in mind that the wind speed causing those outliers is unrealistic and was only

included to show a more complete overview.
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(a) x− z plane.
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(b) y − z plane.

Figure 4.15: Longitudinal and lateral wind drift.
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Figure 4.16: Longitudinal and lateral wind drift: full 3D trajectories.

The expected lateral drift during a real landing would likely be much lower, in particular:

• For nominal wind conditions, lateral drift is bounded to about 18 km North or South

• Nominal wind conditions refer to a West-East wind which is the worst-case scenario. If the

parafoil was to follow a West-East (e.g. equatorial) trajectory, the lateral winds would be

48



4.5 Preliminary analysis

North-South, which have been shown to be much lower.

4.5.3 Flare maneuver

In order to minimize both the horizontal and vertical touchdown velocity, a flare maneuver must

be performed during which both deflectors are actuated symmetrically at the maximum allowed

value.

Thanks to this maneuver, the vertical landing speed has been shown to go, in case of slow wind,

from 3.4 to 2.3 m/s, while the horizontal speed goes from 7.2 m/s to 4.5 m/s. In case of stronger

winds, the effect is even more noticeable.

4.5.4 Total descent time estimation

In order to get a more accurate estimate of the final integration time, two simulations were run

to compare the descent speed during a free gliding maneuver and during a constant-radius turn.

Descent speed varies depending on the turning rate and, depending on the considered architecture,

it can be twice as high as the one in normal conditions.

The two simulations can be seen in Fig. 4.17
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Figure 4.17: Simulations used to compute the average descent speed.

For each of the two simulations above, given a total descent time Ttot discretized in N−1 intervals,

we can define Zvec the vector containing the N altitude values corresponding to every time step

and Vz,vec the vector containing the corresponding N vertical velocity values. For each vector the
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first element represent the value corresponding to t0 = 0 s and the last element correspond the

Ttot. It follows that every altitude can be mapped to an average descent speed for the remaining

portion of the landing.

Given a generic time step n with n ∈ {1, 2, . . . , N}, the corresponding altitude is Zvec(n) to which

an average descent speed

Vz,av(n) =

∑N
i=n Vz,vec(i)

N − n+ 1
(4.5)

is associated.

This was run for both cases and, as expected, the average descent speed of the constant-radius

turn was slightly higher than the one corresponding to the free gliding condition, independently of

the altitude. The curves can be seen in Fig. 4.18.

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75

Average descent speed [m/s]

0

5000

10000

15000

20000

25000

30000

35000

40000

A
lt
it
ud

e
[m

]

Figure 4.18: Average speed on the remaining portion of the landing. Free gliding condition (blue)
and continuous turn (orange).

Using the above vectors as lookup tables is not computationally convenient, so a polynomial fitting

was performed on the average of the two vectors. As Fig. 4.18 shows, the polynomial is not too

far from being a line. The difference in goodness of fit for a third- and second-order polynomial
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was minimal, so the latter was used. The resulting expression is:

Vav(h) = ah2 + bh+ c = 1.577 · 10−10h2 + 3.791 · 10−5h+ 2.941 [m/s] (4.6)

where h is the altitude considered. Given the above function and the initial altitude, the final time

Tf can be estimated as h/Vav.

Given the local wind profile, Intended Point of Impact and deployment condition, one may wish

to further formalize the above equation for taking wind speed into account. Although an in-depth

analysis of this dependence is beyond the scope of this work, Fig. 4.19 shows how the average

descent speed varies when moving downwind or upwind, as opposed to the no-wind condition.
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Figure 4.19: Average speed on the remaining portion of the landing: wind sensitivity.
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Chapter 5

Point-to-target techniques

Having described and implemented all the necessary dynamic models in DSENDSEdu, it is possible

to proceed with Guidance & Control techniques to guarantee an accurate landing. As mentioned

before, the main challenge when it comes to landing on Titan (or any similar environment) is how

to counteract the possibly strong winds.

Plausible operational conditions are considered in the following pages, which winds the resemble

the ones adopted to estimate the gliding range of the parafoil in Chapter 4.

Not only is the presence of wind important in that it can lead to noticeable drifts, but it is also

recommended that the final flare maneuver takes place against the wind to reduce the final velocity.

While wind helps during this kind of maneuvers it could worsen the situation as well in case the

landing happens to be downwind.

5.1 Proportional derivative control

The first controller to be implemented is based on a Proportional-Derivative feedback action which

depends on χ and χ̇. A measure of the heading rate χ̇ is usually not available since it is expressed

in the system wind frame. The assumption that is usually made to overcome this problem is that

the sideslip angle is approximately zero during steady-flight conditions (β ≈ 0). As a consequence

we can write that:

χ ≈ ψ and χ̇ ≈ ψ̇ (5.1)
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.

In the following simulations, ψ is assumed to be known (obtained directly from the state vector)

because during the real landing it would be computed by the TRN on-board system. ψ̇ can in

theory be estimated by differentiating the expression of ψ, however it is preferred to evaluate it by

means of a backward difference:

ψ̇k =
3ψk − 4ψk−1 + ψk−2

2∆t
(5.2)

A four-point backward difference could also be used:

ˆ̇
ψk =

11ψ̂k − 18ψ̂k−1 + 9ψ̂k−2 − 2ψ̂k−3

6∆t
(5.3)

The generic feedback action is written as

δa = Kp(χref − χ) +Kd( ˙χref − χ̇) ≈ Kp(ψref − ψ) +Kd( ˙ψref − ψ̇) (5.4)

with χref ebing computed at every time step with atan2(yref − y, xref − x). and using the PID

Tuner Toolbox in MatlabR©, it is possible to compare the response of a Proportional and a

Proportional-Derivative controller, as shown in Fig. 5.1. In particular, what is shown is a step

response to a unitary change of the yaw angle (and consequently, due to the assumption above,

heading angle).

The response above is obtained with a proportional gain Kp = 1.95 and a constant Kd = 0.4.

The implementation of such a controller leads to the new poles configuration shown in Fig. 5.2.

Although the system would remain stable even for a higher gain, it does not make sense to increase

it, since the dominant poles have already move very close to the corresponding zeros.

Even though this controller has laid the foundations for implementing the T-approach guidance

strategy, a simple control algorithm not based on waypoints has been implemented first for landing

using the PD only.

The strategy works as follows. First, an initial point-to-target maneuver is performed to align the

parafoil with the desired landing area, no matter where deployment happens. A ”virtual” landing

area (strictly downwind with respect to the Intended Point of Impact) is then selected based on

the expected wind drift, and is engaged by the controller. The homing phase of the PADS lasts
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Figure 5.1: Proportional vs Proportional-Derivative controller.

Figure 5.2: Poles of the system controlled with a Proportional and a Proportional-Derivative
controller.

until the virtual landing area is reached (which is, the parafoil has come to at least 150 m from

it). The energy management phase then starts around the virtual impact, which after trail and

error procedures was set to be about 300 m downwind from the IPI. At this point the parafoil is

performing spiraling maneuvers waiting for the appropriate time to trigger the exit maneuver for
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the final approach. This is triggered by constantly checking the following condition:

hGR < πR+ wdir
h

Vd
(5.5)

where h is the current altitude, GR is the glide ratio, R is the minimum allowable turning radius,

wdir is the wind speed in the landing direction and, finally, Vd is the descent speed. The equation

above assumes the average situation during which half a turn (π rad) will have to be performed

during the exit maneuver to reach the IPI.

This strategy, although simple in its formulation, allows to obtain promising results, as Fig. 5.3

shows by highlighting the behavior of a bank of trajectory generated varying the entry point within

a 5 km-radius.

Figure 5.3: Bank of descent trajectories obtained with a PD controller: entry point within a 5 km
radius.
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5.2 T-approach guidance strategy

Although more advanced solutions (in particular optimal trajectories) will be discussed in later

sections, a heuristic approach needs has been investigated first. This approach allows for a simpler

solution which, nonetheless, can lead to good results. The T-approach guidance strategy was

originally developed by DLR ([14]), and the trajectory is continuously updated based on the most

recently available information about the environment. This way, uncertainties coming from wind

or from some system parameters can be constantly compensated.

The main advantage of using a T-approach is the relatively simple implementation when compared

to the generation of optimal trajectories, which translates to faster computational time that, in

turn, allow online computation. Additionally, the algorithm allows to accommodate any sort of

control strategies: the only information returned by the T-approach algorithm is which waypoint

the parafoil should currently point to, but the control algorithm could be of any kind.

Different attempts have been made to use similar approaches to update the trajectory. Many of

them rely on flying circles during the energy management phase, which allow to maximize the

descent speed.1 A T-approach adopts eight-shaped maneuvers instead. This allows, among other

things, for a more reliable wind estimation [3]. While the following is based on the general idea

presented in [3], the algorithm has been slightly modified, with the main difference being how wind

is taken into account. Instead of basing the computation on a ”virtual” Intended Point of Impact

(IPI) in the wind-fixed frame of reference, the expected wind shift is computed at each step and

an apparent IPI is created accordingly. This apparent IPI is then used as a base to place the

remaining waypoints. All of this is performed directly in the inertial frame, as shown in Fig. 5.4.

Five waypoints are needed for performing the T-approach, as shown in Fig. 5.4 (although, depend-

ing on the phase, only one or two may be needed):

• IPI: Intended Point of Landing

• FTP: Final Turn Point

• EMC: Energy Management Center

• EMTPs: Energy Management Turning Points

A waypoint is considered cleared once the parafoil reaches the area inside a circumference centered

in the physical waypoint.

1The descent speed during a turn might be as much as twice the one during a linear descent.
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5. POINT-TO-TARGET TECHNIQUES

Wind
IPI

IPIapp

xI

yI

FTP

EMC

EMTP

EMTP

Figure 5.4: Waypoints needed for a T-approach landing.

The main idea is to divide the descent and landing in the following phases:

1. Homing: the parafoil navigates towards the EMC, if residual altitude is sufficient. If not,

backup mode is entered.

2. Energy management: the surplus altitude is reduced by flying around EMTPs. When a

prescribed exit altitude is reached or some exit condition is met, the parafoil starts flying

towards FTP.

3. Landing: divided into three phases.

(a) Approach FTP : fly towards FTP

(b) Turn into wind : after passing FTP, keep pointing against IPI and prepare to land

against the wind

(c) Flare maneuver : avoid payload rollover and reduce final speed

At each step, based on the new estimation and available measurements, a new expected wind drift

(in the inertial frame) is computed and the IPI is shifted accordingly to a new point called IPIapp

(apparent IPI). This allows to counteract the wind effect and land close to the IPI even in presence
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5.2 T-approach guidance strategy

of previously-unknown winds.

The most important aspect affecting the final landing accuracy is the exit condition, which must be

triggered at the right instant. The decision to initiate this final maneuver is based on the condition:

hGR < πR+ s+ wx
h

Vd
(5.6)

5.2.1 Implementation and results

Algorithm 1 was implemented in DSENDSEdu and is executed at every step until the parafoil

has landed. The control architecture used to point at the correct waypoint is the Proportional-

Derivative controller implemented in the previous section. Whatever flying mode or condition the

parafoil is undergoing, Algorithm 1 will return the most appropriate waypoint to point at. Fig. 5.5

shows the detail of the eight-pattern executed during the energy management phase, which slowly

advances towards the Intended Point of Impact.

Figure 5.5: T-approach obtained trajectory: x–y.

The algorithm has then been validated by letting the initial conditions vary randomly in the x-y

plane and fixing the initial altitude at 5000 m, with c constant wind profile. Stochastic Gaussian-

like wind gusts were added as well, with a standard deviation equal to 1 m/s. Fig. 5.6 shows
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5. POINT-TO-TARGET TECHNIQUES

Algorithm 1 T-approach algorithm

1: xydrift ← drift caused by the wind . Computed at each step
2: IPI app ← IPI − xydrift . Apparent IPI
3: ε← wind orientation
4: if (mode == ”homing”) or (mode == ”energy-management”) then
5: FTP, EMC, EMTP1, EMTP2 ← waypoints
6: if mode == ”homing” then
7: if z ’too low’ then
8: mode← ”backup”
9: else if (EMC reached) or (z ’low enough’) then

10: mode← ”energy-management”
11: else
12: WP ← EMC
13: if mode == ”energy-management” then
14: if remaining gliding distance ’too low’ then
15: mode← ”approach-FTP”
16: else
17: if heading exists then
18: if heading == ”EMTP1” then
19: if EMTP1 reached then
20: WP ← EMTP2

21: heading ← ”EMTP2”
22: else
23: WP ← EMTP1

24: else
25: if EMTP2 reached then
26: WP ← EMTP1

27: heading ← ”EMTP1”
28: else
29: WP ← EMTP2

30: else
31: heading ← initialize
32: if EMTP1 closer than EMTP2 then
33: WP ← EMTP1

34: heading ← ”EMTP1”
35: else
36: WP ← EMTP2

37: heading ← ”EMTP2”

38: if mode == ”approach-FTP” then
39: FTP ← waypoint
40: if FTP reached then
41: mode← ”turn-into-wind”
42: else
43: WP ← FTP
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5.2 T-approach guidance strategy

44: if mode == ”turn-into-wind” then
45: if z < hflare then
46: mode← ”flare”
47: else
48: if ’close’ to IPIapp then
49: WP ← IPI
50: elseWP ← IPIapp

51: if mode == ”backup” then
52: if (z < hbackup) and (z > hflare) then
53: . turn against wind and prepare for landing
54: else if z <= hflare then
55: mode← ”flare”
56: else
57: FTP ← waypoint
58: WP ← FTP
59: if mode == ”flare” then
60: WP ← IPI
61: return WP

the resulting trajectories, while Fig. 5.7 shows the polar landing dispersion from which it can be

inferred that the maximum landing error is limited to about 500 m.
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Figure 5.6: T-approach validation with different initial conditions.

Two full-descent trajectories were then simulated assuming a deployment altitude equal to 40 km.

The same wind profile blowing East to West was used for both landings, with the only difference

being that diametrically opposed starting positions were chosen on the x-y plane. Fig. 5.8 shows

the resulting trajectories.

The invariance of the implemented algorithm to different wind conditions was tested next, by fixing
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Figure 5.7: Polar landing dispersion (wind blowing from 180◦ towards 0◦).
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Figure 5.8: 40 km descent using the T-approach.

five different deployment point at a 5 km altitude and letting the wind speed vary. The five chosen

configurations allow the parafoil to experience wind coming from any direction during the descent,

since the wind direction was kept constant blowing towards East. Stochastic Gaussian-like wind

gusts were added also in this simulation, with the same standard deviation specified above. Fig.

5.9a shows where the five deployment points have been placed on the plane, while Fig. 5.9b shows
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5.2 T-approach guidance strategy

the landing dispersion of multiple drops under six different wind conditions:

• blue → wind speed = 0 m/s

• green → wind speed = 0.25 m/s at 5 km altitude

• red → wind speed = 0.5 m/s at 5 km altitude

• light blue → wind speed = 1.0 m/s at 5 km altitude

• purple → wind speed = 2.0 m/s at 5 km altitude

• yellow → wind speed = 4.0 m/s at 5 km altitude

No matter what wind condition is faced, the landing points are still all within the same less-than-

500-meters radius.

(a) Deployment conditions. (b) Landing dispersion (different colors represent dif-
ferent wind conditions).

Figure 5.9: T-approach invariance to wind speed – plots.

Fig. 5.10 presents quantitatively the results shown in the previous plots. In particular, 5.10a

reports the landing coordinates x and y (needed because of the wind dominance towards East) and

5.10b shows the total landing error ρ =
√
x2 + y2.
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5. POINT-TO-TARGET TECHNIQUES

(a) Landing coordinates – multiple starting points with different wind
speeds.

(b) Landing error – multiple starting points with different wind speeds.

Figure 5.10: T-approach invariance to wind speed – results.
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Chapter 6

Optimal trajectory

Two different approaches can be used to deal with the control problem. One is to adopt a motion

planning approach and design a controller to track the generated trajectory in the best possible

way; the other is to design a controller that plans part of the trajectory at every step and constantly

adjusts the prediction based on current noise (mainly wind action).

This chapter focuses on the first approach, with different motion planning techniques being con-

sidered. In Chapter 7 the appropriate control algorithms needed to maintain these trajectories will

be described, along with control schemes that make use of the second approach.

Trajectory planning or guidance (i.e. the generation of a descent trajectory) is one of the most

important aspects of the mission. This part is critical because, assuming the deployment con-

ditions will not be known in advance, the computation of the most appropriate trajectory must

be performed online. Computation is performed following atmosphere entry, and might have to

be performed more than once depending on the circumstances. The optimal trajectory to follow

depends on multiple factors, with the main ones being:

• deployment conditions (i.e. position, attitude and velocity)

• atmospheric properties (wind speed, density, wind gusts if present)

• physical constraints (maximum control actions, terrain obstacles, etc.)

• energy consumption (i.e. control effort)

• desired landing conditions (mainly position, but also attitude to land upwind)
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6. OPTIMAL TRAJECTORY

In general, it is not necessary to plan the whole descent trajectory at once. The descent and landing

part of the mission can be divided into five distinct phases:

1. Initial turn: since the deployment condition is not known with certainty, the first step to

take is to redirect the parafoil towards the correct direction with an initial turn-to-target

maneuver.

2. Homing phase: this phase involves a straight-line navigation towards the Intended Point

of Impact (IPI).

3. Energy management: once the parafoil is close enough to the IPI, the aim is to stay as

close as possible to it. During this phase eight-shape (or S-like) maneuvers are performed to

dissipate potential energy while staying above the IPI (and, as it will be shown, the optimal

trajectory will convergence to this pattern by itself).

4. Final approach: this is the most critical and interesting part to address, since the final

landing error mainly depends on its robustness and noise-rejection properties. Different

approaches have been carried out in literature and others are presented in the present work.

5. Flare maneuver: needed to reduce touchdown velocity and avoid payload roll-over.

The classification above describes the most general case, in reality the sequence may change slightly.

For example, if deployment is above the IPI, the energy management phase may trigger immedi-

ately, with no need to perform an initial turn nor an homing phase. In a similar manner, the

deployment is far enough from the IPI, the energy management phase may be skipped due to lack

of altitude.

The initial homing phase (i.e. flying towards the Intended Point of Impact) is similar in almost all

guidance maneuvers, due to the fact that the objective is trying to maximize the altitude reserve

available for the final approach, which is handled by the energy management phase.

Usually energy management is performed by repeating a series of similar patterns until a switch

to the final landing phase is triggered.

Once terminal guidance is engaged, additional precision is required because multiple constraints

must be satisfied together at touchdown (e.g. landing must be as close as possible to the Intended

Point of Impact, with a desired final heading that depends upon wind conditions).

The present chapter will mainly address aspects concerning the optimization of the final approach.
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6.1 Wind accommodation

Before the different techniques are presented, a word must be spent on how wind effects are included

in the model.

6.1 Wind accommodation

Taking into account wind is crucial when dealing with PADS, especially if winds are strong. While

very detailed atmospheric models for wind are available on Earth, the same can’t be said for Titan.

Nonetheless, having a general idea of the average component of winds allows to plan the PADS

trajectory in the wind-fixed coordinate system {W} and consider a virtual parafoil position based

on the predicted wind drift. Once this shift has been considered, the PADS trajectory is computed

as if there was no wind.

Wind drift is defined as follows

∆s =

 ∆xW

∆yW

 =

∫ tf

t0

 wx(t)

wy(t)

 dt (6.1)

Wind is usually expressed as a function of altitude, and the position is not known a priori at every

time step, until the optimization is done. Assuming t0 = 0 and expressing dt as a function of the

vertical descent speed, Eq. 6.1 is rewritten as

∆s =

∫ h

0

 wx(z)

wy(z)

 dz

Vv + wz(z)
≈ hW bal(h)

Vv

 cos (χw(h))

sin (χw(h))

 (6.2)

where ≈ is used due to assumption that the descent rate Vd is about the same as the vertical

component of the airspeed vector Vv: Vd(h) = Vv(h) + wz(h) ≈ Vv(h) (again, wz is usually

negligible) [3].

∆xW and ∆yW are shown in Fig. 6.1, which also shows a rotation of the coordinate system needed

to align the x axis with the wind direction, so landing against the wind always means landing along

the x direction.

6.2 Optimal terminal trajectory

The aim of this section is to compute optimal trajectories suitable for the terminal guidance of the

parafoil. Given an initial configuration defined by the initial position and heading of the parafoil
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xw

yw

xNED

yNED

IPI

Figure 6.1: Wind-fixed frame used for motion planning.

X0 = [x0, y0, z0, ψ0]
T

, as well as the desired final configuration Xf = [xf , yf , zf , ψf ]
T

(where hf is

usually equal to zero), the goal is to generate an optimal trajectory to guide a parafoil from X0 to

Xf . Note that X0 and Xf don’t necessarily correspond to the full initial states x0 and xf , but

are used to collect the variables that we are usually interested in bringing to a certain value.

This section starts by considering a three-DOF representation of the parafoil. Such a representation

allows to obtain an optimal trajectory in a relatively short time and, provided the appropriate

parameters are available, it can mirror correctly the real behavior of the full parafoil. The three-

DOF model also allows to present the matrices in their full form since the expressions are relatively

simple. In the case of the six-DOF model which will be presented later, the matrices have been

obtained in symbolic form using MatlabR© instead.

The optimal strategy is based on reaching an area above the Intended Point of Impact (IPI) as

quickly as possible through minimum-path trajectories and then continue the descent by tracking

the optimal trajectories obtained by integrating the Euler-Lagrange equations. The techniques

used to track the generated trajectories are presented in Chapter 7.

This approach decouples the two guidance and control phases, so that motion planning and trajec-

tory following can be tackled independently. The two strategies can also be used independently and

waypoint-tracking techniques can still be employed independently of how the optimal trajectories

are obtained.

Techniques such as infinite horizon Nonlinear Model Predictive Control have been studied for

similar problems, but the they require to solve a nonlinear, possibly non-convex problem online for
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6.2 Optimal terminal trajectory

an extended time horizon, which can require a tremendous amount of computational resources. By

decoupling the problem, multiple optimal trajectories can be computed in advance and the most

suitable one can be tracked appropriately by means, for example, of a standard Finite-Horizon

Linear MPC.

6.2.1 Initial homing phase

During the first part of the descent – homing – it is highly desirable to reach a x-y position close

to the Intended Point of Impact (IPI) as fast as possible. This, in fact, allows to maximize the

residual altitude available during the energy management phase and can, in turn, be obtained

by minimizing the time needed to approach the landing point. The minimum time problem is

presented in [15] and [3].

Since, due to the deployment conditions, the initial phase of the descent is at high altitudes, it is

here assumed that enough residual altitude is available to reach the x−y area without touching the

ground before. Even if this hypothesis didn’t hold, the fact that we are dealing with a minimum-

time trajectory implies that there would be no better solution to get as close as possible to the

Intended Point of Impact (IPI).

Keeping in mind that, as shown previously, we must deal with wind and plan the trajectory in the

wind frame {W} whose shift is obtained through the estimated average components of wind, the

trajectory can be planned considering a planar problem. As little as three differential equations

(shown in Eq. 6.3) are sufficient to describe the problem.


ẋ

ẏ

ψ̇

 =


Vh cos (ψ)

Vh sin (ψ)

u

 (6.3)

We are interested in bringing the PADS from X0 = [x0, y0, ψ0]
T

to Xf = [xf , yf , ψf ] by varying a

bounded control input u < umax which, in the specific case, corresponds to δa < δa,max (responsible

of controlling the lateral dynamics).

Pontryagin’s Maximum Principle allows to find the optimal path by minimizing

J =

∫ tf

t0

L (x(t),u(t)) dt =

∫ tf

t0

dt (6.4)
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The Hamiltonian can be written as (note the negative sign in front of L due to the adoption of the

Maximum Principle formulation):

H = λT · f (x(t),u(t))− L (x(t),u(t)) = λxVh cos (ψ) + λyVh sin (ψ) + λψu− 1 (6.5)

with


λ̇x

λ̇y

λ̇ψ

 = −


∂H/∂x

∂H/∂y

∂H/∂ψ

 =


0

0

Vh (λx sin (ψ)− λy cos (ψ))

 (6.6)

The optimality condition of maximizing the derivative ∂H/∂u allows to reduce the problem to

([3]):

uopt = max
|u|≤umax

(λψu) (6.7)

The solution to this problem shows that any time-optimal trajectory consists of at most three

motion primitives, obtained with any of the following control actions:

uopt =


umax, if λψ > 0

0, if λψ = 0

−umax, if λψ < 0

(6.8)

Depending on which control action is applied, the resulting motion will either be a minimum-radius

(maximum-curvature) turn (either left or right, depending on the sign of the control action) or will

follow a straight path. This solution is known as bang-bang control and is equally obtainable by

solving the shortest-path problem described by Eq. 6.9

J =

∫ tf

t0

√
ẋ2 + ẏ2dt (6.9)

which was used to obtain the curves commonly known as Dubins path, shown in Fig. 6.2 (where

R, L and S indicate a right turn, left turn and straight portion, respectively).
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6.2 Optimal terminal trajectory

(a) RSL path (b) RSR path (c) LRL path

Figure 6.2: Examples of Dubins paths.

6.2.2 Problem formulation

As specified above, the problem will be presented using the three-DOF model which allows to

compute a fast online solution, with the six-DOF model results being presented in the next section.

The equations governing the dynamics of the system are the same presented in Eq. 3.8, and are

shown in Eq. 6.10



V̇a = − 1

m
(D +mg sin (γa))

γ̇a =
1

mVa
(L cos (φa)−mg cos (γa))

χ̇a =
L sin (φa)

mVa cos (γa)

ẋ = Va cos (γa) cos (χa) + wx

ẏ = Va cos (γa) sin (χa) + wy

ż = Va sin (γa) + wz

(6.10)

where, for convenience, the translational kinematics has been included directly in the system dy-

namics.

A cost function

J = φ (x(tf )) +

∫ tf

t0

L (x(t),u(t)) dt (6.11)

subject to the dynamics ẋ = f (x(t),u(t)) is defined.
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f (x(t),u(t)) follows from the equations above and J is written as

J =
1

2
P (xf − xf,des)2

+

∫ tf

t0

1

2

(
uTRu+ xTQx

)
dt (6.12)

where P , Q and R are the weights matrices of the final state, state, and control action, respectively.

Defining the Hamiltonian as

H = L (x(t),u(t)) + λT · f (x(t),u(t)) . (6.13)

the optimality conditions can be obtained [15].

The first variation of the cost ∆J∗ must be zero in order for the trajectory to be optimal. This

leads to the Euler-Lagrange equations for optimality

1.

λ(tf ) =

(
∂φ

∂x

)T ∣∣∣∣∣
tf

(6.14)

2.

λ̇(t) = −
(
∂L

∂x
+ λT

∂f

∂x

)T
= −(Lx + λT · F ) (6.15)

3.
∂H

∂u
= Lu + λT ·G = 0 (6.16)

where

F =
∂f

∂x
G =

∂f

∂u
(6.17)

and

Lx =
∂L

∂x
Lu =

∂L

∂u
(6.18)

When writing the above matrices it is necessary to express the dependence on the air density and,

as a consequence, on the current altitude. The state of the system depends on drag D and lift L

L = 1
2ρSCLV

2
a

D = 1
2ρSCDV

2
a

(6.19)
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6.2 Optimal terminal trajectory

where

ρ = 5.43exp

(−0.0512 ∗ z
1000

)
(6.20)

and CL and CD can be obtained step-by-step depending on the instant altitude, through a lookup

table based on the results presented in Chapter 4.

Computing the expressions above F is:

F =



0 0 0 c(χ)c(γ) −V c(χ)s(γ) −V s(χ)c(γ)

0 0 0 s(χ)c(γ) −V s(χ)s(γ) V c(χ)c(γ)

0 0 0 s(γ) V c(γ) 0

0 0 − 5.43
2m kekzSCDV

2 − 1
mSCDρV −gc(γ) 0

0 0
5.43
2m SCLV

c(φ)kekz
1

2mSCLρc(φ) 1
V gs(γ) 0

0 0
5.43

2mc(γ)SCLV

s(φ)kekz
1

2mc(γ)SCLV s(φ)
1

2mc(γ)SCLρV

s(φ)t(γ)
0



(6.21)

where, for the sake of brevity, k = −0.0512
1000 , c(·) = cos(·), s(·) = sin(·), t(·) = tan(·) and the a

subscripts have been omitted.

Similarly,

G =
[
0 0 0 0 − 1

mVa
L sin (φa) L cos (φa)

mVa cos (γa)

]T
. (6.22)

Fig. 6.3 shows the process used for the numerical solution of the Euler-Lagrange equations.

6.2.3 Control action vector initialization

One critical aspect influencing the convergence (and convergence speed) of the algorithm is the

goodness of the initial guess for the sequence of control actions. The vector u, in fact, should be

initialized with values that are somewhat consistent with the final solution, as to avoid divergence

due to the gradient descent algorithms. To address this problem, the control action was initialized

by letting the already-implemented PD controller run first to perform the initial guess.
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Figure 6.3: Euler-Lagrange optimization process.

6.2.4 Numerical simulations and results

The initial conditions were imposed on x, y and z as [−1300,−1100, 1500] m.

The desired final conditions have been imposed to be null for x, y, z and χ.

P =



102 0 0 0 0 0

0 102 0 0 0 0

0 0 103 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 102


(6.23)

weights the final position, especially z which is driven to zero through a soft constraint and χa

which is driven to the desired final value.

Q =



0.1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(6.24)
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constantly weights the distance from the Intended Point of Impact (IPI), which in this case is (0, 0)

and contributes to moving the parafoil closer to the IPI over time. Generally speaking, Q is not

necessarily needed as long as the parafoil lands correctly in the desired position. Cost-wise, in

fact, it does not make any difference for the parafoil to reduce its potential energy (spiral) at the

beginning of a descent or close to the landing. However, for this problem, it is required by the

Terrain Relative Navigation (TRN) team that te parafoil reaches as fast as possible an area close to

the Intended Point of Impact for practical optical navigation purposes. The vision algorithms, in

fact, turn out to be more reliable close to the IPI since the area has more contrast areas surrounding

it (mainly lakes).

Finally,

R = 1 (6.25)

constantly weights the control action (banking angle).

Finally, tf has been estimated based on an average descent velocity from the results presented in

the previous chapter.

The cost function J decreases over time, as shown in Figure 6.4.
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Figure 6.4: Total cost J vs number of iterations N .

Fig. 6.5 shows how x, y and z converge to zero over time:

The remaining states, along with the banking angle, can be seen in Fig. 6.6: Figs. ?? and 6.8
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Figure 6.5: x, y and z state history.
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Figure 6.6: Temporal evolution of the states during the optimal descent (χ bound between π and
2π).

show the obtained trajectory.

Despite the model being a three-DOF simplification of the real system, this kind of formulation is

used for formulating multiple other guidance strategies (see, for example, [16]).
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6.3 Six-DOF optimal descent trajectory
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Figure 6.7: Optimal trajectory result for a 1500 m descent

−1250 −1000 −750 −500 −250 0 250 500 750

x [m]

0

200

400

600

800

1000

1200

1400

z
[m

]

(a) x-z plane.

−1000 −750 −500 −250 0 250 500

y [m]

0

200

400

600

800

1000

1200

1400

z
[m

]

(b) y-z plane.

Figure 6.8: Side views of the complete trajectory.

6.3 Six-DOF optimal descent trajectory

The six-DOF model was implemented next. The process for solving the trajectory is the same

shown in Section ??, with the only difference in the implementation being that matrices F and
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6. OPTIMAL TRAJECTORY

G are obtained in symbolic form using MatlabR©. They are computed once at the beginning of

the script, then the constants are substituted (constant folding) and whenever the new state is

available they are quickly computed. The optimal trajectory is seen in Fig. 6.9.

Figure 6.9: Full six-DOF optimal trajectory.

Note how using higher weights on the control action with respect to the three-DOF model brings

the parafoil to make much wider turns during the spiraling phase. This also allows for more safety

since reducing the banking angle is desirable whenever performing long turns.

The above trajectory has been used as a reference for future simulations of waypoint-tracking

algorithms, and involves a 5 km descent. It is visible how the initial portion of the descent is a

straight line (no control effort) and the subsequent part is constituted by a spiraling maneuver that

leads (upwind) to the desired final position.

6.3.1 Robustness

In order to test the robustness of the algorithm to different initial states, multiple initial heading

angles were imposed while the desired final heading (and whole state in general) was kept the same.

As Fig. 6.10 shows, the algorithm proves to be robust to different initial heading angles.
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Figure 6.10: Optimal trajectories for different initial heading angle values.
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In a similar way, the robustness to the final desired heading was tested. Fig. 6.11 shows the

computed trajectories for fixed initial conditions and varying final heading angles which, again,

turns out to be robust.
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Figure 6.11: Optimal trajectories for different final heading angle values.
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Chapter 7

Trajectory tracking

Once an optimal trajectory (or, perhaps, any kind of trajectory) has been computed, a trajectory-

tracking controller is needed in order for the parafoil to follow the desired trajectory.

A number of studies that concern this topic have been studied in literature. Parametric approaches

that assume constant properties have been used in the past for short and simple trajectories but,

due to the complexity of PADS trajectories, these approaches would be ineffective.

Three different solutions are implemented to perform trajectory tracking:

1. PD controller: based on the previously implemented Proportional-Derivative controller, pre-

sented to perform waypoint navigation.

2. Linear-Quadratic Regulator: provides the optimal feedback action whenever the full state/control

history is available.

3. Model Predictive Control: also used to perform waypoint navigation, requires additional

computations but offers multiple advantages over the other two solutions, like the possibility

of explicitly including constraints on states and control actions.

7.1 Proportional-Derivative controller

This controller can be used whenever a succession of waypoints has been generated in advance, and

it is agnostic to how these waypoints have been generated. The architecture follows the principles

presented in [17].
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7. TRAJECTORY TRACKING

Fig. 7.1 shows a scheme of how the implemented controller works [17].

Figure 7.1: Proportional-Derivative control for waypoint tracking [17].

The assumption is that χ ≈ ψ for the reasons presented before. The lateral dynamics is controlled

by acting on the asymmetric flap deflection

δa = Kp(χref − χ) +Kd( ˙χref − χ̇) ≈ Kp(ψref − ψ) +Kd( ˙ψref − ψ̇) (7.1)

although a second controller might be implemented to control the longitudinal dynamics as well,

but is usually not done if the correct glide ratio is used for generating the waypoints. χref is

obtained by computing atan2(yref − y, xref − x) at every time instant.

When dealing with waypoint navigation based on a PD controller, as opposed to usual signal

tracking, two main problems arise: overshoot and erratic engagement.

Overshooting is caused by the fact that a PD controller does not have any information about the

future, beside the information about the currently-engaged waypoint. The controller will try to

reach the specified waypoint and, only after that, will it engage the next waypoint. To avoid this

overshooting condition, a ”waypoint clearance condition” is introduced.

Engagement of the wrong waypoint is directly related to the robustness of the controller. If for

example a waypoint is missed due to high winds, the controller must move on and engage the next

waypoint. Failure in doing so may lead to spiraling around a single waypoint, with subsequent loss

of altitude which makes it impossible to reach the upcoming waypoints at the nominal altitude.

The waypoint clearance condition is shown in Fig. 7.2a: if the parafoil is moving from ”Departure

Waypoint” to ”Target Waypoint”, it must recognize in advance that it has entered the circle with

diameter d. So, as soon as | ~Rp − ~Rref | < d, the waypoint tracker moves to the next waypoint.
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7.1 Proportional-Derivative controller

To recognize a missed waypoint, instead, a miss condition like the one shown in Fig. 7.2b is used.

A circle located at the departure point with radius Rdt is defined, with Rdt corresponding to the

distance between the two waypoints. If the PADS exits this circle, the waypoint is assumed to

have been missed.

(a) Clearance condition. (b) Miss condition.

Figure 7.2: Waypoint clearance and miss condition [17].

Waypoints don’t have to be ”too close” to each other to avoid continuous corrections and/or

engagement errors, nor ”too far”, since the deviation from the computed trajectory might become

too high. The clearance condition was chosen to be satisfied if the parafoil comes to at least 50 m

from the intended waypoint.

Fig. 7.3 shows a full 40 km descent followed using the above approach, with the reference trajectory

being the blue one and the real trajectory being the orange one.
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Figure 7.3: Trajectory following with a PD controller.
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7.2 Model Predictive Control

7.2 Model Predictive Control

A possible improvement over a PD controller is Model Predictive Control (MPC). MPC allows to

exploit the model of a system to predict its future states and decide what the best control action

to apply is accordingly. The steps required to solve a Model Predictive Control problem at every

iteration are as follows:

1. Measure/estimate the current state x(t)

2. Solve a Constrained Finite Time Optimal Control (CFTOC) problem to determine the best

sequence of future control actions

3. Apply the first control action u(t) of the obtained sequence

4. Wait until the next measure of the state is available

The CFTOC is generally truncated to a predefined time horizon, so that only N future steps are

considered. These steps are shown in Fig. 7.4.

Figure 7.4: Model Predictive Control: past and future trajectories. Credit: ABB.

MPC offers numerous advantages over classical control techniques: among the most important

ones, it allows to weight multiple cost variables to find the most appropriate combination of cost
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7. TRAJECTORY TRACKING

terms, can handle multiple constraints (both on inputs and outputs) in an explicit way and allows

to deal with multiple control variable at once. Furthermore, a complete nonlinear dynamic model

can be handled by MPC algorithms, provided enough computational power is available to compute

the solution within a sufficiently low time interval.

This advantages though come at a cost, the computational load involved in the solution MPC

problems is high, and the implementation is often not trivial in the case of complex systems.

Solving a nonlinear MPC (often referred to as NMPC) requires even more computational power

and is seldom accomplished online, especially when considering multi-DOF multi-body systems

such as a canopy and payload system. [18] analyzes in more detail advantages and disadvantages

of linear and nonlinear MPCs, with particular focus on the computational requirements. For this

reason, the obvious choice is to implement a linear MPC.

7.2.1 Linear Model Predictive Control

The implementation a linear model suitable to predict the future states of the PADS is not trivial

since the dynamics of a parafoil is highly nonlinear due to aerodynamic forces and the rotation

matrices involved when moving from a frame of reference to the other. Another reason is the com-

plexity of the chain that connects a deflection of the control surfaces to the resulting aerodynamic

forces and then, again, to the resulting dynamic changes.

Given the quasi-steady-state nature of a parafoil descent, the system is linearized at every time

step before initializing the optimization procedure. With the assumption that the linearization

remains valid for the whole sequence of N steps, the CFTOC is solved and the first control action

is applied. This avoids integrating the dynamics of the system and allows to solve the problem

faster.

A Single-Input Single-Output MPC meant for directing a parafoil is presented in [2], which also

adopts a dynamic model very similar to the one presented here. A cost function is presented that

weights the distance from a reference trajectory as well as the control action. However, being the

presented problem unconstrained, it is possible to invert the rewrite the state-space representation

of the system to explicitly extract the control action sequence U∗ that minimizes the chosen cost

function J . In presence of constraints the approach is not as straightforward: the problem is to be

solved iteratively as shown later on in this chapter.

[19] considers the inclusion of constraints by implementing a constrained infinite horizon model

86



7.2 Model Predictive Control

predictive control. In that case, however, a passenger aircraft undergoing engine limitations is

examined, with the main objective being obtaining an appropriate tracking of waypoints that are

far from each other. A single waypoint at a time is engaged by augmenting the state vector with

two additional angles describing the elevation and azimuth error. A turn anticipation strategy is

also implemented to avoid waypoint overshooting. Both aspects are highlighted in Fig. 7.5.

(a) Navigation system based on the next waypoint. (b) Turn anticipation strategy.

Figure 7.5: Constrained infinite horizon MPC waypoint engagement strategy presented in [19].

The strategy presented herein, however, keeps track of multiple upcoming waypoints and does not

require state augmentation.

Given a generic dynamical system described by

ẋ(t) = f(x(t),u(t), t), (7.2)

it can be rewritten in a discrete linearized formxk+1 = Ad xk +Bd uk

yk = Cd xk

(7.3)

where Ad, Bd and Cd represent the discrete state-space matrices and are obtained from the
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7. TRAJECTORY TRACKING

continuous-time matrices A, B and C by applying the zero-order-hold input:

Ad = eA∆t ≈ I +A∆t

Bd =

∫ ∆t

0

eAτdτB ≈ B∆t+
1

2
AB∆t2

Cd = C

(7.4)

exploiting the fact that eλt = 1 + λt+ λ2

2! t
2 + · · ·+ λn

n! t
n when expanded using Taylor series.

Of course, since the propagated dynamics is linear, the linearization condition must hold throughout

the whole predicted horizon. This condition won’t hold for N >> 1, especially if there are quick

maneuvers to be performed during the predicted horizon (e.g. a rapid switch in turning direction).

In this case the MPC won’t give accurate predictions and the obtained control action sequence will

be misleading.

The goal at every step is to obtain the optimal control action sequence U∗ =
[
u∗0, u

∗
1, . . . , u

∗
N−1

]
so that the quadratic cost function shown in Eq. 7.5 is minimized.

J(x0,u) = (xN − xN,ref )TP (xN − xN,ref )

+

N−1∑
k=0

[
(xk − xk,ref )TQ(xk − xk,ref )

+uTkRuk + (uk − uk−1)TRd(uk − uk−1)
]

(7.5)

where P weights the final condition, Q weights the distance from the reference at every step,

R weights the control action and Rd weights the absolute value of the difference between two

successive control actions.

Since the problem involves tracking a trajectory, the first quadratic term (xN − xN,ref )TP (xN −
xN,ref ) is not included in the selected cost function, which only depends on the distance from the

nominal trajectory at every time step and on the applied control action. The same result can be

achieved by only including the Q matrix.

The Python convex optimizer module cvxpy is used to solve the optimization problem at every

time step given the appropriate constraints to be satisfied. All of the following ones have to be

included:
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7.2 Model Predictive Control

• Initial condition

x(0) = x0 (7.6)

• Dynamic constraint

xk+1 = Ad xk +Bd uk (7.7)

• Allowable control actions

umin ≤ uk ≤ umax ∀k (7.8)

• Allowable control actions difference

|uk+1 − uk| ≤ δumax ∀k (7.9)

7.2.2 Online computation of the state matrices

Although the linear MPC formulation is compact, the state matrices A12x12 and B12x2 are not

easy to obtain online. Nonlinearities depending upon aerodynamic forces which, in turn, depend

on the control action, lead to intensive computations.

The chosen approach was to compute the matrices with MatlabR© in symbolic form using the

jacobian function and then substitute the real-time values online. Furthermore, the part of the

state vector containing the dynamics and the one that contains the kinematics can be solved in

succession.

x =
[
u, v, w, p, q, r, x, y, z, φ, θ, ψ

]T
(7.10)

in fact, as explained previously, can be divided into the dynamic and kinematic part.

xdyn =



u

v

w

p

q

r


xkin =



x

y

z

φ

θ

ψ


(7.11)
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7. TRAJECTORY TRACKING

The first term of Eq. 7.11 is obtained solving

A6x6ẋ6x1 = b6x1 (7.12)

while xkin can be further divided into a translational and a rotational part so that the following

relationships can be applied 
ẋ

ẏ

ż

 = RT
BN


u

v

w

 (7.13)


φ̇

θ̇

ψ̇

 =


1 sin(φ)

sin(θ)

cos(θ)
cos(φ)

sin(θ)

cos(θ)

0 cos(φ) − sin(φ)

0 sin(φ)
1

cos(θ)
cos(φ)

1

cos(θ)



p

q

r

 (7.14)

The computation can then be further sped up with constant folding (i.e. substituting in advance

every value that remains constant during the descent).

7.2.3 Algorithm

The first step is to equalize the presence of waypoints along the track. This is done by interpolating

the original waypoints with a spline (smooth path line) which, among all the possible interpolation

functions, is the one with minimum curvature (i.e. minimum acceleration).

Given a sequence of n points, n− 1 cubic polynomials can be used to interpolate them in the x-y

planes, each one defined by four coefficients:

y(x) = a0 + a1 x+ a2 x
2 + a3 x

3 (7.15)

The Python module scipy is used to perform the appropriate interpolations, while the numpy mo-

dule’s linspace command is used to match the discretization along z with the same present along

the other directions. Given the spline function, the new evenly spaced waypoints are generated.

The spacing between waypoints has been varied between 5 and 20 m, and 10 m has been chosen

for the final implementation.

The implemented algorithm keeps track of more than one waypoint at a time, as opposed to the
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7.2 Model Predictive Control

usual implementations that only keep track of one at a time. Usually, it is possible to feed the

optimizer with an objective function and a list of constraints to obtain U∗. If more than one

waypoint is involved, a different strategy must be devised. The chosen approach is the following:

1. The initial condition is set to the present state, around which the system is linearized

2. The dynamics is propagated and a list of n waypoints is stored

3. An initial guess is made for the sequence of control actions (previous optimal sequence)

4. A cost function is defined, along with the necessary constraints

5. The optimal problem is solved finding J∗ so that

J∗ = min
u∈U

{
N∑
k=0

[
(xk − xk,ref )TQ(xk − xk,ref ) + uTkRuk + (uk − uk−1)TRd(uk − uk−1)

]}
(7.16)

6. The first control action of the optimal sequence is applied, and the minimization process

starts again

If the optimal solution J∗ is not find within a predefined maximum allowable number of iterations,

the optimizer is stopped and whatever solution it came up with is accepted as the one to be applied.

7.2.4 Predicted horizon

As mentioned above, a longer predicted horizon implies a less accurate linearization condition. Not

only that, but a longer horizon also means heavier and longer computations. On the other hand,

a too short horizon length is not as accurate and may overshoot sharp turns.

Fig. 7.6 shows how the convex optimizer converges to a good solution in only one iteration even

starting from a null initial guess, and keeps converging toward the optimal solution with an in-

creasing number of iterations.

Fig. 7.7 shows how to obtained solution changes as a function of the predicted horizon length. In

particular, it is clear that when N = 10 the solution is found very quickly, although as explained

above it might be prone to overshooting. With N = 30 the optimizer still converges with a fairly

low number of iterations, although the solution takes longer to be computed. Finally, with N = 50

the optimizer takes much longer to converge to the correct solution and the linearization condition
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Figure 7.6: MPC solution as a function of the number of iterations with N = 20.

is likely not to be reliable anymore.

For the reasons above, after trial and error procedures and an evaluation of the convergence times,

the horizon is chosen to consider twenty upcoming time steps. Fig. 7.8 shows the performance

obtained when tracking a generic trajectory, while Fig. 7.9 emphasizes the sharp turn of the

trajectory: the higher N is, the more accurate the tracking is. Both N = 20 and N = 30 guarantee

precise tracking, so the previous choice of setting N = 20 is confirmed to be reliable.
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(a) N = 10.

(b) N = 30.

(c) N = 50.

Figure 7.7: MPC as a function of the number of iterations with varying horizon lengths.
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Figure 7.8: MPC tracking with gusts of wind: varying prediction horizon.

Figure 7.9: MPC tracking with gusts of wind: detail.
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7.2.5 Weight for the control action

Different weights have been tested for the control action, as well as for the control action difference.

Fig. 7.10, as an example, shows how the obtained solution changes when changing R during a

double turn maneuver. If R is too low the actuator arrives at saturation, and if it is too high the

control action won’t be effective and tracking won’t be guaranteed.

Figure 7.10: MPC control action as a function of different weights R.

R was set equal to 50, while the weight for the control action difference, Rd, was set equal to 10.
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7.3 Linear-Quadratic Regulator

Provided the full state/control history of a pre-computed optimal trajectory is available, a Linear-

Quadratic Regulator (LQR) can also obtained to provide the optimal feedback action needed to

reject external disturbances in the neighborhood of the trajectory itself.

If the reference trajectory satisfies the three Euler-Lagrange conditions (i.e. it is optimal), it

minimizes the functional shown in Eq. 7.17.

J = φ (x(tf )) +

∫ tf

t0

L [x(t),u(t)] dt (7.17)

subject to the dynamics of the system ẋ(t) = f (x(t),u(t)), which in turn implies that the first

variation of the cost J is zero with respect to a control variation.

Given a set containing the optimal trajectory and control action history defined as

{x∗(t),u∗(t)} for t ∈ [t0, tf ] (7.18)

a new set {x(t),u(t)} will be obtained if the system is subjected to small linear perturbations, as

shown in Eq. 7.19.

{x(t),u(t)} = {x(t) + ∆x(t),u(t) + ∆u(t)} for t ∈ [t0, tf ] (7.19)

which means that

ẋ(t) = ẋ∗(t) + ∆ẋ(t) = f (x∗(t),u∗(t)) + F (t)∆x(t) +G(t)∆u(t) (7.20)

where, as usual:

F (t) =
∂f (x(t),u(t))

∂x
G(t) =

∂f (x(t),u(t))

∂u
(7.21)

If the cost function J is be expanded into a Taylor series around the reference optimal trajectory:

J ≈ J∗ (x∗(t),u∗(t)) +
��

���
���

�:0

∆J (∆x(t),∆u(t)) + ∆2J (∆x(t),∆u(t)) (7.22)

where ∆J (∆x(t),∆u(t)) = 0 since {x∗(t),u∗(t)} is optimal.
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7.3 Linear-Quadratic Regulator

The only term to be analyzed is, then, ∆2J (∆x(t),∆u(t)), which is expanded in Eq. 7.23

∆2J (∆x(t),∆u(t)) =
1

2

∆xT
∂2φ(tf )

∂x2
∆x+

∫ tf

t0

∆xT

∆uT

T Lxx Lxu

Lux Luu

∆x

∆u

 dt
 (7.23)

with Lxu = Lux = 0. The remaining matrices can then be redefined as Lxx = Q and Luu = R.

The condition we have available is and
∂2φ(tf )
∂x2 = P (tf ).

=⇒ L (∆x(t),∆u(t)) = ∆x(t)TQ∆x(t) + ∆u(t)TR∆u(t) (7.24)

The goal is now to minimize ∆2J subject to the dynamic constraint ∆ẋ(t) = F (t)∆x(t) +

G(t)∆u(t).

Defining the Hamiltonian as:

H (∆x(t),∆u(t),∆λ(t)) = L (∆x(t),∆u(t)) + ∆λT (t)f (∆x(t),∆u(t)) (7.25)

and applying the Euler-Lagrange conditions with the hypothesis that ∆λ = P (t)∆x(t), the non-

linear Differential Riccati Equation (DRE) is obtained:

Ṗ (t) = −
(
F (t)TP (t) + P (t)G(t)R−1G(t)TP (t) +Q

)
(7.26)

which, once solved given the boundary condition P (tf ) = φxx, provides the optimal feedback

gain matrix K(t) = R−1G(t)P (t) through which one can obtain the optimal control action to

compensate external disturbances, given that ∆u∗(t) = −K(t)∆x(t). The regulator architecture

is shown in Fig. 7.11

Figure 7.11: Linear Quadratic Regulator architecture.

Solving the nonlinear Differential Riccati Equation is often time-requiring but the whole solution
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can be computed offline.

7.3.1 Straight descent trajectory tracking

To evaluate the noise rejection properties of the LQR, a 5 km optimal trajectory descent was

simulated in presence of gusts of wind. The following plots report the behavior in presence of

white noise-like gusts, with µ = 0 and σ = 1 m/s.

Figure 7.12: Reference vs real descent trajectory.
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7.3 Linear-Quadratic Regulator

Figure 7.13: Reference vs real x, y and z during the descent.

(a) ∆δs and ∆δa. (b) ∆x, ∆y and ∆z.

Figure 7.14: LQR – detail of control action and position.
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(a) φ, θ and ψ. (b) ∆φ, ∆θ and ∆ψ.

Figure 7.15: Effect of LQR on φ, θ and ψ.
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Chapter 8

Dynamic Programming

Dynamic Programming (DP) finds its foundation in the optimality, which says that an optimal

policy has the property that, whatever the initial state and initial decision are, the remaining

decisions must constitute an optimal policy with regard to the state resulting from the first decision.

More intuitively, referring to Fig. 8.1, if the optimal solution to go from (x0, t0) to (xf , tf ) passes

through an intermediate point (x1, t1), then the optimal solution starting from (x1, t1) goes through

the same path.

(x0, t0)

(x1, t1)

(xf , tf )

Figure 8.1: Illustration of Bellman’s principle of optimality.

Dynamic programming was first proposed by Richard Bellman and leads to the solution of an

iterative functional equation. Instead of exhaustively evaluating every possible solution with a

brute-force approach, DP allows to reduce the computational complexity by several orders of

magnitude. The solution is computed backwards in time by evaluating a so-called residual cost

function at every step. Despite the elegance of its formulation, the main difficulty with applying DP
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8. DYNAMIC PROGRAMMING

to complex problems is still the excessive computational power required, a direct consequence of the

curse of dimensionality, even for problems of moderate complexity. Many successive publications

(among which ??, edited by Richard Bellman himself, is worth mentioning) focused on the reduction

of memory requirements or computational power needed.

Here, a three-DOF reduced-order dynamic programming algorithm has been investigated to both

study the feasibility of its implementation for the control during terminal guidance and verify its

effectiveness. Although with a reduced model, the goal is to show that it is feasible to reduce

computational time by exploiting high parallelization and successive grid refinement. The problem

is first solved by applying dynamic programming to a wider grid whose density is going to dictate

the precision of the final solution and then, through successive grid-refinement, a denser grid is

solved around the tentative trajectory to guarantee higher accuracy and a more frequent update

of the feedback control action.

Dynamic programming provides a sufficient condition for optimality [15]. Given the set of nonlinear

differential equations that govern the dynamics of the PADS

ẋ = f(x, φa(t), t) (8.1)

where φa is the control variable (banking angle), we wish to perform an optimization by minimizing

a cost function to obtain a solution that, besides the above dynamics, satisfies x(t0) = x0, x(tf ) =

xf , and respects the possible constraints.

Since it is necessary to propagate the state in a discrete form, an approximation must be introduced.

The simplest approximation that may be used is to propagate the dynamics based on the local

derivative, as already pointed out in previous chapters:

x(t+ ∆t) = x(t) + f (x(t), φa(t), t) ∆t (8.2)

where ∆t represents the time interval over which the control φa(t) is applied.

The cost function to be minimized has the following continuous form

J = φ[x(tf ), tf ] +

∫ tf

t0

L (x(t), φa(t), t) dt (8.3)

where φ is not to be confused with φa, in that the former represents the cost associated to the final
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condition, while the latter is the control variable.

Again, having discretized the problem, it is necessary to approximate the integration step-by-step:

∫ tk+∆t

tk

L (x(t), φa(t), t) dt ≈ L (xk, φa,k, tk) ∆t (8.4)

Constraints can be easily included by limiting the set of admissible states to X(t) and that of

admissible control actions to Φa(x, t), which in this case are not time-dependent and will be

denoted as Φa and X.

An iterative procedure can be applied that makes use of a functional equation to lead to the

solution. A value function or cost-to-go V (x, t) is needed to determine the minimum cost to go

from the present state-time pair (x, t) to the final time. Starting from Eq. 8.5

V (x, t) = min
φa(τ)∈Φa

{
φ (x(tf ), tf ) +

∫ tf

t

L (x(t), φa(t), t) dt

}
(8.5)

Once the system is discretized, the iterative equation is expressed by Eq. 8.6

V (x, t) = min
φa∈Φa

{L (x, φa, t) ∆t+ V [x+ f(x, φa, t)∆t, t+ ∆t]} (8.6)

where the costs are multiplied by ∆t in order for them to be invariant to the choice of a time

interval, since a final cost is present.

Eq. 8.6 implies that the minimum cost at a given (x, t) pair is found by minimizing, through the

choice of the most suitable control action, the sum of the cost over the next time interval ∆t and the

minimum cost needed to go to tf once in the next state x+f (x, φa, t) ∆t. The iterative functional

equation can then be solved backwards in time since V (x, t) depends on future minimum values of

the cost function. The starting condition (initialization) of the algorithm is given by Eq. 8.7

V (x, tf ) = φ (x, tf ) (8.7)

The set of admissible states and control actions is quantized in a finite number of elements. That

is, admissible states are xi (i = 1, 2, . . . , n) and admissible control actions are ui (i = 1, 2, . . . ,m).

In a similar manner, the infinite number of time instants such that t0 ≤ t ≥ tf is defined by

tk = t0 + k∆t (k = 0, 1, . . . ,K) so that K∆t = tf − t0.
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Eqs. 8.6 and 8.7 then become

V (x, k) = min
φa∈Φa

{L (x, φa, k) ∆t+ V [x+ f(x, φa, k)∆t, k + 1]} (8.8)

and

V (x,K) = φ[x, tf ] (8.9)

It can be shown [20] that, because V (x, k) is determined by exhaustively searching over all possible

(quantized) values of u at each (x, k), an absolute minimum is always found.

8.1 Dynamic Programming for autonomous PADS

Although a few applications of dynamic programming to parafoils are found in literature (see

[3] and [21]), they rely on some simplificative assumptions in order to reduce the impact of the

curse of dimensionality. Some examples limit the space assuming that the PADS will follow a

trajectory that lies on a plane, while others rely on the concept of feasible arcs, which restrict the

set of possible ”landing” points onto the next layer to an arc. This, however, does not necessarily

take into account the possibly strong wind gusts that may be present on Titan. Most approaches

also simplify the problem by assuming a constant descent speed ż. In fact, if the two equations

describing the evolution of x and y are divided by the one describing the evolution of z, it is possible

to exclude the time variable from the model and recover it after the computation is completed:

xh′ =
dx

dh
= −dx

dz
, yh′ =

dy

dh
= −dy

dz
=⇒

 xh′
yh′

 =
−Vh

Vv + wz

 cos (χa)

sin (χa)

− 1

Vv + wz

 wx

wy


(8.10)

In the present approach, the nonlinear equations of motion are used to propagate the dynamics,

assuming a varying speed over time along z and without restricting the searchable space. The

approach is computationally intensive but the very nature of dynamic programming makes it a so-

called embarassingly parallel problem, for which massive parallel computation can lead to enormous

savings in computational time. Massive parallelization is adopted in many fields and, in particular,

it has been analyzed for other PADS terminal guidance techniques([22]). Furthermore, a successive

grid refinement is presented to divide the problem solution in two parts:

1. First, a wider grid can solved offline (i.e. during the homing phase) before reaching the
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proximity of the landing site

2. After the entry point in the hypercube is known more precisely, a nominal optimal solution

can be extracted and a more accurate grid can be solved only around this trajectory

The second step also allows to obtain better disturbance-rejection by ensuring a more frequent

control action update, and can be recomputed online if needed, provided sufficient computational

power is available on-board. Furthermore, the extension of the smaller grid is dictated by the

amount of expected disturbances, so it can be physically correlated to the problem.

As mentioned above, the implementation relies on a three-DOF representation of the parafoil. The

state is then represented by x = [x, y, z, Va, γa, χa]T so, theoretically, it is necessary to discretize

the state space along six directions, plus the time discretization which leads to seven grid variables.

In reality however, assuming steady-state conditions, γa can be considered constant and Va only

depends on the altitude z. Given the flight path angle γ it is then possible to compute the horizontal

and vertical components of the velocity Vh and Vv through simple trigonometric projections.

This reduces the discretization to only [x, y, z, χa] and time, which can be excluded by assuming

a constant control action between two sufficiently close layers. The discretization then is only to

be performed in four direction, which can be envisioned as a 3D grid in which every point can be

approached from multiple directions. This also implies that k = {0, 1, . . . ,K} indicates the layer

number here, instead of the time interval.

Different combinations of grid discretizations have been tested and, in the end, layers along z

have been placed at a distance of 20 m from each other, x and y have been discretized with an

equal spacing of 50 m between successive points and, finally, χa has been discretized with π/6

intervals. The control action, on the other hand, remains the banking angle φa (given that the

considered model only has three-DOF) and must be discretized as well (in this case assuming 5

deg increments).

8.2 Computational requirements

During the computation process, V (x, k) must be computed for every quantized state x ∈X. The

number of grid points is

Nh =

n∏
i=1

Ni = K ·Nx ·Ny ·Nχa (8.11)
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where Ni is the number of values in which the i-th state variable is quantized.

Assuming a 1000 m descent with 3000 m allowable space both along x and y, and assuming the

discretization presented above the total number of points in every layer is

Nlayer =

(
2π

π/6
+ 1

)[
ceil

(
3000

50

)
+ 1

]2

(8.12)

which gives almost 50000 nodes. Accounting for every possible layer leads to more than two and

a half million grid points. Although it is possible to reduce the number of total operations with

a few considerations about symmetry (which will be presented later), it is clear that a Dynamic

Programming approach can only be used to control the last portion of a terminal descent if the

problem has to be solved during the homing phase. If solved offline, a greater workspace may be

allowable depending on the available resources, keeping into account the fact that due to the curse

of dimensionality the problem does not scale well. Nonetheless dynamic programming has the

huge advantage that, for every possible position in the grid, the optimal feedback control action is

available.

8.3 Algorithm

A schematization of the implemented algorithm is shown in 8.2. Note that it is necessary to perform

an interpolation after every transition since, in general, the parafoil will not belong exactly to a

node of the successive layer after moving from one layer to the next. Being the chosen discretization

fairly dense, it was chosen to adopt a linear interpolation. If the discretization was more rough,

however, higher-order interpolation techniques can be used (see [20]).

If a dynamic system is affine and written in a discrete form, it is usually convenient to compute the

control action that allows to reach to optimal successive state at every point in time. Even though

as presented in Section 3.6 the system dynamics can be rewritten in the affine form shown in Eq.

8.13, the control action u = φa won’t be obtained directly to solve the dynamic programming

problem.

ẋ = f(x) + g(x)u (8.13)

Being the parafoil underactuated, in fact, it is not allowed to reach any given combination of x,

y and χ onto the next layer grid, but only a certain combination of points which, in general, will

not be part of the grid. This means that an approach such as the one presented in [20] should be
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Initialize

L( ,K)xi

Layer k = K − 1

State i = 1

Control m = 1

Next state   x = + f (x,u,k)Δtxcurr

Interpolation to find   I(x,k + 1)

 J( , ,k) = L( , ,k) + I( ,k + 1)xi um xi um xm

N

Y

?m = M  m = m+ 1

 over all
possible 

I( ,k) = min{J( , ,k)}xi xi um

m

,   obtainedû  m̂ 

?i = N

?k = 0

 i = i+ 1

 k = k − 1

End

Figure 8.2: Iterative procedure for solving the dynamic programming.

followed, where every possible control action is applied in every point of the grid, and the optimal

action is the one that minimizes the sum of the value function associated to the next ”landing”

point and the running cost. This algorithm is still far more efficient than a brute force approach

([20]) since the usual iteration of dynamic programming can be exploited.
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8.4 Choice of the final weights

Since the last layer must be solved to start with, the first choice to be made is that of a suitable

cost function for the landing condition at z = 0. The cost function is Jf = 0.5xTPx as usual and,

since the interest is not only to land in (x, y) = (0, 0) but also to do so while moving upwind, the

cost function must include the final heading angle as well. Fig. 8.3 shows how the difference is

reflected in the final cost. Each point on the grid represents one of the possible landing points and,

for each of them, eight possible heading angles are displayed (represented by the arrows) so that

the color of an arrow represents the normalized cost associated with landing in a specific position

with a given angle. Note that the χ was discretized at 45◦ intervals for representation purposes but,

in the final script, is implemented with a 20◦ step. In particular, Fig. 8.3a represents a condition

invariant to the final heading (see Eq. 8.14), while 8.3b takes into account the final direction of

the parafoil (see Eq. 8.15).

Jf(1) = 0.5
{
Px [(xf − xf,des)/xmax]

2
+ Py [(yf − yf,des)/ymax]

2
}

(8.14)

Jf(2) = Jf(1) + Pχ [(χf − χf,des)/χmax]
2

(8.15)
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(a) Cost function invariant to χf .
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(b) Cost function taking χf into account.

Figure 8.3: Different cost functions for the final layer.

Using the above cost function, however, tends to completely ignore the effect of χf , provided the

impact point is far enough from the intended one. Off-diagonal terms come to help in this case
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since they allow to weight a combination of the states, so that a wrong final heading will weight

more and more when moving away from the origin, as shown in Fig. 8.4. In Fig. ?? the effect of

(xf − xf,des) is not visible, while in Fig. ?? it is exaggerated on purpose.
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(a) No off-diagonal terms in the P matrix.
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(b) Cost coupling between miss distance and heading
error.

Figure 8.4: Effect of P extra-diagonal terms.

Once the final condition weights have been tuned correctly, it is possible to proceed building the

next layers as shown in Fig. 8.5.
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Figure 8.5: First two layers of the dynamic programming solution (workspace reduced for repre-
sentation).
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8.5 Parallelization

Given a generic layer, the computations to be performed in every point belonging to the layer

itself only depend upon the cost-to-go associated to the next layer. The problem is then highly

parallelizable and different portions of the same layer can be solve simultaneously by means of

multiple threads/processes. This concept, synthetically shown in Fig. 8.6, was implemented and

lead to substantial speed improvements (approximately fivefold) when the grid was split in eight

different parts. Processors with a higher number of cores or that allow for a higher number of

threads (including GPUs) would likely reduce this time much more.

Process 1

Process 2

Process 3

Figure 8.6: Dynamic programming grid discretization for parallel processing.

8.6 Grid refinement

In the implemented algorithm, once a ”rough” trajectory is obtained, the grid is refined around it.

This allows multiple advantages:

• By increasing the number of layers, a more frequent feedback action is obtained

• Increasing the discretization along x, y, χa and φa allows to reduce the interpolation errors

and obtain a more accurate feedback

• The new grids are centered around the first trajectory, meaning that their span can be

regulated according to the expected wind drifts (i.e. based on the standard deviation)

• If waypoints are chosen around the first trajectory, it is possible to compute the solution

online by iteratively addressing only the upcoming descent portion

110



8.7 Results

• For more complex approaches, multiple iterations could be used to bring to greater grid

refinements

Figs. 8.7 and 8.8 visualize the concept presented above. Fig. 8.7 shows three generic layers

belonging to the original grid (used during the first iteration). Three points P1, P2 and P3 represent

the intersection of the recovered trajectory with each of these layers. Fig. 8.8 shows the update

refined grid: in particular, the red grids are built on the original layers, while the blue ones are

added during the first iteration in an arbitrary number of intermediate layers.

k− 1

k− 2

kP1

P2

P3

Figure 8.7: Dynamic programming grid during first iteration.

8.7 Results

A 1600 m wide, 2000 m long and 700 m high grid was solved. Discretization is as follows: 40 m

spacing along Northing and Easting direction, 20 m spacing along z and 20◦ intervals along χ. The

final solution is shown in Fig. 8.9 which represents the normalized cost-to-go associated with every

point of the grid. The solution is symmetric as expected due to the symmetry of the parafoil and

cost. This property allows to only solve half of the grid (namely, either the left or right part along

the Northing axis) as also presented in [3], which allows to save millions of operations.

Fig. 8.10 shows how the grid gets locally refined after the initial conditions are fixed, by reducing

the spacing along x, y and z to only 10 m and assuring a more accurate interpolation procedure.

The obtained grid forms an envelope around the nominal trajectory, with the dimensions of the

111



8. DYNAMIC PROGRAMMING

k

k− 1

k− 2

k− 3

k− 4

Figure 8.8: Refined dynamic programming grid.

Figure 8.9: Dynamic programming – full grid generation (normalized cost of being in a specific
position).
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enveloped representing the maximum expected drift. Notice that, even in case the PADS was

falling out of the finer grid, the original grid could still be used to recover a new trajectory.

Figure 8.10: Dynamic programming – refined grid.

Finally, an example of recovered trajectory is shown in Fig. 8.11.

Figure 8.11: Dynamic programming – recovered trajectory.
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Chapter 9

Conclusions and future work

An accurate six degrees of freedom model of a Precision Aerial Delivery System (PADS) for landing

on Titan was presented, along with a reduced-order model. Its stability and controllability prop-

erties were investigated and the full system was implemented using DSENDSEdu, which allowed

to simulate the real behavior with high fidelity and a lower-than-usual computational cost.

The overall approach of accurately landing on Titan using a parafoil is promising and certainly

suitable for similar missions. The gliding range, provided a release altitude of 40 km, allows to

reach areas about 80 km away from the deployment zone with good accuracy. The importance of

landing upwind while performing a flare maneuver to reduce the ground speed was also highlighted:

failure in doing so, in fact, could lead to impact speeds in the order of 5 m/s horizontally and 4

m/s vertically.

An initial turn-to-target maneuver to begin the homing phase was presented, followed by terminal

descent-specific Guidance & Control techniques. It ways shown that, as expected, wind plays an

important role on the final landing accuracy, but its effect can be compensated. Even the most

basic implemented guidance architecture (namely, the heuristic T-approach) allowed to consistently

hit a 450 m landing zone around the Intended Point of Impact during the simulations.

More advanced techniques were then presented, starting from the computation of optimal descent

trajectories (whose cost function can be adapted as needed). While the computational requirements

needed to solve the Euler-Lagrange problem are relatively high, there would be almost an hour

available during the homing phase to produce a suitable bank of optimal trajectories. Nonetheless,

a reduced three-DOF model was implemented as well, which leads to faster convergence.
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A Linear-Quadratic Regulator (LQR) was presented to follow the obtained optimal trajectories

(provided they were computed solving the six-DOF model) or perhaps any kind of trajectory

for which the complete state/control history is available. The presented LQR is able to perform

path-following correctly by constantly computing the neighboring-optimal feedback action.

Two other techniques were then presented for cases where only x-y-z coordinates of the waypoints

are available (or perhaps it is decided not to use the LQR): a proportional controller which con-

stantly compensates the drift effects and a Model Predictive Controller. While the proportional

controller is able to follow the nominal trajectory correctly, it is prone to overshooting waypoints

and compensating this effect leads to the new problem of having to heuristically decide the radii

needed for the clearance and miss conditions. The MPC, while more requiring from a computa-

tional point of view, is much more robust to overshooting and allows to smoothly follow a given

trajectory. It also allows to include any constraint relative to the state and/or the control actions.

A Dynamic Programming approach was also investigated for terminal descent. While its compu-

tational cost is extremely high even with a reduced three-DOF model, results were promising. A

DP approach would allow to have a feedback available no matter where wind blows the system.

Nonetheless, multiple aspects of the project still need to be investigated:

• State estimation must be included in the simulation once the on-board instrumentation is

known (IMUs, gyroscopes, Pitot tubes, etc.)

• Wind estimation and/or more accurate wind models should be included as well, since it plays

a crucial role on the final landing accuracy

• Some examples are available (mainly for Mars, like [23]) that show how a feedback action

can be promptly obtained by using deep-learning based techniques for research purposes.

Training requires a tremendous amount of data, but results come close to achieving pinpoint

accuracy for landers.

• Once a final canopy design is selected, Computational Fluid Dynamics (CFD) studies should

be performed on the inflated canopy to compute aerodynamic coefficients more precisely,

along with the stability derivatives

• The behavior of the canopy during the initial inflation should be analyzed

• Drop tests need to be performed to obtain the parameters needed to implement more accurate

nine-DOF (payload attitude) or seven-DOF (payload yawing) models. The extension to this
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kind of models should be fairly straightforward starting from what has been implemented in

DSENDSEdu.

• The most computationally-intensive parts of the implemented code should be implemented

in C/C++ to improve code speed and, t a more advanced stage, the whole code should be

rewritten in a lower-level language to investigate real-time implementation.
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