
A Recon�gurable Testbed Environment for Spacecraft Autonomy

Je�rey Biesiadecki Abhinandan Jain
Jet Propulsion Laboratory/California Institute of Technology
4800 Oak Grove Drive M/S 198-326, Pasadena, CA 91109 USA

Abstract

A key goal of NASA's New Millennium Program (NMP) is the development of technology

for increasing spacecraft on-board autonomy. Achievement of this objective requires the development

of a new class of ground-based autonomy testbeds that can enable the low-cost and rapid design, test

and integration of the spacecraft autonomy
ight software.

This paper describes the development of an Autonomy Testbed Environment (ATBE) for the

NMP Deep Space I comet/asteroid rendezvous mission. This simulation testbed has been designed

to enable rapid design of
ight modules, early identi�cation of performance and design problems,

resolution of integration issues, and thorough ground testing for reducing mission-risk. ATBE's

simulation requirements span a wide range of engineering platforms, functional and �delity mod-

els, failure modes, test scenarios, and durations. The
ight software modules under development

include attitude control subsystem, remote agent, autonomous navigation, and
ight systems con-

trol. Conventionally, such testbed functionality has been met by the expensive and time-consuming

development of multiple specialized testbeds. In contrast, the ATBE testbed has been designed to

be recon�gurable for multiple user development and test needs. The ATBE software will also be

integrated with the support equipment for hardware-in-the-loop tests and system level integration.

The ATBE spacecraft simulator includes a high �delity real-time dynamics simulation pack-

age integrated with simulation models for several of the hardware devices and interfaces on the

spacecraft. The testbed incorporates existing in-house and third-party software, integrated within an

object-oriented architecture. This design enables easier maintainability and usability, and perhaps

most signi�cantly this
exible design is geared to handle continual evolution in model requirements,

functionality and �delity. The simulation interfaces are highly con�gurable to allow swapping in

and out of hardware as needed. The testbed has been instrumented from the start to provide a high

degree of visibility into the simulation status with capabilities to peek/poke/checkpoint/resume model

states, and includes some graphical user interfaces as well.

1 Introduction

A key goal of the New Millennium Program (NMP) is the development of technology for increasing

spacecraft on-board autonomy [1]. Achievement of this objective will require the development of a

new class of ground-based autonomy testbeds that can enable the low-cost and rapid design, test

and integration of the radically new autonomous system
ight software. This paper describes the

the development of such a new class of ground-based autonomy testbed { the Autonomy Testbed

Environment (ATBE) { that can enable the low-cost and rapid design, test and integration of

1

autonomy spacecraft
ight software. This ATBE architecture is being designed to accommodate

the large variety of autonomy
ight software functions that need to be tested and validated before

ight. In particular, the architecture enables: rapid design of
ight modules, early identi�cation of

performance and design problems, resolution of integration issues, and thorough ground testing for

reducing mission-risk. The design and implementation of ATBE is being carried out for the New

Millennium Deep Space I mission [2].

ATBE's simulation requirements span a wide range of engineering platforms, hardware and

environmental models, failure injection capability, test scenarios etc. Traditionally such a range of

testbed functionality has been met by the expensive and time-consuming development of multiple

specialized testbeds. In contrast, the ATBE testbed is being designed to be recon�gurable to meet

these multiple user development and test needs including:

� use of the testbed by all of the various autonomy
ight software sub-systems for code devel-

opment and veri�cation.

� di�erent interfaces and �delity levels to support the variety of testing requirements.

� use of the testbed across desktop workstations to real-time hardware-in-the-loop environments

for
ight software testing.

� easy evolution and maintenance of the simulation functionality to accommodate the continual

change in model requirements, functionality, �delity and interfaces.

An object-oriented simulation architecture has been designed to handle models ranging

from time-critical models such as spacecraft dynamics simulators, analytical models for hardware

devices, interfaces and electronics, and event-driven instrument simulators. The base model class

has been designed to provide a high degree of instrumentation and visibility into the internals of

the simulator. Moreover, the testbed supports the ability to turn on and o� models and easily

change the data
ow of the simulation variables. The structure of the model database is highly

modular to allow the easy change and replacement of selected parts of the simulator without global

impact on the overall simulator. Indeed this aspect of the architecture allows the easy switching

between software simulations of devices and real test hardware in the loop as needed. The ATBE

spacecraft simulator includes the Dshell high �delity real-time dynamics simulation package with

simulation models for several of the spacecraft hardware devices. The testbed incorporates several

tools which include in-house as well as commercial software.

This paper describes the goals, current status and future plans for the development of

ATBE for the New Millennium Deep Space I mission.

2 Architecture of the ATBE Spacecraft Simulator

Recon�gurability has been a key driving requirement for the design of the ATBE architecture.

Recon�gurability comes in several di�erent
avors driven by di�erent development and test needs.

Some of these drivers for the ATBE architecture are:

2

Concurrent engineering s/w development process: The
ight software development is fol-

lowing a concurrent engineering development process. The evolution of the ATBE needs to

at all times support
ight software development and test from the early to the more mature

phases. The build-a-little test-a-little strategy also requires the architecture to be
exible and

adaptable enough to support continual evolution of the simulation models and interfaces over

the development period.

Multiple platform development: The most mature testbed environment for system level and

ight software testing will include hardware in the loop components as well as realistic
ight-

like interfaces to ATBE. However this testbed will come on line only late in the software

development process, and its use will be primarily for system level testing. So ATBE is

being designed to run under di�erent platforms and environments ranging from Unix desktop

workstations to VxWorks/68040 real-time environments. Consequently, there are a large

number of con�gurations of ATBE available to meet the simulation needs of
ight software

developers. The choice of environment is up to the
ight software developer and is dictated

by the development and test needs of the day. Support and development of ATBE for the

multiple platforms will continue all the way until launch.

Multiple interfaces: The interfaces between ATBE and the
ight software for closed-loop testing

have been kept
exible to accommodate di�erent �delity levels. Thus the simplest interface for

the 1553 bus interface treats it as merely a transport layer and uses a high-level inter-process

communication mechanism to close the loop between the
ight software and the simulation.

Higher �delity versions of this interface provide more detailed software simulations of the 1553

behavior, as well as actual interfaces to commercial and
ight-like 1553 hardware. The ability

to select the appropriate level of �delity provides many options for
ight software developers

and enables signi�cantly larger amounts of concurrent testing.

Simpli�ed simulations: During the development process,
ight software subsystems such as the

attitude control system [3], autononous navigation [4], or the
ight system control, etc., do

not have a need for the full simulation capability. Indeed, there are de�nite advantages to

simplifying and tailoring the simulation environment to the needs of the speci�c subsystem. To

support this need, the ATBE architecture has been designed to support di�erent simulation

con�gurations and interfaces that are easily selectable at run-time. For instance, the attitude

control system developers prefer to carry out initial performance and design tests for the

run the closed-loop simulation while bypassing the 1553. The \with bus" or \bypassed bus"

simulations are run-time selectable in the ATBE architecture.

Visibility: The ability to peek, poke and monitor simulation variables in real-time is essential for

the test engineer. The simulation software has to be instrumented to support this type of

visibility. However, due to the vast number and types of simulation data, the choice of what

and when to monitor and change data is very much dependent on the test objectives. ATBE

provides a rich class of commands to peek, poke and monitor virtually every signi�cant

variable in the simulation software and the test engineer has the
exibility to tailor the

visibility functions as needed.

Software development: The rapid pace of the software development and the continual change

in the simulation models imposes signi�cant challenges on the software development and

con�guration management process. On the one hand, the
ight software engineers have to

be able to access di�erent versions of ATBE compatible with their development needs. On

the other hand, the ATBE software engineers internally need to be able to make changes to

3

2.1 Architecture Design

the di�erent pieces of ATBE without being e�ected by or e�ecting other developers' e�orts.

The size and build time for the software make this a non-trivial but critical housekeeping

task. The ATBE team has developed the YaM software development process (described in

Section 5) to address and solve this problem.

Another important aspect of the ATBE architecture is the high performance of the critical

real-time core of the simulator in addition to the several event-driven simulation models. Also, a

mini-environment compatible with the ATBE architecture has been developed to support the unit

development and test of simulation models. This mini-environment not only provides a convenient

way for model builders to develop and test the models, but also makes it easy to migrate the

modules into the ATBE environment for integration with the rest of the simulation.

The architecture design has at the outset emphasized a tools based approach. Given the

slow maturation rates of new software, it was highly desirable to inherit and use existing and mature

tools to form the bulwark of the ATBE architecture and focus the ATBE software development in

knitting together these tools and implementing new feature into a usable
ight software development

and test environment. The architecture is also being designed for reuse in missions that follow DS1.

2.1 Architecture Design

The DS1 spacecraft simulator models are roughly categorized as those belonging to the real-time

core and others that are event-driven non-real-time models in order to meet the critical real-time

performance requirements on the simulation software. Real-time models contain functions that are

executed every simulation heartbeat while event-driven models do most of their work in response

to events or commands.

Real-time models include a module for propagating the spacecraft dynamics state (Darts),

models for the various attitude control sensors and actuators (Dshellmodels), the interfaces to the

1553 bus, models for device electronics interfaces etc. Dshell is a spacecraft dynamics simulation

tool which includes a library of analytical models for actuator and sensor hardware devices typically

commanded by attitude control subsystem
ight software. These models have continuous states,

and are tied to the Darts dynamics compute engine. Dshell will be described in more detail in

Section 4.

The event-driven models get executed only occasionally and run as separate processes. The

di�erent processes in the simulator typically communicate via messages. An example of an event-

driven model is a scene generator which is used to simulate the on-board camera. This model does

its work in response to a \take picture" command from the
ight software and may take several

minutes to create an image.

The high-level categorization and decomposition of sub-systems into real-time, Dshell and

event-driven models is illustrated in Figure 1. The real-time models are implemented and inter-

connected using the third-party tool ControlShell, from Real-Time Innovations, Inc. ControlShell

provides a C++ base class for components, and allows for data-
ow between components. Each

component has an \execute" method, which is called each tick of the simulation. Components also

have inputs and outputs - each tick they set their outputs based on their inputs. The order in

4

2.1 Architecture Design

Thrust
model

 Fuel
depletion
 model

 Valve
assembly
& elect.

Electron. Star
 tracker

 Rate
sensor

Gimbal

Valves
Elect.

XFS

Gimbal

 Flex.

Attitude

Power
model

DARTS

SSR

Thermal

PDU

Battery

Telecomm. dev.

 SDST

Amplifiers

Ephemeris

 Vector serv.

Spice

MICAS Camera

Scene Gen.

Optics

1773 Bus

RCS

Star Tracker

IPS Engine

SCARLET
 panels

Dshell

S/W & H/W

Servo rate-group

GDS
Electron.

Rate sensor

Thrust
model

1553 Bus

DCIU

DSEU

PPU

PEPE

µ Elect.
 Expt.

PASM

PCMD

PCMA Telecomm. link

Up/Dn. link

Antenna

Figure 1: Simulation models categorization for New Millennium Deep Space 1 spacecraft

which the \execute" methods are called is, by default, determined from the dependencies implied

by the data-
ow. Graphical editors are used to de�ne component interfaces and stub code, as well

as to specify component inter-connections which are referred to as signals. A Tcl interface allows

components to be activated/deactivated at run time, signal data to be manipulated and monitored,

and a host of other useful interactions with the simulator.

A C++ device simulation class has been derived for all ATBE components, and includes

capabilities to monitor and manipulate state data internal to the model through a Tcl interface. To

register a state variable with the simulator, the model builder calls a function during initialization

giving a name, data type, pointer, and number of elements. For this project, built-in C data types

and arrays of these types are allowed for state variables, as well as integer enumerations. During

the simulation, the user can call the Tcl peek command to look at the value of a state variable,

and poke to change it. The syntax being:

peek modelName stateName

poke modelName stateName value

5

2.1 Architecture Design

reset_BusToPdu

unused

attpos_DsToMicas

cmds_PdeToDs

attomega_DsToStu

pow_PduToPde

pow_PduToStu

pow_PduToMicascmds_BusToPdu

reset_BusToPde

cmds_BusToPde

status_StuToBus

attomega_StuToBusreset_BusToStu

mode_ToDs

DynamicsSimulator

mod

rcs

sru

mic

Ds

PropDrvElectronics

pow

res

val

val

Pde

StarTrackerUnitElectronics

pow

res

att

sta

att

Stu

PwrDistrUnit

pow

res

pow

stu

pde

cam
Pdu

Figure 2: Example of simulator components viewed with ControlShell's Data Flow Editor

The simulation can be checkpointed, saving the values of all registered states as a series of poke

commands in a �le which can be sourced for a future run.

For components that correspond to actual devices on the spacecraft, we have a further

re�ned subclass. It has support for a power line, device resets, and failure states. From the model's

\execute" method, functions can be called to determine whether or not the device is receiving

power and whether or not a reset has occurred.

Failure states are implemented as a special kind of integer enumeration. All failure states

may be set to a built-in nominal value. The model builder de�nes the values for mutually-exclusive

failure modes. For example, a thruster might have a failure state which can be set to nominal,

stuckClosed, or stuckOpen. This allows the inclusion of models that can monitor conditions

and set failure states on its own. The manual injection of failures is carried out using the poke

command. Likewise, a model may be written to �x a failure (i.e., set to nominal) on its own, or

the user may correct it with poke. As a convenience, however, it is possible to de�ne options such

that the failures are automatically corrected when the corresponding device is power cycled, reset,

or a time-out occurs.

In addition to peek and poke commands, lists of all components and their states can

be obtained via the Tcl interface. This forms the basis for a GUI tool for injecting failures into

the simulation. At start up the fault-injection tool queries the simulator about the implemented

failure modes and dynamically generates panels and interfaces based upon the information. This

allows developers to add or change failure modes in their simulation models without having to be

concerned about making compatible changes to the fault-injection tool. Figure 3 shows the look

and feel of a typical stand-alone run of the ATBE software.

A mini-environment has been developed to aid in the development and unit testing of

simulation models outside the main ATBE simulation environment. The mini-environment allows

the model developers to compile and run their models in a stand-alone mode with interfaces similar

to those in the ATBE environment. Models are implemented by specifying initialization and tick

functions to implement its functionality. When the model is to be added to the actual simulator,

a ControlShell component for it is created and input/output lines to other components are added.

The methods in the ControlShell component only need to call the initialization and tick methods of

the model. The mini simulation environment is implemented as a library for the model developer.

This environment has the same peek and poke commands, which also work for model inputs and

6

2.1 Architecture Design

F
ig
u
re
3
:
D
S
1
si
m
u
la
to
r
a
n
d
a
ss
o
rt
ed
to
o
ls

7

outputs. Additionally, simulation time can be advanced, power to the device turned on and o�,

the device can be reset, etc. Thus, the developer can poke values for model inputs, advance a

step, peek at model outputs, run Tcl scripts to enable unit testing. While these capabilities are

available in the full-up simulator, the mini environment has the advantages that it involves less

code, is self-contained, and is faster and easier to run.

3 Simulation Models in the ATBE Simulator

The following is a brief summary of the various models in the DS1 simulator as shown in �gure 1,

and their functionality. Models for the fuel usage, power load, heaters, etc., are included in the

device simulations as appropriate. Failure modes are also built into the models.

RCS: Models for thrusters, the latch assembly, the propulsion drive electronics (PDE), fuel tank

pressure/
ow-rate/consumption etc.

Rate sensor: A rate sensor model with bandwidth, drift and noise characteristics, and the A/D

and electronics interface.

Star tracker: A star tracker model with sky coverage model, and electronic interface.

Sun sensor: A sun sensor model with the number of heads, their characteristics, modes, and

electronics interface.

SEP gimbal: Amodel for the SEP gimbal actuator and encoder including its electronics interfaces.

SEP engine: An analytical model for thrust,
ow rate, pressure, etc. for the SEP engine and its

control unit.

Scarlet gimbals: A model for each of the Scarlet panel gimbal actuators and encoders including

their electronics interface.

Scarlet solar panel power: An analytical model for the power generated as a function of space-

craft attitude and panel articulation.

Scarlet dynamics: A structural dynamics model for the Scarlet solar panel
exibility with val-

ues for the assumed modes, the vibrational frequencies and the damping ratios; the current

structural dynamics modeling estimate is 5 modes/panel.

Spacecraft dynamics model: This model will de�ne the kinematics and multibody dynamics

model for the spacecraft including inertias, modes, hardware locations, etc.

On-board battery: Model for charge/discharge behavior of the on-board battery including an

electronics interface for controlling its charging/discharging mode.

PDU, PASM: Models for the power switching logic and interfaces.

SSR: Solid state recorder model with de�nition of interfaces and data transfer mechanism.

Micas camera: A scene generator for generating image data as needed for autonomous navigation

and science experiments.

8

Science instrument: Simulation models of the science instruments.

Vector server: A real-time module to supply earth/sun/asteroid vectors.

1553/1773 bus: A model for the bus operation.

Telecomm.: A model for the SDST transponder, power ampli�ers, wave guides and switches etc.

Up/down link: Model channel integrity as a function of antenna earth-pointing angle.

4 Dshell Spacecraft Dynamics Simulator

Darts Shell (Dshell) is a multi-mission spacecraft simulator for development, test and veri�ca-

tion of
ight software and hardware. Dshell is portable from desktop workstations to real-time,

hardware-in-the-loop simulation environments. Dshell (Figure 4) integrates the Darts S/C
ex-

ible multibody dynamics computational engine and a library of hardware models (for actuators,

sensors and motors) into a simulation environment that can be easily con�gured and interfaced

with
ight software and hardware for various real-time and non real-time S/C simulation needs.

The main goals of the Dshell environment are: to signi�cantly reduce the software development

Actuators Sensors

DARTS

DARTS Shell (Dshell)

 Flight Software

Flight computer
 and software

Trajectory data
 (Spice, IVP)

Environment
 (gravity etc.)

 Instruments
(cameras etc.)

 Hardware
(drive elec.)

Support Equipment

Console
 Monitors

Data

 Injection
Fault

Simulation and Test Control

DARTS dynamics compute engine
Reusable library of hdw models
Well defined API for Dshell & models
Portable from CAE to real-time env
Used throughout mission life-cycle

Figure 4: Dshell architecture with Darts and device models

required to interface dynamics simulators, actuator and sensor hardware models and hardware-in-

the-loop devices; to eliminate the need for separate interface development e�orts across the various

9

(analysis, software and real-time) testbeds within a project, and allow easy migration of models

between testbeds; to allow the easy support of a variety of S/C con�gurations and models and sim-

ulation environments for all the phases of the mission; to permit the easy reuse and customization

of hardware models across various missions.

The Darts dynamics compute engine [5] implements a fast and e�cient spatial algebra

recursive algorithm [6, 7] for solving the dynamics of multi-body tree-topology,
exible spacecraft

systems. Actuators are models that can impart a force on a body, such as a thruster. Sensors

provide data, such as a star tracker or gyroscope. Motors are used to articulate bodies which are

joined by various kinds of hinges (such as a pin, U-joint, gimbal, and others).

Dshell's library of reusable hardware models includes sensor and actuator devices such as

gyroscopes, thrusters, star-scanners, etc., with standardized D-function interfaces to Darts and

the external simulation environment. The plug and play simulation can be easily con�gured and

interfaced to
ight software for algorithm development, as well as for test and integration. The

object-oriented model library includes extensive instrumentation for giving a user the high visibility

into the simulation necessary for e�ective use as a design, development and test tool. Dshell is

in use by several of NASA's inter-planetary deep space missions including Galileo, Cassini, Mars

Path�nder and New Millennium Deep Space I.

Data for Dshell models consists of parameters, discrete states, continuous states, com-

mands, and outputs. Parameters are values that are set while reading a con�guration script upon

startup, but are not changeable by the model itself. Discrete states are initialized at startup, and

may be modi�ed by the model and the user during run time (like the states described in the Con-

trolShell models described from the previous section). The text interface allows general nested data

structures as data types. Continuous states are updated by the numerical integrator in Darts,

which requires the model builder to provide a method for computing the derivatives of these states.

Commands are time tagged data structures sent by
ight software, and outputs are time tagged

data structures sent to
ight software. There are various methods available for a Dshell model to

de�ne its functional interface. The most important of these methods are those updating discrete

states and for calculating derivatives of continuous states.

ADshellmodel �le is read at run-time, and speci�es the bodies that make up the spacecraft

as well as their masses and the types of hinges that join them together. Then, actuators and sensors

are speci�ed, with the bodies they are on and their locations on those bodies. Con�guration changes

can be made by editing start up �les like this one, without recompiling any code. Dshell also has

a Tcl interface, which can be used to get information about the simulation and the models therein.

5 The YaM Con�guration Management tool

ATBE source code control is carried out using CVS which is a third party tool based on RCS.

It allows entire directories to be recursively checked in and out from a central \repository", and

permits multiple developers to work on the same code simultaneously. It also has facilities for

making new branches of the source tree, and merging these branches back onto the main trunk.

The ATBE subsystem is composed of several tools, both libraries and executables, each

10

of which are referred to as a module. The size and build time for the source code makes it

inconvenient for each developer to check out his/her own copy of the entire ATBE subsystem

software. Considering that a typical developer generally works on only one or two modules at

a time, a more
exible way to develop and use the ATBE software has been developed. This

con�guration management system collectively referred to as Yet Another Make (YaM) system

consists of a layer of Perl scripts on top of CVS. The objective is to allow developers to choose

which ATBE modules they wish to checkout for development purposes and which ones they simply

need available. T A versions area maintains released versions of each module in the directory

structure shown in Figure 5 so that developers have all module versions available for checkout or

linking.

/some/path/Versions

libSimDview Dshell ds1-sc

Each program or library
in ATBE has a directory
under Versions

Multiple compiled versions
of each program are kept
for developers to link against

sparc-sunos5 m68k-vxworks

Each compiled version has
Makefile.atbe which has a
target for making links to
executables and include files
as necessary. Executables
for each version are compiled
for all target platforms

Makefile.atbe

sparc-sunos4

source
code

ds1-sc-R1-05 ds1-sc-R1-06 ds1-sc-R1-07

Figure 5: Multiple compiled versions of each program are maintained

When a developer wants to make changes to the code of one or more modules, he/she must

�rst run a \setup" script. This script will create an ATBE root directory for the developer, as

shown in �gure 6. The developer then speci�es which modules are to be actually checked out from

CVS (known as work modules) and which are to be symbolically linked to a pre-compiled version

(known as link modules). This information is kept in a con�guration �le that allows the developer

to tell at a glance which modules they have checked out, and which versions of link modules they

are using. The developer's $PATH environment variable and Make�les are kept clean because links

to all ATBE executables exist in a single bin directory, and links to all ATBE header �les and

libraries are kept in single include and lib directories. Multiple copies of each module are kept

around so developers get new versions of link modules only when they are ready.

Each module has aMake�le.atbe �le which has amklinks target that will make symbolic

links to the binaries and header �les for the module. The Make�le.atbe �le de�nes a clean

interface between theYaM build procedure and the module, allowing the easy addition of externally

developed programs and libraries group as ATBE modules. The creation of a Make�le.atbe for

the module is all that is required to plug into the YaM build process and no modi�cations of the

code or the modules' Make�les are required.

A Release directory contains an ATBE ROOT directory for each release of the entire subsys-

tem. All modules in these releases are speci�ed as link modules, and make it clear which versions

11

/user/directory

atbe-userName

ATBE.config binetc libincludeMakefile

sparc-sunos4 sparc-sunos5 m68k-vxworksds1-sc

Developers can work in
any directory they want

An ATBE_ROOT directory
is created with subdirectories
and an ATBE.config file

ATBE.config indicates which
modules are checked out
work modules and which are
symbolically linked link modules
to the Versions directory

Directories and sub-directories of bin , include , lib , and
etc contain only symbolic links, either to executables/files
in Versions or to checked out work modules under src

Makefile.atbe source code sparc-sunos4

src

Source code for each work module, such as ds1-sc in this example, is
checked out from CVS into its own subdirectory of src . The developer modifies
and compiles the code as necessary. Makefile.atbe is used here as well, to
make symbolic links from bin and other root subdirectories.

Figure 6: Developers can select which modules they want their own copies of

of the modules work together. This also provides a place to go to simply run a version of the

subsystem. CVS tags are used to tag source code when new versions of a module come out and

when releases are made, so releases are tracked by CVS as well.

6 Other Tools

In addition to the third party tools already mentioned, ControlShell, Tcl/Tk, and CVS/RCS, there

are several other tools used in the simulator and testbed environment. A brief description of these

tools is given below.

Console: The Console is an ATBE program for launching, running, monitoring, and gracefully

shutting down multiple processes. For example, it can start up a version of ACS
ight soft-

ware, 1553 bus manager
ight software, and the ATBE simulator. It provides a Tcl command

line, and can send Tcl commands to any one of these processes, or to all processes. It pro-

vides a support library for the receiving processes (like ACS) to handle Tcl commands and

send back results. The console also has provisions for a clock, which drives all processes. So

all processes can be started or stopped at the same time, and take time steps of the same

size (simulation time) and frequency (wall clock time). The console is highly con�gurable,

so the user can specify which subsystems and tools they wish to use in a startup script, so

no code needs to be re-compiled. Additionally, it can distribute these processes to multiple

hosts/platforms by using rsh, and display windows and GUIs on multiple monitors. Commu-

nication between the console and the processes may take place using a number of di�erent

protocols.

Dview: Dview is a 3D spacecraft renderer developed for use with Dshell. It can run on several

di�erent platforms including Silicon Graphics and Sun (using the public domain graphics

12

library MESA). Dview reads an input �le similar to the Dshell model �le, which speci�es

the same bodies that make up the spacecraft. Additionally, it knows about the geometry

and color to render these bodies in. So the same program can be, and is, used for di�erent

spacecraft without changing any code. During run time, Dshell sends messages to Dview

indicating the position and attitude of the spacecraft. Messages that articulate bodies on the

spacecraft may also be sent, as well as \thruster-�red" messages which display a plume from

the speci�ed thruster. As with the console, a number of di�erent communications protocols

are available. On Silicon Graphics machines, there are options for doing fancier rendering

with lighting and texture maps.

libState: The text interface to state data used by Tcl commands inDshell and the DS1 simulator

is implemented using a library known as libState. This library de�nes C++ template classes

which keep track of a reference to a user variable and a text interface to that variable. This

allows a C/C++ program to access its variables as usual, while still having simple text \peek"

and (optional) \poke" access to the data through standard text string get/set methods of the

libState base class. A single data type may have more than one kind of interface available

for it. For example, an integer may have both a numeric interface as well as an enumerated

keyword/value interface. Or, a double may have a standard interface, and one in which some

kind of units are expected as well, automatically converting the number into internal units

for computation. Since C++ templates are used, everything is done in a completely type-safe

manner. New interfaces may be added to existing or new data types by de�ning parse and

print methods. However, special support for possibly nested data structures and both �xed

and variable length arrays is provided for convenience. Data structures can implemented as

a compound group of sub-states, allowing access to either individual �elds of the structure

or the entire structure at once, without the need for specialized parse/print methods. Arrays

also allow access to either individual elements or the entire array. Future work may involve

adding an automatic XDR interface, so rpcgen and special code are not needed to save these

variables in a binary �le or to send them over a network in binary. libState works on both

Unix and VxWorks operating systems.

Stethoscope: Stethoscope is a real-time plotting tool from Real-Time Innovations, Inc. It can plot

variables from VxWorks tasks as well as Unix processes. Variables and ControlShell signals

can be \installed" to Stethoscope at run time, and multiple Stethoscopes can be run on the

same target at the same time without interference. On VxWorks, stethoscope can look at

the global memory directly so while running, a task does not have to tell Stethoscope about

updates to variables. Stethoscope runs as a low-priority task to minimize impact to other

tasks.

NDDS: Network Data Delivery Service (NDDS) is a fast, reliable, message passing tool also from

Real-Time Innovations, Inc., with a very general API. It runs on both VxWorks and Unix

platforms and can pass messages between processes running on di�erent hosts. Each host

runs an NDDS daemon giving it a domain number and list of \peer" hosts. By having

domain numbers, multipleNDDS daemons may run on the same hosts simultaneously without

interfering with each other. Programs register themselves as \producers" and/or \consumers"

of messages. The same program can both produce and consume multiple kinds of messages,

and there may be multiple consumers of the same message. Consumers may be either \polled"

or \immediate". Polled consumers execute a callback for an incoming message only when

a poll function is called (so the program has control over when the message is handled).

Immediate consumers execute their callback as soon as a message arrives and no poll function

13

is needed. There are many other options for dealing with real-time issues available as well.

Data is passed using an XDR-like mechanism, and new message data types can be added

using an rpcgen-like program.

IPC: IPC is the messaging system [8] used by DS1
ight software to pass messages between its

own tasks, and has capabilities similar to those of NDDS. ATBE accepts IPC messages for

data from a 1553 bus model.

7 Conclusion

An adaptable spacecraft simulation testbed is essential for the design, development, testing and

integration of autonomy
ight software and hardware. The testbed needs to support the develop-

ment and test simulations which span a wide range of engineering platforms; functional and �delity

models; test scenarios; and durations. This paper describes the recon�gurable ATBE simulation

environment which supports the end-to-end development, integration and test needs for the au-

tonomy
ight software for the New Millennium Deep Space I project. A signi�cant fraction of the

e�ort to date has been spent on the design of ATBE's architecture so that it is
exible and adapt-

able to meet the needs of the autonomy
ight software development. During the coming weeks the

ATBE e�ort will transition to support the large in
ux of new models into the spacecraft simulation

environment, and support the development and implementation of real-time hardware-in-the-loop

simulations.

8 Acknowledgements

The research described in this paper was performed at the Jet Propulsion Laboratory, California

Institute of Technology, under contract with the National Aeronautics and Space Administration.

References

[1] L. Fesq, A. Aljabri, C. Anderson, R. Connerton, R. Doyle, M. Ho�man, and G. Man, \Spacecraft

Autonomy in the New Millennium," in 19th Annual AAS Guidance and Control Conference,

(Breckenridge, CO), Feb. 1996. Paper AAS-96-001.

[2] M. Rayman and D. Lehman, \NASA's First New MillenniumDeep-Space Technology Validation

Flight," in Second IAA International Conference on Low-Cost Planetary Missions, (Laurel,

MD), Apr. 1996. Paper IAA-1-0302.

[3] S. Lisman, D. Chang, and F. Hadaegh, \Autonomous Guidance and Control for the New Mil-

lennium DS-1 Spacecraft," in AIAA Guidance, Navigation and Control Conference, (San Diego,

CA), June 1996. Paper 96-3817.

[4] E. Riedel, S. Bhaskaran, S. S., W. Mollman, and G. Null, \An Autonomous Optical Navigation

and Control System for Interplanetary Missions," in Second IAA International Conference on

Low-Cost Planetary Missions, (Laurel, MD), Apr. 1996. Paper IAA-L-0506.

14

REFERENCES

[5] A. Jain and G. Man, \Real{Time Simulation of the Cassini Spacecraft Using DARTS: Func-

tional Capabilities and the Spatial Algebra Algorithm," in 5th Annual Conference on Aerospace

Computational Control, Aug. 1992.

[6] G. Rodriguez, K. Kreutz-Delgado, and A. Jain, \A Spatial Operator Algebra for Manipulator

Modeling and Control," The International Journal of Robotics Research, vol. 10, pp. 371{381,

Aug. 1991.

[7] A. Jain, \Uni�ed Formulation of Dynamics for Serial Rigid Multibody Systems," Journal of

Guidance, Control and Dynamics, vol. 14, pp. 531{542, May{June 1991.

[8] R. Simmons, \Structured Control for Autonomous Robots," IEEE Transactions on Robotics

and Automation, Feb. 1994.

15

