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Abstract 
 

This paper assesses the use of variable altitude light gas balloons for the robotic exploration 
of Venus and Titan. Helium is the buoyancy gas chosen for this study. Inspired by recent 
terrestrial examples, we consider three different types of helium-filled balloons that control their 
altitude over a specified range, each with a different modulation technique. These techniques are: 
pumping helium between a non-pressurized “zero-pressure” balloon and a pressurized reservoir 
to adjust buoyancy; pumping air into a pressurized reservoir to adjust weight; and changing the 
volume of the helium balloon through direct mechanical compression to adjust buoyancy. 
Theoretical derivations are presented for the limiting case of equal balloon and atmospheric gas 
temperatures that show two linear scaling relationships depending on the balloon option. The 
reservoir pressure linearly scales with atmospheric temperature for the pumped helium and 
pumped air options, but scales linearly with atmospheric pressure for the mechanical 
compression option. Simplified point designs are presented for Venus and Titan mission 
scenarios that quantify differences between the aerobot options based on vehicle mass, altitude 
stability, altitude range, and the energy required to change altitude. The data show that the 
pumped helium balloon option has the least vehicle mass and lowest energy consumption to 
change altitude for the Venus mission scenario, but it also has the highest amount of helium 
pressurization. The pumped helium balloon option also has the least vehicle mass and lowest 
energy consumption to change altitude for the Titan mission scenario; however, all Titan options 
require an order of magnitude less balloon mass and energy to change altitude compared to the 
Venus mission scenario, indicating that the mass and energy differences are not a significant 
discriminator for Titan. Preliminary results are presented for a dynamics-based simulation model 
for a Venus pumped helium balloon using the Dynamics Simulator for Entry, Descent and 
Surface Landing (DSENDS) tool. These results show good agreement with the simplified neutral 
buoyancy calculations. 

 
 

Introduction 
 

A recent NASA-sponsored study on Venus Aerial platforms1 assessed a wide assortment of 
aerial vehicle types for the future exploration of Venus. The study concluded that long-duration 
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variable altitude balloons based on lighter-than-air vehicle technology could provide a significant 
science return for modest investments in technology development. This conclusion rested in part 
on the successful development and flight-testing in recent years of terrestrial balloons that utilize 
altitude-control functionality to effect trajectory control by riding winds with different directions 
at different altitudes. This includes the Google Loon balloons2, The World View Stratolite 
balloons3, and the Voss Controlled Meteorological (CMET) balloons.4 These vehicles consume 
electrical power to change altitude via gas pumping instead of traditional balloon techniques of 
ballast drops and buoyancy gas venting that permit flights of only limited duration before 
exhausting the consumables. Adaptation of this terrestrial technology for use at Venus requires a 
vehicle design that accommodates the different flight environment at Venus, notably the sulfuric 
acid clouds and the high atmospheric temperatures and pressures found below the clouds. The 
extent of technology investment is similar for adapting variable altitude balloon technology for 
Saturn’s moon Titan, where the environment features cryogenically cold atmospheric temperature 
and hydrocarbon aerosols.  

Venus and Titan applications tend to be more interested in the ability of these balloons to 
scientifically explore different altitudes as compared to current terrestrial balloons that use altitude 
control mostly as a means to effect trajectory control. This is particularly true for the Venus upper 
atmosphere where there is a very high wind speed of 70+ m/s in the equatorial direction that carries 
the vehicle around the planet in approximately 5 to 6 Earth-days. No winds of the opposite 
direction exist to balance this and enable the kind of station keeping typically desired for Earth 
applications. However, there is uncertainty in the magnitude, direction and variability of the 
meridional (poleward) wind component at Venus, and it may be that some latitude control can be 
exercised by variable altitude balloons depending on the nature of those winds as predicted and/or 
discovered in real time. The opportunities for trajectory control at Titan are much more promising 
given the complex multi-directional nature of winds as predicted from global circulation models. 
Prior work has in fact quantified the ability of non-propelled variable altitude balloons to target 
overflights of locations at a global scale on Titan.5 

The term “aerobot” (AEROnautical roBOT) has been used for a robotic balloon vehicle that 
autonomously exercises trajectory and/or altitude control.6  We will use that term in this paper to 
refer to the complete robotic vehicle comprising the balloon, payload and software required to 
operate in a highly autonomous fashion at Venus and Titan. 

This paper discusses the different types of light gas variable altitude aerobots and presents 
some underlying theory governing the design of such vehicles. Point designs based on helium 
buoyancy gas are presented for both Venus and Titan missions, both to fix ideas and to enable 
comparisons between the different aerobot types on the basis of vehicle mass and energy 
consumption to effect a given altitude change. These point designs are based on equilibrium 
altitude calculations with simplifying assumptions. At the end of the paper we also present some 
preliminary results of more detailed dynamics simulations of a Venus aerobot point design that 
corroborates some results from the simplified equilibrium analysis. 
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Light Gas Variable Altitude Aerobot Options 
 

We consider three main types of helium aerobots for Venus and Titan: 
1. Pumped Helium (PH), which modulates buoyancy in a tandem balloon vehicle by 

pumping helium from an unpressurized balloon into a separate pressurized balloon.  
2. Throughout this paper we use the term “zero pressure” to refer to a nominally 

unpressurized balloon, and the term “superpressure” to refer to a pressurized balloon. In 
the case of this PH aerobot, the superpressure balloon acts as a constant volume reservoir. 

3. Air Ballast (AB), which modulates the weight of the vehicle by pumping atmospheric gas 
(air) into and out of a pressurized container. This container is typically a superpressure 
balloon rather than an actual rigid tank structure. 

4. Mechanical Compression (MC), which mechanically changes the volume of a balloon 
thereby directly changing the buoyancy provided by a fixed mass of helium gas. 

These types of aerobots are illustrated in Fig. 1. There are sub-types for the PH and AB options 
that differentiate between two separate balloons or one balloon with an internal chamber or 
dividing bladder. Note that the PH type of balloon is called a “differential expansion balloon” in 
the Voss et al. paper.4 The Google Loon balloon2 is an Air Ballast balloon of sub-type 2, the 

 
 
Figure 1: The three types of variable altitude aerobots: Pumped Helium (PH), Air Ballast (AB) 
and Mechanical Compression (MC). Chambers are colored light green for unpressurized 
helium, dark green for pressurized helium, and yellow for pressurized atmospheric gas. 
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WorldView Stratolite balloon3 is an Air Ballast balloon of sub-type 2, and the CMET balloon4 is 
a pumped helium balloon of sub-type 1. An example Mechanical Compression balloon is described 
in a patent application by Thin Red Line Aerospace.7 Although helium is specified in this 
taxonomy, it is certainly possible to substitute hydrogen or another buoyancy gas.  
 

 
The Key Role of Superpressure in Aerobot Design 

 
The PH and AB balloons require a pump to move gas (helium or air) into the pressurized 

reservoir in order to achieve a lower equilibrium altitude in more dense atmosphere. The energy 
consumption of that pump is an important consideration in the design of the aerobot. Release of 
some or all of the pressurized gas to ascend in altitude generally requires negligible energy 
consumption since a valve can be opened to simply vent the gas into the zero pressure balloon. 
The mechanical compression balloon typically works by pulling on a cable that connects the north 
and south poles of the balloon, or stack of interconnected balloons, thereby changing the volume. 
This requires an actuator to provide the pulling force, and that will consume a certain amount of 
energy. Expanding the balloon again is a simple matter of releasing the brake and allowing the 
internal pressure to unspool the cable, another operation that nominally requires very little energy. 
This power consumption disparity between ascent and descent means that these aerobots will 
typically ascend at a much faster rate than they descend. 

Another characteristic shared by all three aerobot types is that the energy consumed by altitude 
changes scales with the amount of superpressure in the pressurized part of the vehicle. In the limit 
of zero superpressure, the aerobot will essentially be a zero pressure balloon that is neutrally stable 
in altitude. A defining feature of this neutral stability is that any perturbation will cause the vehicle 
to displace vertically without limit, which means that there will be effectively zero energy 
consumption to change altitude. In this context, the problem of a neutrally-stable vehicle is that 
Venus and Titan missions require keeping the balloon in a defined altitude range either to avoid 
hitting the surface (Titan), or avoid entering the unsurvivably hot lower atmosphere (Venus), or 
avoid bursting the balloon by ascending beyond the design altitude (both).  

We therefore argue as a practical matter that it is necessary to have some amount of 
superpressure at least at the lower altitude bound so that the vehicle can arrest the downward 
motion caused by sustained vertical downwards winds or the setting sun. For pumped helium 
balloons the transfer (venting) of pressurized helium to the zero pressure balloon will increase the 
buoyancy to arrest the downwards motion. For air ballast balloons the venting of pressurized air 
will decrease the weight to arrest the downwards motions. For mechanical compression balloons, 
the pressurized helium will expand the balloon volume to create more buoyancy and arrest the 
downwards motion. In addition to acting as a pressurized reservoir of gas, the fact that some or all 
of the aerobot is a superpressure balloon will also provide an altitude-stabilizing function because 
such balloons are inherently stable in altitude due to being essentially constant volume structures. 

Near the maximum altitude boundary it is possible to arrest undesirable vertically upwards 
motion by sufficiently rapid gas pumping (for PH and AB balloons) or cable pulling (MC balloon) 
to quickly change the aerobot’s net buoyancy. However, electrical power and mass tend to be 
highly limited resources on any space mission and therefore it may not be possible to provide for 
the sufficiently rapid pumping or cable pulling in a practical design. If so, then once again there 
would be a need for some amount of superpressure in a certain volume to passively provide an 
altitude stabilizing function to keep the vehicle from ascending too high. 
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It turns out that the superpressure amount in all three types of balloons is not a free variable 
once it is specified for at least one altitude in a given design. In particular, superpressure cannot 
be raised near the altitude extrema to boost stability but dropped in intermediate altitudes to save 
power. The next subsection of the paper will present a derivation of underlying relationships that 
show non-zero superpressure across the entire range of altitudes; therefore, the zero-energy limit 
for altitude changes cannot be achieved in practice. 

 
 

Variable Altitude Balloon Theory For Superpressure 
 

For all analyses, we will assume the atmosphere acts as an ideal gas with constant molar 
composition. Accordingly, the atmospheric density 𝜌௔ is given by: 

 

𝜌௔ =
𝑃

𝑅௔𝑇
 (1) 

 
where 𝑃, 𝑇, and 𝑅௔ are the atmospheric pressure, temperature, and atmospheric gas constant 
respectively. We will similarly assume that the helium or any alternate buoyancy gas also acts as 
an ideal gas.  

We make the simplifying assumption in this analysis that the atmosphere gas and the buoyancy 
gas have the same temperature. This is a good assumption for flight under nighttime conditions 
but significant deviation would be expected with solar heating. These deviations are readily 
computed with numerical analysis for example point designs later in the paper, but no simple 
algebraic description has yet been found to match the non-solar heated cases described below. 

By definition, the atmosphere and balloon gas pressures will be equal for a zero pressure 
balloon. Therefore, the volume of any zero pressure balloon is given by: 

 

𝑉௭௣ =  
𝑛௭௣𝑅𝑇

𝑃
 (2) 

 
where 𝑛௭௣ is the number of moles of helium in the zero-pressure balloon, and 𝑅 is the universal 
gas constant. The zero-pressure balloon’s gross buoyancy (in kilograms) is the mass of the 
displaced air: 
 

𝐵௭௣ = 𝜌௔𝑉௭௣ =  
𝑃

𝑅௔𝑇

𝑛௭௣𝑅𝑇

𝑃
=

𝑛௭௣𝑅

𝑅௔
 (3) 

 
When at an equilibrium altitude, this gross buoyancy will be equal to the sum of the masses of 

the balloon, payload and helium. Note that under the assumption that the temperature inside and 
outside the balloon is the same a zero pressure balloon is only neutrally stable; the gross buoyancy 
is constant with altitude and only dependent on the amount of helium inside. 

A superpressure balloon’s volume is a constant value 𝑉௦௣; therefore, the gross buoyancy is: 
 

𝐵௦௣ = 𝜌௔𝑉௦௣ =  
𝑃

𝑅௔𝑇
 𝑉௦௣  (4) 
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 The volume 𝑉௦௣ of this type of balloon stays constant, but the buoyancy changes as the outside 
temperature 𝑇 and pressure P changes.  
 We will now derive superpressure relations for each of the five types of variable altitude 
balloons. 
 
Pumped Helium (PH) Balloon 1 – Balloon within Balloon 
 The PH balloon-within-a-balloon architecture consists of two separate gas volumes. The super-
pressure volume is equal to that of the inner balloon, while the zero-pressure volume is equal to 
the outer volume minus the inner volume. In this framework, the PH balloon-within-a-balloon and 
PH tandem balloon are almost equivalent; the only difference is the geometry of the envelopes that 
contain the gas.  

Bulk-gas expressions are agnostic to this geometry and therefore apply to both PH balloon 
types. Accordingly, the analysis in the next section holds for either system. 
 
Pumped Helium (PH) Balloon 2 – Tandem Balloons 

For a PH balloon, both the zero-pressure and the super-pressure volumes contribute buoyancy. 
Taking the two volumes together, we thereby obtain a total gross buoyancy: 

 

𝐵 = 𝐵௭௣ + 𝐵௦௣ =
𝑛௭௣𝑅

𝑅௔
+

𝑃

𝑅௔𝑇
𝑉௦௣ (5) 

 
Let us now consider two different altitudes, where the pressures and temperatures are 𝑃ଵ & 𝑃ଶ 

and 𝑇ଵ & 𝑇ଶ  respectively. The system mass does not change; therefore, we need to ensure that the 
buoyancy stays the same at both altitudes to ensure equilibrium: 

 
𝐵ଵ = 𝐵ଶ (6) 

 
𝑛௭௣,ଵ𝑅 

𝑅௔
+

𝑃ଵ

𝑅௔𝑇ଵ
𝑉௦௣ =

𝑛௭௣,ଶ𝑅 

𝑅௔
+

𝑃ଶ

𝑅௔𝑇ଶ
𝑉௦௣ (7) 

 
Solving for the moles of helium transferred in/out of the zero-pressure balloon to keep a 

constant buoyancy, we obtain: 

𝑛௭௣,ଶ − 𝑛௭௣,ଵ = ൬
𝑃ଵ

𝑇ଵ
−

𝑃ଶ

𝑇ଶ
൰

𝑉௦௣

𝑅
 (8) 

 
Next, we solve for the moles of helium inside the super-pressure balloon. Assuming the ideal 

gas law, we obtain: 

𝑛௦௣ =
(𝑃 + Δ𝑃)𝑉௦௣

𝑅𝑇
 (9) 

 
where Δ𝑃 is amount of superpressure in the balloon above atmospheric pressure. Again applying 
this analysis at two different altitudes, we can solve for the helium transferred into or out of the 
super-pressure balloon: 

𝑛௦௣,ଵ − 𝑛௦௣,ଶ =  
(𝑃ଵ + Δ𝑃ଵ)𝑉௦௣

𝑅𝑇ଵ
−

(𝑃ଶ + Δ𝑃ଶ )𝑉௦௣

𝑅𝑇ଶ
  (10) 
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Conserving mass, the helium transferred in/out of the zero-pressure balloon must the exact 
opposite of the helium transferred in/out of the super-pressure balloon. Accordingly: 

 
𝑛௭௣,ଶ − 𝑛௭௣,ଵ =  𝑛௦௣,ଵ − 𝑛௦௣,ଶ (11) 

 
Substituting Equations (8) and (10) into Equation (11), we can solve for the superpressure Δ𝑃: 
 

൬
𝑃ଵ

𝑇ଵ
−

𝑃ଶ

𝑇ଶ
൰

𝑉௦௣

𝑅
=

(𝑃ଵ + Δ𝑃ଵ )𝑉௦௣

𝑅𝑇ଵ
−  

(𝑃ଶ + Δ𝑃ଶ)𝑉௦௣

𝑅𝑇ଶ
 (12) 

 
𝑃ଵ

𝑇ଵ
−

𝑃ଶ

𝑇ଶ
=

𝑃ଵ + 𝛥𝑃ଵ

𝑇ଵ
−  

𝑃ଶ + 𝛥𝑃ଶ

𝑇ଶ
 (13) 

 
Δ𝑃ଶ

𝑇ଶ
=

Δ𝑃ଵ

𝑇ଵ

(14) 

 
This shows that the superpressure is proportional to the absolute atmospheric temperature: 
 

∆𝑃 ∝  𝑇 (15) 
 

A planetary atmosphere generally shows a slowly changing temperature with altitude (the lapse 
rate) and therefore we would expect the superpressure of a PH aerobot also to show a slowly 
changing value with altitude. 

Calling our constant of proportionality 𝑘், we now return to Eq. 9 to solve for its numerical 
value. 

Δ𝑃 = 𝑘்𝑇 (16) 
 

𝑛௦௣ =
(𝑃 + 𝑘்𝑇)𝑉௦௣

𝑅𝑇
=

𝑃𝑉௦௣

𝑅𝑇
+

𝑘்𝑉௦௣

𝑅
 (17) 

 

𝑘் =
𝑅

𝑉௦௣
൬𝑛௦௣ −

𝑃𝑉௦௣

𝑅𝑇
൰ (18) 

 
Finally, 𝑘் can be simplified to: 
 

𝑘் =
𝑅

𝑉௦௣
൫𝑛௦௣ − 𝑛௦௣|௱௉ୀ଴ ൯ (19) 

 
where 𝑛௦௣|௱௉ୀ଴  is the baseline number of moles of helium in the superpressure balloon if it were 
vented all the way to the point of no super-pressure and hence become a zero pressure balloon of 
volume Vsp. As we would expect, kT is dependent on the number of moles of buoyancy gas that 
create the non-zero superpressure, namely the amount of excess gas beyond that needed to exactly 
fill the volume and yet remain a zero pressure balloon. As kT is constant with altitude, the amount 
of excess gas is also constant with altitude. 
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Air Ballast (AB) Balloon 1 – Tandem Balloons 
On an AB balloon, we can use similar arguments to determine how the superpressure scales 

with altitude. The gross buoyancy relation of a tandem AB balloon is equivalent to the PH balloon: 
 

𝐵 = 𝐵௭௣ + 𝐵௦௣ =
𝑛௭௣𝑅

𝑅௔
+

𝑃

𝑅௔𝑇
𝑉௦௣ (20) 

 
However, we now note that unlike the PH balloon, the air pump changes the mass of the AB 

balloon which must be accommodated by an equal change in the gross buoyancy. 
 

𝐵௭௣ + 𝐵௦௣ = 𝑚௦௣ + 𝑀 (21) 
 

where 𝑚௦௣  is the variable air mass in the superpressure balloon, and 𝑀 is the mass of the rest of 
the system. Evaluating Equation 21 at two separate altitudes (1 and 2) and noting that 𝐵௭௣ and 𝑀 
stay constant regardless of altitude for this balloon: 
 

𝐵௦௣,ଵ − 𝑚௦௣,ଵ = 𝑀 − 𝐵௭௣ = 𝐵௦௣,ଶ − 𝑚௦௣,ଶ (22) 
 

𝑃ଵ

𝑅௔𝑇ଵ
𝑉௦௣ −

(𝑃ଵ + Δ𝑃ଵ)

𝑅௔𝑇ଵ
𝑉௦௣ =

𝑃ଶ

𝑅௔𝑇ଶ
𝑉௦௣ −

(𝑃ଶ + Δ𝑃ଶ)

𝑅௔𝑇ଶ
𝑉௦௣ (23) 

 
Δ𝑃ଶ

𝑇ଶ
=

Δ𝑃ଵ

𝑇ଵ
 (24) 

 
∆𝑃 ∝  𝑇 (25) 

 
This is the same superpressure relationship derived for the PH balloon. Again calling this 

constant of proportionality 𝑘், i.e. ∆𝑃 =  𝑘்𝑇, we can return to the ideal gas law to determine a 
closed-form expression for it: 

 

𝑛௦௣ =
(𝑃 + 𝑘்𝑇)𝑉௦௣

𝑅𝑇
 (26) 

 

𝑘் =
𝑅

𝑉௦௣
൫𝑛௦௣ − 𝑛௦௣|௱௉ୀ଴ ൯ (27) 

 
This is the same expression as the PH balloon, only now we are counting moles of air ballast, 
rather than moles of helium, in the super-pressure balloon. 

 
Air Ballast (AB) Balloon 2 – Ballonet 

The buoyancy for the ballonet air-ballast balloon acts as one single super-pressure balloon: 
 

𝐵 = 𝜌௔𝑉 =  
𝑃

𝑅௔𝑇
𝑉 (28) 
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The mass of this balloon changes as air is pumped into the ballonet. Accordingly, 
 

𝑃

𝑅௔𝑇
𝑉 = 𝐵 = 𝑚௔ + 𝑚௛௘ + 𝑀 (29) 

 
where 𝑚௔  is the mass of air in the ballonet, 𝑚௛௘ is the mass of helium, and 𝑀 is the mass of 
everything else. Evaluating Equation (29) at two different altitudes, we note that 𝑚௛௘ and 𝑀 are 
constant: 

 
𝑃ଵ

𝑅௔𝑇ଵ
− 𝑚௔,ଵ = 𝑚௛௘ + 𝑀 =

𝑃ଶ

𝑅௔𝑇ଶ
− 𝑚௔,ଶ (30) 

 
𝑃ଵ

𝑅௔𝑇ଵ
−

𝑃ଶ

𝑅௔𝑇ଶ
= 𝑚௔,ଵ − 𝑚௔,ଶ (31) 

 
The mass transfer of air into the ballonet adds to the total number of moles n of gas in the two-

compartment balloon. 

𝑚௔,ଵ − 𝑚௔,ଶ =
𝑅

𝑅௔

(𝑛ଵ − 𝑛ଶ) (32) 

 
The total number of moles in the balloon can now be expressed using the ideal gas law, which 

relates the super-pressure to the balloon volume: 
 

𝑛 =
(𝑃 + Δ𝑃)𝑉

𝑅𝑇
 (33) 

 
Substituting back into Equation (32) simplifies to our proportionality expression: 
 

𝑃ଵ

𝑅௔𝑇ଵ
−

𝑃ଶ

𝑅௔𝑇ଶ
=

𝑅

𝑅௔
ቆ

(𝑃ଵ + Δ𝑃ଵ)𝑉

𝑅𝑇ଵ
−

(𝑃ଶ + Δ𝑃ଶ)𝑉

𝑅𝑇ଶ
ቇ (34) 

 
Δ𝑃ଶ

𝑇ଶ
=

Δ𝑃ଵ

𝑇ଵ
 (35) 

 
∆𝑃 ∝  𝑇 (36) 

 
Again, solving for this proportionality constant 𝑘் in ∆𝑃 =  𝑘்𝑇 gives the now familiar 

expression: 

𝑘் =
𝑅

𝑉
(𝑛 − 𝑛|௱௉ୀ଴ ) (37) 

 
Mechanical Compression Balloon 

Finally, we address the MC balloon. The buoyancy expression of the MC balloon similar to that 
of a standard super-pressure balloon, Equation (4): 
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10 
 

𝐵 = 𝜌௔𝑉 =  
𝑃

𝑅௔𝑇

𝑛𝑅𝑇

𝑃 + Δ𝑃
 (38) 

 
Applying this buoyancy to two altitudes (1 and 2) we can determine a relation for the super-

pressure. Note that for the MC balloon, both the buoyancy and helium mass do not change, but the 
volume does. 

𝐵ଵ = 𝐵ଶ (39) 
 

𝑃ଵ

𝑅௔

𝑛𝑅

𝑃ଵ + Δ𝑃ଵ
=  

𝑃ଶ

𝑅௔

𝑛𝑅

𝑃ଶ + Δ𝑃ଶ
 (40) 

 
𝑃ଵ

𝑃ଵ + Δ𝑃ଵ
=

𝑃ଶ

𝑃ଶ + 𝛥𝑃ଶ
 (41) 

 
Which simplifies to the proportionality: 

Δ𝑃 ∝ 𝑃 (42) 
 
Note that this behavior is distinctly different from the PH or AB balloons, whose super-pressure is 
proportional to the atmospheric temperature instead. Calling the constant of proportionality 𝑘௉, 
i.e. ∆𝑃 =  𝑘௉𝑃, we can solve for it by noting the ideal gas law: 

 
(𝑃 + 𝑘௉𝑃)𝑉 = 𝑛𝑅𝑇 (43) 

 

𝑘௉ =
𝑅𝑇

𝑃𝑉
𝑛 − 1 (44) 

 

𝑘௉ =
𝑛

𝑛|୼௉ୀ଴
− 1 (45) 

 
Again, 𝑛|୼௉ୀ଴ is the number of moles of helium remaining if the MC balloon was vented until 

the superpressure equaled zero. 
It can be seen in the preceding derivations that the five types of variable altitude balloons divide 

into two groups of superpressure behavior: the PH and AB balloons all show a P ~ T behavior, 
while the MC balloon shows a P ~ P behavior. Given that atmospheric pressure tends to change 
with altitude more quickly than temperature, this suggests we will experience larger P variations 
with the MC balloon when solar heating is ignored. In all cases, however, the P versus altitude 
behavior is prescribed by these scaling laws and is not a free variable in the aerobot design. 

 
 

Work and Energy Calculations 
 

  For non-zero superpressure, work must be done to compress the gas when moving from a 
higher to a lower altitude. The reverse does not require work to be done since the compressed gas 
can simply be vented from its pressurized state. The work done from the higher to lower altitude 
can be computed from basic fluid mechanics and thermodynamics. There are two cases: 
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1. Pump work based on the flow of helium or air into a pressurized reservoir (PH and AB 
aerobots). 

2. Cable pulling to perform pressure-volume (PdV) work on a fixed mass of helium (MC). 
The work done to pump a gas under steady-state conditions is given by the mass flow rate 

times the change in enthalpy: 
 

�̇�௣௨௠௣ = �̇�௚௔௦ (ℎ௢௨௧ − ℎ௜௡) (46) 
 

where �̇�௣௨௠௣ is the work done by the pump, �̇�௚௔௦ is the mass flow rate of the gas through the 
pump, ℎ௢௨௧ is the enthalpy of the gas at the pump outlet, and ℎ௜௡ is the enthalpy of the gas at the 
pump inlet. We can rewrite this equation in terms of temperature and pressure by using the standard 
ideal gas isentropic relationships: 
 

ℎ =  𝐶௉𝑇 (47) 
 

൬
𝑇௢௨௧

𝑇௜௡
൰ =  ൬

𝑃௢௨௧

𝑃௜௡
൰

ఊିଵ
ఊ

 (48) 

 
where CP is the specific heat capacity, T is the temperature, P is the pressure and  is the ratio of 
specific heats. Use of this relationship means that from this point on we are computing the ideal 
work for a reversible process.  

Substituting Equations (47) and (48) into (46) yields: 
 

�̇�௣௨௠௣ = �̇�௚௔௦𝐶௉𝑇௜௡ ቎൬
𝑃௢௨௧

𝑃௜௡
൰

ఊିଵ
ఊ

− 1቏ (49) 

 
This can be integrated in time to compute the total ideal pump energy consumption: 
 

∆𝐸௣௨௠௣ = න �̇�௣௨௠௣ 𝑑𝑡
௧೑

௧೔

= න �̇�௚௔௦𝐶௉𝑇௜௡ ቎൬
𝑃௢௨௧

𝑃௜௡
൰

ఊିଵ
ఊ

− 1቏  𝑑𝑡
௧೑

௧೔

 (50) 

 

where tf and ti are the final and initial times of the pumping interval. Noting that �̇�௚௔௦ =  
ௗ௠೒ೌೞ

ௗ௧
, 

the integral can be re-written in terms of mass change rather than time change: 
 

∆𝐸௣௨௠௣ = න 𝐶௉𝑇௜௡ ቎൬
𝑃௢௨௧

𝑃௜௡
൰

ఊିଵ
ఊ

− 1቏  𝑑𝑚௚௔௦

௠೑

௠೔

 (51) 

 
where mf and mi are the final and initial mass of gas in the pressurized reservoir. This equation 
shows that the ideal pump energy to move from one altitude to another is time independent. In 
practice, this integral can be evaluated knowing the helium gas mass as a function of altitude 
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calculated from a series of quasi-static equilibrium points. Note also that the energy dependence 
on aerobot superpressure can be made explicit by substituting 
 

𝑃௢௨௧ = 𝑃௜௡ +  ∆𝑃 (52) 
 
where ∆𝑃 is the superpressure. 
  For the mechanical compression balloon, the actuator plus cable assembly does work equal 
to the applied force times distance on the cable, which must be equal to the PdV work done on the 
gas inside the balloon: 
 

∆𝐸ெ஼ = 𝐹 ∗ 𝑑 = − න ∆𝑃 𝑑𝑉
௏೑

௏೔

 (53) 

 
where F is the cable force, d is the distance moved by the cable, P is the gas superpressure, V is 
the gas volume, vi is the initial gas volume and vf is the final gas volume. Note that the winch only 
does work on the balloon gas proportional to the excess pressure (superpressure) above ambient. 

 
 

Venus Point Designs 
 

 We present data in this section on Venus point designs for each type of light gas variable altitude 
aerobot, including comparisons of vehicle mass and ideal work done (energy consumption) for 
changing altitude. This is not an exhaustive trade study of the design space but does present 
feasible designs that can be compared to draw conclusions about the performance differences 
between the different platforms.  

These point designs are based on a common mission scenario in which the aerobot floats at high 
altitude in the Venusian clouds at temperatures compatible with standard spacecraft avionics and 
instruments. In each case, the aerobot has a not-to-exceed 100 kg payload module suspended below 
the balloon that includes everything needed for the mission including science instruments, 
avionics, structure, telecommunications and power system. We specify that the aerobot is able to 
control its altitude between a 52 and 60 km altitude, a range that spans much of the cloud layer of 
Venus and is of high importance for investigating the cloud aerosols, sulfur-based chemistry, 
winds and solar heating. Given the results from the 1985 VEGA balloon flights at Venus8 we 
assume a worst case sustained vertical wind of 3 m/s that the aerobot must tolerate at the upper 
and lower bounds of the 52 to 60 km range. The point design analyses performed here do not 
include detailed solar heating calculations of the gas inside the balloon but instead use a 
simplifying assumption that the helium gas would increase in temperature by 36 K at 60 km, 
linearly decreasing by 2 K/km so that the temperature increase would be only 20 K at 52 km. This 
assumption captures the gross behavior that the clouds will attenuate the solar flux as one decreases 
in altitude; however, we expect the actual temperatures will vary from these approximate values 
once the full heat transfer analysis with real balloon materials is included. 

The analyses use standard Venus atmosphere properties as listed in Table 1. We assume a gas 
mixture of 97% CO2 and 3% N2. Helium is the buoyancy gas inside the balloon. Helium and the 
Venus atmosphere are treated as perfect gases. 

The presence of sulfuric acid aerosols in the Venus atmosphere across this altitude range 
requires the use of non-standard balloons materials. Prior development work of prototype Venus 
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superpressure balloons resulted in laminate materials that used Teflon as the acid barrier, Vectran 
fabric as the strength element and metallization to reflect sunlight and thereby minimize solar 
heating.9,10 We adopt that basic approach for the point designs in this paper, although we recognize 
that tendon-reinforced (pumpkin) balloon designs may offer mass advantages for superpressure 
balloons compared to this laminated material. Note that there are four types of laminate materials 
needed to compute point designs for the five aerobot types: 

1. Zero pressure balloon, no Vectran required, but with Teflon to resist the acid. 
2. Superpressure balloon inside the zero pressure balloon, no Teflon required. 
3. Superpressure balloon exposed to acid on the outside surface, requires the full laminate 

from prior work scaled to the estimated superpressure loads. 
4. Superpressure balloon exposed to acid on both the external and internal surfaces, requires 

the full laminate plus Teflon on the inside surface as well. 
Estimated areal densities (mass per unit area) for these materials are listed in the results 

summary presented as Table 2. A 30% construction factor is added to each areal density to account 
for seams and end cap reinforcements, and then another 20% is added as a design margin. The 
balloon areal densities are derived from the materials listed in References 9 and 10 with the amount 
of Vectran adjusted to provide a structural safety factor of approximately 2 compared to the stress 
resulting from the superpressure and size of balloon. For the single-balloon AB case, we assume a 
hemispherical dividing membrane. 
 Point designs for each Venus aerobot are based on solving the set of algebraic equations that 
determine the conditions at each equilibrium altitude. The equilibrium altitude is defined by weight 
equals buoyancy force. In practice, the calculation iterates on the balloon size(s) to yield feasible 
solutions across the entire altitude range. We model all of the balloons as spheres, noting that for 
the MC concept in particular that practical implementation may require a stack of balloons to 
achieve a sufficient compression ratio over a large altitude range. A driving design feature is that 
all options maintain a small 1000 Pa superpressure margin to avoid loss of control authority under 
the worst case flight conditions of minimum altitude, no solar heating, and a downwards sustained 
wind of 3 m/s. This constraint sets the amount of excess helium required to compensate for the 

Table 1: Venus Atmosphere Properties 
 

Altitude 
(km) 

Temperature 
(K) 

Pressure 
(Pa) 

Density 
(kg/m3) 

62 254.5 16,588 0.3411 

60 262.8 23,571 0.4694 

59 268.7 27,972 0.5448 

58 275.2 33,071 0.6289 

57 282.5 38,930 0.7212 

56 291.8 45,626 0.8183 

55 302.3 53,183 0.9207 

54 312.8 61,682 1.0320 

53 323.0 71,162 1.1530 

52 333.3 81,774 1.2840 
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worse case disturbance, given the balloon size and specified payload mass. In turn, this leads to 
solving the set of equations where the dependent variable is different in each case: 

 For the pumped helium aerobot, the variable is the relative amounts of helium in the zero 
and superpressure balloons. 

 For the air ballast aerobot, the variable is the amount of air in the superpressure balloon. 
 For the mechanical compression aerobot, the variable is the balloon volume. 

For the vertical wind calculations, we assume a drag coefficient of 0.5 for the aerobot. Single 
balloon concepts use the cross-sectional area of the balloon modeled as a sphere corresponding to 
the given volume. For tandem balloon concepts we modify the cross-sectional reference area to be 
the main zero pressure balloon area modeled as a sphere and one-half the secondary superpressure 
balloon area modeled as a sphere. This latter assumption presumes some drag reduction resulting 
from one balloon being in the wake of the other balloon. 

Table 2 presents the results for all point designs with a 100 kg payload module for the 52 to 60 
km altitude range. The ideal energy values are computed by numerical integration of the formulas 
in Equations 51 or 53 as appropriate. 

Carrying a 100 kg payload requires a helium balloon over 10 meters in diameter at this altitude 
range at Venus for all five concepts. Given that pressure-loaded balloon material is much heavier 
than zero pressure material, the size of the superpressure balloon tends to dominate the overall 
aerobot mass; therefore, the concepts that require the largest superpressure balloons, namely the 
air ballast and mechanical compression balloons, are also the most massive. The helium mass 
clearly scales with overall floating mass as would be expected. Setting the smaller balloon to be 
roughly half the diameter of the larger balloon in the two balloon concepts also seems to yield the 
lowest mass designs for this scenario. 

The predicted P ~ T behavior (Equations 15, 25, 36) for the PH and AB concepts is clearly 
shown in the superpressure values for nominal night conditions at 52 and 60 km altitude. In each 
case the superpressure ratio equals 1.27 in accord with the atmospheric temperature ratio of 333.3 
K / 262.8 K = 1.27. Similarly, the MC concept shows the P ~ P behavior (Eq. 42) with the 
superpressure ratio equal to the atmospheric pressure ratio of 81,774 Pa / 23,571 Pa = 3.47. 
 There are important differences between the concepts in terms of maximum superpressure and 
altitude stability as shown by the results in Table 2. The PH and two-balloon AB aerobots have 
the smallest superpressure balloon envelopes, require the largest superpressures and experience 
the largest excursions above the nominal 60 km maximum altitude. Note that this reflects a design 
assumption that these aerobots must passively resist the vertically upwards displacement due to 
perturbing wind since pumping speeds are expected to be low given the likely constraints on pump 
size and electrical power. Smaller superpressure balloons in an updraft will therefore displace and 
pressurize more until equilibrium is re-established at the higher altitude. The single large AB 
aerobot is very stable in altitude and experiences a much reduced superpressure increase. This 
lower superpressure explains why the single AB aerobot requires a balloon material with less mass 
per unit area than the two-balloon AB aerobot.  

The MC aerobot obeys a different superpressure relationship with no solar heating than the 
other concepts, namely P ~ P instead of P ~ T, and this manifests itself in some unique results 
as shown in Table 2. Note that the ambient pressure varies by a factor of 3.47 across the 60 to 52 
km altitude range in contrast to the ambient absolute temperature that varies only be a factor of 
1.27. The MC aerobot therefore experiences its highest superpressure at the lowest altitude where 
the ambient pressure is highest, even at night. The single balloon AB concept also shares this 
property, in contrast to the other concepts that have the highest superpressure at the maximum 
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altitude with solar heating and vertical wind displacements. The large MC balloon size provides 
excellent altitude stability to wind displacements but the existence of relatively high superpressure 
at the lowest altitudes drives up the energy cost for changing altitude. 

The MC aerobot falls in the middle of the range of energy costs, as does the two balloon AB 
aerobot. The PH aerobot requires the least energy and there is no appreciable difference between 
the one- and two-balloon options. The single AB aerobot requires by far the most energy to change 
altitude. These energy results appear to mirror the expected behavior that the least stable aerobots 
require the least energy to decrease altitude. In the limit of neutrally stable zero pressure balloons, 
as we noted above, no energy is required to change altitude.  

Two energy values are provided for each concept in Table 2, one for a solar-heated aerobot and 
one without. Non solar-heated aerobots always have lower energy requirements given the lower 
superpressures; however, the PH aerobots show a relatively small change (80% increase in 
daylight) while the AB aerobots show a much larger change (270% increase in daylight). This 
difference is presumably due to the larger mass of ingested air inside the AB aerobots that heats 

Table 2: Summary of Venus Aerobot Point Design Results for 52 to 60 km Range 
 

 PH 
(balloon in 

balloon) 

PH 
(two 

balloon) 

AB 
(two 

balloon) 

AB 
(one 

balloon) 

MC 
(one 

balloon) 
Maximum nominal altitude (km) 60 60 60 60 60 

Minimum nominal altitude (km) 52 52 52 52 52 

Zero-P (ZP) balloon diameter 10.6 10.4 12.6 N/A N/A 

Superpressure (SP) balloon diameter 5.30 5.2 6.93 11.8 10.5 

ZP balloon areal density (g/m2) 120 120 120 120 N/A 

SP balloon areal density (g/m2) 170 270 330 285 270 

Nominal Superpressure (Pa)  
[Night, High Altitude, No wind] 

9,100 9,600 7,100 2,900 2,800 

Nominal Superpressure (Pa)  
[Night, Low Altitude, No wind] 

11,500 12,200 9,000 3,600 9,800 

Maximum superpressure (Pa) 32,800 36,300 31,300 8,700 10,800 

Maximum Superpressure Condition  
Day/Night, High/Low Altitude, 

Updraft/No wind/Downdraft 

D,H,U D,H,U D,H,U D,L,N D,L,N 

Minimum superpressure (Pa) 
[Night, Low altitude, Downdraft] 

1,000 1,000 1,000 1,000 1,000 

Total helium mass 20.6 21.6 29.9 38.9 26.8 

Total balloon mass 89.5 99.4 171.0 235.4 145.9 

Total aerobot mass (w/o helium) 189.5 199.4 271.0 335.4 245.9 

Maximum perturbed altitude (km) 62.0 62.1 61.8 60.3 60.3 

Daylight ideal energy required to go 
from max to min altitude (J) 

1,270,000 1,264,000 2,843,000 6,282,000 2,660,000 

Nighttime ideal energy required to 
go from max to min altitude (J) 

712,000 732,000 1,242,000 2,591,000 1,061,000 
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up and must be compressed to reduce altitude. The MC aerobot behaves like the PH aerobots in 
terms of energy consumption, probably because all of these concepts do work only on the mass of 
helium buoyancy gas and not on any additional ingested atmosphere. 
 We explored a second mission scenario for Venus in which the maximum altitude was increased 
from 60 to 62 km. This was done primarily to understand the sensitivity of the different aerobot 
designs to accommodating a larger density difference between the maximum and minimum 
altitudes. The results are shown in Table 3. Most notable in this table was the inability to generate 
feasible designs for either air ballast concept. The growth in balloon size with the higher altitude 
combined with an attendant increase in balloon material mass per unit area to provide increased 
tensile strength for the larger sizes resulted in a runaway vehicle mass that could not be balanced 
by buoyancy. The pumped helium and mechanical compression concepts all show modest 
increases in balloon size, helium mass, ideal pump or compression energy to change altitude, but 
all yielded reasonable design solutions.  
 

 
Titan Point Designs 

 
In addition to conducting in situ atmospheric investigations, an aerobot at Titan can enable 

global-scale aerial reconnaissance of the surface when flying in the lowest part of the atmosphere. 
Aerobots that approach the surface, or that deploy a separate daughtercraft, can also do surface 
sample acquisition and thereby enable composition measurements at widely separated and diverse 
terrain types. We choose such a mission scenario to compare the different types of aerobots in this 
study with the following criteria and assumptions: 

 Altitude range from 1 to 11 km above the surface. 
 200 kg payload module mass carried by the balloon. 
 Maximum heating of the balloon gas of 1 K during daytime. 
 Maximum sustained vertical winds of 0.5 m/s. 

The payload mass for Titan is chosen to be double that for the Venus scenario to incorporate a 
number of extra elements including: a radioisotope thermal generator (RTG) for electrical power 
generation, a system for performing surface sample acquisition and analysis, and additional 
thermal control and telecommunications mass to accommodate the cryogenic Titan environment 
and larger distance to Earth. 

The analyses use standard Titan atmosphere properties listed in Table 4. The temperature and 
pressure data in Table 4 are measurements taken by the Huygens probe11, and the density is a 
derived quantity using the ideal gas law and a 5% CH4, 95% N2 average atmosphere composition. 
Note the key differences between the Titan atmosphere and that used for the Venus aerobot 
calculations, namely the cryogenically cold temperature, the mostly nitrogen atmosphere instead 
of carbon dioxide, and the much reduced solar heating and winds. 

Prior work on Titan blimp concepts included development of cryogenically compatible 
polyester film and fabric balloon materials.12,13 We adopt the lighter weight 75 g/m2 material for 
the zero pressure balloons in these point designs. It will be shown that the Titan superpressure 
balloons in this study experience higher superpressures and hence require more tensile strength 
than any material developed in the earlier Titan blimp work; therefore, we approximately scaled 
the prior materials into the range of 120 to 160 g/m2 as required. Both the zero pressure and 
superpressure balloon materials are significantly lighter than those used at Venus, partly because 
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there is no need for Teflon to protect against corrosive acids and partly because the Titan scenario 
requires smaller balloon sizes and smaller superpressure levels. 
 The solution methodology for Titan point designs is the same as described above for Venus. 
The results are summarized in Table 5 for all five aerobot concepts. 

The Titan results show a number of key differences with the Venus results. Most noticeably, 
the Titan balloons are much smaller than the Venus balloons, a benefit of flying in a much denser 
atmosphere. In addition, the density difference between the lowest and highest altitude is smaller 
at Titan, with a density ratio of only 1.5, compared to a ratio of 2.7 or 3.8 at Venus depending on 
whether the maximum altitude is 60 or 62 km. This smaller density ratio leads to superpressure 
balloon volumes at Titan being relatively larger compared to the zero pressure balloon volumes. 
The superpressure balloon volume is in fact slightly larger than the zero pressure balloon in this 
point design for the two balloon pumped helium concept. Another key difference is that the Titan 
aerobot maximum superpressure is generally much smaller than for Venus aerobots, with a range 

Table 3: Summary of Venus Aerobot Point Design Results for 52 to 62 km Range 
 

 PH 
(balloon in 

balloon) 

PH 
(two 

balloon) 

AB 
(two 

balloon) 

AB 
(one 

balloon) 

MC 
(one 

balloon) 
Maximum nominal altitude (km) 62 62 No feasible 

design 
No feasible 

design 
62 

Minimum nominal altitude (km) 52 52   52 

Zero-P (ZP) balloon diameter 11.6 12.0   N/A 

Superpressure (SP) balloon 
diameter 

5.80 6.0   12.5 

ZP balloon areal density (g/m2) 120 120   N/A 

SP balloon areal density (g/m2) 170 270   270 

Nominal Superpressure (Pa)  
[Night, High Altitude, No wind] 

6,800 6,800   2,200 

Nominal Superpressure (Pa)  
[Night, Low Altitude, No wind] 

8,900 8,900   10,800 

Maximum superpressure (Pa) 28,100 28,200   10,200 

Maximum Superpressure Condition  
Daylight/Night, High/Low, 
Updraft/No wind/Downdraft 

D,H,U D,H,U   D,L,N 

Minimum superpressure (Pa) 
[Night, Low altitude, Downdraft] 

1,000 1,000   1,000 

Total helium mass 22.4 25.1   33.2 

Total balloon mass 107.2 132.3   206.8 

Total aerobot mass (w/o helium) 207.2 232.3   306.8 

Maximum perturbed altitude (km) 63.6 
 

63.5   62.2 

Daylight energy required max to 
min altitude (J) 

1,857,000 2,062,000   4,349,000 

Nighttime energy required max to 
min altitude (J) 

954,000 1,056,000   1,528,000 
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of 4,400 to 7,600 Pa compared to 8,700 to 36,300 Pa. This results from a combination of much 
smaller solar heating plus smaller atmospheric temperature and pressure ratios between the 
maximum and minimum altitude. In turn, the smaller superpressures and smaller balloons lead to 
much smaller balloon masses for Titan as compared to Venus. The data in Table 5 shows that the 
balloon mass is roughly 10% of the payload mass for all concepts, as compared to Venus where 
the balloon mass was roughly equal to or much more than the payload mass depending on the 
concept. As a result, the total floating mass for Titan aerobots is close to the best Venus concepts 
despite having double the payload mass. 

All Titan designs require almost the same helium mass in a narrow range of 38.4 to 40.1 kg. 
These values are substantially higher than the best Venus design (20.6 kg for the PH aerobot) and 
reflects the reduced buoyancy efficiency in the mostly nitrogen atmosphere of Titan (density ratio 
of ~28/4 = 7) compared to the mostly carbon dioxide atmosphere of Venus (density ratio of ~44/4 
= 11). All of the Titan concepts except the two-balloon PH option show very little excursion (~ 
0.3 km) above the nominal 11 km maximum altitude, with the two balloon PH option at a modest 
0.7 km. Although one might expect that the low gravity would result in large altitude 
displacements, this is compensated by the low solar heating and assumed low vertical wind that 
drive the perturbation.  

The final key difference between the Titan and Venus aerobot results is the much reduced 
energy required to decrease altitude at Titan. All of the Titan aerobots require more than an order 
of magnitude less energy to change altitude as a result of the much lower superpressures and 
reduced pumping or compression requirements due to the smaller density ratios between the 
maximum and minimum altitude. Although there are some energy differences between the Titan 
concepts, the values are so small that energy may not be a significant discriminator between the 
concepts. This mirrors the conclusion for overall system mass comparisons in that while the MC 
and PH aerobots are the lowest mass, the quantitative difference is so small that it is probably not 
a strong discriminator in choosing between the concepts. 
 

Table 4: Titan Atmosphere Properties 
 

Altitude 
(km) 

Temperature 
(K) 

Pressure 
(Pa) 

Density 
(kg/m3) 

13.8 81.4 72,490 2.935 

11.3 83.2 82,740 3.277 

9.5 84.4 90,940 3.551 

8.3 85.4 96,990 3.743 

6.7 86.8 105,140 3.992 

5.5 87.8 111,840 4.198 

4.5 88.8 117,830 4.373 

3.2 90.0 125,720 4.604 

2.0 91.2 133,370 4.820 

1.1 92.3 139,380 4.977 

0.3 93.1 144,670 5.121 

0 93.7 146,700 5.160 
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Simulation Results 
 
The point design calculations described above are based on simplified spreadsheet and Matlab-

level tools that compute neutral buoyancy points with simplifying assumptions. The next level of 
analysis sophistication requires a high fidelity tool that computes the dynamics and 
thermodynamics in a full physics-based simulation. We have developed such a dynamics-based 
simulation model for variable altitude balloons using the Dynamics Simulator for Entry, Descent 
and Surface Landing (DSENDS) tool. DSENDS is a multi-mission flight dynamics modeling and 
simulation tool developed by the Dynamics and Real Time Simulation (DARTS) lab at JPL14. 
DSENDS is one of a family of simulation environments that build on the common Dshell 
framework. In addition to the DSENDS environment, the Rover Analysis, Modeling and 
Simulation (ROAMS) and RoboDarts simulation environments provide functionality tailored to 
vehicle dynamics and robotics applications, respectively. The underlying Dshell framework 

Table 5: Summary of Titan Aerobot Point Design Results for 1 to 11 km Altitude Range 
 

 PH 
(balloon in 

balloon) 

PH 
(two 

balloon) 

AB 
(two 

balloon) 

AB 
(one 

balloon) 

MC 
(one 

balloon) 
Maximum nominal altitude (km) 11 11 11 11 11 

Minimum nominal altitude (km) 1 1 1 1 1 

Zero-P (ZP) balloon diameter 5.6 4.2 5.6 N/A N/A 

Superpressure (SP) balloon 
diameter 

4.5 4.4 5.0 5.5 5.5 

ZP balloon areal density (g/m2) 75 75 75 75 N/A 

SP balloon areal density (g/m2) 140 140 160 120 140 

Nominal Superpressure (Pa)  
[Night, High Altitude, No wind] 

3,100 2,700 3,300 2,400 1,900 

Nominal Superpressure (Pa)  
[Night, Low Altitude, No wind] 

3,500 3,100 3,700 2,700 3,200 

Maximum superpressure (Pa) 6,700 6,200 7,600 4,400 4,600 

Maximum Superpressure Condition  
Daylight/Night, High/Low, 
Updraft/No wind/Downdraft 

D,H,U D,H,U D,H,U D,H,U D,L,N 

Minimum superpressure (Pa) 
[Night, Low altitude, Downdraft] 

1,000 1,000 1,000 1,000 1,000 

Total helium mass 39.5 38.4 41.0 39.6 38.7 

Total balloon mass 25.3 19.8 31.1 23.3 20.8 

Total aerobot mass (w/o helium) 225.3 219.8 231.1 223.3 220.8 

Maximum perturbed altitude (km) 11.7 11.3 11.3 11.2 11.2 

Daylight energy required max to 
min altitude (J) 

93,600 82,800 136,300 113,700 93,900 

Nighttime energy required max to 
min altitude (J) 

62,000 52,400 78,500 75,100 61,100 

 

D
ow

nl
oa

de
d 

by
 N

A
SA

 J
E

T
 P

R
O

PU
L

SI
O

N
 L

A
B

O
R

A
T

O
R

Y
 o

n 
Ju

ne
 2

4,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
31

94
 



20 
 

provides core functionality for building complex multibody dynamics models and setting up, 
deploying and interacting with simulations. For speed, Dshell and DSENDS are written in C++ 
and provide a core set of models and reusable components. To support rapid simulation throughput 
and extensibility via third-party libraries, simulations are set up and deployed via a scripted Python 
interface. Refer to Ref. 14 for additional information. 

DSENDS has been used to support a variety of NASA missions including Mars Phoenix, Mars 
Science Lab, the Insight Lander, and the Low Density Supersonic Decelerator (LDSD). 
Additionally, the software has been used to support the International Space Station (ISS), the Space 
Launch System (SLS) and future flight missions through a collaboration with Johnson Space 
Center. DSENDS provides sophisticated gravitational, aerodynamic and atmospheric models to 
support entry, descent and landing applications and has successfully been used to model balloons 
and parachutes to support the LDSD mission14 and others. Refer to Ref. 15 for additional 
information. 
 
Augmented Single Balloon Model 

The primary governing equation for a one-dimensional DSENDS balloon model considering 
mass and virtual mass effects, gravitational, buoyancy and drag forces is:  
 

( 𝑚௧௢௧ + 𝐶௠𝜌௔𝑉)
𝑑ଶ𝑧

𝑑𝑡ଶ
= 𝑔𝜌௔𝑉 − 𝑔𝑚௧௢௧ −  

1

2
𝜌௔𝐶஽

𝑑𝑧

𝑑𝑡
ฬ
𝑑𝑧

𝑑𝑡
ฬ 𝐴 (54) 

  
where 𝑚௧௢௧ is the total system mass, 𝐶௠ is the virtual mass coefficient, 𝜌௔ is the atmospheric 
density, V is the balloon volume, 𝑔 is the acceleration due to gravity, 𝐴 is the cross-sectional area 

of the balloon and 
ௗ௭

ௗ௧
 represents the vertical velocity. The quantity (𝑚௧௢௧ + 𝐶௠𝜌௔𝑉) represents the 

contribution due to mass and virtual mass effects, 𝑔𝜌௔𝑉 represents buoyancy forces, 𝑔𝑚௧௢௧ 

represents gravitational forces, and the quantity 
ଵ

ଶ
𝜌௔𝐶஽

ௗ௭

ௗ௧
|

ௗ௭

ௗ௧
| 𝐴 represents aerodynamic drag 

force. 
To support this effort, the standard DSENDS balloon buoyancy model above was augmented 

with a thermodynamic model and gas venting, which were first proposed by Carlson and Horne16. 
The thermodynamic model makes the simplifying assumption that the gas and film temperatures 
are spatially averaged values (i.e. temperature is uniform across the gas and film). Additionally, 
the atmosphere and balloon lifting gases are treated as ideal gases. The heat balance for balloon 
film is given as: 

 

�̇�௙ = 𝑚௙𝑐௙

𝑑𝑇௙

𝑑𝑡
 (55) 

 
where �̇�௙represents the net heat flux to the balloon film,  𝑚௙is the balloon film mass, 𝑐௙is the 

specific heat of the balloon film and 
ௗ்೑

ௗ௧
 represents the rate of change of film temperature with 

respect to time. 
The heat balance for the balloon lifting gas is:   
 

𝑚௚𝑐௣௚

𝑑𝑇௚

𝑑𝑡
= �̇�௚ −

𝑔𝑀௔𝑚௚𝑇௚

𝑇௔𝑀௚

𝑑𝑧

𝑑𝑡
 (56) 
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where 𝑚௚ represents the balloon gas mass, 𝑐௣௚ is the specific heat of the balloon gas, 𝑇௚ is the 
balloon gas temperature, 𝑇௔ is the temperature of the atmosphere, �̇�௚ represents the net heat flux 
to the balloon gas, 𝑀௔ is the molecular weight of the atmosphere, and 𝑀௚ is the molecular weight 
of the balloon gas. 

The mass balance for the lifting gas is: 
 

𝑑𝑚௚

𝑑𝑡
=

𝜌௚ 𝑀௚

𝑅𝑇௚
 �̇�௚ − �̇�௩ (57) 

where 𝜌௚is the density of the balloon gas, 𝑅 is the universal gas constant and �̇�௚ and �̇�௩ are the 
balloon gas volume flow rates for expelling gas and valving respectively.   

Additionally, the heat flux to the balloon film is a function of conductive, radiative and 
convective heat transfer, and is given as: 
 

�̇�௙ = [𝐺𝛼௪௘௙௙ ൬
1

4
+

1

2
𝑟௘൰ + 𝜖௜௡௧𝜎൫𝑇௚

ସ − 𝑇௙
ସ൯ + 𝐶𝐻௚௙൫𝑇௚ − 𝑇௙൯ +  (58) 

𝐶𝐻௙௔ ൫𝑇௔ − 𝑇௙൯ − 𝜖௪௘௙௙𝜎𝑇௙
ସ + 𝜖௪௘௙௙𝜎𝑇஻஻

ସ ]𝑆 
 
where G is the solar constant, 𝛼௪௘௙௙ is the effective solar absorptivity of the balloon film, 𝑟௘is 
planet’s reflectivity, 𝜖௜௡௧is the effective interchange IR emissivity, 𝜎 is the Stefan Boltzmann 
constant, 𝐶𝐻௚௙ is the convective heat transfer coefficient between balloon film and gas, 𝐶𝐻௙௔ is 
the convective heat transfer coefficient between balloon gas and film, 𝑇஻஻ is the black ball 
temperature and 𝑆 is the balloon surface area. Likewise, the heat flux to the balloon gas is: 
 

�̇�௚ = ൣ𝐺𝛼௚௘௙௙(1 + 𝑟௘) − 𝜖௜௡௧𝜎൫𝑇௚
ସ − 𝑇௙

ସ൯ − 𝐶𝐻௚௙൫𝑇௚ − 𝑇௙൯ − 𝜖௚௘௙௙𝜎𝑇௙
ସ + 𝜖௚௘௙௙𝜎𝑇஻஻

ସ ൧𝑆 (59) 
 
where 𝜖௚௘௙௙represents the effective IR emissivity of the balloon gas. Refer to 16 for additional 
implementation details. 

The above governing equations were written in C++ and embedded into a DSENDS balloon 
assembly. To validate the updated model, a single balloon from the Carlson and Horne paper was 
configured and deployed using the DSENDS Python interface. Atmospheric temperatures, 
pressures and gas properties were encoded in look-up tables and obtained using spline 
interpolation. The governing equations were numerically integrated using a variable rate, variable 
order implicit integrator based on the Adams-Moulton formula17. Overall excellent 
correspondence to the Carlson and Horne theory and flight data was found, lending confidence to 
the numerical implementation for the single balloon model. 
 
Tandem Balloon Model 

We have performed some initial simulations of the Venus Pumped Helium (PH) two-balloon 
configuration using a two-assembly version of the DSENDS model. To support exchange of gas 
between the two balloons via a pump, the two balloon models were configured to interface with 
one-another during simulation run-time via a message passing interface. Venus atmospheric 
temperatures, pressures and gas properties were encoded in a look-up table and were made 
accessible to both balloon models during the simulation. The balloon geometric and mass 
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properties for the PH (two balloon) configuration are the 
same as listed in Table 2. A schematic of the balloon model 
for this simulation is shown in Figure 2. 

The atmospheric gas properties were obtained with the 
assumption that the Venus atmosphere is 97% CO2 and 3% 
N2. Additional gravitational parameters are summarized in 
Table 6.  
 

Table 6: Venus Gravitational Parameters 
Description Value 

Mass (kg) 4.8675e24 

Equatorial radius (km) 6051.8 

Mean density (kg/m3) 5243 

 
Two scenarios were simulated with a preliminary version 
of this tandem balloon model for Venus.  Both scenarios 
are at night.  In the first simulation, we compute the ascent 
of the PH tandem balloon system from 52 km up to 60 km.  
This is shown in Figure 3. The transfer (pumping) of helium 
from the superpressure reservoir to the main zero pressure 
balloon was specified to take place over 20 hours.   
 

 

Figure 3: Ascent from 52 km up to 60 km over 20 hours 

 
Note that the starting and ending altitudes are slightly off from 52 and 60 km due to the small 
effect of infrared fluxes and resulting thermal behavior of the balloons, something not accounted 
for in the earlier simplified neutral buoyancy calculations.  

Figure 2:  Schematic diagram of Pumped 
Helium tandem balloon model investigated 
in DSENDS simulation. 
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Figure 4: Vertical motion of tandem PH balloon with vertical updraft of 3 m/s starting at 10 minutes 
(denoted with the vertical red line) 

 
In the second simulation, the tandem balloon system is at equilibrium and then encounters an 

updraft of 3 m/s starting at 10 minutes. See Figure 4 for the resulting behavior. The aerobot shows 
a rapid initial ascent that tapers off as the superpressure balloon generates less and less buoyancy 
in the lower density higher altitudes until an equilibrium is reached at 62.2 km. This displacement 
to 62.2 km is almost the same as the 62.1 km value estimated with the neutral buoyancy calculation 
as listed in Table 2. The time constant for this displacement to the new equilibrium is 
approximately 24 minutes if modeled as a first order system. 
 

 
Conclusions 

 
This paper analyzes variable altitude helium aerobots for the robotic exploration of Venus and 

Titan. Such balloon-based vehicles can provide a rich science return in future missions by 
providing atmospheric data across a wide altitude range and, in the case of Titan, conducting aerial 
reconnaissance of the surface and potentially acquiring and analyzing surface material. Altitude 
control also allows for the possibility of providing some amount of trajectory control on the 
principle that there can be different wind directions at different altitudes, a feature exploited with 
comparable terrestrial balloon vehicles such as the Google Loon and WorldView Stratolite. 

Theoretical derivations for the limiting case of equal helium and atmospheric gas temperatures 
show two linear scaling relationships depending on the type of balloon. The superpressure linearly 
scales with atmospheric absolute temperature for the pumped helium and pumped air options, but 
scales linearly with atmospheric pressure for the mechanical compression option. Superpressure is 
therefore not a free design variable; if the superpressure is specified at one equilibrium altitude, it 
is determined for all altitudes.  
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Approximate point designs for specified Venus and Titan mission scenarios enable first order 
comparisons between the different aerobot concepts. The pumped helium aerobot option shows 
the lowest vehicle mass and lowest energy consumption for changing altitude in the selected Venus 
mission scenario, but with a high superpressure due to solar heating. The air ballast options are the 
heaviest and most energy intensive, with the mechanical compression balloon between these two 
extremes. The differences are significant, almost a factor of two in mass and a factor of five in 
energy between best and worst, and therefore serve as a clear discriminator. Future work is 
required to determine if these results can be generalized across the entire parameter space of design 
options for candidate Venus missions. 

Titan balloons are roughly an order of magnitude less massive than Venus balloons due to the 
higher atmospheric density at the chosen flight altitudes and much lower superpressure levels. The 
low superpressure requirements for Titan also result in an order of magnitude smaller energy 
consumption compared to the Venus mission scenario. The Titan point design results show little 
difference between the different aerobot concepts on mass or energy consumption. 

The DSENDS-based numerical simulation model presented in this paper provides the 
foundation to investigate other balloon topologies and more complex models. Preliminary 
calculations of a pumped helium balloon design show good agreement with the simplified neutral 
buoyancy calculations. In the future, as balloon designs evolve and mature, the DSENDS 
framework can be used to assess their performance in more complex time-varying simulations. 
Additionally, the DSENDS interface to sophisticated aerodynamic drag models enables 
investigating the effects of planetary wind currents and variable balloon morphologies. 
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