
The 5th Joint International Conference on Multibody System Dynamics

June 24 – 28, 2018, Lisboa, Portugal

Computing Inter-Body Constraint Forces in Recursive Multibody
Dynamics

Abhinandan Jain1

1Mobility and Robotic Systems, Jet Propulsion Laboratory/California Institute of Technology, jain@jpl.nasa.gov

ABSTRACT Minimal coordinate dynamics models are able to use recursive methods that avoid the
need for Lagrange multipliers while solving the equations of motion. This approach is made possible
by the rich underlying structure of the dynamics model that allows for the analytical factorization
and inversion of the mass matrix. The absence of the Lagrange multipliers also means that inter-
body constraint forces are not computed as part of the solution process. The general misconception is
that additional expensive computations are needed to compute these constraint forces, and that these
additional costs overcome the computational advantages of the recursive methods. In this paper we
address this criticism of the recursive methods and show that they are completely unfounded. We show
that there are simple and very low cost methods available to compute the constraint forces that directly
use articulated body algorithm quantities that are by products of the recursive solution process.

1 Introduction

The choice of a dynamics modeling approach is a key step towards solving the equations of motion of multibody
systems for time-domain simulations. A popular choice of a dynamics model is the non-minimal coordinates
approach that uses absolute coordinates for the individual bodies, and treats the inter-body hinges as explicit
bilateral constraints for the system dynamics. This approach uses Lagrange multipliers to compute the inter-body
constraint forces as part of the solution process, but requires a DAE solver to integrate the non-minimal coordinates.

An alternative approach is to use minimal coordinate dynamics models. The recursive methods for this ap-
proach avoid constraints and the need for Lagrange multipliers, and directly solve for the generalized accelera-
tions. This is made possible by exploiting the rich underlying structure that allows for the analytical factorization
and inversion of the mass matrix [1]. Despite the availability of these faster O(N) recursive algorithms [1, 2] for
solving the equations of motion, and the ability to use simpler ODE solvers, the added complexity of such models
has been a deterrence to their wider use. We focus in this paper on a perceived shortcoming for these methods
in the omission of the computation of inter-body constraint forces in the solution process when at times they are
needed for monitoring internal stresses or for computing frictional forces. It is generally believed that additional
expensive computations are needed to compute these constraint forces, and that these additional costs overcome
the computational advantages of the recursive methods.

In this paper we address this criticism of the recursive methods and show that they are completely unfounded.
We show that there are simple and very low cost methods available to compute the constraint forces should the
need arise. The methods directly use the articulated body algorithm quantities that are by products of the recursive
solution process. The main expression for computing the inter-body constraint forces has the form

f(k) = P(k)z(k)+α(k) (1)

Here f(k) denotes the inter-body constraint spatial force between the kth body and its parent, while P(k), z(k) and
α(k) are articulated body quantities available from the recursions used in solving the equations of motion. This
expression provides a very inexpensive way to compute the constraint force - and needs only be used only when

such forces are explicitly needed! While Eq. 1 is not new for tree-topology rigid body multibody systems [1, 3], it
is not well known, leading to the above mentioned misconceptions about the recursive methods.

In this paper we look in further detail at the topic of computing constraint forces for multibody systems. For
rigid, tree multibody systems we explain the basis for Eq. 1 and its derivation. We also derive additional useful
variants of this expression.

We next examine the same topic of constraint forces for more general multibody systems. We begin by looking
at the case when there are non-rigid flexible bodies in a tree-topology multibody system. We show that a form of
Eq. 1 continues to apply in this case.

We next look at closed-chain systems. We pursue two paths for such systems. The first is the tree-augmented
dynamics model, where the system is decomposed into a spanning tree together with additional cut-joint con-
straints. We derive an extension of the above approach for computing the inter-body constraint forces for such
dynamics models.

An alternative dynamics modeling approach for closed-chain systems is the more recently developed constraint
embedding approach. In this approach, the original graph topology is converted into a tree-topology system using
body aggregation and compound bodies. The resulting minimal-coordinates dynamics model can be solved using
a form of the standard recursive methods. We extend the above approach for solving for constraint forces to such
constraint embedding based dynamics models.

2 Rigid-Body. Minimal Coordinate Tree Dynamics

The aim of this section is to briefly summarize the essential ideas underlying spatial operators leading up to the
Newton-Euler Operator Factorization M(θ) = HφMφ∗H∗ of the manipulator mass matrix. While this is done
here for a serial graph manipulator, the factorization results apply to more general class of complex joint-connected
mechanical systems, including tree configurations with flexible links and joints [4].

Consider a serial manipulator with N rigid links. The links are numbered in increasing order from tip to base.
The outer-most link is link 1, and the inner-most link is link N. The overall number of degrees-of-freedom for
the manipulator is N. There are two joints attached to the kth link. A coordinate frame Ok is attached to the
inboard joint, and another frame O+

k−1 is attached to the outboard joint. Frame Ok is also the body frame for the
kth link. The kth joint connects the (k+ 1)st and kth links, and its motion is defined as the motion of frame
Ok with respect to frame O+

k . When applicable, the free-space motion of a manipulator is modeled by attaching a
6 degree-of-freedom joint between the base link and the inertial frame about which the free-space motion occurs.
However, in this paper, without loss of generality and for the sake of notational simplicity, all joints are assumed
to be single rotational degree-of-freedom joints with the kth joint coordinate given by θ(k). Extension to joints
with more rotational and translational degrees-of-freedom is straightforward [5].

The transformation operator φ(k,k−1) between the Ok−1 and Ok frames is

φ(k,k−1) =

(
I3 l̃(k,k−1)
0 I3

)
∈R6×6

where l(k,k− 1) is the vector from frame Ok to frame O(k−1), and l̃(k,k− 1) ∈ R3×3 is the skew–symmetric
matrix associated with the cross-product operation. We use coordinate free notation for notational simplicity.

The spatial velocity of the kth body frame Ok is V(k) = [ω∗(k),v∗(k)]∗ ∈R6, where ω(k) and v(k) are the
angular and linear velocities of Ok. With h(k) ∈R3 denoting the kth joint axis vector, H(k) = [h∗(k),0] ∈R1×
R6 denotes the joint map matrix for the joint, and the relative spatial velocity across the kth joint is H∗(k)θ̇(k).
The spatial force of interaction f(k) across the kth joint is f(k)= [N∗(k),F∗(k)]∗ ∈R6, where N(k) and F(k)
are the moment and force components respectively. The 6× 6 spatial inertia matrix M(k) of the kth link in the
coordinate frame Ok is

M(k) =

(
J (k) m(k)p̃(k)

−m(k)p̃(k) m(k)I3

)
2

where m(k) is the mass, p(k)∈R3 is the vector from Ok to the kth link center of mass, and J (k)∈R3×3 is the
rotational inertia of the kth link about Ok. I3 is the 3×3 identity matrix.

The recursive Newton–Euler equations of motion are [6, 7]

V(N+1)= 0; α(N+1)= 0
for k = N · · ·1
V(k) = φ∗(k+1,k)V(k+1)+H∗(k)θ̇(k)
α(k) = φ∗(k+1,k)α(k+1)+H∗(k)θ̈(k)+a(k)

end loop

f(0)=0
for k = 1 · · ·N

f(k) = φ(k,k−1)f(k−1)+M(k)α(k)+b(k)

T(k) = H(k)f(k)

end loop

(2)

where T(k) is the applied moment at joint k. The nonlinear, velocity dependent terms a(k) and b(k) are respec-
tively the Coriolis acceleration and the gyroscopic force terms for the kth link.

The “stacked” notation θ=col
{
θ(k)
}n
k=1
∈ RN is used to simplify the above recursive Newton-Euler equa-

tions. This notation [8] eliminates the arguments k associated with the individual links by defining composite
vectors, such as θ, which apply to the entire system. We define

T = col
{
T(k)
}n
k=1
∈RN V = col

{
V(k)

}n
k=1
∈R6N

f= col
{
f(k)
}n
k=1
∈R6N α= col

{
α(k)
}n
k=1
∈R6N

a = col
{
a(k)
}n
k=1
∈R6N b = col

{
b(k)
}n
k=1
∈R6N

In this notation, the equations of motion in Eq. 2 can be re-expressed as [7, 9]:

V = φ∗H∗θ̇; α= φ∗[H∗θ̈+a] (3)

f= φ[Mα+b]; T =Hf=Mθ̈+C

where the mass matrix M(θ)=HφMφH∗; C(θ, θ̇)=Hφ[Mφ∗a+b] ∈RN is the Coriolis term;H= diag
{
H(k)

}n
k=1
∈

RN×6N;M= diag
{
M(k)

}n
k=1
∈R6N×6N; and φ ∈R6N×6N is

φ= (I−Eφ)
−1 =

I 0 . . . 0

φ(2,1) I . . . 0
...

...
. . .

...
φ(n,1) φ(n,2) . . . I

 (4)

with φ(i, j) = φ(i, i−1) · · ·φ(j+1, j) for i > j. The shift operator Eφ ∈R6N×6N is defined as

Eφ =

0 0 0 0 0
φ(2,1) 0 . . . 0 0

0 φ(3,2) . . . 0 0
...

...
. . .

...
...

0 0 . . . φ(N,N−1) 0

(5)

3

Also the φ̃ operator is defined as φ− I. It can be shown that [1]

φ̃= φ− I= Eφφ= φEφ (6)

2.1 Mass Matrix Factorization and Inversion

The articulated body inertia, P(k), for the kth body can be obtained via the following tip-to-base recursive solution
to a Riccati equation [1].

P(0) = 0, τ(0) = 0
for k = 1 · · ·N
ψ(k,k−1) = φ(k,k−1)τ(k−1)

P(k) =ψ(k,k−1)P(k−1)ψ∗(k,k−1)+M(k)

D(k) =H(k)P(k)H∗(k)

G(k) = P(k)H∗(k)D−1(k)

K(k+1,k) = φ(k+1,k)G(k)

τ(k) = I−G(k)H(k)

end loop

(7)

The P() matrices play a key role in the recursive techniques for minimal coordinate dynamics. We can use it to
define the block diagonal operator P as

P
4
= diag

{
P(k)
}n
k=1

∈R6n×6n (8)

and the following additional spatial operators:

D
4
= diag

{
D(k)

}n
k=1

=HPH∗ ∈RN×N

G
4
= diag

{
G(k)
}n
k=1

= PH∗D−1 ∈R6n×N

K
4
= EφG ∈R6n×N

τ
4
= diag

{
τ(k)
}n
k=1

= GH ∈R6n×6n

τ
4
= diag

{
τ(k)
}n
k=1

= I−τ ∈R6n×6n

P+ 4
= diag

{
P+(k)

}n
k=1

= τPτ∗ = τP= Pτ∗ ∈R6n×6n

Eψ
4
= Eφτ ∈R6n×6n

ψ
4
= (I−Eψ)

−1 ∈R6n×6n

ψ̃
4
= ψ− I ∈R6n×6n

(9)

The operators D, G, τ, τ, and P+ are all block diagonal. Theψ spatial operator shares the same structural properties
as the φ operator.

Using these spatial operators one can obtain the following operator factorizations of the mass matrix and its
inverse [1]:

M=HφMφ∗H∗

= [I+HφK]D[I+HφK]∗

[I+HφK]−1 = I−HψK

M−1 = [I−HψK]∗D−1[I−HψK]

(10)

4

These mass matrix expressions have been derived and used extensively [3, 7–13], to develop a variety of spatially
recursive algorithms for forward dynamics, for both rigid and flexible multibody systems of arbitrarily specified
topologies, as well as closed-form analytical expressions for the inverse of the mass matrix. The spatial operators
ψ, D correspond to a suitably defined spatially recursive Kalman filter, with the spatial operator K representing
the Kalman gain for this filter. We also refer to these operators ψ, D and K as”articulated” quantities, because of
their relationship to the articulated inertias first introduced by [14].

The mass matrix factor [I+HφK] is a square, invertible matrix and so is its inverse [I−HψK].

2.2 O(N) Forward Dynamics

Using the expression for the mass matrix inverse in Eq. 10, and some additional spatial operator identities, it can
be shown that [3]

θ̈=M−1(T−C) = [I−HψK]∗D−1[I−HψK](T−C) (11)

This expression can be broken down into the following sequence of simpler expressions:

z = ψ(KT+Pa+b)

ε = T−Hz = T−Hψ(KT+Pa+b)

ν = D−1ε = D−1[T−Hψ(KT+Pa+b)]

z+ = z+G∗ε

α = ψ(H∗ν+a) = ψ∗(H∗D−1[T−Hψ(KT+Pa+b)]+a)

α+= E∗φα

θ̈ = ν−G∗α+ = [I−HψK]∗D−1[T−Hψ(KT+Pa+b)]−K∗ψ∗a

(12)

These new operator expressions can be converted into recursive computational algorithms which do not require the
explicit computation of the component operators. The resulting O(N) forward dynamics procedure is as follows:

z(0) = 0, T(0) = 0

for k = 1 · · ·N
z(k) =ψ(k,k−1)z(k−1)+P(k)a(k)+b(k)+K(k,k−1)T(k−1)

ε(k) = T(k)−H(k)z(k)

ν(k) =D−1(k)ε(k)

end loop

(13)

α(n+1) = 0
for k = N · · ·1
α+(k) = E∗φα(k+1)

θ̈(k) = ν(k)−G∗(k+1,k)α+(k)

α(k) = τ∗(k)α+(k+1)+H∗(k)ν(k)+a(k)

end loop

This algorithm includes the recursive Riccati equation steps for the computation of the P(.) and z(.) quantities.
The fact that the computational cost of this algorithm is O(N) follows from the fact that the computational cost of
each of the steps in the above algorithm is fixed, and each of these steps is carried out N times during the course
of the algorithm.

As we see here, this forward dynamics algorithm does not require the explicit computation of either M or C. It
does not require the explicit computation of any of the spatial operators either. It illustrates the ease with which the

5

high level operator level manipulations can be used to establish key identities and results, and at a later stage when
the time for computations arises, these results can be mapped into highly efficient computational algorithms. While
we have focused on serial-graph systems, all of the development in this section extend directly to tree-topology
systems [5].

2.3 Computing Inter-Body Force

The AB forward dynamics algorithm described in the previous section does not explicitly compute the f(k) body
interaction spatial forces. These forces may be required in certain situations. One option is to use the body
spatial acceleration computed in the forward dynamics algorithm to run the second tip-to-base recursion in the
Newton-Euler inverse dynamics algorithm to compute these spatial forces. This is expensive and unnecessary. The
following describes a better alternative based on the articulated body model that avoids the additional recursion
and allows us to directly compute f(k) for any link, as needed. The inter-link spatial forces f are given by:

f = P(α−a)+z = P+α++z+ (14)

The derivation of the above expression involves several spatial operator transformations that are described in detail
in [1] including the following:

φMψ∗ = P+ φ̃P+Pψ̃
∗ (15)

We paraphrase the derivation here and refer the reader to this reference for the full details.

f
3
= φ[Mα+b]

12
= φ

[
Mψ∗(H∗ν+a)+b

]
16
= [φ̃P+Pψ](H∗ν+a)+φb

12
= φ̃PH∗ν+ φ̃Pa+Pα+φb

6,12
= φKε+φPa−Pa+Pα+φb

12
= P[α−a]+z

This establishes the first half of Eq. 14.
With α+ = E∗φα, it can then be shown in [1] that α= τ∗α++H∗ν+a. Using the following identity [1]

α= τ∗α++H∗ν+a (16)

it can be further shown that [1]

f
14
= P(α−a)+z

17
= P[τ∗α++H∗ν+a]−Pa+z

9,12
= P+α++PH∗ν+z+−Gε

12
= P+α++z+ (17)

The component expression for the kth body corresponding to Eq. 14 and Eq. 18 is:

f(k) = P(k)(α(k)−a(k))+z(k) = P+(k)α+(k)+z+(k) (18)

It is noteworthy that these expressions for the inter-body force continue to hold even for prescribed hinges. The
additional computational cost for evaluating the inter-body force is small once the equations of motion have been
solved using the articulated body inertia algorithm. This is so because the required quantities in Eq. 19 are a by-
product of this algorithm, and thus evaluating the inter-body force simply requires a matrix/vector 6-dimensional
product and summing a couple of 6-vectors, and inverse dynamics computations are not needed. As we will see
in the following sections, similar expressions continue to hold for more complex multibody systems involving
flexible bodies and closed-chain topologies.

In the event that a hinge consists of multiple sub-hinges, such as universal or gimbal hinges, the inter-body
spatial force value remains the same across them all (except for rigid body transformation for a prismatic sub-
hinge) since there are no D’Alembert force “losses” from the mass-less sub-hinges.

6

3 Flexible Multibody Systems

We now turn to the case where the tree-topology system may have flexible bodies. Assumed modes provide a
series expansion representation of the deformation field and are often used to represent the deformation of flexible
bodies. A subset of the modes can be used for reduced order models for control system design. Lumped mass
models are typically the starting point for developing assumed mode models.

There is a close relationship between the choice of a body reference frame and the type of assumed modes. The
complete motion of the flexible body is defined by the motion of the body reference frame and the deformation of
the body with respect to the body frame. In the multibody context, it is often convenient to choose the location
of the kth body reference frame Bk as a material point on the body fixed to node Ok at the inboard hinge. For
this choice, the assumed modes are cantilever modes, and node Ok exhibits zero deformation (und(Ok) = 0).
Free–free modes are also used for representing body deformation, and are often preferred for control analysis and
design. For these modes, the reference frame Bk is not fixed to any node, but is rather assumed to be fixed to the
undeformed body, and, as a result, all nodes exhibit non-zero deformation. The dynamics models and algorithms
developed here handle both types of modes.

Assume that a set of nmd(k) assumed modes has been chosen for the kth body. Let Πr(Ojk) ∈ R
6 denote

the modal spatial displacement vector at the Ojk node for the rth mode, and η(k) ∈ Rnmd(k) denote the vector
of modal deformation coordinates for the kth body. The Πr(Ojk) ∈ R

6 modal spatial displacement vectors are
assumed to be constant and independent of the deformation of the body. The spatial deformation of node Ojk is
represented using modal coordinates as follows:

und(Ojk) =
nmd(k)∑
r=1

Πr(Ojk)ηr(k) (19)

ηr(k) denotes the rth element of η(k). Eq. 20 defines a linear relationship between the modal coordinates and the
deformation spatial displacements at the nodes. For cantilever modes,

Πr(Ok) = 0 for r= 1 · · ·nmd(k) (20)

Eq. 20 can be re-expressed as
und(Ojk) = Π(O

j
k)η(k) (21)

where the modal spatial displacement influence vector Π(Ojk) for the Ojk node is defined as:

Π(Ojk)
4
=
[
Π1(Ojk), · · · ,Πnmd(k)(O

j
k)
]nmd(k)
r=1

∈R6×nmd(k)

The Π(k) modal matrix for the kth body is defined as follows:

Π(k)
4
= col

{
Π(Ojk)

}nnd(k)
j=1

∈R6nnd(k)×nmd(k)

and relates the modal coordinates to the deformation field for the kth body as follows:

und(k)
22
= Π(k)η(k) (22)

The rth column of Π(k) is denoted Πr(k) ∈ R6nnd(k), and is the mode shape for the rth assumed mode for the
kth body.

The modal generalized coordinates parameterize the deformation of a body, while the hinge generalized coor-
dinates parameterize the large angle articulation motion of the body. Taken together, they completely characterize

7

the motion of a flexible body. Therefore, define the ϑ(k) generalized coordinates and ϑ̇̇̇(k) generalized velocities
vectors for the kth body as

ϑ(k)
4
=

[
η(k)

θ(k)

]
∈RN(k) and ϑ̇̇̇(k)

4
=

[
η̇̇̇(k)

θ̇̇̇(k)

]
∈RN(k) (23)

where N(k)
4
= nmd(k)+ rv(k) represents the overall number of velocity degrees of freedom associated with the

kth body. We next summarize the equations of motion for such a system.

3.0.1 Velocity level

The velocity recursion equation is

Vfl(k) =Φ
∗
fl(k+1,k)Vfl(k+1)+H∗fl(k) ϑ̇̇̇(k) (24)

and the partitioned form of Hfl(k) is

Hfl(k) =

[
HMfl(k)

HRfl(k)

]
(25)

Introducing a dummy variable k ′, we can rewrite Eq. 25 as

Vfl(k
′) = V(Ok) =Φ∗fl(k+1,k ′)Vfl(k+1)+H∗(k) θ̇̇̇(k)

Vfl(k) =

[
η̇̇̇(k)

V(k)

]
=Φ∗fl(k

′,k)Vfl(k ′)+H∗Mfl(k) η̇̇̇(k)
(26)

where
Φfl(k+1,k ′)

4
= Afl(k+1)φ(O+

k ,Ok) and Φfl(k
′,k)

4
= [0, φ(Ok,k)]

with

Afl(k+1) =

[
Π∗(O+

k)

φ(k+1,O+
k)

]
and HMfl(k)

4
= [I, −Π∗B(Ok)] where ΠB(Ok) = φ∗(Ok,k)Π(Ok)

Conceptually, each flexible body is replaced by two new bodies. The first body is assigned the kinematical and
mass/inertia properties of the flexible body and also its deformation generalized coordinates. The second virtual
body is mass-less, and has zero extent. It is assigned the hinge generalized coordinates. The serial-chain now
contains twice the number of bodies as the original one, with half the new bodies being fictitious ones. The tree
digraph associated with the new system contains twice as many nodes. The new H∗fl operator now has the same
number of columns, but twice the number of rows, as the original H∗fl operator. The new Φfl operator has twice
as many rows and columns as the original one.

Note that Eq. 27 can be written as

V(O+
k) =A∗fl(k+1)Vfl(k+1) = φ∗(k+1,O+

k)V(k+1)+Π(O+
k) η̇̇̇(k+1)

Vfl(k
′) = V(Ok) = φ∗(O+

k ,Ok)V(O+
k)+H

∗(k) θ̇̇̇(k)

V(k) = φ∗(Ok,k) [V(Ok)−Π(Ok) η̇̇̇(k)]

Vfl(k) =

[
η̇̇̇(k)

V(k)

] (27)

8

3.0.2 Acceleration level

At the acceleration level we have

αfl(k
′) = α(Ok) =Φ∗fl(k+1,k ′)αfl(k+1)+H∗(k)θ̈(k)+afl(k+1,k ′)

αfl(k) =

[
η̇̇̇(k)

α(k)

]
=Φ∗fl(k

′,k)αfl(k ′)+H∗Mfl(k)η̈(k)+afl(k
′,k)

(28)

Based on Eq. 28, we can re-express Eq. 29 as

α(O+
k) = φ

∗(k+1,O+
k)α(k+1)+Π(O+

k)η̈(k+1)+a(k+1,O+
k)

αfl(k
′) = α(Ok) = φ∗(O+

k ,Ok)α(O+
k)+H

∗(k)θ̈(k)+a(O+
k ,Ok)

α(k) = φ∗(Ok,k) [α(Ok)−Π(Ok)η̈(k)]+a(Ok,k)

αfl(k) =

[
η̈(k)

α(k)

] (29)

with

afl(k+1,k ′) = φ∗(O+
k ,Ok)a(k+1,O+

k)+a(O+
k ,Ok) and afl(k

′,k) =

[
0

a(Ok,k)

]
(30)

Note that afl(k+1,k ′) contains an additional H∗(k)θ̈(k) term if the hinge is prescribed.

3.0.3 Inverse dynamics forces level

At the inter-body forces level

ffl(k) =

[
fffl(k)

frfl(k)

]
=Φfl(k,k ′−1)ffl(k

′−1)+Mfl(k)αfl(k)+bfl(k)+K(k)ϑ(k)

Tm(k) = 0 =HMfl(k)ffl(k) = fffl(k)−Π
∗
B(Ok)frfl(k) = fffl(k

′)−Π∗(Ok)ffl(k ′)
ffl(k

′) =Φfl(k
′,k)ffl(k) = φ(Ok,k) frfl(k)

Tpr(k) =H(k)ffl(k
′)

(31)

3.0.4 ATBI matrices level

The mass matrix factorization and inversion expressions in Eq. 10 continue to apply here for flexible bodies though
with appropriately redefined spatial operators. Similarly the recursive algorithms based in Eq. 11 continue to apply
as well. For the ATBI matrices for the new kth “flexible” body we have (computed by

Pfl(k) =
∑

Φfl(k,k ′−1)P+
fl(k

′−1)Φ∗fl(k,k ′−1)+Mfl(k)

=

(
Pfffl Pfrfl(k)

Prffl(k) Prrfl(k)

)
=

(
I+
∑
Π∗(O+

k)P
+
fl(k

′−1)Π(O+
k)

∑
Π∗(O+

k)P
+
fl(k

′−1)φ∗(k,O+
k−1)∑

φ(k,O+
k−1)P

+
fl(k

′−1)Π(O+
k)

∑
φ(k,O+

k−1)P
+
fl(k

′−1)φ∗(k,O+
k−1)+M(k)

)
Dfl(k) =HMfl(k)Pfl(k)H

∗
Mfl(k)

= Pfffl −Pfrfl(k)ΠB(Ok)−Π∗B(Ok)µfl(k) where µfl
4
= Prffl(k)−Prrfl(k)ΠB(Ok)

Gfl(k) =

[
×

Gcr(k)

]
where Gcr(k) = µfl(k)D

−1
fl (k)

P+
fl(k) =

(
× ×
× P+

cr(k)

)
, where P+

cr(k) = Prrfl(k)−Gcr(k)µ
∗
fl(k)

(32)

9

For the ATBI matrices for the new k ′ “rigid” body we have

Pfl(k
′) = φ(Ok,k)P+

cr(k)φ
∗(Ok,k)

if prescribed

P+
fl(k

′) = Pfl(k
′)

else
Dfl(k

′) =H(k)Pfl(k
′)H∗(k)

Gfl(k
′) = Pfl(k

′)H∗(k)D−1
fl (k

′)

τfl(k
′) = I−Gfl(k

′)H(k)

P+
fl(k

′) = τfl(k
′)Pfl(k

′)

end if

(33)

3.0.5 ATBI filtering level

For the ATBI filter for the “flexible” body we have

z(k) =

[
zm(k)

zcr(k)

]
=
∑

Afl(k)φ(O+
k−1,Ok−1)z

+(k ′−1)+bfl(k)+

[
Pfrfl(k)

Prrfl(k)

]
a(Ok,k)+K(k)ϑ(k)

ε(k) = Tm(k)−zm(k)+Π∗B(Ok)zcr(k)
ν(k) =D−1

fl (k)ε(k)

z+(k) =

[
×

z+cr(k)

]
where z+cr(k) = zcr(k)+Gcr(k)ε(k)

(34)

For the ATBI filter for the “rigid” body we have

z(k ′) = φ(Ok,k)z+cr(k)+Pfl(k
′)afl(k+1,k ′)

if prescribed

z+(k ′) = z(k ′)

else
ε(k ′) = Tpr(k)−H(k)z(k

′)

ν(k ′) =D−1
fl (k

′)ε(k ′)

z+(k ′) = z(k ′)+Gfl(k
′)ε(k ′)

end if

(35)

10

3.0.6 ATBI smoother level

For the ATBI smoother for the “rigid” body we have (computed by DartsHinge:: updateATBISmootherCache())

α+
fl(k

′) = φ∗(O+
k ,Ok)A∗fl(k+1)αfl(k+1) (36)

= φ∗(O+
k ,Ok)

[
φ∗(k+1,O+

k)αcr(k)+1+Π(O+
k)η̈(k+1)

]
(37)

if prescribed
ffl(k

′) = P+
fl(k

′)α+
fl(k

′)+z+(k ′) = Pfl(k
′)α+
fl(k

′)+z(k ′)

Tpr(k) = H(k)ffl(k
′)

else
θ̈(k) = ν(k ′)−G∗fl(k

′)α+
fl(k

′)

end if

(38)

αfl(k
′) = α+

fl(k
′)+H∗(k)θ̈(k)+afl(k+1,k ′) (39)

For the ATBI smoother for the “flexible” body we have

α+
fl(k) =

[
0

α+
cr(k)

]
where α+

cr(k) = φ
∗(Ok,k)αfl(k ′)

η̈(k) = ν(k)−G∗cr(k)α
+
cr(k)

αfl(k) =

[
η̈(k)

αcr(k)

]
where αcr(k) = α+

cr(k)−ΠB(Ok)η̈(k)+a(Ok,k)

(40)

3.0.7 ATBI inter-body forces

For the inter-body forces, we have

ffl(k) =

[
fffl(k)

frfl(k)

]
= Pfl(k)(αfl(k)−afl(k

′,k))+z(k) = P+
fl(k)α

+
fl(k)+z+(k)

ffl(k
′) = Pfl(k

′)(αfl(k
′)−afl(k+1,k ′))+z(k ′) = P+

fl(k
′)α+
fl(k

′)+z(k ′)

(41)

Note that the second equation corresponds to the physically observable inter-body force at the hinge that we are
interested in. The structure of this expression identical to the one for the rigid body case in Eq. 19 seen earlier for
rigid-body systems. Once again, our earlier observations that the quantities needed to evaluate the inter-body force
are by products of the articulated body inertia algorithm for solving the equations of motion.

4 Closed-Chain Multibody Systems

So far we have studied tree-topology multibody systems. We now turn to closed-chain topology systems, i.e. a
tree topology sub-system subject to a set of closure constraints. Examples of such local loops include constraints
associated with geared motors, 4-bar linkages/wishbone suspensions, differentials etc. The presence of the local
loops implies that the system is no longer a tree-topology system. We focus on two approaches for working with
such systems. The first, the tree-augmented (TA) approach decomposes the system into a maximal spanning tree
based tree topology system, together with a minimal set of closure constraints. The constraint-embedding (CE)
approach uses graph transformations to eliminate the explicit constraints and convert the closed-topology into a
tree-topology system.

In this section we study the TA approach for closed-chain systems, and the problem of computing inter-body
forces for them. The CE approach is studied in Section 5. The tree formulation is section 2 directly applies to the
tree-topology system in the TA approach.

11

Let nc denote the dimensionality of the closure constraints on the system, Then there exists aG(θ,t)∈Rnc×N
matrix and a U(t) ∈ Rnc vector that defines the velocity domain constraint equation for the holonomic and non-
holonomic closure constraints on the system as follows:

G(θ,t) θ̇̇̇= U(t) (42)

We assume that G(θ,t) is a full-rank matrix. Observe that Eq. 43 is linear in the θ̇̇̇ generalized velocity coor-
dinates. These constraints effectively reduce the independent generalized velocities for the system from N to an
(N−nc) dimensional linear space,

The dynamics of closed-chain systems can be obtained by modifying the tree system dynamics to include the
effect of the closure constraints via Lagrange multipliers, λ ∈Rnc , as follows1

M(θ)θ̈+C(θ, θ̇̇̇)−G∗(θ,t)λ= T

G(θ,t) θ̇̇̇= U(t)
(43)

The −G∗(θ,t)λ term in the first equation represents the internal generalized constraint forces from the closure
constraints.

By differentiating the constraint equation, Eq. 44 can be rearranged into the following descriptor form:(
M G∗

G 0

)[
θ̈

−λ

]
=

[
T−C

Ú

]
where Ú

4
= U̇̇̇(t)− Ġ̇̇ θ̇̇̇ ∈Rnc (44)

One approach to solving the closed-chain dynamics equations of motion is to assemble the matrix on the left and
the vector on the right in Eq. 45 and solve the linear matrix equation for the θ̈ generalized accelerations. We on the
other hand pursue an alternative Schur complement-based solution approach for the TA models as described in the
following lemma.

The closed-chain dynamics generalized accelerations in Eq. 45 can be expressed as

θ̈= θ̈f+ θ̈δ (45)

where, the free generalized accelerations, θ̈f, the correction generalized accelerations, θ̈δ, and the Lagrange mul-
tipliers, λ, are given by

θ̈f
4
= M−1 (T−C) (46a)

λ = −
[
GM−1G∗

]−1
γ where γ

4
= Gθ̈f−Ú (46b)

θ̈δ
4
= M−1G∗ λ (46c)

The θ̈f = M−1(T − C) term represents the generalized accelerations solution for the dynamics of the tree
system while ignoring the closure constraints and is therefore referred to as the free generalized accelerations.
γ represents the acceleration-level constraint violation resulting from just the free dynamics of the system. The
GM−1G∗ matrix in Eq. 47b is the Schur complement of the matrix on the left hand side of Eq. 45. An intuitive
interpretation of Eq. 47b is that the constraint error spatial accelerations from the free-dynamics solution, together
with the Schur complement matrix allow the computation of the constraint forces necessary to nullify the errors.
Once the constraint forces are available, Eq. 47c uses them to obtain the generalized accelerations to correct the
free system dynamics solution. The solution to the closed-chain forward dynamics thus involves the following
steps:

1. Solve Eq. 47a for the θ̈f free generalized accelerations using the tree-topology articulated body inertia algo-
rithm in section 2.2.

1For a matrix A, the A∗ notation denotes its matrix transpose.

12

2. Use θ̈f and the GM−1G∗ Schur complement to solve for the λ Lagrange multipliers via Eq. 47b.

3. Use λ to solve Eq. 47c for the θ̈δ correction accelerations using the tree-topology articulated body inertia
algorithm in section 2.2.

4. Compute the θ̈ generalized accelerations using Eq. 46.

The TA closed-chain forward dynamics solution uses the tree ATB forward dynamics twice in Steps 1 and 3
respectively, and combines the results to obtain the complete solution. The expensive ATB matrix computations
sweep computations from Step 1 can be reused in Step 3 and do not need to be repeated.

The previously developed method for computing the inter-body forces for tree systems from section 2.3 can
be used in each of the articulated body inertia solutions, and combine their results to obtain the overall inter-body
forces for the closed-chain system!

At the cut-joints, the inter-body forces are even simpler to obtain since the Lagrange multiplier values evaluated
in Step 2 are precisely the inter-body forces for the cut-joint pair of bodies.

5 Constraint Embedding Dynamics

In this section we turn to using the constraint-embedding (CE) method for closed-chain topology systems. In this
approach, the constraints are eliminated by using a graph transformation to convert the closed-graph system into a
tree-topology system.

5.1 Constraint Sub-Groups

Let us now assume that within the multibody system, we have a a sub-graph of bodies with some closure constraints
among them. One consequence of the constraints is that the effective degrees of freedom associated with the bodies
in this sub-graph is less than the sum total of the hinge degrees of freedom. For simplicity, we assume that the
system has only a single such local loop, and that it has only only a single child branch.

Our first step is to isolate this sub-graph in order to clearly define its internal kinematics/dynamics relationships,
as well as its coupling to the rest of the system. For the purpose of exposition, we assume that the links have been
numbered so that the indices for the links in the sub-graph range from from i to j with i > j. Assume that the
ith link in the sub-graph is the child of the (i+ 1)th link and the (j− 1)th link is the child of the jth link. We
introduce a minimal number of cuts between the links internal to the sub-graph to convert it into a sub-tree. With
these cuts, we can now think of the original system as being a tree-topology system with each sub-graph subject
to additional internal constraints. Note that the location of the cuts is not unique in general. Putting aside the
constraints for the moment, we are now in a position to bring to bear the full development to the tree-system in
terms of defining the corresponding stacked vectors for generalized velocities θ̇̇̇, spatial velocities V, the Eφ, φ
and other spatial operators. While the operator identities and mass matrix factorization and inversions continue to
apply for the tree-system, they do not describe the correct system dynamics since they do not take into account
the internal constraints. Our next steps are to overcome this gap and embed the internal constraints into the tree
system’s dynamics so that they do indeed reflect the correct system dynamics.

5.2 Sub-graph Based Partitioning

Towards this, define the stacked spatial velocities vector VS = col
{
V(j), · · ·V(i)

}
, and the stacked generalized

velocities vector θ̇̇̇S = col
{
θ̇̇̇(j), · · · θ̇̇̇(i)

}
for the loop subgraph. The VS and θ̇̇̇S vectors are sub-vectors of the

13

full V and θ̇̇̇ vectors corresponding to only the links in the sub-graph as follows:

θ̇̇̇=

θ̇̇̇(1)
...

θ̇̇̇(j−1)

θ̇̇̇S

θ̇̇̇(i+1)
...
θ̇̇̇(n)

, V=

V(1)
...

V(j−1)

VS

V(i+1)
...

V(n)

(47)

The partitioning of θ̇̇̇ and V using the θ̇̇̇S and VS sub-vectors actually carries over to all the stacked vectors and
spatial operators for the tree system. Thus, the Eφ operator can be re-expressed in partitioned form as:

Eφ =

0 0 0 . . . 0 . . . 0 0
φ(2,1) 0 0 . . . 0

0 φ(3,2) 0 . . . 0 0
...

...
. . . · · · 0 · · ·

...
...

...
... φ(j,j−1) . . .

...
...

...
... · · · EφS . . .

...
...

...
... 0 . . .

...
...

...
... φ(i+1,i)

. . .
...

...
...

...
. . . · · · 0 · · ·

. . .
...

0 0 0 . . .φ(N,N−1) 0

(48)

Here EφS is the block element of Eφ corresponding to just the bodies in the sub-graph.

5.3 Reformulated Velocity Relationships

Define the ES and BS connector operators as:

ES
4
= [0,0, · · ·φ(i+1, i)]

BS
4
== [φ∗(j, j−1),0, · · ·0]∗ (49)

As can be observed from Eq. 5, ES and B∗S are also sub-blocks of Eφ that denote the coupling of the sub-graph
to links i+ 1 and j− 1 respectively. Using these operators, We can now re-state the spatial velocity relationships
between these links and the sub-graph as follows:

VS = E∗φS
VS+E∗SV(i+1)+H∗S θ̇̇̇S

V(j−1) = φ∗(j, j−1)B∗SVS+H∗(j−1) θ̇̇̇(j−1) (50)

In essence, Eq. 51 is a block-partitioned restatement of the system level velocity relationships. The first equation
defines how the parent (i+ 1)th body’s spatial velocity couples into the sub-graph while the second one defines
how the sub-graphs velocities couple into the outboard (j− 1)th body. Continuing on, we now define sub-graph
rigid body transformation operator φS analogous to Eq. 4 as

φS
4
= (I−EφS)−1 (51)

14

Note that φS is a sub-block of the full φ corresponding to the sub-graph’s bodies. With this we can rewrite the
first equation in Eq. 51 as

VS
51
= φ∗SE

∗
SV(i+1)+φ∗SH

∗
S θ̇̇̇S (52)

Comparing the structure of Eq. 51 and 52 with the velocity recursions in Eq. 2, we see that the parallels allow
us to identify the stacked vectors and operators associated with the sub-graph as though they corresponded to a
single aggregate link. From this perspective, the aggregate link’s link transformation matrix is φ∗SE

∗
S and joint

map matrix is φ∗SH
∗
S. VS is the spatial velocity for the aggregate link, and its associated generalized velocity

coordinates are θ̇̇̇S. In contrast with the other bodies that are all rigid, the aggregate link’s configuration varies
with the sub-graph’s coordinates.

We can continue on in a similar vein to develop recursions that paralleling the remaining ones in Eq. 2 for the
aggregate link. In effect, except for the constraints internal to the aggregate link, the structural equations for the
system with the aggregate link have been transformed into a form resembling those for tree-topology systems. The
next section addresses an issue that we have side-stepped so far - the constraints within the aggregate link

5.4 Embedding the sub-graph constraints

Having seen how to decompose and isolate sub-graphs of bodies as aggregate bodies we now turn to the subject of
handling closure-constraints within these sub-graphs. We describe here the process of embedding these constraints
directly into the dynamics model so that we can complete the transformation to the simpler tree topology model.
Note that the loop constraint imposes internal consistency conditions on the elements of VS, and these conditions
are met by admissible θ̇̇̇S generalized velocities that are consistent with the constraints.

Due to the internal constraints within the sub-graph, the elements of θ̇̇̇S are not independent but are instead
implicitly coupled by the constraint. At the coordinate level the constraint often takes the form of a nonlinear
algebraic relationship. However, at the velocity level, the generalized velocities in the system are subject to a
linear, though configuration dependent, constraint. Based on the rank of the constraint matrix, it is thus possible to
partition the sub-graph’s generalized velocities into sets of independent and dependent generalized velocities. The
independent set is denoted θ̇̇̇RS and is such that the dependent generalized velocities that satisfy the sub-graph
constraint can be obtained from them. In other words, there exists a (configuration dependent) mapping XS such
that

θ̇̇̇S = XS θ̇̇̇RS (53)

Thus we have

H∗S θ̇̇̇S =H∗RS θ̇̇̇RS where H∗RS
4
= H∗SXS (54)

Using Eq. 55 in Eq. 53 we have the following new velocity transformation relationship for the sub-graph in terms
of independent generalized velocities:

VS
52,53,55
= φ∗SE

∗
SV(i+1)+φ∗SH

∗
RS θ̇̇̇RS = φ∗SE

∗
SV(i+1)+H∗RS θ̇̇̇RS (55)

where H∗RS is defined as

H∗RS
4
= φ∗SH

∗
RS (56)

Eq. 56 depends only upon the independent generalized velocities for the sub-graph. It has in effect, eliminated the
sub-graph’s dependent generalized velocities by embedded the sub-graphs constraints directly into the relationship.
In other words, the relationship is using the minimal set of generalized velocities which always satisfy the sub-
graph’s constraints. At least for the body velocities, we now have a complete tree-topology structure for the
recursive relationships.

15

5.5 Acceleration-Level Relationships

Analogous expressions to Eq. 51 at the acceleration level take the form :

αS = E∗φS
αS+E∗Sα(i+1)+H∗Sθ̈S+aS

=⇒ αS
52
= φ∗SE

∗
Sα(i+1)+φ∗SH

∗
Sθ̈S+φ∗SaS (57)

αS and aS above correspond to the partitioned sub-vectors of α body spatial acceleration and a Coriolis spatial
acceleration stacked vectors for the tree-topology system. Differentiating Eq. 54 we have

θ̈S = XSθ̈RS+ Ẋ̇̇S θ̇̇̇RS (58)

Using this in Eq. 58 leads to

αS
58
= φ∗SE

∗
Sα(i+1)+H∗RSθ̈RS+φ∗SaS+φ∗SH

∗
S Ẋ̇̇S θ̇̇̇RS

= φ∗SE
∗
Sα(i+1)+H∗RSθ̈RS+φ∗Sa ′S (59)

where
a ′S

4
= aS+H∗S Ẋ̇̇S θ̇̇̇RS (60)

Note that the structure of Eq. 56 and Eq. 60 resemble those of the velocity and acceleration relations in Eq. 2 for
tree-topology systems. We can continue on to transform the spatial force expressions as well. For this we will need
the spatial inertia term, M, for the aggregate body. MS is simply the partitioned sub-block of M corresponding
to the sub-graph. We skip the details since the development is similar and simply state the resulting expressions
involving the aggregate body below:

f
′
S =BSφ(j, j−1)f(j−1)+MSαS+bS

f(i+1) = ESφSf
′
S+M(i+1)α(i+1)+b(i+1)

TRS =HRSf
′
S

T(i+1) =H(i+1)f(i+1) (61)

Taken together, Eq. 61 and 62 define the parts of the equations of motion effected by the use of the aggregate link.
The equations of motion have the same structure as for tree-topology systems and moreover the constraints have
been eliminated by embedding them directly into the dynamics formulation. The reduced generalized velocities
vector using θ̇̇̇RS has minimal dimension. The elimination of the constraints means that the equations of motion
now form an ordinary differential equation whose solution is guaranteed to satisfy the constraints on the system
in contrast with having to work with the significantly more complex differential-algebraic formulation we began
with. However, the significant benefit from the new formulation is that this aggregate link based, tree-topology,
minimal coordinate formulation meets all the requirements of the spatial operator analytical techniques including
those leading to the mass matrix factorization and inversion expressions described in Eq. 10. In effect, the new
formulation is an instance of projected dynamics but one with the key advantage of preserving the tree-topology
structure within the formulation. While we can now take advantage of the available spatial operator techniques to
tackle a wide range of analysis and computational problems for systems with constraints, in the following sections
we focus here on the important problem of extending the well-known O(N) forward dynamics algorithms to the
constrained dynamics case.

5.6 Forward Dynamics with Constraint Embedding

As noted above, using the aggregate link with constraint embedding, we have a tree-topology structure with just
the reduced set of independent generalized velocities and forces. Since the new system and the mass matrix
continue to have the familiar structure for tree-topology systems, we can repeat the steps leading to the Innovations

16

Factorization and inversion of the mass matrix in Eq. 10 for the new reduced mass matrix. One noteworthy
change however is that some of the dimensionality of the sub-blocks associated with the aggregate link in the new
operators are much larger than for normal rigid links. Indeed, the larger the sub-graphs, the larger is the size of
these block-elements.

With this setup, all of the inverse and forward dynamics results in Eq. 11 to 7 continue to apply for the new
operators defined by embedding the constraints. We now look in more detail at extending the O(N) forward
dynamics algorithm in Eq. 7 for the aggregate link formulation. Towards this, we simply need to replace the
φ(., .), H∗(.) terms in Eq. 7 with the corresponding terms for the aggregate links to obtain a variant of the Riccati
equation computations in the extended articulated body inertia recursive forward dynamics algorithm. We only
describe below the steps for the aggregate link below since these are the only ones that are different from the steps
in Eq. 7:

P+(j−1) = τ(j−1)P(j−1)

PS =BSφ(j, j−1)P+(j−1)φ∗(j, j−1)B∗S+MS

DS =HRSPSH
∗
RS

GS = PSH
∗
RSD−1

S

τS = GSHRS

P+
S = PS−τSPS

P(i+1) = ESφSP+
Sφ
∗
SE
∗
S+M(i+1) (62)

Note that DS can be re-expressed as

DS = XS
∗(HSφSPSφ

∗
SH
∗
S)XS = XS

∗MSXS where MS
4
= HSφSPSφ

∗
SH
∗
S (63)

The inner term MS has the structure of the mass matrix of the sub-graph’s tree. The one major difference from the
true sub-tree’s mass matrix is that the central body spatial inertia operator is PS instead of the normal MS term.
However, the structural properties of a tree-topology continue to hold as do results such as the composite rigid
body decomposition, operator-based mass matrix factorization and inversion etc. DS is the reduced mass matrix
for the aggregate link’s sub-tree projected down down to its independent degrees of freedom. Link (i+1) serves
as the root of the aggregate link’s sub-tree. Also, note that PS includes the articulated body contribution from the
sub-tree rooted at link j−1.

The accompanying vector recursions for the articulated body inertia algorithm in Eq. 7 take the following form
for the aggregate link. First the step from body (j−1) to the ith aggregate link:

z+(j−1) = z(j−1)+G(j−1)ε(j−1)

zS =BSφ(j, j−1)z+(j−1)+bS+PSa ′S

εS = TS−HRSzS

νS =D−1
S εS (64)

The recursion step from the ith body to body (j+1) is as follows:

z+S = zS+GSεS

z(i+1) = ESφSz+S+b(i+1)+P(i+1)a(i+1)

ε(i+1) = T(i+1)−H(i+1)z(i+1)

ν(i+1) =D−1(i+1)ε(i+1) (65)

The base-to-tip accelerations sweep steps also are also altered for the aggregate link. First the steps from body

17

(i+1) to the ith aggregate body:

α+
S = φ∗SE

∗α(i+1)

θ̈RS = νS−GS
∗α+

S

αS = α+
S+H∗RSθ̈RS+a ′S (66)

The step from the ith aggregate body to body (j−1) is as follows:

α+(i−1) =B∗αS

θ̈(i−1) = ν(i−1)−G∗(i−1)α+(i−1) (67)

α(i−1) = α+(i−1)+H∗(i−1)θ̈(i−1)+a(i−1)

The overall structure of the forward dynamics algorithm remains unchanged from the well-known tree-topology
version with the only changes occurring at the steps involving the aggregate links. The most expensive part of
these steps is the computation and inversion of the DS square symmetric, positive definite matrix whose size is
the number of degrees of freedom in the associated aggregate link. Thus the computational cost of the algorithm
is no longer linear in the number of independent degrees of freedom for the aggregate links but is instead (in the
worst case) quadratic in the total degrees of freedom in the aggregate links sub-tree and cubic in the number of
independent degrees of freedom in the sub-tree. These additional costs however are modest when the loops are of
moderate size.

5.7 Inter-body Forces

In the CE method, the system has a tree-topology after a graph transformation. Thus the tree-topology method
described in section 2.3 can be directly used here. We however, take a closer look at the resulting expressions for a
compound body since that part is different for a CE model. For a compound body, it follows from Eq. 19 that the
inter-body force is given by

f
′
S = PS(αS−aS)+zS = P+

Sα
+
S+z+S (68)

However the physical inter-body forces for all the bodies in the aggregated subgraph are defined by the components
of fS which is related to f

′
S via

fS = φSf
′
S (69)

The above expression φSf
′
S can be computed recursively in a gather sweep over just the bodies in the compound

body without having to compute a matrix/vector product of assembling φS. Once again we see that the inter-body
forces can be computed without excessive cost once the equations of motion have been solved.

6 Conclusions

This paper examines the topic of computing inter-body forces when using recursive minimal coordinate methods
for solving the equations of motion. It is shown that the absence of Lagrange multipliers does not necessitate the
use of inverse dynamics algorithms for computing the inter-body forces. Instead, a simple algebraic expression
using the by-products of the articulated body inertia recursive dynamics algorithm yields the inter-body constraint
force. While initially developed for tree-topology rigid body systems, similar expressions are shown to hold for
the more complex case involving flexible body systems. For closed-loop systems, two methods are examined.
The TA method is based on the well-known method of decomposing the system into a tree system with additional
constraint, while the CE method uses graph transformations to eliminate the constraints. For both of these methods
the inter-body force can be computed using variants of the method for tree-topology systems. In summary, we
show that computing these inter-body forces is a low-cost operation even when using minimal coordinate recursive
methods.

18

Acknowledgments

The research described in this paper was performed at the Jet Propulsion Laboratory (JPL), California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.2

References
[1] A. Jain, Robot and Multibody Dynamics: Analysis and Algorithms. Springer, 2011.

[2] R. Featherstone, Rigid Body Dynamics Algorithms. Springer Verlag, 2008.

[3] A. Jain, “Unified formulation of dynamics for serial rigid multibody systems,” Journal of Guidance Control and Dy-
namics, vol. 14, pp. 531–542, nov 1991.

[4] A. Jain and G. Rodriguez, “Recursive Flexible Multibody System Dynamics Using Spatial Operators,” Journal of Guid-
ance Control and Dynamics, vol. 15, no. 6, pp. 1453—-1466, 1992.

[5] G. Rodriguez, A. Jain, and K. Kreutz-Delgado, “Spatial operator algebra for multibody system dynamics,” Journal of
the Astronautical Sciences, vol. 40, no. 1, pp. 27–50, 1992.

[6] J. Y. S. Luh, M. W. Walker, and R. P. Paul, “On-line Computational Scheme for Mechanical Manipulators,” ASME
Journal of Dynamic Systems, Measurement, and Control, vol. 102, pp. 69–76, jun 1980.

[7] G. Rodriguez, “Kalman Filtering, Smoothing and Recursive Robot Arm Forward and Inverse Dynamics,” IEEE Journal
of Robotics and Automation, vol. 3, pp. 624–639, dec 1987.

[8] G. Rodriguez, A. Jain, and K. Kreutz-Delgado, “A spatial operator algebra for manipulator modeling and control,”
International Journal of Robotics Research, vol. 10, no. 4, p. 371, 1991.

[9] G. Rodriguez and K. Kreutz-Delgado, “Spatial Operator Factorization and Inversion of the Manipulator Mass Matrix,”
IEEE Transactions on Robotics and Automation, vol. 8, pp. 65–76, feb 1992.

[10] G. Rodriguez, “Random Field Estimation Approach to Robot Dynamics,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 20, pp. 1081–1093, sep 1990.

[11] A. Jain and G. Rodriguez, “Diagonalized Lagrangian robot dynamics,” IEEE Transactions on Robotics and Automation,
vol. 11, no. 4, pp. 571–584, 1995.

[12] A. Jain and G. Rodriguez, “Multibody Mass Matrix Sensitivity Analysis Using Spatial Operators,” Journal for Multi-
scale Computational Engineering, vol. 1, no. 2-3, 2003.

[13] A. Jain and G. Rodriguez, “Linearization of manipulator dynamics using spatial operators,” Ieee Transactions On Sys-
tems Man And Cybernetics, vol. 23, no. 1, pp. 239–248, 1993.

[14] R. Featherstone, “The Calculation of Robot Dynamics using Articulated-Body Inertias,” International Journal of
Robotics Research, vol. 2, no. 1, pp. 13–30, 1983.

2 c©2018 California Institute of Technology. Government sponsorship acknowledged.

19

	Introduction
	Rigid-Body. Minimal Coordinate Tree Dynamics
	Mass Matrix Factorization and Inversion
	O(N) Forward Dynamics
	Computing Inter-Body Force

	Flexible Multibody Systems
	Velocity level
	Acceleration level
	Inverse dynamics forces level
	ATBI matrices level
	ATBI filtering level
	ATBI smoother level
	ATBI inter-body forces

	Closed-Chain Multibody Systems
	Constraint Embedding Dynamics
	Constraint Sub-Groups
	Sub-graph Based Partitioning
	Reformulated Velocity Relationships
	Embedding the sub-graph constraints
	Acceleration-Level Relationships
	Forward Dynamics with Constraint Embedding
	Inter-body Forces

	Conclusions

