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The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics
(MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers
a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels.
For example, large scale protein dynamics can be studied using torsional dynamics, where large
domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible
torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational
sampling method such as temperature replica exchange, allows the sampling of large scale domain
motion involving high energy barrier transitions. Once these large scale conformational transitions are
sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy confor-
mations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such
hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for
compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles
as rigid can, however, distort the potential energy landscape of the system and reduce the number
of dihedral transitions as well as conformational sampling. We present here a two-part solution to
overcome such distortions of the potential energy landscape with ICMD models. To alleviate the
intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman
compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling
between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method
that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between
all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a
solution to eliminate the potential energy distortions encountered in constrained ICMD simulations
of peptide molecules. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939532]

I. INTRODUCTION

The all-atom Molecular dynamics (MD) simulations
involve solving the classical Newton equations of motion
in absolute Cartesian coordinates with all degrees of freedom
movable. The all-atom model is attractive for its simplicity
but is not suitable for coarsening the dynamic model of
the simulation system to efficiently simulate long time scale
processes such as domain motion in proteins. Attempts to
focus the conformational search in the internal coordinate
degrees of freedom have been made by eliminating the high-
frequency degrees of freedom through the use of holonomic
constraints in Cartesian coordinates. However, solving these
equations requires differential-algebraic equation solvers even
in the absence of loops, thus adversely affecting the robustness
and increasing the complexity of the simulations.

The internal coordinates provide a more natural approach
to apply holonomic constraints directly to the dynamics model
of a protein system. Thus, the Internal Coordinate Molecular
Dynamics (ICMD) method that describes protein structure in

a)Electronic mail: Abhi.Jain@jpl.nasa.gov
b)Electronic mail: nvaidehi@coh.org

terms of relative bond, angle, and torsion (BAT) coordinates is
highly suited for coarsening the dynamics model of a protein.
In ICMD methods, the holonomic constraints can be applied
by simply excluding selected degrees of freedom from the
dynamics model of the simulation system, while still retaining
the ordinary differential equations form for the equations of
motion for non-loop systems. For example, the ICMD model
with all the bonds and angles frozen, and only the torsions
free is the well-known torsional molecular dynamics (TMD)
model.

A longstanding challenge with the application of
holonomic constraints is that their use in MD simulations alters
the equilibrium statistical properties from those observed
for classical all-atom models without constraints.1–7 The
statistical differences in the constrained simulations affect the
probability density functions (pdf’s) as well as the transition
barrier crossing rates between the various microstates of the
system. Such statistical distortions stem from the following
sources:

1. A mass-matrix dependent intrinsic distortion: This intrinsic
distortion is inherent to the constrained model and
arises from the reduced dimension of the phase space

0021-9606/2016/144(4)/044112/14/$30.00 144, 044112-1 © 2016 AIP Publishing LLC
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in constrained ICMD models. In these models, the
configuration of the degrees of freedom treated as rigid
affects the mass matrix determinant and thus the partition
function calculated from the constrained dynamics. The
intrinsic distortion does not depend on the force field
potentials.

2. A forcefield dependent extrinsic distortion: The extrinsic
distortion is a consequence of the dynamic coupling among
the BAT degrees of freedom from the external force field.
In proteins, since the bond lengths are well separated in
frequency space from the bond angles and torsions, the
coupling between the bond lengths and the other degrees
of freedom is negligible. Bond angles, however, can have
overlapping frequencies with torsional angles, thus causing
their motion to be dynamically coupled. The freezing of
bond angle degrees of freedom in a constrained model
distorts the torsional angle distributions and alters the
heights of the transition barriers.

Correcting for the distortions introduced in the con-
strained model has been a topic of significant interest in
the literature, with a range of proposed solutions.1,8–12 In
particular, a configuration dependent correction potential
proposed by Fixman,1 the Fixman potential, has been the
subject of several investigations to quantify the extent to
which the Fixman potential corrects for the bias introduced
by the constraints. These investigations have been limited to
simulations of small and idealized serial chains without any
extrinsic effects from forcefields.13–18

In previous works, we have developed a computationally
tractable algorithm to calculate the Fixman potential using
spatial operator algebra methods19,20 for idealized serial chains
as well as general branched systems. We have shown that,
in simulations without any extrinsic coupling, the constrained
model with the Fixman potential recovers the torsional pdf’s
obtained from the unconstrained model even for complex
branched chains such as peptides.20

In the general case, the pdf that is used to calculate
the statistical averages of the configuration and velocity
dependent properties of a system is simply the parti-
tion function integrand modulo a normalizing constant.
In constrained systems, the intrinsic distortion introduces
additional mass matrix dependent terms in this integrand,
thus introducing biases in the statistical behavior of the
system. For quantities that do not depend upon the velocity
coordinates, we can integrate the partition function over
the velocity coordinates to obtain the simpler configuration
pdf and use it instead to compute the statistical averages.
Quantities such as the barrier crossing rates, however, depend
on the velocity coordinates as well as the configuration
coordinates. In this paper, we show that while the Fixman
potential completely removes the intrinsic bias from the
configuration pdf’s, it only does so partially for the velocity-
dependent barrier crossing rates. In what we believe to be
a first, we also apply the Fixman potential to simulations
of general branched molecules with all-atom forcefields,
establishing that the Fixman potential alone does not compen-
sate for the extrinsic distortions in general constrained
simulations.

To reduce the extrinsic distortions in the configurational
probability density function, we have developed the “hybrid
ICMD method.” The hybrid ICMD simulation method allows
the user to treat any desired bond angle degree of freedom
as flexible, while keeping the other bond angle degrees of
freedom rigid. The hybrid ICMD method, with the Fixman
potential applied by default, effectively bridges the gap
between the entirely flexible all-atom model and the TMD
model. In this work, we apply the hybrid ICMD method for
the conformational sampling of several dipeptides to identify
the key bond angles for each dipeptide model. We demonstrate
that opening this small subset of angles is sufficient to retrieve
the configuration pdf’s observed in all-atom Cartesian models
with no adverse impact on the time step size. Additionally,
we demonstrate the use of hybrid ICMD simulations in
sampling the NMR structures of a ten amino acid peptide.
The advantages of the hybrid ICMD simulation method are as
follows:

1. It allows the user to freeze any torsional degree of freedom
in the rigid parts of the protein while allowing movement
of bond angles in other flexible parts of the protein. This
provides a simulation capability for coarse graining of the
dynamics model without compromising the accuracy of
the force fields.

2. Using the hybrid ICMD method, one can perform a
fully flexible internal coordinate molecular dynamics
simulation. Such a method is not available to date and may
be useful for studying the dynamics of bonded systems.

II. METHODS

The hybrid ICMD simulations carried out in this work are
build upon our previously developed robust long time scale
ICMD simulation method called the Generalized Newton-
Euler Inverse Mass Operator (GNEIMO) method.20–25 Here,
we describe the GNEIMO method briefly since it is the basis
for the hybrid ICMD method. Since some of the bond lengths
and bond angles can be treated as rigid in the hybrid ICMD
GNEIMO method, the degrees of freedom in the equations of
motion in ICMD method become coupled and have the form

M(α)α̈+ C(α, α̇) = T(α), (1)

where α is the vector of the generalized coordinates
(e.g., torsional angles), T denotes the vector of generalized
forces (e.g., torques), M(α) denotes the mass matrix (moment
of inertia tensor), and C(α, α̇) includes the velocity dependent
Coriolis forces. The dynamics of motion is obtained by solving
Eq. (1) for the α̈ acceleration and integrating them to obtain
new velocities and coordinates. The GNEIMO method uses a
spatial operator algebra based method to derive an analytical
expression for the inverse of the mass matrix followed by the
following expression for α̈:

α̈ = [I−HψK]∗
D−1T −Hψ(KT + Pa + b)


− K∗ψ∗

a.
(2)

TheH,ψ, K, etc., terms in the above expression are associated
with mass matrix related factorizations and are described in
detail in Refs. 21 and 26. The expression on the right can
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be evaluated using computationally cost-effective recursive
algorithms. Importantly, these recursive equations are generic
and remain the same even when some or all of the bond
angles are open as in the hybrid ICMD method. Additionally,
the GNEIMO-Fixman method19,20 for the calculation of the
Fixman torque continues to apply even when the bond angles
are open.

The GNEIMO method forms the basis of the GneimoSim
ICMD software package25 which has been used for a variety
of biomolecular applications such as protein folding,23,24,27

domain motion,28,29 and refinement of protein homology
models.22,23,30,31

A. Fixman potential to correct for the
intrinsic distortion

In TMD simulations, all bond lengths and bond angles
are treated as rigid, leading to changes in the statistics
calculated from the simulation trajectories. To compensate
for this distortion, Fixman proposed a correction potential
that depends on the mass matrix determinant.1 We have
previously shown that the Fixman potential corrects for these
differences and recovers the correct configuration pdf’s for
simple and complex branched molecules.14,15,20 In this section,
we demonstrate that the Fixman potential only partially
removes the biases in the velocity dependent barrier crossing
rates. We further show that, as expected, the Fixman potential
does not correct for statistical distortions arising from force
field induced extrinsic distortion.

1. Derivation of the Fixman potential

A polymer model with n atoms and 3n Cartesian
coordinates can also be equivalently described in terms of
3n BAT coordinates. For an unconstrained system, all 3n
coordinates are allowed to vary. For a constrained system,
however, we can partition these 3n BAT coordinates into
N unconstrained coordinates, denoted as α, and (3n−N)
constrained coordinates, denoted as q.

Using the α and q terminologies for the unconstrained
system, where both α and q can vary, we can represent
the canonical momentum coordinates as p to express the
unconstrained Hamiltonian Hu(α,q,p) in the form

Hu(α,q,p) =
1
2
p∗M−1

B (α,q)p+ U(α,q), (3)

where MB denotes the 3n-dimensional mass matrix and U the
forcefield potential function. At a temperature T , the ensemble
partition function Zu(T) takes the form

Zu(T) = c1


dp dα dq e−Hu(α,q,p)/kT , (4)

where k and c1 are the Boltzmann and scaling constants,
respectively. Modulo a normalizing constant, the integrand in
the partition function is the general pdf that can be used to
compute the statistical averages of configuration and velocity
dependent quantities.

Substituting for the Hamiltonian from Eq. (3) in Eq. (4)
and integrating over the momentum coordinates, we get the

following expression:19

Zu(T) = c2


dα dq det {M 1

2
B(α,q)} e−U(α,q)/kT , (5)

where we use the shorthand det {M 1
2
B(α,q)}

= (det {MB(α,q)})1/2. The configuration pdf, ρu(α,q), thus
has the form

ρu(α,q) ∝ det {M 1
2
B(α,q)} e−U(α,q)/kT . (6)

The configuration pdf is sufficient for computing the statistical
averages of quantities that do not depend on the velocity
coordinates. Remarkably, det {MB} does not depend on the
torsions and can be expressed as the following simple product
of functions of the individual BAT bond lengths and bond
angles:19

det {MB} = sin2γ2 d
4
2

n
i=3

d4
isin2θi

n
i=1

m
3
i, (7)

where di are the (n− 1) bond lengths, θi are the (n− 2)
bond angles, mi are the masses, and (γ1,γ2,γ3) are the ZXZ
Euler angles for the overall orientation of the molecule. Thus,
det {MB(α,q)} can be decomposed into factors that depend
on the individual α and q BAT coordinates as follows:

det {MB(α,q)} = f1(α)f2(q). (8)

For a constrained model, with the (3n−N) coordinates
q frozen at constant values q0, the partition function is

Zc(T) = c3


dα det {M 1

2 (α,q0)} e−U(α,q0)/kT , (9)

where M(α) ∈ RN×N is the mass matrix for the constrained
model. This yields the pdf

ρc(α,q0) ∝ det {M 1
2 (α,q0)} e−U(α,q0)/kT . (10)

In contrast with det {MB} (Eq. (7)), det {M} cannot be
decomposed into a simple product of functions of the
individual bond lengths and bond angles. As a result, this
det {M} term effectively introduces a coupling between the
torsions, bond lengths, and bond angles in the ρc pdf.
A consequence of this coupling is the introduction of a
systematic bias in the statistical behavior of the constrained
model. We refer to this bias as an intrinsic distortion since its
source is the constrained dynamic model’s mass matrix and
not the external forcefield.

To compensate for this intrinsic distortion, Fixman1

proposed the use of a modified potential function,

U′(α) = U(α,q0) + Uf(α),

where

Uf(α) =
1
2
kT ln

det {M(α,q0)}
det {MB(α,q0)} (11)

instead of U(α,q0) in constrained dynamics simulations.
Using Eq. (11) in Eq. (10), we get a compensated pdf of the
form

ρf(α,q0) ∝ det {M 1
2
B(α,q0)} e−U(α,q0)/kT . (12)
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The Uf compensating potential is known as the Fixman
potential.

Comparing Eqs. (6) and (12), we can see that the
compensated constrained pdf ρf(α,q0) is equivalent to the
unconstrained pdf ρu(α,q) under any of the following
conditions:

1. There is no force potential, i.e., U(α,q) = 0. For this case,
the force term drops out of Eqs. (6) and (12) so that
they fully agree. Prior studies13–18 relating to the Fixman
potential have focused on this case by ignoring the force
potential.

2. The constrained coordinates q and the unconstrained
coordinates α are separable, i.e., the total potential can be
decomposed as U(α,q) = U1(α) + U2(q). For this case,
e−U(α,q)/kT can be decomposed into a product of terms
that depend individually on α and q, respectively. Using
Eq. (8), it follows then that the right hand sides of Eqs. (6)
and (12) can also be decomposed into such factors, and thus
that theα and q coordinates are statistically independent so
that the compensated constrained pdf ρf(α,q0) in Eq. (12)
is equivalent to the ρu(α,q) unconstrained one for the α
coordinates.

3. The potential U(α,q) is very steep for q around q0,
such that q does not vary appreciably around q0 in the
unconstrained model. In this case, U(α,q) ≈ U(α,q0)
and det {MB(α,q)} ≈ det {MB(α,q0)} in Eq. (12).

In general, the above conditions may not hold for U(α,q),
i.e., U(α,q) may be non-zero, it may not be separable, and
it may not be steep around a specific q0. In this case, the
Fixman compensated constrained pdf will not agree with the
unconstrained pdf. In other words, the Fixman potential alone
is unable to overcome the statistical biases for such force field
potentials.

We now carry out numerical simulations to verify
these observations using idealized four-carbon serial chains,
referred to as C4 chains,20 with constrained bond lengths
and angles and unconstrained torsions. We use two separate
models. In Section II A 2, the force field potential is separable
across the bond angle and dihedral degrees of freedom so
that the ICMD model only has intrinsic and no extrinsic
distortion. We verify that the Fixman potential exactly
corrects for the mass matrix dependent bias introduced by
the constraints in the ICMD model in the torsional probability
density function and only partially in the barrier crossing
rates. In Section II A 3, we use a non-separable force
field potential that introduces both intrinsic and extrinsic
distortions and confirm that the Fixman potential is unable to
compensate for the statistical bias introduced, motivating our
development of the hybrid ICMD method described later in the
paper.

2. Linear C4 chain with separable degrees of freedom

Note that det {MB} in Eq. (7) does not depend on
the torsional coordinates. Thus, when the unconstrained
coordinates α are just the torsions in the molecule, as in
the TMD model, we can simplify Eqs. (11) and (12) into the

forms

Uf(α) = cf+
1
2
kT ln det {M(α)}

and

ρf(α) ∝ e−U(α,q0)/kT , (13)

where α represents the unconstrained torsions, and cf is a
constant that consists of the bond length and bond angle
contributions in det {MB}. Under the condition that the
potential U(α,q) is separable across the torsion, and the
bond length and bond angles, we expect from our earlier
discussion that the Fixman potential will exactly compensate
for the difference in the configuration pdf’s between the
unconstrained and constrained models of polymer systems.

In prior work,20 we have examined the specific separable
case where U(α) = 0, i.e., when the external forcefield does
not depend on the torsional coordinates. For this case, the pdf
for any torsion angle αi is uniform,

ρu(αi) =
1

2π
. (14)

We have demonstrated20 that the application of the Fixman
potential correctly compensates for any bias introduced in the
torsional pdf’s when the bond lengths and bond angles are
treated as rigid for both serial and branched polymer systems.

a. Calculation of transition barrier crossing rates. We
now look at the inability of the Fixman compensating potential
to fully remove statistical biases when the function of interest
also depends on velocity coordinates. For illustration, we
study the use of the Fixman potential in recovering the
transition barrier crossing rate statistics for a C4 system with
a single barrier torsional potential U(α), when the torsional
coordinates are separable from the bond length and bond angle
coordinates. We find that while the application of the Fixman
potential corrects for the bias in the torsional pdf’s, it only
does so partially for the barrier-crossing rates. The results
for the barrier crossing rates extend the results previously
reported by Pear and Weiner.14

In the simulations for an idealized C4 serial chain in this
section, we apply a single-barrier harmonic torsional potential
of the form

U(α) = kα(1 + cos(α− α0)), (15)

where kα = 0.30 kcal/mol is the amplitude of the potential
barrier peak, and α0 denotes the location of the peak. This
potential is graphically represented for α0 = 0 in Figure 1. It
is clearly separable since it only depends on the α torsional
coordinates.

To measure the barrier-crossing rates, we apply the
transition-state rate theory, which assumes that once the
torsion crosses the barrier peak, it will not go backwards. For
a generic one-dimensional well, this transition-state barrier-
crossing rate is defined by the expression32

fTS(x0) =

∞
0
ẋ ρ(x = x0, ẋ)dẋ, (16)

where x is a reaction coordinate with a barrier center at x = x0,
and ρ(x, ẋ) is the probability density function. This expression
assumes that once the reaction coordinate crosses the barrier
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FIG. 1. Harmonic dihedral potential with kα= 0.30 kcal and α0 = 0.

peak at x = x0 with positive velocity, it goes without fail to
the adjacent potential well and remains there until the next
transition occurs. This ignores the possibility that the reaction
coordinate reverses its direction just after crossing the barrier
at α = 0, as can happen due to collisions in the system. The
transition-state rate serves as a reasonable approximation for
the effective barrier crossing rate in Langevin simulations with
low viscosity.

For our torsional potential with the barrier peak atα = α0,
the barrier-crossing rate takes the form14

fTS(α0) =

∞
0
α̇dα̇

∞
−∞

dγ̇0dγ̇1dγ̇2 ρ(α = α0, γ̇, α̇), (17)

where γ = (γ0,γ1,γ2) are the Euler angles, α is the
torsion angle, and ρ(α, γ̇, α̇) denotes the probability density
function.14 For the constrained model, this expression
simplifies to (the Appendix)

fTS,cons(α0) = Ce−2kα/kT

×

(2π)3(kT)5 det {M(α0)} S−1(α0)

1/2
,

where

S−1(α0) =

M−1(α0)


α

, (18)

whereC is a normalization constant, M(α) is the mass matrix,
and


M−1(α0)


α

is the (α,α) sub-block of the M−1(α0)
matrix. We observe that the transition-state barrier crossing
rate for the constrained model is a function of the mass matrix
determinant. When the Fixman potential is applied, the mass
matrix determinant drops out so that

fTS,fix(α0) = Ce−2kα/kT

(2π)3(kT)5S−1(α0)

1/2
. (19)

While this corrected barrier crossing rate no longer dependent
on the mass matrix determinant, it retains the term S−1(α0),
which implies a remnant dependency on the location of the
barrier peak—a dependency that the unconstrained model
does not exhibit. Thus, while the Fixman potential fully
compensates for the distortions in the pdf over configuration
variables, the presence of the S−1(α0) term shows that such

full recovery does not occur when the averaged quantity
depends on velocity coordinates.

b. Calculation of barrier crossing rates from simulations.
To verify this observation from theory, we performed three
types of MD simulations as follows:

• FLEXIBLE simulation with all-atom Cartesian model
without any constraints;

• TMD simulation with ICMD model with bonds and
angles frozen; and

• FIXMAN simulation with the TMD ICMD model with
frozen bonds and angles, but with the additional Fixman
potential applied.

For our simulations of the C4 system, we set the bond angles
at 90◦, bond lengths at 1.54 Å, and masses at 14.01 amu.
We performed simulations with the location of the barrier at
0◦, 45◦, 90◦, 135◦, and 180◦, and measured the barrier crossing
rate for varying temperatures T . We performed three 20 ns
Langevin dynamics simulations, each with a time step of 1 fs
and with a damping constant of 0.1/fs. For the FLEXIBLE
simulations, the bond and angle spring constants were set to
303.1 kcal/Å2 and 63.21 kcal, respectively.

Figure 2(a) shows the results for the torsional pdf’s for
the C4 system with α0 = 90◦ and T = 800 K, where the TMD
simulation shows a bias in the torsional pdf, sufficient to alter
the location of the effective barrier peak from that set by
the application of the barrier potential. Only with the appli-
cation of the Fixman potential did we recover the expected
probability density function. Additionally, in Figure 2(b), we
plot the RMS deviation from the FLEXIBLE pdf for the TMD
and FIXMAN simulations, showing that the pdf’s for the TMD
simulation are not only different from pdf’s for the FLEXIBLE
simulation, but that the difference even exhibits a dependence
on the location of the applied barrier peak. Again, the applica-
tion of the Fixman potential removed both the introduced bias
as well as the dependence on the location of the barrier peak.

Figure 2(c), however, shows that for the sample cases
with barrier centers at α0 = 90◦ and α0 = 0◦, applying the
Fixman potential does not sufficiently compensate for the bias
introduced in the barrier crossing rates. Figure 2(d) further
illustrates that, for both the TMD and FIXMAN simulations, the
barrier crossing rates exhibit a dependence on the location
of the barrier peak, a dependence that is independent of the
applied simulation temperature. We should note that while
the application of the Fixman potential did not recover the
barrier-crossing rates, it did reduce the error therein, also
allowing us to correctly identify the location as well as the
magnitude of the potential barrier.

3. Linear chain C4 with non-separable degrees
of freedom

When the torsions are cross-coupled to the bond lengths
and bond angles by a non-separable potential U(α,q), we
expect that the unconstrained pdf (Eq. (6)) is equivalent to the
corrected constrained pdf (Eq. (13)) only when U(α,q) forms
a very steep potential well around a value q0. In such a stiff
system, U(α,q) is effectively U(α,q0), and det {MB(α,q)}
is effectively det {MB(α,q0)}. In the absence of such steep
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FIG. 2. (a) Torsional probability density function for C4 for a harmonic torsional potential (Eq. (15)) with the barrier center at α0 = 90◦ and T = 800 K.
(b) RMS difference from the FLEXIBLE pdf for the TMD and FIXMAN simulations for various temperatures. (c) Transition state barrier crossing rates for C4 at
α0 = 90◦ and α0 = 180◦. (d) Ratio of the FLEXIBLE barrier crossing rates to the TMD and FIXMAN barrier crossing rates as a function of the location of the
barrier peak.

form of the potential function,q varies significantly aroundq0,
and the Fixman compensated constrained pdf will differ from
the unconstrained pdf. The differences between these pdf’s
arise from the intrinsic and extrinsic distortions introduced by
the use of constraints.

In this section, we apply a Coulombic potential that
couples the torsions and the bond angles to an idealized C4
serial chain and show that only when U(α,q) is very steep
is the Fixman potential alone sufficient to eliminate the bias
introduced by freezing the bond angles. We verify that, for
realistic values of U(α,q), the extrinsic distortion dominates,
and the cross-coupling significantly alters the equilibrium
statistics for the torsions.

a. Simulation results. To couple the torsion to the bond
angles in an idealized C4 serial chain, we added Coulombic
charges q1 and q2 at the ends of the chain, giving us a potential
of the form

Ucoul =
1
2
kcoul

q1q2

r
, (20)

where r is the distance between the two beads, and
kcoul = 332.06 kcal/Åe2 is the force constant. The distance
r is a function of both the torsion and the bond angles in such
a way that the potential is non-separable. When the charges q1
and q2 are of opposite signs, Ucoul is an attractive potential,
and ρ(α) has the maxima at α = 0◦.

As before, in the unconstrained model, we also apply
harmonic spring potentials of the form

Uθ = kθ(θ− θ0)
2, (21)

whereθ are the bond angles andkθ is the angle spring constant.
The kθ spring constant can be used to vary the stiffness of
this potential. If the potential is sufficiently steep, we expect
the Fixman corrected torsional pdf for the constrained model
to recover the pdf for the unconstrained model.

By varying the value of kθ, we have analyzed the effect
of stiffness on the extent to which the Fixman potential
compensates for the bias in the torsional pdf. To quantify
the difference between the constrained and unconstrained
pdf’s, we have calculated the root mean square deviation
between these pdf’s. We denote the RMS deviation between
the unconstrained and the constrained pdf’s as RTMD, and the
RMS difference between the unconstrained and the corrected
(Fixman) constrained pdf’s as RFIX.

We applied Coulombic charges of magnitudes 0.2e and
−0.2e to the terminal atoms and used bond lengths of
1.54 Å, bond angles at 90◦, and 14.01 amu atom masses.
We varied the value of the spring constant kθ and performed
three unconstrained, constrained, and corrected (Fixman)
simulations for each value of kθ, obtaining the final results by
averaging from each set of simulations.
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With a Coulombic potential applied, we observed that
the Fixman potential removed the bias from the torsional pdf
of the C4 system only for high (i.e., very stiff) values of kθ.
For values of kθ from typical all-atom forcefields such as
AMBER (30-100 kcal for AMBER99SB33), the torsional
pdf in FLEXIBLE simulations differed from that in the TMD
simulations, even when the Fixman potential is included
(Figure 3(a)). The RMS difference between the FLEXIBLE
and FIXMAN simulations, RFIX, is shown in Figure 3(b), where
we see that the FLEXIBLE and FIXMAN simulations agree only
for large values of kθ. The extent to which the FLEXIBLE
pdf differs from the FIXMAN simulations for realistic values
of kθ demonstrates that, for these systems, the cross-
coupling between the torsional and angle degrees of freedom
is not negligible. In such systems, for the configuration
pdf’s, applying the Fixman potential compensates for the
intrinsic distortion, but not for the extrinsic distortion that the
constraints introduce in the potential energy landscape.

B. Hybrid ICMD to correct for extrinsic distortions

All-atom force-fields used widely in MD simulations
typically take the form

Uff =
1
2

Nbonds
i=1

Kri(ri− r
0
i)

2 +
1
2

Nangles
i=1

Kθi(θi− θ
0
i)

2

+ Utorsff (αi) + U
long−range
ff , (22)

where Kri and Kθi are the harmonic potentials, also referred
to as the restraining potentials for the bonds and angles,
respectively. Utorsff comprises the dihedral potentials, and
U
long−range
ff comprises the long-range Coulombic and van

der Waal’s interactions and the implicit solvent potential for
implicit solvent simulations. Here, each long-range potential
term is a function of the distance between a given pair of
atoms, with the distance itself dependent on the bond lengths,
bond angles, and the torsional angles. This introduces coupling
among the degrees of freedom.

It is customary to assume that the harmonic restraining
terms on the bonds and the angles dominate over the other
interactions, and hence, the potential at any point in the
torsional subspace is independent of the bond and angle

values.4 When this assumption is valid, the application of the
Fixman potential is sufficient to eliminate the bias introduced
by constraining the bond and angle degrees of freedom.
Echenique et al.,34,35 however, showed that for realistic
force fields, there is significant coupling between the torsion
and bond angle degrees of freedom and that the harmonic
restraining terms do not dominate over the non-harmonic
interactions. In this event, the forcefield is non-separable and
the statistics for the torsions are not a function of the torsional
angles alone, but also depend on the bond angle degrees of
freedom. Constraining the bond angles introduces not only an
intrinsic distortion but also an extrinsic distortion, an effect
which the Fixman potential does not eliminate.

One of the approaches for reducing the barrier heights
arising from the extrinsic distortion has been to alter
the torsional and nonbonded potential functions in the
forcefield.9–12 Additionally, Arnautova et al. have altered
the forcefield terms while also keeping some backbone
bond angles open.8 These approaches are system and force-
field dependent and not easy to generalize across polymer
applications.

We now present the “hybrid internal coordinates
molecular dynamics” method, where any desired subset of
bond angles can be treated as flexible (instead of rigid) at
any point during the simulation, while keeping the bonds
and remaining bond angles rigid. Such a hybrid method
bridges the gap between all-atom flexible simulations and the
torsional MD simulations. It allows the user to keep all bond
angles open or selectively keep only some of the bond angles
open. We have implemented the hybrid ICMD method in the
GneimoSim software.

In a previous analysis of protein structures in the
protein data bank, Berkholz et al.36 have shown that the
protein backbone covalent geometry is a function of the
backbone torsions. Additionally, Hinsen et al.37 have shown
that the inclusion of a subset of the backbone angles in
the unconstrained coordinate set is sufficient to accurately
represent the protein structure. In developing the hybrid
ICMD method, we postulate that opening only specific
backbone bond angles sufficiently compensates for the
extrinsic distortion and retrieves potential energy landscapes
similar to that in unconstrained simulations.

FIG. 3. (a) Torsional pdf’s for C4, with charges 0.2e and −0.2e at the terminal atoms, for kθ= 95 kcal. (b) RMS deviation from the FLEXIBLE pdf as a
function of kθ. The FIXMAN and FLEXIBLE simulations agree only at very high values of kθ. The TMD simulation remains divergent throughout.
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FIG. 4. (a) Structure of alanine dipeptide. The torsionsφ=C–N–Cα–C andψ=N–Cα–C–N effectively represent the conformational space explored. (b)
Schema for opening a bond angle θ1—we open the two terminal angles (dashed) to effectively open the non-terminal (solid) angle.

III. SIMULATION RESULTS FOR THE HYBRID
ICMD METHOD

In this section, we apply the hybrid ICMD method to
simulations of small peptide systems with all-atom forcefields
and present the probability density functions thus calculated.
Our analyses here provide guidelines as to which backbone
angles should be free in ICMD simulations to facilitate
dihedral transitions. We demonstrate that, for non-separable
potential functions, the introduction of constraints leads to
distortions in the free energy surface (FES). In particular,
the long-range forces couple the torsions to the bond
lengths and the bond angles, introducing a distortion that
cannot be compensated for by applying the Fixman potential
alone. However, when we use the hybrid ICMD method in
conjunction with the Fixman potential, we find that opening
just a few key bond angles is sufficient to remove these
distortions from the FES. In addition, in Section III D, we
examine the size of the time steps possible for hybrid ICMD
applications and find that, even with these key bond angles
open, we continue to get stable simulations with time steps of
up to 5 fs.

A. Application of hybrid ICMD to alanine dipeptide

To comprehensively investigate how the introduction of
the Fixman potential affects the conformational landscape
of a dipeptide molecule, we performed TMD, FIXMAN, and
FLEXIBLE simulations of alanine dipeptide under a variety
of different conditions. For the TMD and FIXMAN simulations,
we modeled the alanine dipeptide molecule as a collection
of rigid body clusters, connected by hinges. In this scheme,
a general peptide molecule is divided into clusters such that
each cluster is composed of a non-terminal atom along with
all of its terminal neighbors. Aromatic ring moieties in the
side chains are treated as rigid clusters. Proline rings in the
main chain are broken into tree structures while using the stiff
harmonic forcefield valence bond parameters to keep the ring
together. Disulfide bonds are also broken while again using
the harmonic forces to keep the atoms together.

We used the GneimoSim25 software with forcefield
parameters from the AMBER99SB forcefield33 and the
Generalized Born/Surface Area (GBSA) solvation method.

The conformations of an alanine dipeptide molecule can
be described by the two main chain dihedrals, namely,

the φ and ψ angles, defined as φ = C–N–Cα–C and
ψ = N–Cα–C–N, shown in Figure 4(a). The FES of alanine
dipeptide can be conveniently projected onto these two
dihedrals, giving us an effective method to analyze the
conformational ensembles in the equilibrium sampling of
this molecule. To study the effect of constraints on this FES,
we performed 20 FLEXIBLE and TMD simulations each, at
300 K and 800 K, with each simulation 20 ns long.

Additionally, to study how to alleviate the intrinsic
and extrinsic distortions introduced in this system, we first
performed FIXMAN simulations at 300 K, then systematically
opened the various bond angles shown in Figure 4(a) and
performed 20 simulations of 20 ns length each for each
of the backbone angles and their various combinations.
All the simulations were performed starting from an initial
alpha-helical conformation ((φ,ψ) = (−60◦, −40◦)), using
Langevin dynamics with a damping constant of 0.1/fs and a
time step of 2 fs.

1. Results and discussion

Figure 5 shows the FES for the FLEXIBLE and TMD
simulations at 300 K and 800 K. It is evident from the figure

FIG. 5. Free energy surface calculated for the backbone dihedral angles of
alanine dipeptide: FLEXIBLE and TMD simulations at 300 K (top) and 800 K
(bottom).
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that, at 300 K, the TMD simulations lead to barriers that limit the
sampling of the minima in the first and fourth quadrants of the
FES, with the quadrants numbered counterclockwise with the
first quadrant in the upper right. These barriers were overcome
somewhat at 800 K, but the sampling in TMD simulations is
still limited in comparison to the FLEXIBLE simulations.
When we additionally applied the Fixman potential, we found
that the alanine dipeptide simulation again does not sample
the minima in the first and fourth quadrants of the FES
(Figure 6). This indicates that the cross-coupling between
the torsional and angle degrees of freedom significantly
affects the FES of an alanine dipeptide molecule, an extrinsic
bias that the Fixman potential is unable to compensate
for.

Applying the hybrid ICMD model to alanine dipeptide,
we found that opening the backbone angles C–N–Cα and
N–Cα–C together recovers the features of the FLEXIBLE
simulations as shown in Figure 6. Opening these angles
together was sufficient to remove the barriers introduced
by freezing the bond angle degrees of freedom. Opening
additional angles had little effect on reducing the extrinsic
distortion in the system. Opening just one of the two backbone
bond angles shown in Figure 4(a) did not alleviate the
transition barriers stemming from the extrinsic distortion in
the system either. Thus, allowing the backbone angles to
change with the hybrid ICMD method overcomes the effect
of the cross-coupling in the FES.

B. Application of hybrid ICMD to other dipeptides

We have so far demonstrated that the extrinsic bias
in the FES resulting from the cross-coupling between the
torsional and the bond angle degrees of freedom in the ICMD
simulations of alanine-dipeptide is eliminated by opening up
backbone bond angles during the ICMD simulations. In this
section, we apply the hybrid ICMD method to valine, leucine,
isoleucine, methionine, phenylalanine, tryptophan, proline,
and tyrosine dipeptides (Fig. 7). We study how the opening of
various bond angles, individually and in combination, affects
the FES. We thereby identify the bond angles that are most
coupled to the torsions for each of these dipeptide molecules.
This allows us to construct a minimal subset of angles that we
need to open to sufficiently remove the barriers introduced by

the extrinsic distortion and to allow constrained simulations of
these dipeptide molecules to sample the same conformational
space as do unconstrained simulations.

To establish how each bond angle in a dipeptide affects its
conformational sampling, we performed separate simulations
with each backbone bond angle open in the dipeptide. In
addition, we also tested how the various combinations of these
bond angles each affected the conformational sampling of the
dipeptides. We performed 20 simulations of length 20 ns for
each such system, using the clustering and simulation methods
as described in Section III A. All of the constrained simulations
were performed from an initial alpha-helical conforma-
tion ((φ,ψ) = (−60◦, −40◦)), with the Fixman potential
enabled.

1. Results and discussion

The free energy surfaces calculated from the dipeptide
simulations are shown in Figure 8(a). It is seen that applying
the Fixman potential with hybrid ICMD model with open
backbone angles C–N–Cα and N–Cα–C allows the valine,
leucine, methionine, phenylalanine, tryptophan, and tyrosine
simulations to sample the conformations in the first quadrant.

To quantify how the FES obtained for the FIXMAN and
hybrid ICMD models differs from that of the FLEXIBLE
model, we calculated the Hellinger distance between the
FIXMAN and FLEXIBLE probability density functions and also
between the hybrid ICMD and FLEXIBLE probability density
functions (Table S1 of the supplementary material38). The
Hellinger distances measuring the quantitative differences
in the conformational distributions for various dipeptides are
shown in Figure 8(b). Using this metric, we found that opening
any additional backbone angles does not significantly improve
the probability density functions for the PHE, ALA, LEU, and
TRP dipeptides. For ILE, VAL, MET, and TYR, however, we
needed to additionally open the Cα–C–N backbone angle to
obtain maximal improvement in the hybrid ICMD probability
density function (Figure 9). Proline dipeptide (Figure 7(g))
presents a special case since it is a ring structure and hence is
a loop structure. As described previously, we break the ring
structure to obtain a tree topology for the FIXMAN and hybrid
ICMD simulations. For proline, we found that we need to open
up the backboneN–Cα–C bond angle as well as the sidechain

FIG. 6. FES for FIXMAN, hybrid ICMD, and FLEXIBLE simulations of alanine dipeptide. The hybrid ICMD simulation has the bond angles C–N–Cα and
N–Cα–C open.
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FIG. 7. Structures of (a) valine (VAL) dipeptide, (b) leucine (LEU) dipeptide, (c) isoleucine (ILE) dipeptide, (d) methionine (MET) dipeptide, (e) phenylalanine
(PHE) dipeptide, (f) tryptophan (TRP dipeptide), (g) proline (PRO) dipeptide, and (h) tyrosine (TYR) dipeptide.

Cα–Cβ–Cγ bond angle to get the minimal Hellinger distance
of 0.26 as shown in Figure 10. For all the dipeptides, opening
bond angles other than the specified angles had little effect on
the barrier heights and conformational sampling.

In the literature, Arnautova et al.8 have used loop
modeling simulations with a modified forcefield to argue
that it is sufficient to open just the N–Cα–C angle to

effectively sample the conformational space of a protein
system. Similarly, Hinsen et al.37 have analyzed reduced
coordinate sets for proteins, concluding that including only
an additional angle centered at Cα is sufficient to accurately
represent the protein conformations. In our simulations, we
found that opening of only the N–Cα–C angle produces
simulations with probability density functions quite distant

FIG. 8. (a) Free energy surfaces for FIXMAN simulations(top), hybrid ICMD simulations (mid), and FLEXIBLE simulations (bottom) for dipeptide molecules.
(b) Hellinger distances from the FLEXIBLE probability density functions for the FIXMAN and hybrid ICMD simulations. For VAL, LEU, MET, PHE, TRP, and
TYR, the FIXMAN simulations are unable to sample the conformations in the first quadrant, the sampling of which requires that the C–N–Cα andN–Cα–C
angles be kept open in the hybrid ICMD simulations. For ILE, opening theC–N–Cα andN–Cα–C angles does not improve the free energy surface.
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FIG. 9. Free energy surfaces for hybrid ICMD simulations with the open
backbone angles C–N–Cα, N–Cα–C, and Cα–C–N for valine (VAL),
methionine (MET), tyrosine (TYR), and isoleucine (ILE) dipeptides. With
these angles open, the Hellinger distances to the FLEXIBLE probability den-
sity function are now 0.14, 0.13, 0.17, and 0.16, respectively.

from that for the FLEXIBLE simulations (Table S1 of the
supplementary material38). In all cases but proline dipeptide,
we needed to open at least the additional angle C–N–Cα to
significantly reduce the observed extrinsic bias. For valine,
isoleucine, methionine, and tyrosine dipeptides, we needed
to additionally open the third backbone angle Cα–C–N to
maximally compensate for the extrinsic bias. For proline
dipeptide, we needed to open the backbone N–Cα–C angle
as well as the sidechain Cα–Cβ–Cγ angle for optimum
compensation.

C. Application of hybrid ICMD to longer
peptide chains

While we have demonstrated that opening select bond
angles alleviates the extrinsic bias in small dipeptide
simulations, it is not clear whether the same effect holds
for simulations of longer peptides which can have long-
range couplings between atoms far apart in the chain. In this
section, we apply the hybrid ICMD method to simulate a

ten amino acid peptide CLN025 (Figure 11) for which there
is an ensemble of NMR structures available.39 Additionally,
there are NMR data on the possible hydrogen bonds present
in this system. We compared the conformation sampling
thus obtained in FIXMAN and hybrid ICMD simulations to
experimental data obtained from NMR studies as well as
to the conformational sampling in FLEXIBLE simulations.
Through this study, we establish that using the hybrid
ICMD method allows for better agreement with both
the experimental data and the FLEXIBLE conformational
sampling.

To examine whether the backbone bond angles introduce
extrinsic bias in simulations of the CLN025 peptide, we
performed eight simulations of 10 ns length each for FIXMAN,
hybrid ICMD, and FLEXIBLE models. For the hybrid ICMD
simulations, we opened the N–Cα–C angle for the proline
residue, and the C–N–Cα–C and N–Cα–C backbone angles
for the other residues. The simulations were performed at
a temperature of 300 K maintained using the Nose-Hoover
thermostat, using a time step of 1 fs. We used the GBSA
solvation method with an internal dielectric constant of 4.0
and external dielectric constant of 78.0. All the simulations
used the identical starting conformation shown in Figure 11,
with the conformation obtained from the NMR structure with
the PDB ID 2RVD.39

1. Results and discussion

In a previous experiment, Honda et al.39 have studied the
NMR spectra of CLN025 in solution and have identified the
hydrogen bonds observed in the NMR structures. In Table I,
we evaluated the conformational sampling efficiency of the
hybrid ICMD method by calculating the percentage of the
snapshots in the simulations that have the hydrogen bond
distances observed in the NMR structures within a standard
deviation of the mean distance reported. We found that the
only a very small percentage of the FIXMAN conformations
agree with observed NMR distances. When we opened the
backbone bond angles in the hybrid ICMD simulations, we
observed that a much larger proportion of the conformations
showed hydrogen bond distances similar to those in the NMR
structural ensemble.

FIG. 10. Free energy surfaces for FIXMAN, hybrid ICMD, and FLEXIBLE simulations for proline dipeptide (PRO). The FIXMAN probability density function has
a Hellinger distance of 0.45 from the FLEXIBLE density function. The hybrid ICMD simulation with the backbone angle N–Cα–C and the sidechain angle
Cα–Cβ–Cγ relaxed yields a Hellinger distance of 0.26 from the FLEXIBLE simulation.
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FIG. 11. Starting structure for the simulations of the 10-residue peptide
CLN025. The PDB ID for the NMR structure of CLN025 is 2RVD.

Additionally, we also calculated the backbone Ramachan-
dran (φ,ψ) probability density function for the FIXMAN,
hybrid ICMD, and FLEXIBLEmodels (Figure S1 of the supple-
mentary material38), where we observed that the hybrid ICMD
simulations show greater conformational sampling than the
FIXMAN simulations. We used these distributions to calculate
the per residue Hellinger distances between the FIXMAN and
FLEXIBLE, and the hybrid ICMD and FLEXIBLE simulations.
Figure 12 shows the Hellinger distances thus obtained—the
hybrid ICMD simulations generally have Hellinger distances
much lower than do the FIXMAN simulations.

The observed agreement of hybrid ICMD conformations
with NMR data, which the FIXMAN conformations do not
demonstrate, indicates that when all the bond angles are
fixed, there is an extrinsic distortion introduced that can
limit the conformational sampling in the FIXMAN simulation.
By opening only the backbone bond angles, we can
significantly ameliorate this extrinsic distortion, leading to
better agreement with the NMR spectra. This also has the
effect of increasing the conformational sampling, producing
Ramachandran distributions closer to that observed in the
FLEXIBLE simulations.

D. Time step size for the hybrid ICMD method

We have demonstrated that opening select bond angles
can help alleviate the extrinsic rigidity introduced in TMD

FIG. 12. Hellinger distances from the FLEXIBLE (φ,ψ) probability density
functions for the FIXMAN and hybrid ICMD simulations for each of the
residues in CLN025.

simulations. However, opening the angle degrees of freedom
can potentially require smaller integration time step size.
To examine this, we performed hybrid ICMD simulations
of the dipeptide molecules with the angles N–Cα–C and
C–N–Cα open for alanine, phenylalanine, leucine, and
tryptophan dipeptides, and with the additional Cα–C–N
angle open for isoleucine, valine, methionine, and tyrosine
dipeptides. For proline dipeptide, we opened the N–Cα–C
backbone angle and the Cα–Cβ–Cγ sidechain angle. We used
time steps of 5 fs, with 20 simulations of length 50 ns for each
angle.

Our results in Figure 13 show that opening up the
backbone bond angles in a protein even while performing
coarse grain ICMD simulations can effectively alleviate the
distortion in the free energy surface, while still allowing the
use of the significantly higher 5 fs time step than is possible
with all-atom Cartesian simulations. Since the ICMD model
can be easily coarsened by treating different parts of the
protein as rigid while treating the other parts as flexible with
backbone dihedral angles open, the ICMD method provides a
wide range of dynamic models that can be used for simulating
proteins.

TABLE I. Percentage of conformations in the FIXMAN, hybrid ICMD, and FLEXIBLE simulations that are found
to be within a standard deviation of the mean NMR values for hydrogen bonds observed in NMR experiments.

NMR NMR % of FIXMAN % of hybrid ICMD % of FLEXIBLE
Hydrogen bond mean std confs. confs. confs.

Thr8.O–Tyr10.N 3.62 0.25 58.46 22.46 8.32
Asp3.OD1–Thr6.N 3.38 0.14 0.55 7.27 10.25
Asp3.O–Thr8.N 2.89 0.16 9.78 65.51 57.60
Asp3.O–Gly7.N 3.56 0.20 0.18 31.20 25.29
Asp3.O–Thr6.N 5.58 1.14 0.19 45.98 43.62
Asp3.O–Thr8.O 3.51 0.42 1.16 0.41 0.49
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FIG. 13. Free energy surfaces for hybrid ICMD simulations with open backbone angles C–N–Cα and N–Cα–C for alanine, leucine, phenylalanine, and
tryptophan, with the additional angle Cα–C–N open for valine, isoleucine, methionine, and tyrosine dipeptides. For the proline dipeptide, theN–Cα–C and
Cα–Cβ–Cγ are kept open. The simulations use time steps of 5 fs each, with each simulation 50 ns long.

IV. CONCLUSIONS AND FUTURE WORK

Distortions in the potential energy surface for constrained
ICMD models stem from both the dependence of the mass
matrix on the BAT coordinates and the forcefield dependent
coupling between the unconstrained and constrained degrees
of freedom. The distortion introduced by the mass matrix
is intrinsic to the constrained model. In this study, we have
shown that the application of the Fixman potential alleviates
the intrinsic distortion in the configuration probability density
function but is only able to partially overcome the biases for
quantities such as the barrier crossing rate that depends on the
velocity coordinates.

Additionally, we have tested the effect of the Fixman
potential in constrained ICMD simulations with all-atom
forcefields, where we have shown that the long range non-
bonded forces couple the constrained and unconstrained
degrees of freedom, introducing an extrinsic distortion to the
potential energy landscape, one that cannot be compensated
for by only the Fixman potential. To alleviate the extrinsic
distortion, we have developed the hybrid ICMD simulation
method that allows the user to open up any bond angle degree
of freedom within the ICMD model. We have demonstrated
that for short peptide chains, the use of the Fixman potential in
conjunction with the opening a small subset of the backbone
angles via the hybrid ICMD method is sufficient to remove
the extrinsic distortions from the potential energy landscape,
while still allowing for the use of large time step sizes. We
have also shown the effectiveness of the hybrid ICMD method
in recovering the free energy surface of a complex polypeptide
section. We believe that the hybrid ICMD method represents a
robust and accurate ICMD simulation method that bridges the
gap between all-atom and torsional MD models. The hybrid
ICMD method has been implemented within the GneimoSim
software. With the hybrid ICMD model in the toolkit, the
GNEIMO method now supports dynamics models at multiple
levels of coarsening—from all open angles to arbitrarily large
rigid domains, all within the same simulation. For example,
it is possible to have simulations in which the mostly static
helical secondary structures are kept rigid while the very
dynamic loops have open backbone angles, allowing for fast
and accurate sampling of the protein conformational space.

Much remains to be done in validating and testing the
performance of hybrid ICMD for larger proteins in explicit
solvent simulations and also in extending the applicability
of this method to other systems such as nucleic acids.
Also, since the standard Fixman potential only fully corrects
statistical biases stemming from the intrinsic distortions for
configuration dependent quantities, we plan to investigate

extensions of the Fixman potential that will overcome such
biases for velocity dependent quantities such as the barrier
crossing rates.
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APPENDIX: CALCULATING THE BARRIER-CROSSING
RATE

For a C4 system, from Eq. (17), the transition-state
barrier-crossing rate takes the form14

fTS(α0) =

∞
0
α̇dα̇

∞
−∞

dγ̇0dγ̇1dγ̇2 ρ(α = α0, α̇, γ̇), (A1)

with the torsion angle α, the Euler angles γ = (γ0,γ1,γ2),
and with the probability density function ρ(α, α̇, γ̇). For the
constrained model, the pdf takes the form,14

ρ(α, α̇, γ̇) = C det {M(α)} e−[EK(α,α̇,γ̇)+U(α)]/kT , (A2)

with the normalization constant C, the potential energy U(α)
(Eq. (15)), and the kinetic energy Ek(α, α̇, γ̇) which is given
by

Ek(α, α̇, γ̇) =
1
2
[α̇∗, γ̇∗]M(α)


α̇

γ̇


, (A3)

where M(α) is the mass matrix. The det {M(α)} term in
Eq. (A2) arises from the change from the momentum to
velocity coordinates in the pdf.

In general, for α and γ coordinates of dimensions m and
n, respectively, we can partition the matrix M(α) as

(A4)

With S = S0 − VW−1
0 V∗ and W = W0 − V∗S−1

0 V Schur
complement matrices, we have

M−1(α) =


S−1 −S−1

0 VW
−1

−W−1
0 V∗S−1 W−1
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and

det {M} = det {W0} det {S} . (A5)

Note that the S−1(α′) is the α coordinates square sub-block
of the M−1(α′) matrix, i.e.,

S−1(α′) =

M−1(α′)


α

. (A6)

Eq. (A3) can be re-expressed in the following decomposed
form:

Ek(α, α̇, γ̇) =
1
2
α̇∗Sα̇+

1
2
(γ̇− β)∗W0(γ̇− β),

where

β = −W−1
0 V∗α̇. (A7)

For the C4 case, α consists of only the torsion angle and
is a scalar, and γ consists of the three Euler angles. In this
case, S is a scalar, and det {S} = S. Substituting Eqs. (A2)

and (A7) in Eq. (A1), with α = α0, we get the expression

fTS(α0) = C det {M(α0)} e−U(α0)/kT

×
∞

0
α̇eS(α0)α̇

2/2kTdα̇

×
∞

−∞
e−(γ̇∗−β)W0(α0)(γ̇−β)/2kTdγ̇. (A8)

In general, for a p-dimensional vector x and a p-dimensional
square invertible matrix A(x), and scalars y and s, we have∞

−∞ e−x∗Ax/2dx =


(2π)p

det {A}
1/2

and ∞
0
y e−sy2/2dy = 1/s. (A9)

Using these in Eq. (A8) with A = W0(α0)/(kT), p = 3, and
s = S(α0)/(kT), we obtain

fTS(α0) = C det {M(α0)} e−U(α0)/kT
kT

S


(2πkT)3

det {W0(α0)}
1/2

= C det {M(α0)} e−U(α0)/kT


(2π)3(kT)5

det {M(α0)} S(α0)

1/2

(using Eq. (A5))

= Ce−U(α0)/kT

(2π)3(kT)5 det {M(α0)} S−1(α0))

1/2
.

(A10)

When the Fixman potential from Eq. (13) is also applied by
including it in the forcefield U, the det {M(α0)} term drops out
from Eq. (A10) expression for the fTS barrier transition rates.
However, S remains as a term dependent on the α0 location
of the barrier peak. Thus, while the Fixman potential fully
corrects for the distortions in the averages of configuration
dependent quantities, it is only able to partially correct for
distortions in the averages of velocity dependent functions.
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