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ABSTRACT
The National Aeronautics and Space Administration have

recently been investigating a mission concept known as the As-
teroid Redirect Mission, aimed at collecting a large amount of
asteroid material and transporting it into lunar orbit for inspec-
tion by human astronauts. Of the two mission options that have
been considered, one involves the capture of an entire near-Earth
asteroid in the 10-m class by a robotic spacecraft. The space-
craft would first make contact with the asteroid through a de-
formable membrane, before securing it inside a large flexible
bagging mechanism. In this paper we describe the development
and implementation of a model designed for simulation of the
capture process, which includes a low-complexity representation
of the interaction dynamics.

INTRODUCTION
The National Aeronautics and Space Administration (NASA)

has recently been investigating a mission concept known as the
Asteroid Redirect Mission (ARM), aimed at collecting a large
amount of asteroid material and transporting it into lunar orbit
for inspection by human astronauts. Two options for gathering
asteroid material have been under evaluation: in Option A, an
entire near-Earth asteroid in the 10-m class would be captured,
whereas in Option B, a boulder would be collected from the sur-
face of a larger parent asteroid.1

We focus here on the task of capturing an entire asteroid

1Since initial submission of this paper, Option B has been officially selected
by NASA.

under Option A. This task is challenging due to a number of
factors, most of all the significant uncertainty that exists with
respect to the mass, shape, composition, and rotational state of
the eventual target asteroid. This uncertainty drives the search
for a robust capture solution in terms of mechanical design and
close-proximity guidance, navigation, and control (GN&C).

A particular difficulty is the complex rotational dynamics of
the asteroid. Due to the large relaxation time constant of small
spinning bodies [1], the asteroid is expected to tumble rather than
spin about a fixed axis, inevitably resulting in non-trivial dynami-
cal interactions as the spacecraft makes contact with the asteroid.
The capture system must be designed to handle these interactions
without giving rise to excessive loads on the spacecraft; of par-
ticular concern in this context are the solar array drive assemblies
(SADAs), which tolerate only limited bending moments.

Capture System
An early study by the Keck Institute for Space Studies at

Caltech [2] concluded that the capture of an asteroid could best
be achieved by using a flexible bagging mechanism capable of
fully enveloping the asteroid and securing it to the spacecraft.
Such a system would be suitable both for a solid rock and a rub-
ble pile, ensuring robustness against uncertainty in asteroid com-
position.

Building on this idea, a design team at NASA’s Jet Propul-
sion Laboratory has developed a more complete concept aimed at
allowing the spacecraft to establish and maintain contact with the
asteroid during the bag closure, while keeping the transient dy-
namics and the resulting loads on the spacecraft at an acceptable
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FIGURE 1. Illustration of the capture mechanism concept. The mech-
anism is stowed for cruise and deployed prior to capture by unfolding
six “petals” supporting the hexagonal trampoline and the capture bag.
The mechanism is shown here in a half-deployed state, with the capture
bag still folded.

level. In this concept, the spacecraft first makes contact with the
asteroid through a well-damped “trampoline,” situated within the
capture bag and realized as a deformable membrane suspended
from a finite number of actuated winches, as illustrated in Fig-
ure 1. Once initial contact has been made, the spacecraft applies
thrust against the asteroid in order to maintain contact while the
transient dynamics settle out and the capture bag closes. During
this process, the trampoline acts as a shock-absorbing cushion
between the spacecraft and the asteroid.

Topic of This Paper
In this paper we focus on modeling and simulation of the

dynamics of the asteroid capture event, particularly during the
first few minutes after contact is made through the trampoline.
The goal of this effort is to provide a tool for GN&C-centric in-
vestigations of the capture problem, including the design of the
approach strategy, gains, and thrust levels, as well as large-scale
explorations of parameters and initial conditions through Monte-
Carlo simulations.

Methods for simulating elastic membranes include finite-
element models and spring meshes (see, e.g., [3] and references
therein). These types of approaches result in high-order mod-
els whose computational requirements can be prohibitive for the
purposes outlined above. We therefore choose a simplified ap-
proach that ignores the dynamics of the trampoline. At any given
time, the shape of the trampoline is taken as a function only of
the instantaneous relative pose of the asteroid and the trampoline
suspension points, the implicit assumption being that any inter-
nal dynamics in the trampoline evolve and settle on a time scale

much faster than the remaining dynamics of the system.

The shape of the trampoline, as a function of the relative
pose of the asteroid and the trampoline suspension points, is
estimated based on a convex hull. To compute the forces and
torques arising from the interaction, we associate with a given
deflection of the trampoline a particular potential energy, and
with a given rate of deflection a loss of energy due to viscoelastic
damping, similar in principle to the modeling of a linear spring-
damper. Based on the resulting energy balance and the conserva-
tion of momentum, we calculate restoring and damping forces,
and augment these with friction forces based on a Coulomb fric-
tion model distributed across points on the contact surface.

Clearly, the modeling procedure described above involves
a level of abstraction away from the actual mechanical imple-
mentation of the trampoline. In particular, we make certain as-
sumptions regarding how the trampoline responds to deflections
in terms of the storage of potential energy and loss of energy
due to damping. We note, however, that the mechanization of
the trampoline, using actively controlled winches, provides con-
siderable flexibility in shaping the response of the trampoline to
meet requirements that may be derived through simulation. Con-
versely, it is possible to modify the properties of the simulated
trampoline by applying different profiles for potential energy and
viscoelastic damping.

For additional context on the asteroid capture problem, we
refer the reader to an earlier paper [4], which discusses prior gen-
erations of the capture system concept as well as simulation stud-
ies aimed at determining feasibility of the capture problem.

NOMENCLATURE
In our derivations we shall use multiple frames of reference

interchangeably. We use superscripts to indicate the frame of
reference for a particular two- or three-dimensional vector; for
example, xa refers to the vector x decomposed in frame a. The
rotation matrix from frame a to frame b is denoted by Rb

a, so that
Rb

axa = xb. We denote by ωc
ab the angular velocity of frame b

with respect to frame a, decomposed in frame c.

For a vector x ∈ R3, we denote by S(x) the skew-symmetric
matrix such that for any y∈R3, S(x)y = x×y. For a scalar x∈R,
we define S(x) =

[
0 −x
x 0

]
.

TRAMPOLINE MODEL
In this section we describe the derivation of the trampoline

model that will be used as part of the asteroid capture simulation.
For clarity of presentation, we describe the derivation of a 2D
model before extending the same modeling principles to the 3D
case.
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2D Model
We consider here a two-dimensional trampoline suspended

at two fixed points, together with a rigid body that can come
in contact with the trampoline. Our goal is to model the forces
and torques acting on the body as a result of this contact, thus
allowing us to simulate the evolution of the state of the body
over time. We assume that the body shape is described by a two-
dimensional polygon, represented by an ordered set of vertices.
The body is free to move in two-dimensional space, as described
by the following dynamical system:

ṗi = Ri
bvb,

mv̇b =−mS(ωib)vb + f b,

Ṙi
b = Ri

bS(ωib),

Jω̇ib = τ,

where pi ∈R2 is the position of the body center of mass (CM), de-
composed in the inertial reference frame i; vb ∈R2 is the velocity
of the CM, decomposed in the body-fixed frame b; Ri

b ∈ SO(2)
is the rotation matrix from the body-fixed frame to the inertial
frame; ωib ∈ R is the angular rate of the body-fixed frame rel-
ative to the inertial reference frame; f b ∈ R2 and τ ∈ R are the
forces and torques acting on the body; and m ∈ R and J ∈ R
are the mass and inertia of the body. The modeling task at hand
consists of determining f b and τ as a function of the state of the
system. For the purpose of the remaining discussion, we assume
that f b and τ are the result only of interactions with the trampo-
line; other forces (such as gravity) can be added as desired.

Trampoline Shape As discussed in the introduction, we
do not model the internal dynamics of the trampoline; instead,
we assume that the shape of the trampoline is a function of the
pose of the body relative to the trampoline suspension points. In
particular, to estimate the shape, we take the convex hull of the
suspension points of the trampoline and the vertices of the body
that are located below the straight line connecting the trampoline
suspension points.2 From the boundary of the convex hull, de-
scribed as a finite set of line segments, we remove the segment
connecting the two suspension points to arrive at our estimate of
the trampoline shape. Figure 2 illustrates the result of this pro-
cess.

Let `=∑
n
j=1 ` j denote the length of the trampoline, where ` j

denotes the length of a single segment, in order from left to right
(see Figure 2). Note that the number of segments n varies with
time. The rate of change in ` can be computed as ˙̀= ∑

n
j=1

˙̀j =

2If no vertices are located below the line connecting the suspension points,
then the body is not in contact with the trampoline and no forces act on the body;
the remainder of this derivation assumes contact between the body and the tram-
poline.
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FIGURE 2. The figure shows the trampoline shape obtained by taking
the convex hull of the trampoline suspension points and the vertices of
the rigid body located below the suspension points.

˙̀1 + ˙̀n, where we have used the fact that `2, . . . , `n−1 represent
segments connecting vertices of the rigid body, whose lengths
do not change with time.

We are interested in writing ˙̀ as a function of the state vari-
ables of the system. To this end, let pi

sL and pi
sR denote the

positions of the left and right suspension points, respectively.
Furthermore, let rb

L denote the constant vector from the CM of
the rigid body to the leftmost vertex in contact with the tram-
poline. Similarly, let rb

R denote the vector from the CM to the
rightmost vertex in contact with the trampoline. We can now
write `1 = ‖pi +Ri

brb
L− pi

sL‖. Hence,

˙̀1 =
(pi +Ri

brb
L− pi

sL)
ᵀ(ṗi + Ṙi

brb
L)

`1
= ei

L
ᵀ
(Ri

bvb +Ri
bS(ωib)rb

L)

= ei
L
ᵀ
(vi +S(ωib)ri

L),

where ei
L is the unit vector pointing from pi

sL to pi +Ri
brb

L, and
where we have used the identity Ri

bS(x) = S(x)Ri
b for an arbitrary

scalar x. Similarly, we can write ˙̀n = ei
R
ᵀ
(vi +S(ωib)ri

R), where
ei

R is the unit vector pointing from pi
sR to pi +Ri

brb
R. We can now

write ˙̀= ei
L
ᵀ
(vi +S(ωib)ri

L)+ ei
R
ᵀ
(vi +S(ωib)ri

R).

Restoring and Damping Forces We decompose the
forces and torques in the body reference frame as f b = f b

N + f b
f

and τ = τN +τ f . The force f b
N and the torque τN represent normal

forces and corresponding torques, which arise due to the trampo-
line’s resistance to deflection and viscoelastic damping due to
changes in deflection. The force f f and the torque τ f represent
friction forces and corresponding torques.

We start by modeling f b
N and τN , temporarily letting f b

f = 0
and τ f = 0. We assume that the trampoline, when deformed,
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responds in a manner similar to a linear spring-damper; in par-
ticular,

1. the trampoline has a potential energy equal to 1
2 k(`− `0)

2,
where k > 0 is a constant, and `0 = ‖pi

sR− pi
sL‖ is the nom-

inal length of the trampoline; and
2. the system experiences a loss of energy from viscoelastic

damping equal to −c ˙̀2, where c > 0 is a damping constant.

Consider now the total kinetic and potential energy of the system:

E =
1
2

k(`− `0)
2 +

1
2

mvbᵀvb +
1
2

Jω
2
ib.

The rate of change in energy is

Ė = k(`− `0) ˙̀+ vbᵀ f b
N +ωibτN

= k(`− `0)
(

viᵀ(ei
L + ei

L)

−ri
L
ᵀ
S(ωib)ei

L− ri
R
ᵀ
S(ωib)ei

R

)
+ viᵀ f i

N +ωibτN .

Since the forces on the rigid body are due to reaction at the tram-
poline suspension points and act through the trampoline fabric,
they can be decomposed as two forces of magnitude FL and FR
along the unit vectors ei

L and ei
R: f i

N = f i
L + f i

R = FLei
L +FRei

R. It
is easy to confirm that the torque associated with these forces is
given by

τN = τL + τR =−ri
L
ᵀ
S(1) f i

L− ri
R
ᵀ
S(1) f i

R

=−FLri
L
ᵀ
S(1)ei

L−FRri
R
ᵀ
S(1)ei

R.

Expanding the desired expression Ė =−c ˙̀2 for the rate of energy
loss, we now obtain

k(`− `0)
(

viᵀ(ei
L + ei

L)− ri
L
ᵀ
S(ωib)ei

L− ri
R
ᵀ
S(ωib)ei

R

)
+ viᵀ(FLei

L +FRei
L)−FLri

L
ᵀ
S(ωib)ei

L−FRri
R
ᵀ
S(ωib)ei

R

=−c ˙̀
(

viᵀ(ei
L + ei

L)− ri
L
ᵀ
S(ωib)ei

L− ri
R
ᵀ
S(ωib)ei

R

)
.

It is easy to verify that this equation is solved by FL = FR =
−k(`− `0)− c ˙̀. Hence, the normal force and corresponding
torque on the rigid body are given by

f b
N =−

(
k(`− `0)+ c ˙̀)(eb

L + eb
N),

τN = (k(`− `0)+ c ˙̀)(rb
L
ᵀ
S(1)eb

L + rb
R
ᵀ
S(1)eb

R).

Friction Force Modeling In addition to the restoring
and viscoelastic damping forces, the body will be subject to fric-
tion forces as it slides against the trampoline surface. Friction
phenomena are highly complex and difficult to model in general,
and more so when a deformable trampoline surface is involved.
We base ourselves on the simple but commonly applied Coulomb
friction model, in which the friction between two sliding surfaces
is modeled as f f = −µFNes, where µ is the coefficient of fric-
tion, FN is the normal force between the surfaces, and es is the
unit vector pointing in the direction of sliding.

In many cases the system being modeled involves bodies
that are in contact at several places or over a surface area with
a non-uniform friction coefficient or sliding direction. In these
cases, it is common to distribute the total normal force over a
distributed set of reference points and to apply the Coulomb fric-
tion model separately at each point. We choose a similar strategy
here.

For each vertex of the rigid body that is in contact with the
trampoline (i.e., that is included in the convex hull), we define
two unit vectors normal to the two line segments joined at that
vertex. The result is a set of unit vectors nb

1, . . . ,n
b
m, which we

use to distribute the total normal force across the corresponding
vertices. To this end, we need to find FN1, . . . ,FNm, such that the
following holds:

f b
N =

m

∑
j=1

FN jnb
j , τ =−

m

∑
j=1

FN jrb
j
ᵀ
S(1)nb

j ,

where rb
j represents the vector from the CM of the body to the

vertex corresponding to vector nb
j .

The above expression gives rise to the generally underdeter-
mined set of equations

[
nb

1 · · · nb
m

−rb
1
ᵀS(1)nb

1 · · · −rb
m
ᵀS(1)nm

]F1
...

Fm

=

[
f b
N

τN

]
.

In order to solve the above for the normal forces that are non-
negative, a complementarity problem can be posed [5–7] and
subsequently solved to obtain the solution. We instead choose
a less robust but faster approach based on the Moore-Penrose
pseudoinverse. This approach has the drawback of potentially
generating illegal solutions that contain negative normal forces;
in our implementation, a check was therefore added to verify that
the solutions were legal.

Based on the computed normal forces, the Coulomb fric-
tion model is now applied twice at each vertex in contact with
the trampoline, once for each of the normal vectors originating
there. The sliding velocity is in each case computed by projecting
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FIGURE 3. The figure shows the trampoline shape obtained by taking
the convex hull of the trampoline suspension points and the vertices of
the rigid body located below the suspension points.

the velocity of the vertex onto the line segment from which the
normal vector was derived. The torques arising from the friction
forces are computed in the obvious way.

3D Model
We now extend the modeling technique to the 3D case. We

assume that the body shape is described as a polygon mesh, in the
form of a finite set of vertices joined by triangular surfaces. The
dynamics of the body is now described by the following Newton-
Euler equations of motion:

ṗi = Ri
bvb,

mv̇b =−mS(ωb
ib)v

b + f b,

Ṙi
b = Ri

bS(ωb
ib),

Jω̇
b
ib =−S(ωb

ib)Jω
b
ib + τ

b,

where pi ∈R3 is the position of the body’s CM in the inertial ref-
erence frame; vb ∈ R3 is the velocity at the CM with respect to
a body-fixed reference frame; Ri

b ∈ SO(3) is the rotation matrix
from the body-fixed frame to the inertial frame; ωb

ib ∈ R3 is the
angular velocity of the body-fixed frame with respect to the in-
ertial frame; f b ∈ R3 and τb ∈ R3 are the forces and the torques
acting on the body; m∈R is the mass; and J ∈R3×3 is the inertia.

Trampoline Shape Similar to the 2D case, we estimate
the shape of the trampoline by the convex hull of the trampoline
suspension points and the vertices of the body located below the
trampoline surface. From the boundary of the convex hull, now
described by a set of triangles, we remove those triangles that are
formed only from trampoline suspension points, to arrive at our
estimate of the trampoline shape. Figure 3 illustrates the result
of this process.

Let A = ∑
n
j=1 A j denote the area of the trampoline, where A j

denotes the area of a single triangle forming part of the trampo-
line. The area of a single triangle is given by A j =

1
2‖ρ

i
j1×ρ i

j2‖,

where ρ i
j1 and ρ i

j2 are vectors corresponding to two of the trian-
gle’s three sides.

Observing the fact that triangles joining only vertices of the
rigid body are of constant area, the rate of change in A can be
computed as Ȧ = ∑ j∈I Ȧ j, where I ⊂ 1, . . . ,n enumerates those
triangles for which at least one endpoint corresponds to a tram-
poline suspension point.

To calculate A j, j ∈ I , as a function of the state vari-
ables of the system, let the vectors ρ i

j1 and ρ i
j2 be chosen such

that both originate at trampoline suspension points, located at
pi

s j1 and pi
s j2, respectively (see Figure 4). Furthermore, let rb

j1

and rb
j2 denote the respective vectors from the CM to the as-

teroid vertices that form the endpoints of ρ i
j1 and ρ i

j2. Then
ρ i

j1 = pi +Ri
brb

j1− pi
s j1 and ρ i

j2 = pi +Ri
brb

j2− pi
s j2; moreover,

ρ̇ j1 = Ri
bvb + Ri

bS(ωb
ib)r

b
j1 = vi + S(ω i

ib)r
i
j1 and ρ̇ j2 = Ri

bvb +

Ri
bS(ωb

ib)r
b
j2 = vi + S(ω i

ib)r
i
j2, where we have used the identity

Ri
bS(xb) = S(xi)Ri

b for x ∈ R3. Based on this, it is straightfor-
ward to calculate

Ȧ j =
(ρ i

j1×ρ i
j2)

ᵀ

4A j

(
S(ρ i

j1−ρ
i
j2)v

i

+
(
S(ρ i

j2)S(r
i
j1)−S(ρ i

j1)S(r
i
j2)
)

ω
i
ib
)
.

Restoring and Damping Forces As in the 2D case
we decompose the forces and torques as f b = f b

N + f b
f and

τb = τb
N + τb

f , and start by modeling f b
N and τb

N . We associate
a potential energy with a deflection of the trampoline from the
nominal, and an energy loss with a change in deflection; how-
ever, the deflection is now described in terms of the trampoline
area. In particular, we assume that

1. the trampoline has a potential energy equal to 1
2 k(A−A0)

2,
where k > 0 is a constant, and A0 is the nominal area of the
undeflected trampoline; and

2. the system experiences a loss of energy from viscoelastic
damping equal to −cȦ2, where c > 0 is a damping constant.

Consider now the total kinetic and potential energy of the system:

E =
1
2

k(A−A0)
2 +

1
2

mvbᵀvb +
1
2

ω
b
ib
ᵀ
Jω

b
ib.
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FIGURE 4. Triangles connecting trampoline suspension points to
body vertices either contain a single suspension point and two body ver-
tices (left) or two suspension points and a single body vertex (right).

The rate of change in energy is

Ė = k(A−A0)Ȧ+ vbᵀ f b
N +ω

b
ib
ᵀ
τ

b
N

= k(A−A0)

(
−viᵀ

∑
j∈I

1
4A j

S(ρ i
j1−ρ

i
j2)(ρ

i
j1×ρ

i
j2)

+ω
i
ib
ᵀ

∑
j∈I

1
4A j

(
S(ri

j1)S(ρ
i
j2)−S(ri

j2)S(ρ
i
j1)
)
(ρ i

j1×ρ
i
j2)

)
+ viᵀ f i

N +ω
i
ib
ᵀ
τ

i
N .

Since the forces on the rigid body are due to reaction at the tram-
poline suspension points and are transmitted through the trampo-
line fabric, they can be decomposed as n forces, f i

N = ∑ j∈I f i
N j,

one for each triangle connecting the suspension points to the
rigid body. Each force f i

N j is in turn decomposed as a sum of
forces acting along the vectors ρ i

j1 and ρ i
j2: f i

N j = f i
N j1 + f i

N j2 =

Fj1ei
j1 + Fj2ei

j2, where ei
j1 = ρ i

j1/‖ρ i
j1‖ and ei

j2 = ρ i
j2/‖ρ i

j2‖.
The torque arising from these forces is similarly decomposed
as τ i

N = ∑ j∈I τ i
N j, where τ i

N j = τ i
N j1 + τ i

N j2 = Fj1S(ri
j1)e

i
j1 +

Fj2S(ri
j2)e

i
j2.

Expanding the desired expression Ė = −cȦ2 for the rate of
energy loss, we now obtain

k(A−A0)

(
−viᵀ

∑
j∈I

1
4A j

S(ρ i
j1−ρ

i
j2)(ρ

i
j1×ρ

i
j2)

+ω
i
ib
ᵀ
∑
∈I

1
4A j

(
S(ri

j1)S(ρ
i
j2)−S(ri

j2)S(ρ
i
j1)
)
(ρ i

j1×ρ
i
j2)

)
+ viᵀ

∑
j∈I

(Fj1ei
j1 +Fj2ei

j2)+ω
i
ib
ᵀ

∑
j∈I

(Fj1S(ri
j1)e

i
j1 +Fj2S(ri

j2)e
i
j2)

=−cȦ

(
−viᵀ

∑
j∈I

1
4A j

S(ρ i
j1−ρ

i
j2)(ρ

i
j1×ρ

i
j2)

+ω
i
ib
ᵀ

∑
j∈I

1
4A j

(
S(ri

j1)S(ρ
i
j2)−S(ri

j2)S(ρ
i
j1)
)
(ρ i

j1×ρ
i
j2)

)
.

Clearly this equation can be solved if we can solve the following
individual equation for each j ∈ 1, . . . ,n:

viᵀ(Fj1ei
j1 +Fj2ei

j2)+ω
i
ib
ᵀ
(Fj1S(ri

j1)e
i
j1 +Fj2S(ri

j2)e
i
j2)

=
a

4A j

(
viᵀS(ρ i

j1−ρ
i
j2)(ρ

i
j1×ρ

i
j2)

−ω
i
ib
ᵀ (

S(ri
j1)S(ρ

i
j2)−S(ri

j2)S(ρ
i
j1)
)
(ρ i

j1×ρ
i
j2)
)
,

where a := k(A−A0) + cȦ. This equation is in turn solved if
we can find a common solution to the following individual equa-
tions:

Fj1ei
j1 +Fj2ei

j2 =
a

4A j
S(ρ i

j1−ρ
i
j2)(ρ

i
j1×ρ

i
j2) (1)

and

Fj1S(ri
j1)e

i
j1 +Fj2S(ri

j2)e
i
j2

=− a
4A j

(
S(ri

j1)S(ρ
i
j2) −S(ri

j2)S(ρ
i
j1)
)
(ρ i

j1×ρ
i
j2). (2)

We will start by solving (1); we will then show that the solution
is also a solution of (2).

Equation (1) can be rewritten as

[
ei

j1 ei
j2
][Fj1

Fj2

]
=−a

2
S(ei

j)(ρ
i
j1−ρ

i
j2), (3)

where ei
j = ei

j1×ei
j2. Pre-multiplying by the non-singular matrix

[ei
j1,e

i
j2,e

i
j]
ᵀ and noting that ei

j
ᵀei

j1 = 0, e j
ᵀei

j2 = 0, ei
j
ᵀS(ei

j)= 0,
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ei
j1
ᵀei

j1 = 1, and ei
j2
ᵀei

j2 = 1, we obtain the equivalent equation

1 b
b 1
0 0

[Fj1
Fj2

]
=−a

2

ei
j1
ᵀ

ei
j2
ᵀ

0

S(ei
j)(ρ

i
j1−ρ

i
j2),

where b := ei
j1
ᵀei

j2. Eliminating and inverting the resulting left-
most matrix yields

[
Fj1
Fj2

]
=− a

2(1−b2)

[
1 −b
−b 1

][
ei

j1
ᵀ

ei
j2
ᵀ

]
S(ei

j)(ρ
i
j1−ρ

i
j2)

=− a
2(1−b2)

[
ei

j1
ᵀ
(I− ei

j2ei
j2
ᵀ
)

ei
j2
ᵀ
(I− ei

j1ei
j1
ᵀ
)

]
S(ei

j)(ρ
i
j1−ρ

i
j2).

Expanding the expression, this yields the forces

f i
N j1 =−

k(A−A0)+ cȦ
2(1− (ei

j1
ᵀei

j2)
2)

ei
j1ei

j1
ᵀ
(I− ei

j2ei
j2
ᵀ
)S(ei

j)(ρ
i
j1−ρ

i
j2),

f i
N j2 =−

k(A−A0)+ cȦ
2(1− (ei

j1
ᵀei

j2)
2)

ei
j2ei

j2
ᵀ
(I− ei

j1ei
j1
ᵀ
)S(ei

j)(ρ
i
j1−ρ

i
j2).

Next, we show that this solution also satisfies (2). To this
end, we first note that (2) can be rewritten as

[
S(ri

j1)e
i
j1 S(ri

j2)e
i
j2
][Fj1

Fj2

]
=−a

2
(
S(ri

j1)S(ρ
i
j2)−S(ri

j2)S(ρ
i
j1)
)

ei
j. (4)

We now consider two distinct possibilities: (i) triangle j includes
two trampoline suspension points; and (ii) triangle j includes two
body vertices (see Figure 4). In the first case, ri

j1 = ri
j2, and hence

we can write (4) as

S(ri
j1)
[
ei

j1 ei
j2
][Fj1

Fj2

]
=−S(ri

j1)
a
2

S(ρ i
j2−ρ

i
j1)e

i
j

=−S(ri
j1)

a
2

S(ei
j)(ρ

i
j1−ρ

i
j2).

It is easy to see that this equation is satisfied since (3) is satisfied.
In the second case, we can write ri

j1 = si
j +ρ i

j1 and ri
j2 = si

j +ρ i
j2,

where si
j is the trampoline suspension point included in triangle

j. Noting that S(ρ i
j1)e

i
j1 = 0 and S(ρ i

j2)e
i
j2 = 0 we can rewrite

(4) as

S(si
j)
[
ei

j1 ei
j2
][Fj1

Fj2

]
=−a

2
(
S(si

j +ρ
i
j1)S(ρ

i
j2)−S(si

j +ρ
i
j2)S(ρ

i
j1)
)

ei
j

=−S(si
j)

a
2

S(ei
j)(ρ

i
j1−ρ

i
j2)

− a
2
(S(ρ i

j1)S(ρ
i
j2)−S(ρ i

j2)S(ρ
i
j1))e

i
j.

Considering the factor (S(ρ i
j1)S(ρ

i
j2)− S(ρ i

j2)S(ρ
i
j1))e

i
j in the

last term, we can write

(S(ρ i
j1)S(ρ

i
j2)−S(ρ i

j2)S(ρ
i
j1))e

i
j

=
1

2A j
(S(ρ i

j1)S(ρ
i
j2)−S(ρ i

j2)S(ρ
i
j1))(ρ

i
j1×ρ

i
j2)

=
1

2A j
(S(ρ i

j1)S(ρ
i
j2)S(ρ

i
j1)ρ

i
j2−S(ρ i

j2)S(ρ
i
j1)

2
ρ

i
j2)

=
1

2A j
(−S(ρ i

j1)S(ρ
i
j2)

2
ρ

i
j1−S(ρ i

j2)S(ρ
i
j1)

2
ρ

i
j2) = 0,

where we have used the identity S(x)S(y)2x = −S(y)S(x)2y. It
now follows that

S(si
j)
[
ei

j1 ei
j2
][Fj1

Fj2

]
=−S(si

j)
a
2

S(ei
j)(ρ

i
j1−ρ

i
j2),

which is satisfied since (3) is satisfied.

Friction Force Modeling The modeling of friction
forces is carried out in the same way as for the 2D case. For
each vertex of the body that is in contact with the trampoline, we
define a normal vector based on each adjacent triangular surface,
and we use the collection of all the normal vectors to distribute
the normal force calculated in the previous section. For each of
these normal forces, Coulomb’s friction model is then applied at
the corresponding vertex, with the sliding direction calculated by
projecting the velocity of the vertex onto the surface from which
the normal vector was calculated.

Simulation Figure 5 shows a sequence of images from
a Matlab simulation in which a 100-kg object with a maxi-
mum diameter of approximately 4.5 m falls in Earth gravity and
bounces off the trampoline. The hexagonal trampoline has a
nominal area of approximately 146 m2 and is parameterized with
k = 30 N/m3, c = 1.5 Ns/m3, and µ = 0.2. The object has a tri-
inertial mass geometry and is initialized in a tumbling rotational
state.
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FIGURE 5. Excerpt from Matlab simulation of an object bouncing off a trampoline in Earth gravity. The object was dropped from a height of 10 m
above the trampoline with an angular velocity of ωb

ib = [0.5,1.0,−0.2]ᵀ rad/s. The images show the period from t = 1.2 s to t = 2.52 s in 0.12 s
increments, in order from top left to top right, continuing from bottom left to bottom right.

ASTEROID CAPTURE
The ARM Option A mission concept, as outlined in the intro-

duction, consists of two elements: an unmanned robotic mission
to capture an asteroid and bring it into lunar orbit, and a manned
mission to visit the asteroid in lunar orbit. The spacecraft that
would be to accomplish the robotic mission, referred to as the
Asteroid Retrieval Vehicle (ARV), consists of a hexagonal central
bus approximately 3 m in diameter and 6 m in height and with
a mass of approximately 15 t, with the asteroid capture device
mounted at one end (see Figure 6). Two large solar panels are
used to power the ARV’s solar-electric propulsion system. Each
solar panel is carried on a boom mounted on a gimbal mechanism
known as a solar array drive assembly (SADA). Mechanically, the
SADAs represent a weak point on the spacecraft, as they can tol-
erate only limited bending moments during the asteroid capture
event.

Potential asteroid targets, limited by the dimensions of the
capture bag and the propulsive capacity of the spacecraft, may
measure up to 13 m in diameter and have a mass of up to 1000 t.
While the asteroid is expected to tumble, the instantaneous spin
rate of any potential target will be within known limits. In [4]
it was shown that a properly designed capture mechanism may
be capable of handling a tumbling asteroid rotating at 2 RPM
without exceeding an assumed SADA bending moment limit of
1765 Nm. However, the margins in this scenario were small for
certain types of rotational patterns. The requirement on the target
spin rate was since reduced to 0.5 RPM.

Approach Strategy As discussed in [4], the transient
dynamics of the combined asteroid-spacecraft system after con-
tact is to a large extent determined by the strategy chosen for
approaching the asteroid. Due to the possibly complicated rota-
tional state and a priori unknown asteroid shape, choosing the
optimal approach strategy is nontrivial. Key considerations in-
clude minimizing the relative motion between the spacecraft and
the asteroid at the time of contact; ensuring sufficient thruster
leverage for subsequent despin; keeping the asteroid relatively
centered in the bag during approach; and minimizing transients

2D+Modeling+

3+

Rigid+structure+

Irregularly+shaped+
asteroid+

Trampoline+
with+damping+
and+fric?on+

Constant+thrust+
aAer+contact+

FIGURE 6. Illustration of spacecraft with trampoline capture device.
Upon initial contact with the asteroid, the spacecraft applies constant
thrust to maintain contact until the bag has been closed around the as-
teroid.

as the spacecraft adjusts itself to accommodate the asteroid shape
after contact.

A natural strategy would be to perfectly match the motion of
the asteroid and make contact at some pre-determined location
with zero relative motion. However, this strategy is complicated
in terms of GN&C and would consume a substantial amount of
fuel. Two alternative approach strategies are discussed in [4]; one
involves approaching along the angular momentum vector while
spinning at a rate that approximately minimizes the relative mo-
tion, whereas the other involves matching the instantaneous an-
gular velocity of the asteroid at the moment when contact is made
(requiring precise timing and prediction of the asteroid motion).

One of the main goals of the trampoline capture design is to
make the capture process more robust by minimizing sensitivity
to the parameters of the approach. It is thought that the flexi-
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bility of the trampoline fabric can absorb a significant amount
of relative motion without imparting large forces on the space-
craft. Meanwhile, the constant thrust applied toward the asteroid
is akin to an “artificial gravity,” and should allow the spacecraft
to naturally accommodate the shape of the asteroid and settle
against it in a stable configuration.

Asteroid Capture Simulation We use the trampoline
model developed in the previous sections as part of an overall
model for simulation of the dynamics of the asteroid capture pro-
cess. In this model, the asteroid is represented as a rigid body
with configurable inertial properties, and with a geometric shape
described by an arbitrary triangle mesh. The spacecraft bus is
modeled as a solid cylinder. The solar panels are modeled as
solid cylinders on mass-less booms, connected to the bus via ball
joints endowed with suitably parameterized spring-dampers. The
trampoline is mounted from six suspension points, spaced 60◦

apart, attached to a rigid structure protruding from the spacecraft.
Straightforward modifications to the trampoline model are made
to account for the fact that the suspension points are no longer
stationary, but instead move with the spacecraft. The spacecraft
is subject to forces and torques equal and opposite to the ones im-
parted on the asteroid according to the trampoline model derived
above.

The simulations are based on the Darts/Dshell architecture
for spacecraft dynamics simulation, developed at JPL (see, e.g.,
[8]). The simulation runs at speeds faster than realtime on a desk-
top computer, and produces concurrent high-quality 3D visual-
izations of the capture.

SIMULATION RESULTS
Figure 7 shows a sequence of images from an example as-

teroid capture simulation in Darts/Dshell. The target is a 1000-t
pear-shaped asteroid with a tri-inertial mass geometry, which is
initialized with a spin rate of 0.5 RPM. The hexagonal trampo-
line has a nominal area of approximately 146 m2 and is param-
eterized with k = 1.5 N/m3, c = 15 Ns/m3, and µ = 1.0. The
spacecraft approaches at 5 cm/s along the angular momentum
vector, while flying in a corkscrew pattern to keep the asteroid
geometrically centered within the bag. Upon contact, the space-
craft thrusts against the asteroid with a force of 475 N. The simu-
lation is performed using a fourth-order Runge-Kutta integration
method with a step size of 0.1 s. The SADA bending moments
remain well within the acceptable limits in the course of the sim-
ulation.

Simulations were run with a number of different asteroids
of different mass, shape, spin state, as well as different friction
coefficients between the asteroid and the trampoline. The results
show that the spacecraft tends to settle against the asteroid and
catch up with its rotational motion. As expected, the constant

thrust results in the spacecraft orienting itself toward a stable
configuration, typically resting on a flatter area of the asteroid.

For high-friction cases (µ close to 1.0), very little slippage
between the asteroid and the trampoline is observed, and the
spacecraft quickly catches up to the motion of the asteroid. For
low-friction cases (µ close to 0.1), significant amount of slippage
is observed, especially for asteroids with a relatively smooth sur-
face, and the spacecraft takes longer to catch up to the motion of
the asteroid.

As contact is maintained over several minutes, an interest-
ing phenomenon is observed; namely, that the spacecraft tends
to converge toward a “flat spin,” where the symmetry axis is
roughly perpendicular to the axis of rotation of the overall sys-
tem. This is unproblematic as long as the thrust level is cho-
sen large enough to supply the necessary centripetal accelera-
tion, and in fact it is desirable with respect to minimizing fuel
consumption during the subsequent de-spin phase.

The loads on the spacecraft are generally small, and with an
appropriately chosen thrust level after initial contact, the SADA
bending moments remain well below critical levels.

CONCLUSIONS
In this paper we have presented a modeling technique that

allows for fast simulation of asteroid capture using a capture de-
vice similar to a trampoline. As mentioned in the introduction,
the technique involves a level of abstraction away from the actual
mechanical implementation, in particular by assuming a certain
potential energy and viscoelastic damping profile. Nevertheless,
considerable freedom exists in bringing the model and the phys-
ical mechanism into alignment, both by modifying the energy
profiles assumed in this paper and by modifying the physical mo-
tor profiles at the trampoline suspension points.

Visually, the model produces realistic results; however, val-
idation against physical or higher-fidelity models would be nec-
essary to confirm that the model captures the dynamics of the
spacecraft-asteroid system with sufficient accuracy. Moreover,
extensive Monte-Carlo simulations would be needed to build
confidence in the overall technical solution. We refer readers to
a separate paper [9] for a description of one-fifth scale hardware-
in-the-loop asteroid capture test bed built at JPL as part of the
Option A study.
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FIGURE 7. Excerpt from an example Darts/Dshell simulation of an asteroid capture. The spacecraft approaches a pear-shaped asteroid at 5 cm/s
while flying a corkscrew pattern to keep the asteroid geometrically centered in the bag. The images show the period from t = 0 s to t = 170 s in 10 s
increments, in order from top left to top right, continuing from middle left to middle right and from bottom left to bottom right.
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