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Abstract In recent years, complementarity techniques have been developed for

solving non-smooth multibody dynamics involving contact and collision events. The

linear complementarity approach sets up a linear complementarity problem (LCP)

using non-minimal coordinates for the unilateral contact constraints and inter-link

bilateral constraints on the system. In this paper, we develop a complementarity for-

mulation that uses minimal coordinates. This results in a much smaller LCP whose

size is independent of the number of bodies and the number of degrees of freedom in

the system. Furthermore, we exploit operational space low-order algorithms to over-

come key computational bottlenecks to obtain over an order of magnitude speed up

in the solution procedure.
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1 Introduction

For more than a decade, researchers have been developing complementarity based

approaches for formulating and solving the equations of motion of multibody sys-

tems with contact and collision dynamics [1–3]. Examples of such dynamics for

robotic systems include manipulation and grasping tasks such as illustrated in Fig-

ure 1, and legged locomotion. The complementarity approach models bodies as

rigid, and uses impulsive dynamics to handle non-smooth collision and contact in-

teractions. Complementarity methods impulsively “step” over non-smooth events

and thus avoid small integration step sizes encountered with penalty based meth-

ods that model surface compliance during contact [4]. In this paper, we focus on a
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Fig. 1 An example multi-arm robot ma-

nipulation task involving unmounting a

wheel from a hub involving several contact

and collision dynamics interaction events.

minimal coordinate formulation of the com-

plementarity approach for contact and colli-

sion dynamics for multi-link systems. This

paper builds upon the operational space for-

mulation for contact and collision dynamics

described in reference [5] and adopts the lin-

ear complementarity based physics models

from [2, 3].

Generally, the complementarity based so-

lution consists of a combination of: (a) set-

ting up a linear complementarity problem

(LCP) problem; (b) numerically solving the

LCP; and (c) ancillary dynamics computa-

tions. The LCP takes into account the link

mass and inertia properties, contact friction

parameters, inter-link bilateral constraints and contact and collision unilateral con-

straints. The LCP solution identifies the unilateral constraints that are active, and

solves for the impulsive forces and velocity changes that are consistent with the con-

straints on the system. Variants of the complementarity approach to handle elastic

and inelastic collisions have also been developed [3]. While LCP formulations use

discretized approximations for the friction cones, other researchers have explored

non-linear cone complementarity approaches that avoid such approximations [6, 7].

The typical approach to handling contact and collision dynamics is to work with

non-minimal coordinates, since the LCP is simpler to set up [3]. For a multi-link

system with n links, the LCP involves 6n non-minimal coordinates, together with

the bilateral constraints associated with the inter-link hinges in this approach. The

mass matrix is block diagonal and constant. However, the LCP dimension is large

and computationally expensive to solve. In addition, these formulations require ad-

ditional measures for managing error drift in the bilateral constraints when propa-

gating the system dynamics state.

An alternative approach is to use minimal hinge coordinates [8]. While the under-

lying physics remains unchanged, due to the much smaller number of generalized

coordinates, the size of the dynamics model is much smaller. As a consequence the

size of the LCP problem is reduced. Also, the bilateral constraints for the inter-

link hinges are eliminated along with the need to manage their constraint violation

errors. However, the use of minimal coordinates does lead to dense and configura-

tion dependent mass matrices. Thus while minimal coordinates lead to smaller LCP

problems, they also significantly increase the difficulty and computational cost of

setting up the LCP. This has been a significant hurdle in the use of minimal coordi-

nate approaches.

In this paper1 we explore a progression of minimal coordinate formulations that

partition the overall solution effort in different ways between setting up the LCP,

and solving it. Our goal is to reduce the overall computational cost by (a) taking ad-

1 This research on minimal coordinate contact dynamics has also been reported in a recent confer-

ence paper [9].
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vantage of the smaller dimension of minimal coordinate models, and (b) exploiting

the host of structure based, and low-order dynamics algorithms that are available

for minimal coordinate dynamics models. Notable examples of such structure based

algorithms include the composite rigid body algorithms for computing the mass

matrix [10], the articulated body inertia forward dynamics algorithm [11] and the

spatial operator based operational space dynamics algorithm [12].

The main contribution of this paper is in the development of an operational space

based OS formulation, that uses minimal coordinates for the contact and collision

dynamics problem, together with low-order spatial operator algorithms to reduce

the cost of setting up the LCP. This results in a more than an order of magnitude

reduction in computational cost. The size of the resulting LCP problem is indepen-

dent of the number of links and generalized coordinates, and only depends on the

number of contact nodes. We also describe extensions of the formulation to handle

elastic and inelastic collision dynamics. The formulation is developed in progres-

sive steps to clarify the trade offs and relationships among the methods. We use a

multi-link pendulum numerical problem to quantitatively measure the performance

improvements from the new OS formulation. A dual-arm robot system is used as a

reference system to compare the LCP sizes for the different formulations discussed

in this article.

The organization of this paper is as follows. Section 2 describes the comple-

mentarity conditions associated with modeling a single unilateral contact constraint.

Section 3 describes a system-level, multiple contacts NMC LCP formulation based

on non-minimal coordinates. This formulation is easy to set up, but leads to a large

LCP. Section 4 develops an alternative MC formulation that uses minimal coordi-

nates. The reduction in the size of the LCP is however accompanied by an increase

in the cost of setting up the LCP. Section 5 uses the MC LCP formulation to de-

velop the RMC formulation that further reduces the size of the LCP problem, but

once again at the cost of a further increase in the LCP setup cost. Section 6 finally

develops the OS formulation that is based on an operational space approach. While

this LCP’s size is moderately larger than the RMC LCP, it is able to use low-order

operational space algorithms to significantly reduce the LCP setup cost. Section 7

extends the OS formulation contact dynamics model to include elastic and inelastic

collision dynamics. Section 8 focuses on computational issues, and describes the

operational space computational algorithms to reduce the cost of setting up the OS

LCP problem. The section also presents numerical simulation results to quantify the

performance improvements for the OS formulation.

2 Unilateral contact constraints

Unilateral constraints are defined by inequality relationships of the form

d(θ, t) > 0 (1)
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for some function d of the configuration coordinates θ and time t. As an example,

the non-penetration condition for rigid bodies can be stated as an inequality relation-

ship requiring that the distance between the surfaces of rigid bodies be non-negative.

d(θ, t) is generally referred to as the distance or gap function.

Contact occurs at the constraint boundary, i.e., when d(θ, t) = 0. For bodies

in contact, the surface normals at the contact point are parallel. The existence of

contact is typically determined using geometric or collision detection techniques.

For a pair of bodies A and B in contact, we use a convention where the ith contact

normal n̂(i) is defined as pointing from body B towards body A, so that motion

of A in the direction of the normal leads to a separation of the bodies. A unilateral

constraint is said to be in an active state when

d(θ, t) = ḋ(θ, t) = d̈(θ, t) = 0 (2)

Thus, a unilateral constraint is active when there is contact, and the contact persists.

Only active constraints generate constraint forces on the system. A constraint that is

not active is said to be inactive. Contact separation occurs when the relative linear

velocity of the contact points along the normal becomes positive and the contact

points drift apart. A separating constraint is in the process of losing contact and

transitioning to an inactive state. At the start of a separation event, we have

d(θ, t) = ḋ(θ, t) = 0 and d̈(θ, t) > 0 (3)

2.1 Contact impulse for an active contact constraint

PSfrag replacements
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Fig. 2 Polyhedral approxi-

mation of the friction cone.

We now describe contact force modeling using the ap-

proach in references [2, 3]. The 6-dimensional spatial

impulse at the ith active contact constraint node has

a zero angular moment component. Its non-zero linear

impulse component Fu(i) ∈ R3 can be decomposed

into normal and tangential (friction impulse) compo-

nents

Fu(i) = Fn(i)n̂(i) + Ft(i)t̂(i) (4)

where t̂(i) denotes a tangent plane vector for the ith

contact pair. Assuming that the friction coefficient is

µ(i), the magnitude of the tangential Coulomb frictional

impulse is bounded by the magnitude of the normal

component as follows:

‖Ft(i)‖ 6 µ(i)Fn(i) (5)

When the bodies have non-zero relative linear velocities at the contact point, the

contact is said to be a sliding contact. Otherwise, when the relative linear veloc-

ity is zero, the contact is said to be a rolling contact. During sliding, the tangential
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frictional impulse is in a direction opposing the linear velocity vector (which neces-

sarily lies in the contact tangent plane) and Eq. 5 holds with an equality. Thus, the

tangential friction impulse is on the boundary of the cone defined by Eq. 5 when

sliding, and in the interior of the cone when rolling.

For the purpose of numerical computation, the friction cone at the ith contact

is approximated by a friction polyhedron consisting of a finite number, nf, of unit

direction vectors d̂j(i) in the tangent plane (see Figure 2.1). It is assumed that for

each direction vector, its opposite direction vector is also in the set. For notational

simplicity, we assume that nf is the same across all contact points. The ith contact

tangential frictional impulse is expressed as the linear combination of these direction

vectors as follows:

Ft(i)t̂(i) =

nf∑

j=1

βj(i)d̂j(i) = D(i)β(i) (6)

where

D(i)
△
=
[

d̂1(i), · · · , d̂nf
(i)
]

∈ R3×nf and β(i)
△
= col {βj(i)}

nf

j=1 ∈ Rnf

Combining Eq. 4 and Eq. 6 we have

Fu(i) = D(i)β(i), where β(i)
△
=

[

Fn(i)

β(i)

]

∈ Rnf+1

and D(i)
△
=
[

n̂(i), D(i)
]

∈ R3×(nf+1)

(7)

During sliding, the βj(i) component is non-zero and equal to µ(i)Fn(i) for just the

single direction j that corresponds to the closest direction opposing the (tangential)

relative linear velocity. In other words, with σ(i) denoting the magnitude of the

contact relative linear velocity,

βk(i) =

{
µ(i)Fn(i)1[k=j] if σ(i) > 0

0 if σ(i) = 0
(8)

In the above, 1[<cond>] denotes the indicator function whose value is 1 if the con-

dition is true, and 0 otherwise.

2.2 Complementarity relationship for a unilateral contact

We begin by defining complementarity conditions. Let f(z) ∈ Rn denote a function

of a vector z ∈ Rn, whose zi elements have lower and upper bounds li and ui
respectively. The complementarity condition, f(z) ⊥ z, is said to hold when the

following properties apply:
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• fi(z) > 0 when zi = li
• fi(z) 6 0 when zi = ui
• fi(z) = 0 when li < zi < ui

Typically the bounds are li = 0 and ui = ∞, and we will assume this to be the

case unless otherwise stated. For these bounds, the elements of f(z) and z are non-

negative, and the complementarity condition requires that for any i, only one of

fi or zi can be positive. A complementarity condition is a linear complementarity

condition when f(z) has the form Mz + q ⊥ z for some matrix M and vector q.

Thus for an LCP

M z+ q ⊥ z (9)

We have a mixed complementarity condition when one or more of the rows of f(z)

are exactly equal to zero, i.e. the bounds for one or more of the rows are li = −∞

and ui = ∞. Such identically zero rows represent equality conditions while the rest

represent are complementarity (inequality) conditions.

The sliding/rolling contact relationships described above can be rephrased as the

following complementarity conditions2:

n̂∗(i)v+u(i) ⊥ Fn(i) (separation) (10a)

σ(i)E(i) +D∗(i)v+u(i) ⊥ β(i) (friction force direction) (10b)

µ(i)Fn(i) − E
∗(i)β(i) ⊥ σ(i) (friction force magnitude) (10c)

where

E(i)
△
= col {1}

nf

j=1 ∈ Rnf (11)

and v+u(i) ∈ R3 denotes the relative linear velocity of the contact node on the first

body A with respect to the contact node on the second body B. The component

of this relative linear velocity along the contact normal is, n̂∗(i)v+u(i). A positive

value implies increasing separation between the bodies, while a negative value in-

dicates that the bodies are approaching each other. Eq. 10a states that this velocity

component and the normal interaction impulse Fn(i) cannot both be simultaneously

positive. Thus the interaction impulse must be zero when the bodies are separating,

and the impulse can be non-zero only if we have sustained contact. Eq. 10b implies

that the tangential friction impulse opposes the tangential relative linear velocity,

while Eq. 10c states that the magnitude of the tangential impulse is on the friction

cone boundary when the the tangential relative linear velocity is non-zero.

The complementarity conditions in Eq. 10 enforce the no inter-penetration con-

straint at the velocity level instead of at the gap level. Hence they are valid only when

the gap is zero, i.e., when contact exists [3]. Using Eq. 7, Eq. 10 can be expressed

more compactly as

Ê(i)σ(i) +D∗(i)v+u(i) ⊥ β(i)

Ē(i)β(i) ⊥ σ(i)
(12)

2 For a vector/matrixA, theA∗ notation denotes its vector/matrix transpose.
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where

Ê(i)
△
=

[

0

E(i)

]

∈ R(nf+1)

and Ē(i)
△
= [µ(i), −E∗(i)] ∈ R1×(nf+1)

(13)

With nu denoting the number of unilateral contact nodes, the component level com-

plementarity conditions in Eq. 12 can be aggregated across all the contact constraints

and expressed at the system level as:

Êσ+D∗v+u ⊥ β and Ēβ ⊥ σ (14)

where

β
△
= col

{
β(i)

}nu

i=1
∈ Rnu(nf+1)

σ
△
= col {σ(i)}

nu

i=1 ∈ Rnu

D
△
= diag {D(i)}

nu

i=1 ∈ R3nu×nu(nf+1)

Ê
△
= diag

{
Ê(i)

}nu

i=1
∈ Rnu(nf+1)×nu

Ē
△
= diag

{
Ē(i)

}nu

i=1
∈ Rnu×nu(nf+1)

v+u
△
= col

{
v+u(i)

}nu

i=1
∈ R3nu

(15)

Also, Eq. 7 can be restated at the system level as

Fu = Dβ where Fu
△
= col {Fu(i)}

nu

i=1 ∈ R3nu (16)

3 Non-minimal coordinates (NMC) LCP formulation

PSfrag replacements
bilateral

constraints

Fig. 3 Fully augmented model with

hinges modeled as constraints.

In this section we derive the commonly used non-

minimal coordinate LCP formulation for contact

dynamics based on the approach in [3]. We refer

to this formulation as the non-minimal coordinates

(NMC) formulation.

Contact and collision dynamics models build

upon smooth dynamics models. The smooth dy-

namics model used by the NMC method treats all

the links in the system as independent bodies, and

all coupling hinges as explicit bilateral constraints

as illustrated in Figure 3. Such a smooth dynam-

ics model utilizes non-minimal coordinates and is

also referred to as a fully augmented (FA) model [13].

Let n denote the number of links in the system, and N the number of system de-

grees of freedom in the absence of bilateral constraints. For the FA model N = 6n.
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Let nb denote the dimension of the bilateral constraints arising from inter-link

hinges and loop closure constraints on the system. With x denoting the vector of

positional and attitude coordinates for the links, let V ∈ R6n denote the stacked

vector of spatial velocities of all the links. Then there exists a Gb(x, t) ∈ Rnb×6n

matrix and a U(t) ∈ Rnb vector that defines the following velocity domain con-

straint equation for the bilateral constraints on the system:

Gb(x, t)V = U(t) (17)

We assume that Gb(x, t) is a full-rank matrix. Observe that Eq. 17 is linear in V.

The bilateral constraints effectively reduce the independent degrees of freedom for

the system from N to (N − nb). The bilateral constraints are accounted for via

Lagrange multipliers, λ ∈ Rnb to yield the following smooth equations of motion

for the system

Mα−G∗

b(x, t)λ = C(x,V)

Gb(x, t)V = U(t)
(18)

where α ∈ R6n denotes the spatial acceleration of the bodies. M ∈ R6n×6n is a

block diagonal matrix with the 6 × 6 spatial inertias of each of the links along the

diagonal. C ∈ R6n is a vector of the velocity dependent Coriolis and external forces

on the system. The −G∗

b(x, t)λ term in the first equation represents the constraint

forces from the bilateral constraints. Differentiating the Eq. 17 constraint equation,

Eq. 18 can be rearranged into the following descriptor form:

(

M −G∗

b

Gb 0

)[

α

λ

]

=

[

C

Ū

]

where Ū
△
= U̇ − ĠbV ∈ Rnb (19)

An attractive feature of these smooth equations of motion is that the M matrix is

block diagonal and constant. Using the following discrete time Euler step approxi-

mation over a ∆t time interval,3

V+ − V− = α∆t and pb
△
= λ∆t ∈ Rnb (20)

the differential form of the equations of motion in Eq. 19 can be transformed into

the following discretized version that maps the pb impulse stacked vector at the

bilateral constraint nodes into the resulting change in body spatial velocities.

(

M −G∗

b

Gb 0

)[

V+ − V−

pb

]

=

[

C∆t

Ū∆t

]

(21)

3 The − and + superscripts denote the respective value of a quantity just before and after the

application of an impulse.
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3.1 Including contact impulses

The stacked vector of relative linear velocities across the contact nodes is denoted

vu ∈ R3nu . It is related to the stacked vector of body spatial velocities V via the

following relationship

vu = GuV (22)

where the Gu ∈ R3nu×6n matrix contains one block-row per contact node-pair,

with each row mapping the spatial velocities for a node pair into the relative linear

velocity across the contact. The Gu matrix also relates the Fu equal and opposite

impulses at the contact node-pairs to the corresponding spatial impulses on the bod-

ies, pu ∈ R6n via the following dual mapping

pu = G∗

uFu (23)

The pu contact impulses can be included in the Eq. 21 smooth equations of motion

by adding pu to the C∆t term to obtain

(

M −G∗

b

Gb 0

)[

V+ − V−

pb

]

=

[

C∆t + pu

Ū∆t

]

(24)

3.2 Assembling the system LCP

We now set up an LCP to help solve the equations of motion and the unknown

constraint forces. From Eq. 16 and Eq. 23 we have

Fu = Dβ ⇒ pu = G∗

uDβ (25)

Thus Eq. 24 can be recast as

(

M −G∗

b −G∗
uD

Gb 0 0

)







V+ − V−

pb

β






=

[

C∆t

Ū∆t

]

(26)

Combining this with the complementarity conditions in Eq. 14 leads to the following

NMC formulation of the LCP in Eq. 9:

M
△
=











M −G∗

b −G∗
uD 0

Gb 0 0 0

D∗Gu 0 0 Ê

0 0 Ē 0











, z
△
=











V+

pb

β

σ











, q
△
=











−MV− − C∆t

−GbV
− − Ū∆t

0

0











(27)
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This is a mixed LCP problem, where the first two rows are equality conditions, while

the lower two rows are complementarity conditions. This NMC LCP formulation is

essentially the one described in [3]. It makes use of non-minimal coordinates for the

articulated system and is of size (6n+nb +nu(nf + 2)). The constant and block-

diagonal structure of M results in M having a simple and highly sparse structure.

The complexity of assembling M and q for the LCP is just O(n). Reference [3]

derives sufficient conditions for the existence of a solution for the LCP problem.

The solution of the Eq. 27 LCP provides new V+ velocity coordinates which

can be numerically integrated to propagate the x configuration coordinates. The

solution values of β indicate which contacts are active or inactive, while the values

of σ define the rolling or sliding state of each of the active contacts. Thus an LCP

solution with Fu(i) positive indicates that the ith contact is active. Furthermore,

σ(i) = 0 implies that the ith contact is a rolling contact while a positive value

implies that it is a sliding contact.

In the NMC formulation, most of the computational effort involves solving the

LCP, while the cost of setting up the LCP is relative low. The main disadvantage of

this formulation is the large size of the LCP and the consequent large cost for solv-

ing it. Moreover, the use of non-minimal coordinates mandates the additional use of

constraint

PSfrag replacements

bilateral

constraint

Fig. 4 Tree augmented model

with only loop closures mod-

eled as bilateral constraints.

error stabilization schemes to avoid the build up of

constraint violation errors for the bilateral constraints.

We will use the dual-arm robot in Figure 1 to track

and compare the LCP size for this formulation and the

ones to follow. This dual-arm platform has a 4 link

sensor head, a pair of 7 link arms, with each arm hav-

ing a 3 finger hand for an overall system with 26 links

and 26 degrees of freedom. It has no loop closure bi-

lateral constraints. Thus n = 26, N = 6n = 156, and

nb = 5n = 130. For this exercise we assume that

nf = 4, and that there are 4 contact constraints. With

these parameters, the size of the NMC LCP is 310

for the dual-arm system. The statistics for the NMC

scheme are also summarized in the first column of Table 1 in Section 6.

4 Minimal coordinate (MC) LCP formulation

In contrast with the NMC formulation, in the minimal coordinates (MC) formu-

lation, inter-link hinges are not modeled as bilateral constraints. Instead, minimal

hinge coordinates are used to parameterize the permissible hinge motion. In do-

ing so, the number of coordinates associated with the hinge match the number of

degrees of freedom for the hinge. This approach is used for all the hinges in a span-

ning tree for the system graph, and bilateral constraints are used only for additional

loop closures that may be present in the system topology as illustrated in Figure 4.
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Except for the switch from non-minimal to minimal coordinates, the develop-

ment of the MC formulation largely parallels that for the NMC formulation. Hence

wherever possible, we reuse the earlier notation, with the understanding that the

meaning of each symbol depends on the formulation context. Thus once again, we

use N to denote the number of degrees of freedom for the tree sub-system. With

θ ∈ RN denoting the vector of hinge coordinates, the minimal coordinates equa-

tions of motion for the smooth dynamics of just the tree-topology sub-system can

be expressed as

M(θ)θ̈+ C(θ, θ̇) = T (28)

where the configuration dependent matrix M(θ) ∈ RN×N is the mass matrix of

the system, C(θ, θ̇) ∈ RN denotes the velocity dependent Coriolis and gyroscopic

forces vector, and T ∈ RN denotes the applied generalized forces. The mass matrix

is symmetric and positive-definite for tree-topology systems. The configuration de-

pendency and dense structure of M makes it clearly more complex than the sparse

structure and constant value of the M mass matrix in the NMC formulation. On

the other hand, for the dual-arm robot system in Figure 1, M is a compact 26-

dimensional square matrix compared with the 156-dimensional square matrixM.

Let nb denote the dimension of the bilateral constraints on the system arising

from loop closures in the system. Since nb applies only to loop bilateral constraints,

it is much smaller than nb in the NMC formulation. There exists a Gb(θ, t) ∈
Rnb×N matrix and a U(t) ∈ Rnb vector that defines the velocity domain loop

closure constraint equation as follows:

Gb(θ, t)θ̇ = U(t) (29)

Once again we assume that Gb(θ, t) is a full-rank matrix.

The smooth dynamics of closed-chain systems can be obtained by modifying the

tree system dynamics in Eq. 28 to include the effect of the bilateral constraints via

Lagrange multipliers, λ ∈ Rnb , as follows

M(θ)θ̈+ C(θ, θ̇) −G∗

b(θ, t)λ = T

Gb(θ, t)θ̇ = U(t)
(30)

By differentiating the bilateral constraint equation Eq. 29, and including in the av-

erage force from the pu ∈ RN contact impulse, Eq. 30 can be rearranged into the

following descriptor form:

(

M −G∗

b

Gb 0

)[

θ̈

λ

]

=

[

T − C+ pu/∆t

Ū

]

where Ū
△
= U̇(t) − Ġbθ̇ ∈ Rnc

(31)

Using the discrete Euler step approximation

θ̇+ − θ̇− = θ̈∆t (32)

the discretized version of Eq. 31 takes the form
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(

M −G∗

b

Gb 0

)[

θ̇+ − θ̇−

pb

]

=

[

(T − C)∆t + pu

Ū∆t

]

with pb
△
= λ∆t (33)

With Gu ∈ R3nu×N such that

vu = Guθ̇ (34)

the dual expression for the contact spatial impulses is given by

pu = G∗

uFu
16
= G∗

uDβ (35)

Combining the complementarity conditions in Eq. 14 with Eq. 33 leads to the MC

formulation version of the Eq. 9 LCP with

M
△
=











M −G∗

b −G∗
uD 0

Gb 0 0 0

D∗Gu 0 0 Ê

0 0 Ē 0











and z
△
=











θ̇+

pb

β

σ











, q
△
=











−Mθ̇− − (T − C)∆t

−Gbθ̇
− − Ū∆t

0

0











(36)

This is a mixed LCP with the top two rows correspond to equality conditions while

the lower two are complementarity conditions. Its structure is very similar to the

NMC formulation LCP in Eq. 27 and differs primarily in the use of minimal co-

ordinates. The size of the MC LCP is (N + nb + nu(nf + 2)). Unlike the NMC

formulation, this dimension does not depend on the number of links n. Since N is

much smaller when using minimal coordinates, the MC LCP size is much smaller

than the NMC LCP size. For the dual arm robot in Figure 1, the dimension of the

MC LCP is just 50 compared with 310 for the NCP formulation.

On the other hand, evaluating M for the MC LCP requires the configuration

dependent and dense M mass matrix. While the composite rigid body inertia algo-

rithm provides an efficient way to compute M [10], the computational cost scales as

O(N2). Thus the decrease in the LCP size and solution cost for the MC formulation

is traded off for an increase in the cost of setting up the LCP. The computational

complexity for the MC formulation is summarized in Table 1. The solution of the

MC LCP yields the new θ̇+ generalized velocity value which can be integrated to

propagate the θ configuration coordinates. As in the case of the NMC formulation,

the bulk of the computational effort in the MC formulation is in setting up and solv-

ing the LCP problem.
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5 Reduced minimal coordinate (RMC) LCP formulation

Continuing with the minimal coordinate approach, we now take further steps to

reduce the size of the LCP problem. The matrix on the left of Eq. 31 can be inverted

to yield the following solution for θ̈:

θ̈f
△
= M−1 [T − C+ pu/∆t] (37a)

λ =
[

GbM
−1G∗

b

]−1
(−Gbθ̈f + Ū) (37b)

θ̈ = θ̈f +M−1G∗

b λ
37b
=
[

I−M−1G∗

b

[

GbM
−1G∗

b

]−1
Gb

]

θ̈f

+M−1G∗

b

[

GbM
−1G∗

b

]−1
Ū (37c)

Using Eq. 32, we obtain

θ̇+
32
= θ̇− + θ̈∆t

37c
= θ̇− +

[

I−M−1G∗

b

[

GbM
−1G∗

b

]−1
Gb

]

∆tθ̈f

+M−1G∗

b

[

GbM
−1G∗

b

]−1
∆tŪ

37a
= Ypu + X

(38)

where

Y
△
= M−1 −M−1G∗

b(GbM
−1G∗

b)
−1GbM

−1 ∈ RN×N

and X
△
= θ̇− + Y(T − C)∆t +M−1G∗

b

[

GbM
−1G∗

b

]−1
Ū∆t ∈ RN

(39)

Thus

D∗v+u
34
= D∗Guθ̇

+ 35,38
= D∗GuY G

∗

uDβ+D∗GuX (40)

Using this allows us to eliminate θ̇+ and pb from the MC LCP formulation in Eq. 36

to obtain the following Reduced Minimal Coordinate (RMC) formulation LCP:

M
△
=

(

D∗GuY G
∗
uD Ê

Ē 0

)

, z
△
=

[

β

σ

]

, q
△
=

[

D∗GuX

0

]

(41)

Since there are no equality conditions, this is a standard rather than a mixed LCP.

The size of this RMC LCP is nu(nf + 2). It is notable that the size of the LCP

does not depend on the number of links n, the number of degrees of freedom N,

nor the nb dimension of the bilateral constraints. It only depends on the number

of contact constraint nodes. Thus the dimension of this LCP is even smaller than

that for the MC formulation. For the dual arm robot system, the dimension of the

LCP is 24. On the other hand, computing M for the RMC LCP requires the Y ma-

trix in Eq. 39, which requires the configuration dependent M−1 matrix and several

expensive matrix/matrix products. These computations are ofO(N3) computational
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complexity. Once again, while the RMC formulation successfully reduces the LCP

size and consequently its solution cost, this reduction is accompanied by a signif-

icant increase in the cost of setting up the LCP. The computational complexity for

the RMC formulation is summarized in Table 1.

In contrast with the NMC and MC formulations, the solution of the RMC LCP

does not by itself yield the new system velocity or state. Instead the following se-

quence of steps is needed to obtain the new state values:

1. Assemble and solve the RMC LCP in Eq. 41 to obtain β and σ. Use β in Eq. 35

to obtain the pu contact impulse vector.

2. Use pu in Eq. 38 to compute the new θ̇+ system velocity. This can be integrated

to obtain the new system configuration coordinates θ.

Thus, the RMC LCP by itself does not do all the work, and the additional step (2) is

needed to complete the computation of the new θ̇+ system velocity coordinates.

The formulation developed by Trinkle [2] is a hybrid combination of the NMC

and RMC formulations. Trinkle’s setup allows the use of general coordinates for de-

scribing the smooth equations of motion. However, instead of eliminating the hinge

bilateral constraints by using minimal hinge coordinates a pair of symmetric (pos-

itive and negative) complementarity conditions are added to enforce the equality

condition for each hinge constraint. This inflates the size of the LCP much like the

NMC approach. However, Trinkle;s approach is similar to the RMC in eliminating

the velocity coordinates and the loop closure bilateral constraint Lagrange multipli-

ers from the LCP problem to obtain an LCP similar in form to Eq. 41.

6 Operational space (OS) LCP formulation

So far we have found that the reductions in LCP size have the side-effect of increas-

ing the LCP setup cost. In this section we look into reducing such setup cost using

low-order structure-based dynamics algorithms. Using

θ̈f
△
= M−1 [T − C] and δfb

△
= GbM

−1(T − C) − Ū = Gbθ̈f − Ū (42)

in Eq. 31, we obtain

0
29
= Gbθ̈− Ū

31
= GbM

−1 [T − C+G∗

bλ+ pu/∆t] − Ū

= GbM
−1G∗

bλ+GbM
−1pu/∆t + δ

f
b

35
= GbM

−1G∗

bλ+GbM
−1G∗

uDβ/∆t + δ
f
b

(43)

The above expression characterizes the equality condition on the dynamics from the

bilateral constraints. Observe that θ̈f represents the generalized acceleration that

would occur in the absence of the bilateral and contact constraints, and can be re-
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garded as the free generalized acceleration for the system. For this hypothetical free

system, δfb represents the time derivative of the velocity residual Gbθ̇ − U(t) for

the bilateral constraints. For θ̇ consistent with the constraints, clearly this velocity

residual is instantaneously zero, but it has the δfb non-zero time derivative were the

system dynamics to evolve according to the free dynamics. In reality, the system

dynamics is constrained and this velocity residual and its time derivative remain

zero.

The relative linear acceleration of the contact nodes is obtained by differentiating

Eq. 34 to obtain

v̇u = Guθ̈+ Ġuθ̇
31
= GuM

−1 [T − C+G∗

bλ+ pu/∆t] + Ġuθ̇ (44)

With

δfu
△
= GuM

−1(T − C) + Ġuθ̇ = Guθ̈f + Ġuθ̇ (45)

the discretized approximation (v+u − v−u) = v̇u∆t of Eq. 44 leads to

v+u
35, 44
= GuM

−1G∗

bλ∆t +GuM
−1G∗

uDβ+ v−u + δfu∆t (46)

Physically, δfu is the time derivative of the contact relative velocity v−u were the

system to evolve in accordance with the free dynamics, i.e. in the absence of the bi-

lateral and contact constraints. Combining the complementarity conditions in Eq. 14

with Eq. 43 and Eq. 46 yields the following mixed LCP for the system:

M
△
=







GbM
−1G∗

b GbM
−1G∗

uD 0

D∗GuM
−1G∗

b D
∗GuM

−1G∗
uD Ê

0 Ē 0







and z
△
=







pb

β

σ






, q

△
=







δfb∆t

D∗(v−u + δfu∆t)

0







(47)

This M matrix still requires the configuration dependent M−1 matrix whose eval-

uation if of O(N3) computational complexity. We next look more closely at the

structure of the Gu and Gb matrices.

The unilateral and bilateral constraints are associated with nodes on the bod-

ies. Let us denote the number of this overall set of nodes involved in the unilat-

eral and bilateral constraints as nc. Denoting the spatial velocities of these nodes

by the stacked vector Vc ∈ R6nc , there exist matrices Qu ∈ R3nu×6nc and

Qb ∈ Rnb×6nc such that the unilateral and bilateral velocity constraint equations

can be expressed as4

vu = QuVc and QbVc = U (48)

4 Qu has the same structure as would the Qb constraint mapping matrix corresponding to bilateral

constraints involving three degree of freedom spherical hinges.



16 Abhinandan Jain

Let J ∈ R6nc×N denote the Jacobian for the constraint nodes, so that

Vc = Jθ̇ (49)

It follows from Eq. 29, Eq. 34, Eq. 48 and Eq. 49 thatGu andGb have the following

form:

Gu = QuJ and Gb = QbJ (50)

With

Λ
△
= JM−1J∗ ∈ R6nc×6nc (51)

we can use Eq. 50 to re-express M in Eq. 47 as

M =







QbΛQ
∗

b QbΛQ
∗
uD 0

D∗QuΛQ
∗

b D∗QuΛQ
∗
uD Ê

0 Ē 0






=







[

Qb

D∗Qu

]

Λ [Q∗

b, Q∗
uD]

0

Ê

0 Ē 0







(52)

The Λ = JM−1J∗ matrix definition in Eq. 51 is precisely the mathematical ex-

pression for the inverse of the operational space inertia matrix that is used in the

operational space approach for robot manipulation and control [14, 15]. Based on

this structural similarity, we borrow and extend the operational space terminology to

our current context with the constraint nodes forming the operational space nodes.

Also, borrowing terminology, we refer to Λ as the operational space compliance

matrix (OSCM) matrix. The invertibility of Λ does not depend on J being invertible

– only that J have full row-rank. When it exists, the inverse of Λ is referred to as

the operational space inertia. The properties of the OSCM are discussed in detail in

[12].

The property of the Λ matrix that is of importance for us is the availability of al-

gorithms ofO(N)+O(n2
c) computational complexity for evaluatingΛ [12, 16]. The

low-order of these algorithms is remarkable given the presence of M−1 in the ex-

pression forΛ, since evaluating M and M−1 individually requireO(N2) andO(N3)

computations respectively. This algorithm reduces the complexity of evaluating M

in Eq. 52 from O(N3) to the much smaller O(N) + O(n2
c) computational com-

plexity. The low complexity algorithm for evaluating Λ is based on an analytical

transformation of Eq. 51, followed by a disjoint decomposition of the matrix into

block diagonal, and upper and lower triangular components that can be computed

recursively. A summary of this structure-based analysis and accompanying algo-

rithms using spatial operator techniques is described in the appendix. An alternative

sparsity based technique for evaluating Λ is described in reference [17].

Using Eq. 52 the Eq. 47 LCP can be re-expressed as the following Operational

Space (OS) formulation LCP:
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M
△
=







[

Qb

D∗Qu

]

Λ [Q∗

b, Q∗
uD]

0

Ê

0 Ē 0







and z
△
=







pb

β

σ






, q

△
=







δfb∆t

D∗(v−u + δfu∆t)

0







(53)

This is a mixed LCP, with the first row corresponding to an equality condition while

the bottom two rows correspond to complementarity conditions. The size of this

LCP is (nb + nu(nf + 2)). Like the RMC formulation, the size of this LCP does

not depend on the number of links n or the number of degrees of freedom N, but

it does depend on the nb dimension of the loop closure bilateral constraints. The

dimension of the OS LCP is moderately larger than the RMC LCP but smaller than

the MC LCP. Typically, Q̇u, Q̇b and U̇ are all zero leading to a simpler q in Eq. 53.

For the dual arm robot system, the dimension of the OS LCP is 24.

Computing M for the OS LCP requires the configuration dependent Λ matrix

Eq. 53 whose evaluation is of O(N) + O(n2
c) computational complexity which is

much smaller than the O(N3) complexity for evaluating M for the RMC method.

Thus in comparison with the RMC formulation, while the OS formulation increases

the size of the LCP by a modest nb, it drastically reduces the LCP setup complexity.

The result is a significant reduction in the overall complexity of the contact dynam-

ics computations for the OS formulation.

Like the RMC formulations, the solution of the LCP does not by itself yield the

new system velocity or state. Instead the following sequence of steps is needed to

obtain the new state values:

1. Assemble and solve the OS LCP in Eq. 53 to obtain pb, β and σ. Use β in Eq. 35

to obtain the pu contact impulse vector.

2. Use λ = pb/∆t and pu in Eq. 31 to obtain and integrate the θ̈ generalized

acceleration over the ∆t time interval using any smooth integrator to obtain the

new system state (θ, θ̇).

Like the RMC formulation, the LCP by itself does not do all the work in the OS for-

mulation, but instead the additional step (2) is needed to complete the computation

of the new θ̇+ system velocity coordinates.

The LCP formulation developed in references [8, 18] make use of the divide and

conquer algorithm (DCA) [19] techniques and is a special case of the OS formula-

tion. Our OS formulation is more general since it handles loop closure bilateral con-

straints, exploits operational space techniques to reduce computational complexity,

and as described later, handles collision dynamics.

Table 1 summarizes the dimensions and computational complexity for all the for-

mulations discussed so far. The trend across the NMC, MC and RMC formulations

is that the reduction in the size of the LCP shifts costs to the LCP setup process.

While the initial form of the OS formulation LCP in Eq. 47 also follows this trend,
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LCP Formulation

Property NMC MC RMC OS

Coordinates

type
Non-minimal Minimal Minimal Minimal

LCP assembly

complexity
O(n) O(N2) O(N3) O(N) +O(n2

c
)

LCP dimension
6n + nb +

nu(nf + 2)

N + nb +

nu(nf + 2)
nu(nf + 2)

nb+nu(nf+

2)

Dual-arm LCP

dimension
310 50 24 24

Ancillary

dynamics steps
None None

Evaluate pu

and θ̇+

Evaluate pu

and θ̇+

Table 1 A comparison of the features of the different NMC, MC, RMC and OS formulations for

contact and collision dynamics. The LCP dimension size is for the reference dual-arm robot prob-

lem, while the LCP assembly complexity highlights just the major contributors.

the restructured Eq. 53 LCP breaks the pattern by restructuring the LCP to take

advantage of low-order, structure-based algorithms for the OSCM.

7 Collision dynamics

In this section we develop extensions to the OS LCP formulation for handling the

dynamics of collision events. During inelastic collisions some of the impact en-

ergy is lost. The coefficient of restitution, ǫ(i) defines the fraction that remains after

a collision. The complementarity approach to modeling collisions breaks up the

collision event into a pair of instantaneous compression and decompression phases

[3]. During the compression phase, the collision impulse is stored, and during de-

compression, a fraction of the collision impulse is recovered. We will make use of

time discretized equations with impulses developed for contact dynamics, but with

∆t = 0 since collision events are assumed to be instantaneous.

7.1 Compression

At the ith contact undergoing collision, the compression phase is instantaneous and

impulsively changes the relative linear contact velocity from v−u(i) to a new v+c (i)
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value with a non-negative normal component. The compression impulse is denoted

pc(i). The mixed LCP problem for the compression phase is obtained by setting

∆t = 0 in Eq. 53 to obtain

w = Mz+ q ⊥ z with q
△
=





[

0

D∗v−u

]

0



 (54)

The LCP solution is used to instantaneously (i.e. impulsively) propagate the state

for the compression phase as follows:

pc = Q∗

uD β+ Q∗

bpb

θ̇c = θ̇− +M−1J∗pc

v+c = Jθ̇c

(55)

7.2 Decompression

The decompression phase applies an additional impulse of magnitude

ǫ(i)[0, n̂∗(i)pc(i)] for the ith contact along the normal from the impulse stored

during the compression phase. The recovered ϑ decompression impulse is

ϑ
△
= col {(ǫ(i)[0, n̂∗(i)]pc(i)) n̂(i)}

nu

i=1 ∈ R3nu (56)

The decompression LCP is obtained by updating Eq. 43 and Eq. 44 to include the

additional ϑ impulse. This leads to a decompression LCP problem that is the mixed

LCP in Eq. 53 with ∆t = 0, the contact linear velocity v−u replaced with v+c , and

an additional

[

Qb
D∗Qu

]

ΛQ∗
uϑ term for the recovered impulse included in the q LCP

vector term. The resulting decompression phase LCP is

w = Mz+ q ⊥ z with q
△
=





[

0

D∗v+c

]

+

[

Qb
D∗Qu

]

ΛQ∗
uϑ

0



 (57)

The LCP solution for the decompression impulse can include additional contact

impulse terms that ensure that the normal component of the relative linear velocity

at the end of the decompression step remains non-negative. The LCP solution is

used to instantaneously propagate the state for the decompression phase as follows:

p = Q∗

uD β+ Q∗

bλ+ Q∗

uϑ

θ̇+ = θ̇c +M−1J∗p
(58)
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When ǫ(i) = 0, the collision is completely inelastic, and there is no decompression

phase. However, in general, each collision event requires the solution of two LCP’s

in this approach.

8 Simulation results

We use a simulation of a multi-link pendulum colliding with itself and the environ-

ment to quantitatively evaluate the performance of the OS formulation. This exam-

ple also allows us to parameterically measure the performance improvement as a

function of the problem dimension by varying the number of links in the pendulum.

The environment consists of a floor and a wall located 4m away. The multi-link pen-

dulum consists of n identical 1kg mass spherical bodies connected with pin hinges.

The radius of the sphere is scaled based on the number of links to maintain a 12m

overall length of the pendulum. The pendulum base is located at a height of 10m.

The open source Bullet software [20] is used for collision detection, and the PATH

software [21] for solving mixed complementarity problems. The simulation uses a

time step of 1ms, with a 0.5 coefficient of friction and a 0.5 coefficient of restitution

to simulate inelastic collisions. The pendulum starts at an angle of π/4 radians with

an initial angular velocity of 1 radian/s and a gravitational acceleration of 9.8m/s2.

As the pendulum swings from left to right, it collides with the ground, bounces

Fig. 5 Time series capture of swinging pendulum simulation with 12 links

off of the ground, and eventually collides with the wall on the right. In the course of
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the sequence, multiple links are at times in collision with the ground, the wall and

with each other. Figure 5 contains a sequence of screen shots from such a simulation

for a 12-link pendulum. We have simulated this contact and collision dynamics sce-

nario using two different techniques. The first technique is the minimal coordinate

OS formulation described in Section 6.

The second technique, that we refer to as the NMC/OS formulation, is a non-

minimal coordinate variant of the OS formulation. Similar to the NMC method,

each link is treated as an independent body, and the hinges are handled as bilateral

constraints between the neighboring links with nb = 6n − N. The NMC/OS LCP

has the same form as the OS LCP in Eq. 53, except that the OSCM is the non-

minimal coordinate Λ = JM−1J∗, instead of Eq. 51. The NMC/OS Λ is a much

larger matrix than for the OS formulation, but has a much simpler block diagonal

structure. However, the NMC/OS LCP does not include system velocity coordinates

V in z and thus is smaller than the NMC LCP.

Figure 6 shows example plots of the height and normal velocity of the last link

of the 12-body pendulum from the two simulation methods. The simulation re-

sults from the two methods show good agreement through the first few collisions,

with some divergence during the later phases. Reasons for the divergence include

the widely differing choices of coordinates, and more importantly the The verti-

cal spikes in the velocity plot are discontinuous jumps from collisions involving

the pendulum bodies. The small trajectory differences in the plots decrease further

when the time step size is reduced.

Fig. 6 Comparisons of the height and normal velocity of the last link using the OS (red) and

NMC/OS (blue) formulation based simulations for a 12-body pendulum.

Table 2 compares the computational cost of the OS and the NMC/OS formula-

tions for pendulums with the number of links varying between 3 and 30 links. The

table also lists the LCP size for the OS, NMC/OS and the NMC formulations. The

size of the LCP remains a constant value of 24 for the standard OS formulation even

when the number of links and degrees of freedom in the system is increased. In con-

trast, the LCP size increases with the increase in the number of links and degrees

of freedom for the NMC/OS and the NMC formulations. We also observe that the

OS method is about 3.5 times faster for the 3 link pendulum case, and over 50 times
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LCP size Computation Time (s)

Number of links OS NMC/OS NMC OS NMC/OS Speed up

3 24 39 57 0.63 2.20 3.5

6 24 54 90 1.0 4.44 4.44

12 24 84 156 1.88 15.7 8.36

15 24 99 189 2.91 33.59 11.5

24 24 144 288 4.76 127.94 26.88

30 24 174 354 5.13 257.72 50.28

Table 2 A comparison of the LCP size and computational time for the OS and NMC/OS formu-

lations for the multi-link pendulum example with different number of links. The LCP size assumes

4 contacts and nf = 4. The three LCP size columns are for the OS, the NMC/OS and the NMC

formulations. The speed up value is the ratio of the NMC/OS to the OS formulation simulation

times.

faster for the 30 link pendulum when compared with the the NMC/OS method. The

performance gap widens substantially as the number of links in the system is in-

creased. The performance gap between the OS and NMC formulations will be even

greater due to the even larger size of the NMC LCP.

9 Conclusions

In this article we have described a progressive series of formulations for solving

the contact and collision dynamics of multi-link articulated systems with the goal

of reducing computational cost. Along the way, we have clarified the relationships

among the different approaches and those in the literature. Our strategy has been

to use minimal coordinates and identify formulations that best exploit the available

low-order structure based dynamics algorithms to reduce the overall computational

cost.

The formulations studied here vary in the size of the LCP, the cost of setting

up the LCP, and the ancillary dynamics steps needed to complete the dynamics

solution. The generally observed trend is that the reduction in the LCP size shifts

the computational burden from solving the LCP problem, to the setting up of the

LCP problem. The widely used NMC non-minimal coordinate formulation is the

simplest and cheapest to set up, but also the most expensive to solve due to its

large dimension. The RMC minimal coordinate approach on the other hand has

the smallest LCP dimension, but one that is the most expensive to set up. In the

RMC approach, the size of the LCP problem in is just (nu(nf + 2) + nb), which

is independent of the number of links, the number of degrees of freedom and the

dimension of the bilateral constraints on the system. In contrast, the size of the

corresponding NMC LCP is larger by 6n − N. For a 6-link manipulator with 6

degrees of freedom, this amounts to an increase in dimension of 30.

The OS formulation also has the small LCP dimension property, with dimension

exceeding that of the RMC LCP by just the (typically small) dimension of the loop
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closure bilateral constraints, nb. The advantage of the OS formulation is that the

LCP matrix can be expressed in terms of the operational space OSCM matrix for

the constraint nodes. This form allows us to use low-order, structure-based compu-

tational algorithms available for the OSCM to significantly reduce the cost of setting

up the OS LCP. Consequently the OS formulation has the lowest overall cost with

a small LCP as well as low cost algorithms for setting up the LCP. Focusing on this

option, we describe extensions of the contact dynamics formulation to handle elastic

and inelastic collision dynamics. The OS formulation’s use of minimal coordinates

also results in the automatic enforcement of the inter-link hinge bilateral constraints

and avoids the need for additional bilateral constraint error control schemes. The

benchmark simulations using a pendulum system show a widening performance

improvement using the OS formulation as the number of bodies is increased. For

the 30 link pendulum system, the OS formulation is over 50 times faster than the

NMC/OS approach. An area of future work is the extension of the OS formulation

to use the more accurate nonlinear complementarity problem techniques, and time

stepping schemes that are in development for increasing the robustness and accuracy

of contact and collision non-smooth dynamics [22].
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10 Appendix

The operational space for the multi-link system is defined by the configuration of the

set of constraint nodes on the system. The key implementation and computational

challenge for setting up the OS formulation LCP in Eq. 53 is the need for evaluating

the Λ matrix. As seen in Eq. 51, Λ involves the configuration dependent matrix

products of the Jacobian matrix and the mass matrix inverse. A direct evaluation of

this expression requiresO(N3) computations. However references [12, 16, 23] have

used spatial operators to develop simpler and recursive computational algorithms

forΛ that are of onlyO(N) complexity. We briefly describe the underlying analysis

and structure of this algorithm, and refer the reader to [12, 16, 23] for notation and

derivation details.

http://bulletphysics.org
http://pages.cs.wisc.edu/~ferris/path.html
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10.1 Spatial operator factorization of M−1

We begin with the following key spatial operator based analytical results that pro-

vide explicit, closed-form expressions for the factorization and inversion of a tree

mass matrix [12, 24]:

M = HφMφ∗H∗

M = [I+HφK]D [I+HφK]
∗

[I+HφK]
−1

= [I−HψK]

M−1 = [I−HψK]
∗
D−1 [I−HψK]

(59)

The first expression defines the Newton-Euler operator factorization of the mass

matrix M in terms of the H hinge articulation, the φ rigid body propagation and

theM link spatial inertia operators. While this factorization has non-square factors,

the second expression describes an alternative factorization involving only square

factors with block diagonal D and block lower-triangular [I+HφK] matrices. This

factorization involves new spatial operators that are associated with the articulated

body (AB) forward dynamics algorithm [11, 23] for the system. The next expression

describes an analytical expression for the inverse of the [I+HφK] operator. Using

this leads to the final analytical expression for the inverse of the mass matrix. These

operator expressions hold generally for tree-topology systems irrespective of the

number of bodies, the types of hinges, the specific topological structure, and even

for non-rigid links [12].

10.2 TheΩ extended operational space compliance matrix

With V ∈ R6n denoting the stacked vector of link spatial velocities, its spatial

operator expression is [12]

V = φ∗H∗θ̇ (60)

Bundling together the rigid body transformations for all nodes we define the B ∈
R6n×6nc pick-off matrix such that the stacked vector of node spatial velocities Vc
can be expressed as

Vc = B∗V
60
= B∗φ∗H∗θ̇ ⇒ J

49
= B∗φ∗H∗ (61)

This is the spatial operator expression for the J Jacobian matrix. Using this expres-

sion and Eq. 59 for the mass matrix inverse within Eq. 51 leads to the following

expression for Λ:

Λ
51
= JM−1J∗

59
= B∗φ∗H∗(I−HψK)∗D−1(I−HψK)HφB (62)

Using the spatial operator identity [12, 24]
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(I−HψK)Hφ = Hψ (63)

in Eq. 62 leads to the following simpler expression for Λ:

Λ = B∗ΩB withΩ
△
= ψ∗H∗D−1Hψ ∈ R6nc×6nc (64)

We have arrived at an expression for Λ, that unlike Eq. 51, involves neither the

mass matrix inverse nor the node’s Jacobian matrix! We refer to Ω as the extended

operational space compliance matrix. This terminology is based on Eq. 64 which

shows that the OSCM, Λ can be obtained by a reducing transformation of the full,

all body Ω matrix by the B pick-off operator involving just the matrix sub-blocks

associated with the parent links of the nodes. From its definition, it is clear that Ω

is a symmetric and positive semi-definite since D−1 is a symmetric positive-definite

matrix.

While the explicit computation of M−1 or J is not needed to obtain Λ, the di-

rect evaluation of Eq. 64 still remains of O(N3) complexity due to the need for

carrying out the multiple matrix/matrix products. The next section shows that these

matrix/matrix products can be avoided by exploiting a decomposition of the Ω ma-

trix.

10.3 Decomposition ofΩ

The following lemma describes a decomposition ofΩ into simpler component terms

and an expression for its block elements. The E∗

ψ and ψ() terms used below are

defined in references [12, 23]. Furthermore, ℘(k) denotes the parent link for the kth

link, and i ≺ j notation implies that the jth link is an ancestor of the ith link in the

tree.

Lemma 1. Decomposition ofΩ

Ω can be decomposed into the following disjoint sum:

Ω = Υ+ ψ̃∗Υ+ Υψ̃+ R where R
△
=

∑

∀i,j: i⊀⊁j
k=℘(i,j)

eiψ
∗(k, i)Y(k)ψ(k, j)e∗j

(65)

Υ ∈ R6nc×6nc is a block-diagonal operator, referred to as the operational space

compliance kernel, satisfying the following backward Lyapunov equation:

H∗D−1H = Υ− diagOf
{

E∗

ψΥEψ

}

(66)

diagOf
{

E∗

ψΥEψ

}

represents just the block-diagonal part of the (generally non

block-diagonal) E∗

ψΥEψ matrix. The 6 × 6 dimensional, symmetric, positive semi-

definite Υ(k) diagonal matrices satisfy the following parent/child recursive rela-
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tionship:

Υ(k) = ψ∗(℘(k),k)Υ(℘(k))ψ(℘(k),k) +H∗(k)D−1(k)H(k) (67)

This relationship forms the basis for the following O(N) base-to-tips scatter recur-

sion for computing the Υ(k) diagonal elements:






for all nodes k (base-to-tips scatter)

Υ(k) = ψ∗(℘(k),k)Υ(℘(k))ψ(℘(k),k) +H∗(k)D−1(k)H(k)

end loop

(68)

While Υ defines the block-diagonal elements of Ω, the following recursive expres-

sions describe its off-diagonal terms:

Ω(i, j) =






Υ(i) for i = j

Ω(i,k)ψ(k, j) for i � k ≻ j, k = ℘(j)

Ω∗(j, i) for i ≺ j
Ω(i,k)ψ(k, j) for i ⊁ j, j ⊁ i, k = ℘(i, j)

(69)

Proof. See [12, 23].

Eq. 65 shows that Ω can be decomposed into the sum of simpler terms consisting

of the block diagonal Υ, the upper-triangular ψ̃∗Υ, the lower triangular Υψ̃, and

the sparse R matrices. Furthermore, Eq. 69 reveals that all of the block-elements of

Ω(i, j) can be obtained from the Υ(i) elements of the Υ block-diagonal operational

space compliance kernel.

From the Λ = B∗ΩB expression, and the sparse structure of B, it is clear that

only a subset of the elements ofΩ are needed to computeΛ. The B pick-off operator

has one column for each of the nodes, with each such column having only a single

non-zero 6 × 6 matrix entry at the kth parent link slot. Only as many elements

of Ω as there are elements in Λ are needed. Thus, just nc × nc number of 6 × 6

sub-block matrices of Ω are required. In view of the symmetry of the matrices, we

actually need just nc(nc + 1)/2 such sub-block matrices. The overall complexity

of this algorithm is linearly proportional to the number of degrees of freedom, and

a quadratic function of the number of nodes. This is much lower than the O(N3)

complexity implied by Eq. 51.
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