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The Dartslab team at NASA’s Jet Propulsion Laboratory (JPL) has a long history of developing physics-based 

simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic 

missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars.  Recent collaboration 

efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space 

Center (JSC) have led to significant enhancements to the Dartslab DSENDS software framework.  The new version 

of DSENDS is now being used for new planetary mission simulations at JPL.  JSC is using DSENDS as the 

foundation for a suite of software known as COMPASS that is the basis for their new human space mission 

simulations and analysis.  In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC 

MOD team that resulted in the redesign and enhancement of the DSENDS software.  We will outline the 

improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations.  We will 

illustrate how DSENDS simulations are assembled and show results from several mission simulations. 

I. Introduction and Background 

A. Prior History the Dartslab DSENDS simulation frameworks at JPL 

DSENDS is a physics-based engineering simulator for space missions developed by the Dartslab
5
 team at 

NASA’s Jet Propulsion Laboratory [1].  DSENDS models the spacecraft as a multi-body system where the 

spacecraft position, attitude, articulation and body flexibility states (and their rates) interact with gravity, 

atmospheres, terrain, and on-board spacecraft devices in response to ground commands and flight-software directed 

sensing and control actions. DSENDS is a deployment of the Dshell multi-mission simulation framework [2]. It was 

originally designed to provide functionality for Entry, Descent and Landing (EDL) problems but has since been 

generalized to provide capabilities relating to spacecraft ascent, orbit, proximity operations, rendezvous descent and 

surface operations (e.g. roving). 

 The DSENDS tool is in use at JPL for technology/concept development – all the way from Pre-Phase A analysis 

to flight operations. It is used by NASA/JPL missions for performance studies, cross-validation of other simulations 

and tools, and flight-critical EDL mission operations including lander targeting. It has been used by NASA/JPL 

Technology Programs, Program Offices, and Mission Analysis teams as a high-fidelity simulator to support proposal 

development, as an integration platform and test-bed for studies, and as a tool for algorithm and software 

development. 

As part of JPL’s end-to-end Mission systems, DSENDS interoperates with JPL’s Interplanetary Mission design 

and navigation software Monte [2]. In flight-operations it is used to verify the actions of mission actions (e.g. 

determine the landing footprint), perform targeting operations (e.g. to design interplanetary trajectory correction 

maneuvers). 

DSENDS development started with the 1991 development of the DARTS dynamics engine. The Dshell 

framework was initially developed in 1992 for the Cassini mission, with development of the DSENDS deployment 

commencing in 2000. In 2007 DSENDS was used in the Mars Phoenix EDL Mission Operations and more recently 
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it was used for the Mars Science Laboratory EDL operations. It is currently in use at JPL by the Low Density 

Supersonic Decelerator (LDSD) project for design of their integrated test campaign. It has also been selected by 

JSC-MOD as the basis for COMPASS, their next generation flight dynamics tool for all ascent, descent, orbit, 

proximity-operations, and rendezvous simulations.  

To users, DSENDS provides a modern scripting language (Python) to enable data-driven building of applications 

at run-time, easy configuration setup & initialization, and automated testing. The underlying Dshell framework 

heavily leverages various Open Source software resources. High computational performance is achieved using C++ 

implementations of module functions and fast algorithms, with auto-generation of the hooks from the C++ level to 

Python. Visualization and introspection tool configurations are dynamically generated from the simulation 

configuration. 

B. Motivation for improvements to the DSENDS framework 

Due to the production nature of the first users of DSENDS, the software package delivered to them was fairly 

stable and static.  Changes were typically due to bug fixes and mission-specific enhancements or models.  In the 

meantime, the Dartslab team had improved the simulation framework software, including enhancements to 

multibody modeling (Ndarts [3], [4]), 3D visualization (using Ogre [6]), very large scale terrain modeling 

(SimScape [6]).  Having to maintain an older version of the software while active development is going on the latest 

version is inefficient and error-prone.  A path forward was needed that would allow the DSENDS user base to 

migrate to a current version of the software. 

When the JSC Missions Operations Directorate (MOD) team approached us, they needed a new simulation 

framework.  With the retirement of the Space Shuttle, the MOD team was transitioning into a dynamic role of 

supporting various vehicles with rapidly changing missions.  This required agile new simulation tools that are 

adaptable to a wide range of human space flight missions.  The JSC MOD Flight Dynamics team evaluated a variety 

of options and completed a 6-DOF simulation benchmarking effort, and determined that DSENDS “offers the most 

capable and flexible simulation path for the division”.  

In the process of training the JSC MOD team in the use of latest version of DSENDS, it became apparent that 

there were some parts of DSENDS that needed improvements for their use cases.  For instance, DSENDS could only 

support one spacecraft at a time.  This led to a collaborative effort to refactor and improve DSENDS. 

C. Collaborative development 

In order to collaboratively develop a new version of DSENDS, in 2011 we formed a joint JPL-JSC development 

partnership led by JPL (although most of the development team was from the JSC MOD). Our goal was to refactor 

much of the simulation software underlying DSENDS so that it would meet the needs of both the JPL and the JSC 

MOD teams.  The primary focus was on creating a new module "DshellCommon" that constitutes a complete re-

write of the corresponding functionality of the previous version of DSENDS.  There were also extensive changes to 

the underlying software to incorporate the framework enhancements outlined in the previous section, as well as 

changes to increase the usefulness, usability, and robustness of the software. 

Our development team used Agile methodologies [7] including Scrum principles  [8] to define short-term 

incremental releases on a two-to-three week development cycle.  Each cycle typically involved a review of the prior 

DSENDS functionality and code, planning of how to adapt or rewrite the code, implementing the desired re-coding, 

and writing related regression tests.  

Due to inter-center complications of sharing a software repository, the team in each center maintained a separate 

software repository (using subversion).  The JPL team took responsibility for merging changes from both sides 

based on JPL-JSC team discussions and consensus building, and committing the changes to both software 

repositories.  Most of the software evolution took place in the DshellCommon module.  The JPL team made sure 

that all changes worked in the JSC environment and the JPL environment (which was evolving independently of the 

JSC environment).  Every several months, the JPL team put together a consolidated package of all the modules and 

provided it to JSC as a new baseline package.   This prevented divergence of the code base over time. 

We also conducted a face-to-face Technical Interchange Meeting (TIM) once every 6 months to discuss progress 

in the software development, talk about technical issues, and plan development strategy for the coming months. 

This collaborative process has worked extremely well and has produced a new very useful and high-quality 

version of DSENDS.  The new version of DSENDS was derived from earlier versions of DSENDS but is essentially 

a new implementation that supports a wider range of spacecraft and mission related scenarios.  Not only is the JSC 

MOD team using the new DSENDS, but the JPL Dartslab team has transitioned to the new DSENDS for all current 

and new work. 
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D. The end product: A new DSENDS 

The new version of DSENDS is significant step up from earlier 

versions of DSENDS in terms of flexibility, usability, robustness, 

and general software quality.  DSENDS is made of several parts as 

shown in this figure on the right.  From the bottom up, these 

components are: 

 Dartslab core SW, libraries - Underlying software libraries 

such as vector libraries, terrain modeling libraries, 

visualization libraries, etc. 

 Darts multibody code – Darts multibody dynamics engine. 

 Dshell - The Dshell framework of classes for models, data 

flow management, parameter handling, integration, data 

logging, etc. 

 Dartslab models - Library of reusable models for system hardware and subsystems. 

 DSENDS models - Models for simulations involve aerodynamics and other EDL-related capabilities. 

 DshellCommon - Simulation executives, run-script handling code, and classes for "assemblies" (a higher 

level model construct which construct and connect sets of 

related primitive models). 

 User code and run scripts – Python libraries and run scripts 

written by the user to make use of all the lower levels to 

model and simulate complete systems. 

 

The JSC MOD team uses the DSENDS software as the core of 

their system called COMPASS (Core Operations, Mission 

Planning, and Analysis Spacecraft Simulation).  The block diagram 

in Figure 2 illustrates how COMPASS uses the underlying 

DSENDS framework. 

This is the same as the previous layout except that JSC has 

implemented a variety of models and assemblies in the item labeled 

‘COMPASS Components’ related to specific vehicle hardware and 

simulation scenarios they plan to support as part of their mission. 

II. Simulations with DSENDS (How does it work?)  

E. What kind of systems can DSENDS model? 

In short, DSENDS can model any type of space, aerial, marine surface, or underwater vehicle.  The fidelity of 

the model is only limited by how detailed the implementers are willing model out the multibody system and the 

various hardware and software components.   

DSENDS can handle arbitrary multibody systems including chain, tree, and closed-chain topologies.  The Darts 

multibody dynamics code, winner of 1997 NASA Software of the Year Award, can handle closed loops with 

constraint embedding so that a minimum number of coordinates are used [4], [5].  Darts can also model bodies that 

are flexible using modal descriptions of the flexible-body dynamics.  

DSENDS can model actuators that inject forces into the multibody system (such as a thruster) as well as sensors 

that can read information out of the multibody system (such as joint encoder).   DSENDS also supports many 

different models for specific types of hardware (IMUs, etc.).  If the user has special subsystems they need to model, 

they can create new Dshell models in C++ and use them in simulations just like any existing model. 

DSENDS includes higher-level models called Assemblies that instantiate and set up sets of primitive models, 

connect their data flows appropriately, and initialize the primitive model parameters as needed.  DshellCommon and 

other modules include a library of Assemblies that model typical spacecraft subsystems (such as a robot arm that 

includes bodies, joints, joint motors, encoders, etc.) 

User code and run scripts 

DshellCommon 

Dartslab Models DSENDS 
Models 

Dshell 

Darts multibody code 

Dartslab core SW, Libraries 

Figure 1 - DSENDS Components 

Dartslab Models 

User code and run scripts 

DshellCommon 

Dartslab Models 

Dshell 

Darts multibody code 

Dartslab core SW, Libraries 

COMPASS Components 

Figure 2 - JSC MOD COMPASS Components 
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DSENDS can model aerodynamic forces acting on arbitrary bodies in a simulation.  For instance, this capability 

has been used to perform launch vehicle breakup analysis to determine vehicle dispersion on vehicle failure. 

DSENDS can handle simulations involving multiple spacecraft and multiple planetary bodies.  The spacecraft 

can be independent or attached to each other.  Spacecraft can detach from their parent body and attach to any other 

body at run time. 

DSENDS provides a wide range of planetary bodies (Earth, Moon, Mars, etc.) as well as sophisticated 

atmospheric models based on the latest NASA planetary atmospheric codes.   DSENDS can also model small bodies 

such as asteroids with a polygonal model that captures the variable gravity of oddly shaped bodies very accurately. 

DSENDS provides tools for finite state machines that can control the sequencing and behavior of the simulation 

to construct and execute a very sophisticated mission simulation sequence. 

DSENDS can run parameter sweeps or Monte Carlo simulations involving thousands of separate runs to 

determine dispersions.  This capability was used extensively to plan entry trajectories and Entry, Descent, and 

Landing strategy for the Mars Phoenix and Mars Science Laboratory missions. 

DSENDS provides tools for 3D visualization of all parts of a simulation (spacecraft, planets, trajectories, etc.)  

The user can control the view point of the visualization “camera” to better watch and understand the simulation.  

Once a simulation is developed, the 3D visualization can be captured in a movie. 

F. What is "under the hood" of DSENDS? 

Underneath the surface of DSENDS, there are many powerful features and capabilities.  Simulations based on 

DSENDS are physics-based.    The figure below shows the basic functionality of the DSENDS simulation 

framework.   

The high degree of physics 

fidelity starts with the underlying 

multibody code, Darts.  Darts is a 

multibody dynamics engine based 

on spatial operator algebra [9] with 

O(n) performance that scales well 

to hundreds or thousands of degrees 

of freedom.  Since it uses an 

inherently efficient algorithm and is 

implemented in C++, in most 

situations Darts offers faster than 

real-time performance.  Another 

key feature is the ability to support 

a wide range of 'Dshell' models for 

various hardware devices or 

subsystems.  The models can insert 

forces or torques into the multibody 

system (actuators) or read information out of the multibody system (encoders, sensors).  The fidelity of the 

simulation is primarily limited by the fidelity of the models.  Dshell models have the advantage of being very 

efficient since they are written in C++.  Connecting models are data flows called 'signals'.  Signals not only allow 

models to communicate with each other, they also define a partial order that allows model sorting (to control order 

of model execution during simulations). 

In order to set up low-level models, data flows, and initialize parameters, we use Python.  Each software module 

is compiled separately and set up so it can be loaded using the Python module import system.  This means that 

simulations can be set up without compiling a large application executable (although this is possible, if desired).  

The users run script can load the necessary modules for their simulation.  Therefore, we can shift away from the 

“application binaries” paradigm and use Python as the bedrock to glue together appropriate mix libraries at run-time. 

Another very useful feature of DSENDS is that it has an underlying data representation called DVar (similar to a 

URL addressing scheme) that allows the user to access all multibody bodies and joints, model parameters, states, 

and signals in a simple and consistent way.  This makes operations such as changing simulation parameters and 

logging much simpler and more flexible. 

Dshell also includes the typical simulation capabilities such as selecting integrators, controlling simulation step 

sizes, processing events, and executing the simulations. 

Finally, DSENDS includes a wide range of data analysis tools for run time (such as dials, gauges, and strip 

charts) as well as post-run analysis (such as plotting and data mining). 

Figure 3 - DSENDS Functional Block Diagram 
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G. What does a run script look like? 

 

   The simulation 'run' scripts are Python files that have the following parts: 

 

      1. Setup - importing classes for the simulation executive and parameter definition files (not shown). 

      2. Create the simulation executive: 

 
This creates the simulation executive that will process and execute the simulation 

definition in the rest of this user run script. 

      3. Configure the simulation configuration and parameterization: 

 
This section of the user run script extracts parameters from the ‘targets’ and ‘bodies’ 

objects.  These are defined by the user in separate Python files (targets.py and 

bodies.py) that are not shown here. 

      4. Create the simulation: 

  
These statements create the simulation objects (such as the spacecraft ‘SC1’) as well 

as set up its initial configuration properly. 

      5. Configure finite state machines to sequence the simulation (not shown). 

      6. Initialize any simulation-specific initial values (not shown). 

      7. Execute the simulation: 

 
Users are free to include loops to execute as many time steps as desired.  They may 

also want to interleave commands (although this can usually be better handled via 

finite state machine events). 

  

  

sim.step() 

sim.createAssemblies(config) 

sim.bindState() 

sim.resetState(0.0) 

config = { 

  'Mars' : { 

     'class' : 'TargetAssembly', 

     'params' : { 'Target' : targets['Mars'], 

               'Bodies' : bodies['Target']['Bodies'], 

               } 

     }, 

  'SC1' : { 

     'class' : 'VehicleAssembly', 

     'basename' : 'CapsuleBase', 

     'params' : { 'Bodies' : bodies['SC1']['Bodies'] 

                }, 

     'assemblies' : { 

         'grav' : { 

           'class': 'GeneralGravityActuatorAssembly', 

           'context' : { 'body' : 'CapsuleBase' } 

           } 

         } 

     } 

     } 

 

sim = SimulationExecutive() 

 Definition 

for target 

planet 

(Mars) 

 

Definition for 

spacecraft 

‘SC1’, 

including 

contained 

gravity model 
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III. Applications of DSENDS (What is it good for?) 

H.  JSC MOD applications 

   The JSC MOD team has applied the DSENDS/COMPASS framework to variety of mission scenarios 

including: 

 Ascent scenarios that start fixed on the surface, 

launch, and reach a goal orbit. 

 Rendezvous scenarios that involve two 

spacecraft in orbit.  One spacecraft maneuvers to 

rendezvous with the other (passive) spacecraft 

(such as a spacecraft rendezvousing with the 

International Space Station).   See the figure to 

the right. 

 Descent scenarios that start with a spacecraft in 

orbit, perform a de-orbit thruster firing and track 

the vehicle downwards through entry, parachute 

deploy, and surface landing. 

 Other scenarios such as orbital proximity 

operations and vehicle breakup analysis. 

 

I. MSL Entry Descent and Landing Visualization 

DSENDS has been used in a variety of ways in the Mars Science Laboratory mission [11].   Entry, Descent, and 

Landing was planned out 

using a prior version of 

DSENDS [10].   During the 

landing on August 5, 2012, the 

MSL Mission Control team 

used an MSL EDL 

visualization tool developed 

by the Dartslab team using the 

new version of DSENDS [12].   

This was visible on of the 

main screens and on screens 

of several controller 

workstations.  A screenshot of 

this visualization tool from the 

actual landing is shown here.  

Here the DSENDS models are 

driven by the real-time 

telemetry data from the MSL 

relay satellite (Mars Odyssey) instead of by solving of the underlying dynamics. Note that because of the availability 

of the dynamics capability, a physics-based extrapolation of the system trajectory and behavior is possible in case of 

telemetry data drop outs or slow data rates. However in the control room, only the last known status and position 

(from telemetry) were shown on the screen.  In addition DSENDS also uses all the geometrical models (terrain, 

coordinate frames, etc) to display the telemetry data in the most appropriate mode for a given mission phase (e.g. 

inertial display versus surface fixed frame relative display). Also, the current positions of the Mars communications 

satellites (Mars Odyssey and Mars Reconnaissance Orbiter) were shown at all times using the standard DSENDS 

ephemerides updates. The 3-D views of the spacecraft are overlaid with event data as well as visual displays in the 

form of dials and text. 

 

Figure 5 -  MSL EDL Visualization Tool based on the new DSENDS used in MSL 

Mission Control during Mars Entry, Descent, and Landing 

Figure 4 - JSC MOD Simulation 
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J. Low Density Supersonic Decelerator (LDSD) visualization 

As the test program for LDSD is developed [10] the various test scenarios are generated in DSENDS and 

displayed using the visualization 

capabilities of the tool [13]. This 

allows the test engineers to design the 

test system (e.g. size the rocket 

motors used to accelerate the test 

article), visualize the trajectory and 

related constraints (e.g. land over-

flight, communication line-of-sights), 

camera placements, etc. 

 

 

 

 

 

K. SEAS Lunar mission designs 

This is an integrated landing and roving simulation with the mission consisting of a descent from lunar orbit, the 

operation of rover on the Aitken basin of the 

moon for the duration of a half lunar day, 

and the subsequent ascent of the spacecraft 

to lunar orbit with the collected samples. 

The rover is operated in both autonomous 

and teleoperated modes (from a crewed 

facility in halo orbit around the Lagrange L2 

point). 

 

 

 

L. Potential for University/STEM version 

A version of the DSENDS aero-flight simulator system developed at the JPL Dynamics and Real-Time 

Simulation Laboratory is also being made available for use in undergraduate and graduate programs at universities. 

Initial users would be students in the Aerospace Engineering department at Georgia Tech. 

IV. Conclusions 

The new version of DSENDS is a powerful, modular, flight-tested, physics-based modeling/simulation tool for 

flight mechanics including standalone simulations & test-beds, large-scale parametric sweeps/Monte-Carlos, 

simulation Services, and visualization.   DSENDS uses a Python-based user interface for easy simulation 

construction and modification.  DSENDS has been used a wide variety of missions and is currently in use at JPL and 

in the Missions Operation Directorate of NASA’s Johnson Space Center. 
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Figure 6 - LDSD Test Visualization 

Figure 7 - SEAS Lunar Mission Analysis 
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